summaryrefslogtreecommitdiffstats
path: root/lib/Analysis/RegionStore.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/RegionStore.cpp')
-rw-r--r--lib/Analysis/RegionStore.cpp1304
1 files changed, 1304 insertions, 0 deletions
diff --git a/lib/Analysis/RegionStore.cpp b/lib/Analysis/RegionStore.cpp
new file mode 100644
index 0000000..02d3d1f
--- /dev/null
+++ b/lib/Analysis/RegionStore.cpp
@@ -0,0 +1,1304 @@
+//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a basic region store model. In this model, we do have field
+// sensitivity. But we assume nothing about the heap shape. So recursive data
+// structures are largely ignored. Basically we do 1-limiting analysis.
+// Parameter pointers are assumed with no aliasing. Pointee objects of
+// parameters are created lazily.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Analysis/PathSensitive/MemRegion.h"
+#include "clang/Analysis/PathSensitive/GRState.h"
+#include "clang/Analysis/PathSensitive/GRStateTrait.h"
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/Basic/TargetInfo.h"
+
+#include "llvm/ADT/ImmutableMap.h"
+#include "llvm/ADT/ImmutableList.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Compiler.h"
+
+using namespace clang;
+
+// Actual Store type.
+typedef llvm::ImmutableMap<const MemRegion*, SVal> RegionBindingsTy;
+
+//===----------------------------------------------------------------------===//
+// Region "Views"
+//===----------------------------------------------------------------------===//
+//
+// MemRegions can be layered on top of each other. This GDM entry tracks
+// what are the MemRegions that layer a given MemRegion.
+//
+typedef llvm::ImmutableSet<const MemRegion*> RegionViews;
+namespace { class VISIBILITY_HIDDEN RegionViewMap {}; }
+static int RegionViewMapIndex = 0;
+namespace clang {
+ template<> struct GRStateTrait<RegionViewMap>
+ : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*,
+ RegionViews> > {
+
+ static void* GDMIndex() { return &RegionViewMapIndex; }
+ };
+}
+
+// RegionCasts records the current cast type of a region.
+namespace { class VISIBILITY_HIDDEN RegionCasts {}; }
+static int RegionCastsIndex = 0;
+namespace clang {
+ template<> struct GRStateTrait<RegionCasts>
+ : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*,
+ QualType> > {
+ static void* GDMIndex() { return &RegionCastsIndex; }
+ };
+}
+
+//===----------------------------------------------------------------------===//
+// Region "Extents"
+//===----------------------------------------------------------------------===//
+//
+// MemRegions represent chunks of memory with a size (their "extent"). This
+// GDM entry tracks the extents for regions. Extents are in bytes.
+//
+namespace { class VISIBILITY_HIDDEN RegionExtents {}; }
+static int RegionExtentsIndex = 0;
+namespace clang {
+ template<> struct GRStateTrait<RegionExtents>
+ : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, SVal> > {
+ static void* GDMIndex() { return &RegionExtentsIndex; }
+ };
+}
+
+//===----------------------------------------------------------------------===//
+// Region "killsets".
+//===----------------------------------------------------------------------===//
+//
+// RegionStore lazily adds value bindings to regions when the analyzer handles
+// assignment statements. Killsets track which default values have been
+// killed, thus distinguishing between "unknown" values and default
+// values. Regions are added to killset only when they are assigned "unknown"
+// directly, otherwise we should have their value in the region bindings.
+//
+namespace { class VISIBILITY_HIDDEN RegionKills {}; }
+static int RegionKillsIndex = 0;
+namespace clang {
+ template<> struct GRStateTrait<RegionKills>
+ : public GRStatePartialTrait< llvm::ImmutableSet<const MemRegion*> > {
+ static void* GDMIndex() { return &RegionKillsIndex; }
+ };
+}
+
+//===----------------------------------------------------------------------===//
+// Regions with default values.
+//===----------------------------------------------------------------------===//
+//
+// This GDM entry tracks what regions have a default value if they have no bound
+// value and have not been killed.
+//
+namespace { class VISIBILITY_HIDDEN RegionDefaultValue {}; }
+static int RegionDefaultValueIndex = 0;
+namespace clang {
+ template<> struct GRStateTrait<RegionDefaultValue>
+ : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, SVal> > {
+ static void* GDMIndex() { return &RegionDefaultValueIndex; }
+ };
+}
+
+//===----------------------------------------------------------------------===//
+// Main RegionStore logic.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class VISIBILITY_HIDDEN RegionStoreSubRegionMap : public SubRegionMap {
+ typedef llvm::DenseMap<const MemRegion*,
+ llvm::ImmutableSet<const MemRegion*> > Map;
+
+ llvm::ImmutableSet<const MemRegion*>::Factory F;
+ Map M;
+
+public:
+ void add(const MemRegion* Parent, const MemRegion* SubRegion) {
+ Map::iterator I = M.find(Parent);
+ M.insert(std::make_pair(Parent,
+ F.Add(I == M.end() ? F.GetEmptySet() : I->second, SubRegion)));
+ }
+
+ ~RegionStoreSubRegionMap() {}
+
+ bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
+ Map::iterator I = M.find(Parent);
+
+ if (I == M.end())
+ return true;
+
+ llvm::ImmutableSet<const MemRegion*> S = I->second;
+ for (llvm::ImmutableSet<const MemRegion*>::iterator SI=S.begin(),SE=S.end();
+ SI != SE; ++SI) {
+ if (!V.Visit(Parent, *SI))
+ return false;
+ }
+
+ return true;
+ }
+};
+
+class VISIBILITY_HIDDEN RegionStoreManager : public StoreManager {
+ RegionBindingsTy::Factory RBFactory;
+ RegionViews::Factory RVFactory;
+
+ const MemRegion* SelfRegion;
+ const ImplicitParamDecl *SelfDecl;
+
+public:
+ RegionStoreManager(GRStateManager& mgr)
+ : StoreManager(mgr),
+ RBFactory(mgr.getAllocator()),
+ RVFactory(mgr.getAllocator()),
+ SelfRegion(0), SelfDecl(0) {
+ if (const ObjCMethodDecl* MD =
+ dyn_cast<ObjCMethodDecl>(&StateMgr.getCodeDecl()))
+ SelfDecl = MD->getSelfDecl();
+ }
+
+ virtual ~RegionStoreManager() {}
+
+ SubRegionMap* getSubRegionMap(const GRState *state);
+
+ const GRState* BindCompoundLiteral(const GRState* St,
+ const CompoundLiteralExpr* CL, SVal V);
+
+ /// getLValueString - Returns an SVal representing the lvalue of a
+ /// StringLiteral. Within RegionStore a StringLiteral has an
+ /// associated StringRegion, and the lvalue of a StringLiteral is
+ /// the lvalue of that region.
+ SVal getLValueString(const GRState* St, const StringLiteral* S);
+
+ /// getLValueCompoundLiteral - Returns an SVal representing the
+ /// lvalue of a compound literal. Within RegionStore a compound
+ /// literal has an associated region, and the lvalue of the
+ /// compound literal is the lvalue of that region.
+ SVal getLValueCompoundLiteral(const GRState* St, const CompoundLiteralExpr*);
+
+ /// getLValueVar - Returns an SVal that represents the lvalue of a
+ /// variable. Within RegionStore a variable has an associated
+ /// VarRegion, and the lvalue of the variable is the lvalue of that region.
+ SVal getLValueVar(const GRState* St, const VarDecl* VD);
+
+ SVal getLValueIvar(const GRState* St, const ObjCIvarDecl* D, SVal Base);
+
+ SVal getLValueField(const GRState* St, SVal Base, const FieldDecl* D);
+
+ SVal getLValueFieldOrIvar(const GRState* St, SVal Base, const Decl* D);
+
+ SVal getLValueElement(const GRState* St, QualType elementType,
+ SVal Base, SVal Offset);
+
+ SVal getSizeInElements(const GRState* St, const MemRegion* R);
+
+ /// ArrayToPointer - Emulates the "decay" of an array to a pointer
+ /// type. 'Array' represents the lvalue of the array being decayed
+ /// to a pointer, and the returned SVal represents the decayed
+ /// version of that lvalue (i.e., a pointer to the first element of
+ /// the array). This is called by GRExprEngine when evaluating
+ /// casts from arrays to pointers.
+ SVal ArrayToPointer(Loc Array);
+
+ CastResult CastRegion(const GRState* state, const MemRegion* R,
+ QualType CastToTy);
+
+ SVal EvalBinOp(const GRState *state,BinaryOperator::Opcode Op,Loc L,NonLoc R);
+
+ /// The high level logic for this method is this:
+ /// Retrieve (L)
+ /// if L has binding
+ /// return L's binding
+ /// else if L is in killset
+ /// return unknown
+ /// else
+ /// if L is on stack or heap
+ /// return undefined
+ /// else
+ /// return symbolic
+ SVal Retrieve(const GRState* state, Loc L, QualType T = QualType());
+
+ const GRState* Bind(const GRState* St, Loc LV, SVal V);
+
+ Store Remove(Store store, Loc LV);
+
+ Store getInitialStore() { return RBFactory.GetEmptyMap().getRoot(); }
+
+ /// getSelfRegion - Returns the region for the 'self' (Objective-C) or
+ /// 'this' object (C++). When used when analyzing a normal function this
+ /// method returns NULL.
+ const MemRegion* getSelfRegion(Store) {
+ if (!SelfDecl)
+ return 0;
+
+ if (!SelfRegion) {
+ const ObjCMethodDecl *MD = cast<ObjCMethodDecl>(&StateMgr.getCodeDecl());
+ SelfRegion = MRMgr.getObjCObjectRegion(MD->getClassInterface(),
+ MRMgr.getHeapRegion());
+ }
+
+ return SelfRegion;
+ }
+
+ /// RemoveDeadBindings - Scans the RegionStore of 'state' for dead values.
+ /// It returns a new Store with these values removed, and populates LSymbols
+ // and DSymbols with the known set of live and dead symbols respectively.
+ Store RemoveDeadBindings(const GRState* state, Stmt* Loc,
+ SymbolReaper& SymReaper,
+ llvm::SmallVectorImpl<const MemRegion*>& RegionRoots);
+
+ const GRState* BindDecl(const GRState* St, const VarDecl* VD, SVal InitVal);
+
+ const GRState* BindDeclWithNoInit(const GRState* St, const VarDecl* VD) {
+ return St;
+ }
+
+ const GRState* setExtent(const GRState* St, const MemRegion* R, SVal Extent);
+ const GRState* setCastType(const GRState* St, const MemRegion* R, QualType T);
+
+ static inline RegionBindingsTy GetRegionBindings(Store store) {
+ return RegionBindingsTy(static_cast<const RegionBindingsTy::TreeTy*>(store));
+ }
+
+ void print(Store store, std::ostream& Out, const char* nl, const char *sep);
+
+ void iterBindings(Store store, BindingsHandler& f) {
+ // FIXME: Implement.
+ }
+ const GRState* setDefaultValue(const GRState* St, const MemRegion* R, SVal V);
+private:
+ const GRState* BindArray(const GRState* St, const TypedRegion* R, SVal V);
+
+ /// Retrieve the values in a struct and return a CompoundVal, used when doing
+ /// struct copy:
+ /// struct s x, y;
+ /// x = y;
+ /// y's value is retrieved by this method.
+ SVal RetrieveStruct(const GRState* St, const TypedRegion* R);
+
+ SVal RetrieveArray(const GRState* St, const TypedRegion* R);
+
+ const GRState* BindStruct(const GRState* St, const TypedRegion* R, SVal V);
+
+ /// KillStruct - Set the entire struct to unknown.
+ const GRState* KillStruct(const GRState* St, const TypedRegion* R);
+
+ // Utility methods.
+ BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); }
+ ASTContext& getContext() { return StateMgr.getContext(); }
+
+ SymbolManager& getSymbolManager() { return StateMgr.getSymbolManager(); }
+
+ const GRState* AddRegionView(const GRState* St,
+ const MemRegion* View, const MemRegion* Base);
+ const GRState* RemoveRegionView(const GRState* St,
+ const MemRegion* View, const MemRegion* Base);
+};
+
+} // end anonymous namespace
+
+StoreManager* clang::CreateRegionStoreManager(GRStateManager& StMgr) {
+ return new RegionStoreManager(StMgr);
+}
+
+SubRegionMap* RegionStoreManager::getSubRegionMap(const GRState *state) {
+ RegionBindingsTy B = GetRegionBindings(state->getStore());
+ RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
+
+ for (RegionBindingsTy::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
+ if (const SubRegion* R = dyn_cast<SubRegion>(I.getKey()))
+ M->add(R->getSuperRegion(), R);
+ }
+
+ return M;
+}
+
+/// getLValueString - Returns an SVal representing the lvalue of a
+/// StringLiteral. Within RegionStore a StringLiteral has an
+/// associated StringRegion, and the lvalue of a StringLiteral is the
+/// lvalue of that region.
+SVal RegionStoreManager::getLValueString(const GRState* St,
+ const StringLiteral* S) {
+ return loc::MemRegionVal(MRMgr.getStringRegion(S));
+}
+
+/// getLValueVar - Returns an SVal that represents the lvalue of a
+/// variable. Within RegionStore a variable has an associated
+/// VarRegion, and the lvalue of the variable is the lvalue of that region.
+SVal RegionStoreManager::getLValueVar(const GRState* St, const VarDecl* VD) {
+ return loc::MemRegionVal(MRMgr.getVarRegion(VD));
+}
+
+/// getLValueCompoundLiteral - Returns an SVal representing the lvalue
+/// of a compound literal. Within RegionStore a compound literal
+/// has an associated region, and the lvalue of the compound literal
+/// is the lvalue of that region.
+SVal
+RegionStoreManager::getLValueCompoundLiteral(const GRState* St,
+ const CompoundLiteralExpr* CL) {
+ return loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL));
+}
+
+SVal RegionStoreManager::getLValueIvar(const GRState* St, const ObjCIvarDecl* D,
+ SVal Base) {
+ return getLValueFieldOrIvar(St, Base, D);
+}
+
+SVal RegionStoreManager::getLValueField(const GRState* St, SVal Base,
+ const FieldDecl* D) {
+ return getLValueFieldOrIvar(St, Base, D);
+}
+
+SVal RegionStoreManager::getLValueFieldOrIvar(const GRState* St, SVal Base,
+ const Decl* D) {
+ if (Base.isUnknownOrUndef())
+ return Base;
+
+ Loc BaseL = cast<Loc>(Base);
+ const MemRegion* BaseR = 0;
+
+ switch (BaseL.getSubKind()) {
+ case loc::MemRegionKind:
+ BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
+ break;
+
+ case loc::GotoLabelKind:
+ // These are anormal cases. Flag an undefined value.
+ return UndefinedVal();
+
+ case loc::ConcreteIntKind:
+ // While these seem funny, this can happen through casts.
+ // FIXME: What we should return is the field offset. For example,
+ // add the field offset to the integer value. That way funny things
+ // like this work properly: &(((struct foo *) 0xa)->f)
+ return Base;
+
+ default:
+ assert(0 && "Unhandled Base.");
+ return Base;
+ }
+
+ // NOTE: We must have this check first because ObjCIvarDecl is a subclass
+ // of FieldDecl.
+ if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
+ return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
+
+ return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
+}
+
+SVal RegionStoreManager::getLValueElement(const GRState* St,
+ QualType elementType,
+ SVal Base, SVal Offset) {
+
+ // If the base is an unknown or undefined value, just return it back.
+ // FIXME: For absolute pointer addresses, we just return that value back as
+ // well, although in reality we should return the offset added to that
+ // value.
+ if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
+ return Base;
+
+ // Only handle integer offsets... for now.
+ if (!isa<nonloc::ConcreteInt>(Offset))
+ return UnknownVal();
+
+ const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
+
+ // Pointer of any type can be cast and used as array base.
+ const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
+
+ if (!ElemR) {
+ //
+ // If the base region is not an ElementRegion, create one.
+ // This can happen in the following example:
+ //
+ // char *p = __builtin_alloc(10);
+ // p[1] = 8;
+ //
+ // Observe that 'p' binds to an AllocaRegion.
+ //
+
+ // Offset might be unsigned. We have to convert it to signed ConcreteInt.
+ if (nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&Offset)) {
+ const llvm::APSInt& OffI = CI->getValue();
+ if (OffI.isUnsigned()) {
+ llvm::APSInt Tmp = OffI;
+ Tmp.setIsSigned(true);
+ Offset = NonLoc::MakeVal(getBasicVals(), Tmp);
+ }
+ }
+ return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
+ BaseRegion));
+ }
+
+ SVal BaseIdx = ElemR->getIndex();
+
+ if (!isa<nonloc::ConcreteInt>(BaseIdx))
+ return UnknownVal();
+
+ const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
+ const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
+ assert(BaseIdxI.isSigned());
+
+ // FIXME: This appears to be the assumption of this code. We should review
+ // whether or not BaseIdxI.getBitWidth() < OffI.getBitWidth(). If it
+ // can't we need to put a comment here. If it can, we should handle it.
+ assert(BaseIdxI.getBitWidth() >= OffI.getBitWidth());
+
+ const MemRegion *ArrayR = ElemR->getSuperRegion();
+ SVal NewIdx;
+
+ if (OffI.isUnsigned() || OffI.getBitWidth() < BaseIdxI.getBitWidth()) {
+ // 'Offset' might be unsigned. We have to convert it to signed and
+ // possibly extend it.
+ llvm::APSInt Tmp = OffI;
+
+ if (OffI.getBitWidth() < BaseIdxI.getBitWidth())
+ Tmp.extend(BaseIdxI.getBitWidth());
+
+ Tmp.setIsSigned(true);
+ Tmp += BaseIdxI; // Compute the new offset.
+ NewIdx = NonLoc::MakeVal(getBasicVals(), Tmp);
+ }
+ else
+ NewIdx = nonloc::ConcreteInt(getBasicVals().getValue(BaseIdxI + OffI));
+
+ return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR));
+}
+
+SVal RegionStoreManager::getSizeInElements(const GRState* St,
+ const MemRegion* R) {
+ if (const VarRegion* VR = dyn_cast<VarRegion>(R)) {
+ // Get the type of the variable.
+ QualType T = VR->getDesugaredValueType(getContext());
+
+ // FIXME: Handle variable-length arrays.
+ if (isa<VariableArrayType>(T))
+ return UnknownVal();
+
+ if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(T)) {
+ // return the size as signed integer.
+ return NonLoc::MakeVal(getBasicVals(), CAT->getSize(), false);
+ }
+
+ GRStateRef state(St, StateMgr);
+ const QualType* CastTy = state.get<RegionCasts>(VR);
+
+ // If the VarRegion is cast to other type, compute the size with respect to
+ // that type.
+ if (CastTy) {
+ QualType EleTy =cast<PointerType>(CastTy->getTypePtr())->getPointeeType();
+ QualType VarTy = VR->getValueType(getContext());
+ uint64_t EleSize = getContext().getTypeSize(EleTy);
+ uint64_t VarSize = getContext().getTypeSize(VarTy);
+ return NonLoc::MakeIntVal(getBasicVals(), VarSize / EleSize, false);
+ }
+
+ // Clients can use ordinary variables as if they were arrays. These
+ // essentially are arrays of size 1.
+ return NonLoc::MakeIntVal(getBasicVals(), 1, false);
+ }
+
+ if (const StringRegion* SR = dyn_cast<StringRegion>(R)) {
+ const StringLiteral* Str = SR->getStringLiteral();
+ // We intentionally made the size value signed because it participates in
+ // operations with signed indices.
+ return NonLoc::MakeIntVal(getBasicVals(), Str->getByteLength()+1, false);
+ }
+
+ if (const FieldRegion* FR = dyn_cast<FieldRegion>(R)) {
+ // FIXME: Unsupported yet.
+ FR = 0;
+ return UnknownVal();
+ }
+
+ if (isa<SymbolicRegion>(R)) {
+ return UnknownVal();
+ }
+
+ if (isa<AllocaRegion>(R)) {
+ return UnknownVal();
+ }
+
+ if (isa<ElementRegion>(R)) {
+ return UnknownVal();
+ }
+
+ assert(0 && "Other regions are not supported yet.");
+ return UnknownVal();
+}
+
+/// ArrayToPointer - Emulates the "decay" of an array to a pointer
+/// type. 'Array' represents the lvalue of the array being decayed
+/// to a pointer, and the returned SVal represents the decayed
+/// version of that lvalue (i.e., a pointer to the first element of
+/// the array). This is called by GRExprEngine when evaluating casts
+/// from arrays to pointers.
+SVal RegionStoreManager::ArrayToPointer(Loc Array) {
+ if (!isa<loc::MemRegionVal>(Array))
+ return UnknownVal();
+
+ const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
+ const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R);
+
+ if (!ArrayR)
+ return UnknownVal();
+
+ // Strip off typedefs from the ArrayRegion's ValueType.
+ QualType T = ArrayR->getValueType(getContext())->getDesugaredType();
+ ArrayType *AT = cast<ArrayType>(T);
+ T = AT->getElementType();
+
+ nonloc::ConcreteInt Idx(getBasicVals().getZeroWithPtrWidth(false));
+ ElementRegion* ER = MRMgr.getElementRegion(T, Idx, ArrayR);
+
+ return loc::MemRegionVal(ER);
+}
+
+RegionStoreManager::CastResult
+RegionStoreManager::CastRegion(const GRState* state, const MemRegion* R,
+ QualType CastToTy) {
+
+ ASTContext& Ctx = StateMgr.getContext();
+
+ // We need to know the real type of CastToTy.
+ QualType ToTy = Ctx.getCanonicalType(CastToTy);
+
+ // Check cast to ObjCQualifiedID type.
+ if (isa<ObjCQualifiedIdType>(ToTy)) {
+ // FIXME: Record the type information aside.
+ return CastResult(state, R);
+ }
+
+ // CodeTextRegion should be cast to only function pointer type.
+ if (isa<CodeTextRegion>(R)) {
+ assert(CastToTy->isFunctionPointerType() || CastToTy->isBlockPointerType());
+ return CastResult(state, R);
+ }
+
+ // Now assume we are casting from pointer to pointer. Other cases should
+ // already be handled.
+ QualType PointeeTy = cast<PointerType>(ToTy.getTypePtr())->getPointeeType();
+
+ // Process region cast according to the kind of the region being cast.
+
+ // FIXME: Need to handle arbitrary downcasts.
+ if (isa<SymbolicRegion>(R) || isa<AllocaRegion>(R)) {
+ state = setCastType(state, R, ToTy);
+ return CastResult(state, R);
+ }
+
+ // VarRegion, ElementRegion, and FieldRegion has an inherent type. Normally
+ // they should not be cast. We only layer an ElementRegion when the cast-to
+ // pointee type is of smaller size. In other cases, we return the original
+ // VarRegion.
+ if (isa<VarRegion>(R) || isa<ElementRegion>(R) || isa<FieldRegion>(R)
+ || isa<ObjCIvarRegion>(R) || isa<CompoundLiteralRegion>(R)) {
+ // If the pointee type is incomplete, do not compute its size, and return
+ // the original region.
+ if (const RecordType *RT = dyn_cast<RecordType>(PointeeTy.getTypePtr())) {
+ const RecordDecl *D = RT->getDecl();
+ if (!D->getDefinition(getContext()))
+ return CastResult(state, R);
+ }
+
+ QualType ObjTy = cast<TypedRegion>(R)->getValueType(getContext());
+ uint64_t PointeeTySize = getContext().getTypeSize(PointeeTy);
+ uint64_t ObjTySize = getContext().getTypeSize(ObjTy);
+
+ if ((PointeeTySize > 0 && PointeeTySize < ObjTySize) ||
+ (ObjTy->isAggregateType() && PointeeTy->isScalarType())) {
+ // Record the cast type of the region.
+ state = setCastType(state, R, ToTy);
+
+ SVal Idx = ValMgr.makeZeroArrayIndex();
+ ElementRegion* ER = MRMgr.getElementRegion(PointeeTy, Idx, R);
+ return CastResult(state, ER);
+ } else
+ return CastResult(state, R);
+ }
+
+ if (isa<ObjCObjectRegion>(R)) {
+ return CastResult(state, R);
+ }
+
+ assert(0 && "Unprocessed region.");
+ return 0;
+}
+
+SVal RegionStoreManager::EvalBinOp(const GRState *state,
+ BinaryOperator::Opcode Op, Loc L, NonLoc R) {
+ // Assume the base location is MemRegionVal.
+ if (!isa<loc::MemRegionVal>(L))
+ return UnknownVal();
+
+ const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion();
+ const ElementRegion *ER = 0;
+
+ // If the operand is a symbolic or alloca region, create the first element
+ // region on it.
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR)) {
+ // Get symbol's type. It should be a pointer type.
+ SymbolRef Sym = SR->getSymbol();
+ QualType T = Sym->getType(getContext());
+ QualType EleTy = cast<PointerType>(T.getTypePtr())->getPointeeType();
+
+ SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
+ ER = MRMgr.getElementRegion(EleTy, ZeroIdx, SR);
+ }
+ else if (const AllocaRegion *AR = dyn_cast<AllocaRegion>(MR)) {
+ // Get the alloca region's current cast type.
+ GRStateRef StRef(state, StateMgr);
+
+ GRStateTrait<RegionCasts>::lookup_type T = StRef.get<RegionCasts>(AR);
+ assert(T && "alloca region has no type.");
+ QualType EleTy = cast<PointerType>(T->getTypePtr())->getPointeeType();
+ SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
+ ER = MRMgr.getElementRegion(EleTy, ZeroIdx, AR);
+ }
+ else
+ ER = cast<ElementRegion>(MR);
+
+ SVal Idx = ER->getIndex();
+
+ nonloc::ConcreteInt* Base = dyn_cast<nonloc::ConcreteInt>(&Idx);
+ nonloc::ConcreteInt* Offset = dyn_cast<nonloc::ConcreteInt>(&R);
+
+ // Only support concrete integer indexes for now.
+ if (Base && Offset) {
+ // FIXME: For now, convert the signedness and bitwidth of offset in case
+ // they don't match. This can result from pointer arithmetic. In reality,
+ // we should figure out what are the proper semantics and implement them.
+ //
+ // This addresses the test case test/Analysis/ptr-arith.c
+ //
+ nonloc::ConcreteInt OffConverted(getBasicVals().Convert(Base->getValue(),
+ Offset->getValue()));
+ SVal NewIdx = Base->EvalBinOp(getBasicVals(), Op, OffConverted);
+ const MemRegion* NewER =
+ MRMgr.getElementRegion(ER->getElementType(), NewIdx,ER->getSuperRegion());
+ return Loc::MakeVal(NewER);
+
+ }
+
+ return UnknownVal();
+}
+
+SVal RegionStoreManager::Retrieve(const GRState* St, Loc L, QualType T) {
+ assert(!isa<UnknownVal>(L) && "location unknown");
+ assert(!isa<UndefinedVal>(L) && "location undefined");
+
+ // FIXME: Is this even possible? Shouldn't this be treated as a null
+ // dereference at a higher level?
+ if (isa<loc::ConcreteInt>(L))
+ return UndefinedVal();
+
+ const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion();
+
+ // FIXME: return symbolic value for these cases.
+ // Example:
+ // void f(int* p) { int x = *p; }
+ // char* p = alloca();
+ // read(p);
+ // c = *p;
+ if (isa<SymbolicRegion>(MR) || isa<AllocaRegion>(MR))
+ return UnknownVal();
+
+ // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
+ // instead of 'Loc', and have the other Loc cases handled at a higher level.
+ const TypedRegion* R = cast<TypedRegion>(MR);
+ assert(R && "bad region");
+
+ // FIXME: We should eventually handle funny addressing. e.g.:
+ //
+ // int x = ...;
+ // int *p = &x;
+ // char *q = (char*) p;
+ // char c = *q; // returns the first byte of 'x'.
+ //
+ // Such funny addressing will occur due to layering of regions.
+
+ QualType RTy = R->getValueType(getContext());
+
+ if (RTy->isStructureType())
+ return RetrieveStruct(St, R);
+
+ if (RTy->isArrayType())
+ return RetrieveArray(St, R);
+
+ // FIXME: handle Vector types.
+ if (RTy->isVectorType())
+ return UnknownVal();
+
+ RegionBindingsTy B = GetRegionBindings(St->getStore());
+ RegionBindingsTy::data_type* V = B.lookup(R);
+
+ // Check if the region has a binding.
+ if (V)
+ return *V;
+
+ GRStateRef state(St, StateMgr);
+
+ // Check if the region is in killset.
+ if (state.contains<RegionKills>(R))
+ return UnknownVal();
+
+ // Check if the region is an element region of a string literal.
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ if (const StringRegion *StrR=dyn_cast<StringRegion>(ER->getSuperRegion())) {
+ const StringLiteral *Str = StrR->getStringLiteral();
+ SVal Idx = ER->getIndex();
+ if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
+ int64_t i = CI->getValue().getSExtValue();
+ char c;
+ if (i == Str->getByteLength())
+ c = '\0';
+ else
+ c = Str->getStrData()[i];
+ const llvm::APSInt &V = getBasicVals().getValue(c, getContext().CharTy);
+ return nonloc::ConcreteInt(V);
+ }
+ }
+ }
+
+ // If the region is an element or field, it may have a default value.
+ if (isa<ElementRegion>(R) || isa<FieldRegion>(R)) {
+ const MemRegion* SuperR = cast<SubRegion>(R)->getSuperRegion();
+ GRStateTrait<RegionDefaultValue>::lookup_type D =
+ state.get<RegionDefaultValue>(SuperR);
+ if (D) {
+ // If the default value is symbolic, we need to create a new symbol.
+ if (D->hasConjuredSymbol())
+ return ValMgr.getRegionValueSymbolVal(R);
+ else
+ return *D;
+ }
+ }
+
+ if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
+ const MemRegion *SR = IVR->getSuperRegion();
+
+ // If the super region is 'self' then return the symbol representing
+ // the value of the ivar upon entry to the method.
+ if (SR == SelfRegion) {
+ // FIXME: Do we need to handle the case where the super region
+ // has a view? We want to canonicalize the bindings.
+ return ValMgr.getRegionValueSymbolVal(R);
+ }
+
+ // Otherwise, we need a new symbol. For now return Unknown.
+ return UnknownVal();
+ }
+
+ // The location does not have a bound value. This means that it has
+ // the value it had upon its creation and/or entry to the analyzed
+ // function/method. These are either symbolic values or 'undefined'.
+
+ // We treat function parameters as symbolic values.
+ if (const VarRegion* VR = dyn_cast<VarRegion>(R)) {
+ const VarDecl *VD = VR->getDecl();
+
+ if (VD == SelfDecl)
+ return loc::MemRegionVal(getSelfRegion(0));
+
+ if (isa<ParmVarDecl>(VD) || isa<ImplicitParamDecl>(VD) ||
+ VD->hasGlobalStorage()) {
+ QualType VTy = VD->getType();
+ if (Loc::IsLocType(VTy) || VTy->isIntegerType())
+ return ValMgr.getRegionValueSymbolVal(VR);
+ else
+ return UnknownVal();
+ }
+ }
+
+ if (MRMgr.onStack(R) || MRMgr.onHeap(R)) {
+ // All stack variables are considered to have undefined values
+ // upon creation. All heap allocated blocks are considered to
+ // have undefined values as well unless they are explicitly bound
+ // to specific values.
+ return UndefinedVal();
+ }
+
+ // All other integer values are symbolic.
+ if (Loc::IsLocType(RTy) || RTy->isIntegerType())
+ return ValMgr.getRegionValueSymbolVal(R);
+ else
+ return UnknownVal();
+}
+
+SVal RegionStoreManager::RetrieveStruct(const GRState* St,const TypedRegion* R){
+ QualType T = R->getValueType(getContext());
+ assert(T->isStructureType());
+
+ const RecordType* RT = cast<RecordType>(T.getTypePtr());
+ RecordDecl* RD = RT->getDecl();
+ assert(RD->isDefinition());
+
+ llvm::ImmutableList<SVal> StructVal = getBasicVals().getEmptySValList();
+
+ std::vector<FieldDecl *> Fields(RD->field_begin(getContext()),
+ RD->field_end(getContext()));
+
+ for (std::vector<FieldDecl *>::reverse_iterator Field = Fields.rbegin(),
+ FieldEnd = Fields.rend();
+ Field != FieldEnd; ++Field) {
+ FieldRegion* FR = MRMgr.getFieldRegion(*Field, R);
+ QualType FTy = (*Field)->getType();
+ SVal FieldValue = Retrieve(St, loc::MemRegionVal(FR), FTy);
+ StructVal = getBasicVals().consVals(FieldValue, StructVal);
+ }
+
+ return NonLoc::MakeCompoundVal(T, StructVal, getBasicVals());
+}
+
+SVal RegionStoreManager::RetrieveArray(const GRState* St, const TypedRegion* R){
+ QualType T = R->getValueType(getContext());
+ ConstantArrayType* CAT = cast<ConstantArrayType>(T.getTypePtr());
+
+ llvm::ImmutableList<SVal> ArrayVal = getBasicVals().getEmptySValList();
+ llvm::APSInt Size(CAT->getSize(), false);
+ llvm::APSInt i = getBasicVals().getZeroWithPtrWidth(false);
+
+ for (; i < Size; ++i) {
+ SVal Idx = NonLoc::MakeVal(getBasicVals(), i);
+ ElementRegion* ER = MRMgr.getElementRegion(CAT->getElementType(), Idx, R);
+ QualType ETy = ER->getElementType();
+ SVal ElementVal = Retrieve(St, loc::MemRegionVal(ER), ETy);
+ ArrayVal = getBasicVals().consVals(ElementVal, ArrayVal);
+ }
+
+ return NonLoc::MakeCompoundVal(T, ArrayVal, getBasicVals());
+}
+
+const GRState* RegionStoreManager::Bind(const GRState* St, Loc L, SVal V) {
+ // If we get here, the location should be a region.
+ const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion();
+ assert(R);
+
+ // Check if the region is a struct region.
+ if (const TypedRegion* TR = dyn_cast<TypedRegion>(R))
+ if (TR->getValueType(getContext())->isStructureType())
+ return BindStruct(St, TR, V);
+
+ Store store = St->getStore();
+ RegionBindingsTy B = GetRegionBindings(store);
+
+ if (V.isUnknown()) {
+ // Remove the binding.
+ store = RBFactory.Remove(B, R).getRoot();
+
+ // Add the region to the killset.
+ GRStateRef state(St, StateMgr);
+ St = state.add<RegionKills>(R);
+ }
+ else
+ store = RBFactory.Add(B, R, V).getRoot();
+
+ return StateMgr.MakeStateWithStore(St, store);
+}
+
+Store RegionStoreManager::Remove(Store store, Loc L) {
+ const MemRegion* R = 0;
+
+ if (isa<loc::MemRegionVal>(L))
+ R = cast<loc::MemRegionVal>(L).getRegion();
+
+ if (R) {
+ RegionBindingsTy B = GetRegionBindings(store);
+ return RBFactory.Remove(B, R).getRoot();
+ }
+
+ return store;
+}
+
+const GRState* RegionStoreManager::BindDecl(const GRState* St,
+ const VarDecl* VD, SVal InitVal) {
+
+ QualType T = VD->getType();
+ VarRegion* VR = MRMgr.getVarRegion(VD);
+
+ if (T->isArrayType())
+ return BindArray(St, VR, InitVal);
+ if (T->isStructureType())
+ return BindStruct(St, VR, InitVal);
+
+ return Bind(St, Loc::MakeVal(VR), InitVal);
+}
+
+// FIXME: this method should be merged into Bind().
+const GRState*
+RegionStoreManager::BindCompoundLiteral(const GRState* St,
+ const CompoundLiteralExpr* CL, SVal V) {
+ CompoundLiteralRegion* R = MRMgr.getCompoundLiteralRegion(CL);
+ return Bind(St, loc::MemRegionVal(R), V);
+}
+
+const GRState* RegionStoreManager::setExtent(const GRState* St,
+ const MemRegion* R, SVal Extent) {
+ GRStateRef state(St, StateMgr);
+ return state.set<RegionExtents>(R, Extent);
+}
+
+
+static void UpdateLiveSymbols(SVal X, SymbolReaper& SymReaper) {
+ if (loc::MemRegionVal *XR = dyn_cast<loc::MemRegionVal>(&X)) {
+ const MemRegion *R = XR->getRegion();
+
+ while (R) {
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
+ SymReaper.markLive(SR->getSymbol());
+ return;
+ }
+
+ if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
+ R = SR->getSuperRegion();
+ continue;
+ }
+
+ break;
+ }
+
+ return;
+ }
+
+ for (SVal::symbol_iterator SI=X.symbol_begin(), SE=X.symbol_end();SI!=SE;++SI)
+ SymReaper.markLive(*SI);
+}
+
+Store RegionStoreManager::RemoveDeadBindings(const GRState* state, Stmt* Loc,
+ SymbolReaper& SymReaper,
+ llvm::SmallVectorImpl<const MemRegion*>& RegionRoots)
+{
+
+ Store store = state->getStore();
+ RegionBindingsTy B = GetRegionBindings(store);
+
+ // Lazily constructed backmap from MemRegions to SubRegions.
+ typedef llvm::ImmutableSet<const MemRegion*> SubRegionsTy;
+ typedef llvm::ImmutableMap<const MemRegion*, SubRegionsTy> SubRegionsMapTy;
+
+ // FIXME: As a future optimization we can modifiy BumpPtrAllocator to have
+ // the ability to reuse memory. This way we can keep TmpAlloc around as
+ // an instance variable of RegionStoreManager (avoiding repeated malloc
+ // overhead).
+ llvm::BumpPtrAllocator TmpAlloc;
+
+ // Factory objects.
+ SubRegionsMapTy::Factory SubRegMapF(TmpAlloc);
+ SubRegionsTy::Factory SubRegF(TmpAlloc);
+
+ // The backmap from regions to subregions.
+ SubRegionsMapTy SubRegMap = SubRegMapF.GetEmptyMap();
+
+ // Do a pass over the regions in the store. For VarRegions we check if
+ // the variable is still live and if so add it to the list of live roots.
+ // For other regions we populate our region backmap.
+
+ llvm::SmallVector<const MemRegion*, 10> IntermediateRoots;
+
+ for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ IntermediateRoots.push_back(I.getKey());
+ }
+
+ while (!IntermediateRoots.empty()) {
+ const MemRegion* R = IntermediateRoots.back();
+ IntermediateRoots.pop_back();
+
+ if (const VarRegion* VR = dyn_cast<VarRegion>(R)) {
+ if (SymReaper.isLive(Loc, VR->getDecl()))
+ RegionRoots.push_back(VR); // This is a live "root".
+ }
+ else if (const SymbolicRegion* SR = dyn_cast<SymbolicRegion>(R)) {
+ if (SymReaper.isLive(SR->getSymbol()))
+ RegionRoots.push_back(SR);
+ }
+ else {
+ // Get the super region for R.
+ const MemRegion* SuperR = cast<SubRegion>(R)->getSuperRegion();
+
+ // Get the current set of subregions for SuperR.
+ const SubRegionsTy* SRptr = SubRegMap.lookup(SuperR);
+ SubRegionsTy SRs = SRptr ? *SRptr : SubRegF.GetEmptySet();
+
+ // Add R to the subregions of SuperR.
+ SubRegMap = SubRegMapF.Add(SubRegMap, SuperR, SubRegF.Add(SRs, R));
+
+ // Super region may be VarRegion or subregion of another VarRegion. Add it
+ // to the work list.
+ if (isa<SubRegion>(SuperR))
+ IntermediateRoots.push_back(SuperR);
+ }
+ }
+
+ // Process the worklist of RegionRoots. This performs a "mark-and-sweep"
+ // of the store. We want to find all live symbols and dead regions.
+ llvm::SmallPtrSet<const MemRegion*, 10> Marked;
+
+ while (!RegionRoots.empty()) {
+ // Dequeue the next region on the worklist.
+ const MemRegion* R = RegionRoots.back();
+ RegionRoots.pop_back();
+
+ // Check if we have already processed this region.
+ if (Marked.count(R)) continue;
+
+ // Mark this region as processed. This is needed for termination in case
+ // a region is referenced more than once.
+ Marked.insert(R);
+
+ // Mark the symbol for any live SymbolicRegion as "live". This means we
+ // should continue to track that symbol.
+ if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(R))
+ SymReaper.markLive(SymR->getSymbol());
+
+ // Get the data binding for R (if any).
+ RegionBindingsTy::data_type* Xptr = B.lookup(R);
+ if (Xptr) {
+ SVal X = *Xptr;
+ UpdateLiveSymbols(X, SymReaper); // Update the set of live symbols.
+
+ // If X is a region, then add it the RegionRoots.
+ if (loc::MemRegionVal* RegionX = dyn_cast<loc::MemRegionVal>(&X))
+ RegionRoots.push_back(RegionX->getRegion());
+ }
+
+ // Get the subregions of R. These are RegionRoots as well since they
+ // represent values that are also bound to R.
+ const SubRegionsTy* SRptr = SubRegMap.lookup(R);
+ if (!SRptr) continue;
+ SubRegionsTy SR = *SRptr;
+
+ for (SubRegionsTy::iterator I=SR.begin(), E=SR.end(); I!=E; ++I)
+ RegionRoots.push_back(*I);
+ }
+
+ // We have now scanned the store, marking reachable regions and symbols
+ // as live. We now remove all the regions that are dead from the store
+ // as well as update DSymbols with the set symbols that are now dead.
+ for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ const MemRegion* R = I.getKey();
+
+ // If this region live? Is so, none of its symbols are dead.
+ if (Marked.count(R))
+ continue;
+
+ // Remove this dead region from the store.
+ store = Remove(store, Loc::MakeVal(R));
+
+ // Mark all non-live symbols that this region references as dead.
+ if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(R))
+ SymReaper.maybeDead(SymR->getSymbol());
+
+ SVal X = I.getData();
+ SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
+ for (; SI != SE; ++SI) SymReaper.maybeDead(*SI);
+ }
+
+ return store;
+}
+
+void RegionStoreManager::print(Store store, std::ostream& Out,
+ const char* nl, const char *sep) {
+ llvm::raw_os_ostream OS(Out);
+ RegionBindingsTy B = GetRegionBindings(store);
+ OS << "Store:" << nl;
+
+ for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ OS << ' '; I.getKey()->print(OS); OS << " : ";
+ I.getData().print(OS); OS << nl;
+ }
+}
+
+const GRState* RegionStoreManager::BindArray(const GRState* St,
+ const TypedRegion* R, SVal Init) {
+ QualType T = R->getValueType(getContext());
+ assert(T->isArrayType());
+
+ // When we are binding the whole array, it always has default value 0.
+ GRStateRef state(St, StateMgr);
+ St = state.set<RegionDefaultValue>(R, NonLoc::MakeIntVal(getBasicVals(), 0,
+ false));
+
+ ConstantArrayType* CAT = cast<ConstantArrayType>(T.getTypePtr());
+
+ llvm::APSInt Size(CAT->getSize(), false);
+ llvm::APSInt i = getBasicVals().getValue(0, Size.getBitWidth(),
+ Size.isUnsigned());
+
+ // Check if the init expr is a StringLiteral.
+ if (isa<loc::MemRegionVal>(Init)) {
+ const MemRegion* InitR = cast<loc::MemRegionVal>(Init).getRegion();
+ const StringLiteral* S = cast<StringRegion>(InitR)->getStringLiteral();
+ const char* str = S->getStrData();
+ unsigned len = S->getByteLength();
+ unsigned j = 0;
+
+ // Copy bytes from the string literal into the target array. Trailing bytes
+ // in the array that are not covered by the string literal are initialized
+ // to zero.
+ for (; i < Size; ++i, ++j) {
+ if (j >= len)
+ break;
+
+ SVal Idx = NonLoc::MakeVal(getBasicVals(), i);
+ ElementRegion* ER =
+ MRMgr.getElementRegion(cast<ArrayType>(T)->getElementType(),
+ Idx, R);
+
+ SVal V = NonLoc::MakeVal(getBasicVals(), str[j], sizeof(char)*8, true);
+ St = Bind(St, loc::MemRegionVal(ER), V);
+ }
+
+ return St;
+ }
+
+ nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
+ nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
+
+ for (; i < Size; ++i, ++VI) {
+ // The init list might be shorter than the array decl.
+ if (VI == VE)
+ break;
+
+ SVal Idx = NonLoc::MakeVal(getBasicVals(), i);
+ ElementRegion* ER =
+ MRMgr.getElementRegion(cast<ArrayType>(T)->getElementType(),
+ Idx, R);
+
+ if (CAT->getElementType()->isStructureType())
+ St = BindStruct(St, ER, *VI);
+ else
+ St = Bind(St, Loc::MakeVal(ER), *VI);
+ }
+
+ return St;
+}
+
+const GRState*
+RegionStoreManager::BindStruct(const GRState* St, const TypedRegion* R, SVal V){
+ QualType T = R->getValueType(getContext());
+ assert(T->isStructureType());
+
+ const RecordType* RT = T->getAsRecordType();
+ RecordDecl* RD = RT->getDecl();
+
+ if (!RD->isDefinition())
+ return St;
+
+ if (V.isUnknown())
+ return KillStruct(St, R);
+
+ nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
+ nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
+ RecordDecl::field_iterator FI = RD->field_begin(getContext()),
+ FE = RD->field_end(getContext());
+
+ for (; FI != FE; ++FI, ++VI) {
+
+ // There may be fewer values than fields only when we are initializing a
+ // struct decl. In this case, mark the region as having default value.
+ if (VI == VE) {
+ GRStateRef state(St, StateMgr);
+ const NonLoc& Idx = NonLoc::MakeIntVal(getBasicVals(), 0, false);
+ St = state.set<RegionDefaultValue>(R, Idx);
+ break;
+ }
+
+ QualType FTy = (*FI)->getType();
+ FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
+
+ if (Loc::IsLocType(FTy) || FTy->isIntegerType())
+ St = Bind(St, Loc::MakeVal(FR), *VI);
+
+ else if (FTy->isArrayType())
+ St = BindArray(St, FR, *VI);
+
+ else if (FTy->isStructureType())
+ St = BindStruct(St, FR, *VI);
+ }
+
+ return St;
+}
+
+const GRState* RegionStoreManager::KillStruct(const GRState* St,
+ const TypedRegion* R){
+ GRStateRef state(St, StateMgr);
+
+ // Kill the struct region because it is assigned "unknown".
+ St = state.add<RegionKills>(R);
+
+ // Set the default value of the struct region to "unknown".
+ St = state.set<RegionDefaultValue>(R, UnknownVal());
+
+ Store store = St->getStore();
+ RegionBindingsTy B = GetRegionBindings(store);
+
+ // Remove all bindings for the subregions of the struct.
+ for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ const MemRegion* r = I.getKey();
+ if (const SubRegion* sr = dyn_cast<SubRegion>(r))
+ if (sr->isSubRegionOf(R))
+ store = Remove(store, Loc::MakeVal(sr));
+ // FIXME: Maybe we should also remove the bindings for the "views" of the
+ // subregions.
+ }
+
+ return StateMgr.MakeStateWithStore(St, store);
+}
+
+const GRState* RegionStoreManager::AddRegionView(const GRState* St,
+ const MemRegion* View,
+ const MemRegion* Base) {
+ GRStateRef state(St, StateMgr);
+
+ // First, retrieve the region view of the base region.
+ const RegionViews* d = state.get<RegionViewMap>(Base);
+ RegionViews L = d ? *d : RVFactory.GetEmptySet();
+
+ // Now add View to the region view.
+ L = RVFactory.Add(L, View);
+
+ // Create a new state with the new region view.
+ return state.set<RegionViewMap>(Base, L);
+}
+
+const GRState* RegionStoreManager::RemoveRegionView(const GRState* St,
+ const MemRegion* View,
+ const MemRegion* Base) {
+ GRStateRef state(St, StateMgr);
+
+ // Retrieve the region view of the base region.
+ const RegionViews* d = state.get<RegionViewMap>(Base);
+
+ // If the base region has no view, return.
+ if (!d)
+ return St;
+
+ // Remove the view.
+ RegionViews V = *d;
+ V = RVFactory.Remove(V, View);
+
+ return state.set<RegionViewMap>(Base, V);
+}
+
+const GRState* RegionStoreManager::setCastType(const GRState* St,
+ const MemRegion* R, QualType T) {
+ GRStateRef state(St, StateMgr);
+ return state.set<RegionCasts>(R, T);
+}
+
+const GRState* RegionStoreManager::setDefaultValue(const GRState* St,
+ const MemRegion* R, SVal V) {
+ GRStateRef state(St, StateMgr);
+ return state.set<RegionDefaultValue>(R, V);
+}
OpenPOWER on IntegriCloud