summaryrefslogtreecommitdiffstats
path: root/lib/AST/ASTImporter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/AST/ASTImporter.cpp')
-rw-r--r--lib/AST/ASTImporter.cpp2394
1 files changed, 2394 insertions, 0 deletions
diff --git a/lib/AST/ASTImporter.cpp b/lib/AST/ASTImporter.cpp
new file mode 100644
index 0000000..dee0d2b
--- /dev/null
+++ b/lib/AST/ASTImporter.cpp
@@ -0,0 +1,2394 @@
+//===--- ASTImporter.cpp - Importing ASTs from other Contexts ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ASTImporter class which imports AST nodes from one
+// context into another context.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/ASTImporter.h"
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/TypeVisitor.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include <deque>
+
+using namespace clang;
+
+namespace {
+ class ASTNodeImporter : public TypeVisitor<ASTNodeImporter, QualType>,
+ public DeclVisitor<ASTNodeImporter, Decl *>,
+ public StmtVisitor<ASTNodeImporter, Stmt *> {
+ ASTImporter &Importer;
+
+ public:
+ explicit ASTNodeImporter(ASTImporter &Importer) : Importer(Importer) { }
+
+ using TypeVisitor<ASTNodeImporter, QualType>::Visit;
+ using DeclVisitor<ASTNodeImporter, Decl *>::Visit;
+ using StmtVisitor<ASTNodeImporter, Stmt *>::Visit;
+
+ // Importing types
+ QualType VisitType(Type *T);
+ QualType VisitBuiltinType(BuiltinType *T);
+ QualType VisitComplexType(ComplexType *T);
+ QualType VisitPointerType(PointerType *T);
+ QualType VisitBlockPointerType(BlockPointerType *T);
+ QualType VisitLValueReferenceType(LValueReferenceType *T);
+ QualType VisitRValueReferenceType(RValueReferenceType *T);
+ QualType VisitMemberPointerType(MemberPointerType *T);
+ QualType VisitConstantArrayType(ConstantArrayType *T);
+ QualType VisitIncompleteArrayType(IncompleteArrayType *T);
+ QualType VisitVariableArrayType(VariableArrayType *T);
+ // FIXME: DependentSizedArrayType
+ // FIXME: DependentSizedExtVectorType
+ QualType VisitVectorType(VectorType *T);
+ QualType VisitExtVectorType(ExtVectorType *T);
+ QualType VisitFunctionNoProtoType(FunctionNoProtoType *T);
+ QualType VisitFunctionProtoType(FunctionProtoType *T);
+ // FIXME: UnresolvedUsingType
+ QualType VisitTypedefType(TypedefType *T);
+ QualType VisitTypeOfExprType(TypeOfExprType *T);
+ // FIXME: DependentTypeOfExprType
+ QualType VisitTypeOfType(TypeOfType *T);
+ QualType VisitDecltypeType(DecltypeType *T);
+ // FIXME: DependentDecltypeType
+ QualType VisitRecordType(RecordType *T);
+ QualType VisitEnumType(EnumType *T);
+ QualType VisitElaboratedType(ElaboratedType *T);
+ // FIXME: TemplateTypeParmType
+ // FIXME: SubstTemplateTypeParmType
+ // FIXME: TemplateSpecializationType
+ QualType VisitQualifiedNameType(QualifiedNameType *T);
+ // FIXME: TypenameType
+ QualType VisitObjCInterfaceType(ObjCInterfaceType *T);
+ QualType VisitObjCObjectPointerType(ObjCObjectPointerType *T);
+
+ // Importing declarations
+ bool ImportDeclParts(NamedDecl *D, DeclContext *&DC,
+ DeclContext *&LexicalDC, DeclarationName &Name,
+ SourceLocation &Loc);
+ bool IsStructuralMatch(RecordDecl *FromRecord, RecordDecl *ToRecord);
+ bool IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToRecord);
+ Decl *VisitDecl(Decl *D);
+ Decl *VisitTypedefDecl(TypedefDecl *D);
+ Decl *VisitEnumDecl(EnumDecl *D);
+ Decl *VisitRecordDecl(RecordDecl *D);
+ Decl *VisitEnumConstantDecl(EnumConstantDecl *D);
+ Decl *VisitFunctionDecl(FunctionDecl *D);
+ Decl *VisitFieldDecl(FieldDecl *D);
+ Decl *VisitVarDecl(VarDecl *D);
+ Decl *VisitParmVarDecl(ParmVarDecl *D);
+ Decl *VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
+
+ // Importing statements
+ Stmt *VisitStmt(Stmt *S);
+
+ // Importing expressions
+ Expr *VisitExpr(Expr *E);
+ Expr *VisitIntegerLiteral(IntegerLiteral *E);
+ Expr *VisitImplicitCastExpr(ImplicitCastExpr *E);
+ };
+}
+
+//----------------------------------------------------------------------------
+// Structural Equivalence
+//----------------------------------------------------------------------------
+
+namespace {
+ struct StructuralEquivalenceContext {
+ /// \brief AST contexts for which we are checking structural equivalence.
+ ASTContext &C1, &C2;
+
+ /// \brief Diagnostic object used to emit diagnostics.
+ Diagnostic &Diags;
+
+ /// \brief The set of "tentative" equivalences between two canonical
+ /// declarations, mapping from a declaration in the first context to the
+ /// declaration in the second context that we believe to be equivalent.
+ llvm::DenseMap<Decl *, Decl *> TentativeEquivalences;
+
+ /// \brief Queue of declarations in the first context whose equivalence
+ /// with a declaration in the second context still needs to be verified.
+ std::deque<Decl *> DeclsToCheck;
+
+ /// \brief Declaration (from, to) pairs that are known not to be equivalent
+ /// (which we have already complained about).
+ llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls;
+
+ /// \brief Whether we're being strict about the spelling of types when
+ /// unifying two types.
+ bool StrictTypeSpelling;
+
+ StructuralEquivalenceContext(ASTContext &C1, ASTContext &C2,
+ Diagnostic &Diags,
+ llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls,
+ bool StrictTypeSpelling = false)
+ : C1(C1), C2(C2), Diags(Diags), NonEquivalentDecls(NonEquivalentDecls),
+ StrictTypeSpelling(StrictTypeSpelling) { }
+
+ /// \brief Determine whether the two declarations are structurally
+ /// equivalent.
+ bool IsStructurallyEquivalent(Decl *D1, Decl *D2);
+
+ /// \brief Determine whether the two types are structurally equivalent.
+ bool IsStructurallyEquivalent(QualType T1, QualType T2);
+
+ private:
+ /// \brief Finish checking all of the structural equivalences.
+ ///
+ /// \returns true if an error occurred, false otherwise.
+ bool Finish();
+
+ public:
+ DiagnosticBuilder Diag1(SourceLocation Loc, unsigned DiagID) {
+ return Diags.Report(FullSourceLoc(Loc, C1.getSourceManager()), DiagID);
+ }
+
+ DiagnosticBuilder Diag2(SourceLocation Loc, unsigned DiagID) {
+ return Diags.Report(FullSourceLoc(Loc, C2.getSourceManager()), DiagID);
+ }
+ };
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ QualType T1, QualType T2);
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Decl *D1, Decl *D2);
+
+/// \brief Determine if two APInts have the same value, after zero-extending
+/// one of them (if needed!) to ensure that the bit-widths match.
+static bool IsSameValue(const llvm::APInt &I1, const llvm::APInt &I2) {
+ if (I1.getBitWidth() == I2.getBitWidth())
+ return I1 == I2;
+
+ if (I1.getBitWidth() > I2.getBitWidth())
+ return I1 == llvm::APInt(I2).zext(I1.getBitWidth());
+
+ return llvm::APInt(I1).zext(I2.getBitWidth()) == I2;
+}
+
+/// \brief Determine if two APSInts have the same value, zero- or sign-extending
+/// as needed.
+static bool IsSameValue(const llvm::APSInt &I1, const llvm::APSInt &I2) {
+ if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
+ return I1 == I2;
+
+ // Check for a bit-width mismatch.
+ if (I1.getBitWidth() > I2.getBitWidth())
+ return IsSameValue(I1, llvm::APSInt(I2).extend(I1.getBitWidth()));
+ else if (I2.getBitWidth() > I1.getBitWidth())
+ return IsSameValue(llvm::APSInt(I1).extend(I2.getBitWidth()), I2);
+
+ // We have a signedness mismatch. Turn the signed value into an unsigned
+ // value.
+ if (I1.isSigned()) {
+ if (I1.isNegative())
+ return false;
+
+ return llvm::APSInt(I1, true) == I2;
+ }
+
+ if (I2.isNegative())
+ return false;
+
+ return I1 == llvm::APSInt(I2, true);
+}
+
+/// \brief Determine structural equivalence of two expressions.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Expr *E1, Expr *E2) {
+ if (!E1 || !E2)
+ return E1 == E2;
+
+ // FIXME: Actually perform a structural comparison!
+ return true;
+}
+
+/// \brief Determine whether two identifiers are equivalent.
+static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
+ const IdentifierInfo *Name2) {
+ if (!Name1 || !Name2)
+ return Name1 == Name2;
+
+ return Name1->getName() == Name2->getName();
+}
+
+/// \brief Determine whether two nested-name-specifiers are equivalent.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ NestedNameSpecifier *NNS1,
+ NestedNameSpecifier *NNS2) {
+ // FIXME: Implement!
+ return true;
+}
+
+/// \brief Determine whether two template arguments are equivalent.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const TemplateArgument &Arg1,
+ const TemplateArgument &Arg2) {
+ // FIXME: Implement!
+ return true;
+}
+
+/// \brief Determine structural equivalence for the common part of array
+/// types.
+static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const ArrayType *Array1,
+ const ArrayType *Array2) {
+ if (!IsStructurallyEquivalent(Context,
+ Array1->getElementType(),
+ Array2->getElementType()))
+ return false;
+ if (Array1->getSizeModifier() != Array2->getSizeModifier())
+ return false;
+ if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
+ return false;
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two types.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ QualType T1, QualType T2) {
+ if (T1.isNull() || T2.isNull())
+ return T1.isNull() && T2.isNull();
+
+ if (!Context.StrictTypeSpelling) {
+ // We aren't being strict about token-to-token equivalence of types,
+ // so map down to the canonical type.
+ T1 = Context.C1.getCanonicalType(T1);
+ T2 = Context.C2.getCanonicalType(T2);
+ }
+
+ if (T1.getQualifiers() != T2.getQualifiers())
+ return false;
+
+ Type::TypeClass TC = T1->getTypeClass();
+
+ if (T1->getTypeClass() != T2->getTypeClass()) {
+ // Compare function types with prototypes vs. without prototypes as if
+ // both did not have prototypes.
+ if (T1->getTypeClass() == Type::FunctionProto &&
+ T2->getTypeClass() == Type::FunctionNoProto)
+ TC = Type::FunctionNoProto;
+ else if (T1->getTypeClass() == Type::FunctionNoProto &&
+ T2->getTypeClass() == Type::FunctionProto)
+ TC = Type::FunctionNoProto;
+ else
+ return false;
+ }
+
+ switch (TC) {
+ case Type::Builtin:
+ // FIXME: Deal with Char_S/Char_U.
+ if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
+ return false;
+ break;
+
+ case Type::Complex:
+ if (!IsStructurallyEquivalent(Context,
+ cast<ComplexType>(T1)->getElementType(),
+ cast<ComplexType>(T2)->getElementType()))
+ return false;
+ break;
+
+ case Type::Pointer:
+ if (!IsStructurallyEquivalent(Context,
+ cast<PointerType>(T1)->getPointeeType(),
+ cast<PointerType>(T2)->getPointeeType()))
+ return false;
+ break;
+
+ case Type::BlockPointer:
+ if (!IsStructurallyEquivalent(Context,
+ cast<BlockPointerType>(T1)->getPointeeType(),
+ cast<BlockPointerType>(T2)->getPointeeType()))
+ return false;
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference: {
+ const ReferenceType *Ref1 = cast<ReferenceType>(T1);
+ const ReferenceType *Ref2 = cast<ReferenceType>(T2);
+ if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
+ return false;
+ if (Ref1->isInnerRef() != Ref2->isInnerRef())
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Ref1->getPointeeTypeAsWritten(),
+ Ref2->getPointeeTypeAsWritten()))
+ return false;
+ break;
+ }
+
+ case Type::MemberPointer: {
+ const MemberPointerType *MemPtr1 = cast<MemberPointerType>(T1);
+ const MemberPointerType *MemPtr2 = cast<MemberPointerType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ MemPtr1->getPointeeType(),
+ MemPtr2->getPointeeType()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ QualType(MemPtr1->getClass(), 0),
+ QualType(MemPtr2->getClass(), 0)))
+ return false;
+ break;
+ }
+
+ case Type::ConstantArray: {
+ const ConstantArrayType *Array1 = cast<ConstantArrayType>(T1);
+ const ConstantArrayType *Array2 = cast<ConstantArrayType>(T2);
+ if (!IsSameValue(Array1->getSize(), Array2->getSize()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+ break;
+ }
+
+ case Type::IncompleteArray:
+ if (!IsArrayStructurallyEquivalent(Context,
+ cast<ArrayType>(T1),
+ cast<ArrayType>(T2)))
+ return false;
+ break;
+
+ case Type::VariableArray: {
+ const VariableArrayType *Array1 = cast<VariableArrayType>(T1);
+ const VariableArrayType *Array2 = cast<VariableArrayType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Array1->getSizeExpr(), Array2->getSizeExpr()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentSizedArray: {
+ const DependentSizedArrayType *Array1 = cast<DependentSizedArrayType>(T1);
+ const DependentSizedArrayType *Array2 = cast<DependentSizedArrayType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Array1->getSizeExpr(), Array2->getSizeExpr()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentSizedExtVector: {
+ const DependentSizedExtVectorType *Vec1
+ = cast<DependentSizedExtVectorType>(T1);
+ const DependentSizedExtVectorType *Vec2
+ = cast<DependentSizedExtVectorType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Vec1->getSizeExpr(), Vec2->getSizeExpr()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ break;
+ }
+
+ case Type::Vector:
+ case Type::ExtVector: {
+ const VectorType *Vec1 = cast<VectorType>(T1);
+ const VectorType *Vec2 = cast<VectorType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ if (Vec1->getNumElements() != Vec2->getNumElements())
+ return false;
+ if (Vec1->isAltiVec() != Vec2->isAltiVec())
+ return false;
+ if (Vec1->isPixel() != Vec2->isPixel())
+ return false;
+ }
+
+ case Type::FunctionProto: {
+ const FunctionProtoType *Proto1 = cast<FunctionProtoType>(T1);
+ const FunctionProtoType *Proto2 = cast<FunctionProtoType>(T2);
+ if (Proto1->getNumArgs() != Proto2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Proto1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Proto1->getArgType(I),
+ Proto2->getArgType(I)))
+ return false;
+ }
+ if (Proto1->isVariadic() != Proto2->isVariadic())
+ return false;
+ if (Proto1->hasExceptionSpec() != Proto2->hasExceptionSpec())
+ return false;
+ if (Proto1->hasAnyExceptionSpec() != Proto2->hasAnyExceptionSpec())
+ return false;
+ if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
+ return false;
+ for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Proto1->getExceptionType(I),
+ Proto2->getExceptionType(I)))
+ return false;
+ }
+ if (Proto1->getTypeQuals() != Proto2->getTypeQuals())
+ return false;
+
+ // Fall through to check the bits common with FunctionNoProtoType.
+ }
+
+ case Type::FunctionNoProto: {
+ const FunctionType *Function1 = cast<FunctionType>(T1);
+ const FunctionType *Function2 = cast<FunctionType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Function1->getResultType(),
+ Function2->getResultType()))
+ return false;
+ if (Function1->getNoReturnAttr() != Function2->getNoReturnAttr())
+ return false;
+ if (Function1->getCallConv() != Function2->getCallConv())
+ return false;
+ break;
+ }
+
+ case Type::UnresolvedUsing:
+ if (!IsStructurallyEquivalent(Context,
+ cast<UnresolvedUsingType>(T1)->getDecl(),
+ cast<UnresolvedUsingType>(T2)->getDecl()))
+ return false;
+
+ break;
+
+ case Type::Typedef:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypedefType>(T1)->getDecl(),
+ cast<TypedefType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::TypeOfExpr:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
+ cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
+ return false;
+ break;
+
+ case Type::TypeOf:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypeOfType>(T1)->getUnderlyingType(),
+ cast<TypeOfType>(T2)->getUnderlyingType()))
+ return false;
+ break;
+
+ case Type::Decltype:
+ if (!IsStructurallyEquivalent(Context,
+ cast<DecltypeType>(T1)->getUnderlyingExpr(),
+ cast<DecltypeType>(T2)->getUnderlyingExpr()))
+ return false;
+ break;
+
+ case Type::Record:
+ case Type::Enum:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TagType>(T1)->getDecl(),
+ cast<TagType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::Elaborated: {
+ const ElaboratedType *Elab1 = cast<ElaboratedType>(T1);
+ const ElaboratedType *Elab2 = cast<ElaboratedType>(T2);
+ if (Elab1->getTagKind() != Elab2->getTagKind())
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Elab1->getUnderlyingType(),
+ Elab2->getUnderlyingType()))
+ return false;
+ break;
+ }
+
+ case Type::TemplateTypeParm: {
+ const TemplateTypeParmType *Parm1 = cast<TemplateTypeParmType>(T1);
+ const TemplateTypeParmType *Parm2 = cast<TemplateTypeParmType>(T2);
+ if (Parm1->getDepth() != Parm2->getDepth())
+ return false;
+ if (Parm1->getIndex() != Parm2->getIndex())
+ return false;
+ if (Parm1->isParameterPack() != Parm2->isParameterPack())
+ return false;
+
+ // Names of template type parameters are never significant.
+ break;
+ }
+
+ case Type::SubstTemplateTypeParm: {
+ const SubstTemplateTypeParmType *Subst1
+ = cast<SubstTemplateTypeParmType>(T1);
+ const SubstTemplateTypeParmType *Subst2
+ = cast<SubstTemplateTypeParmType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ QualType(Subst1->getReplacedParameter(), 0),
+ QualType(Subst2->getReplacedParameter(), 0)))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Subst1->getReplacementType(),
+ Subst2->getReplacementType()))
+ return false;
+ break;
+ }
+
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *Spec1
+ = cast<TemplateSpecializationType>(T1);
+ const TemplateSpecializationType *Spec2
+ = cast<TemplateSpecializationType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getTemplateName(),
+ Spec2->getTemplateName()))
+ return false;
+ if (Spec1->getNumArgs() != Spec2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getArg(I), Spec2->getArg(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::QualifiedName: {
+ const QualifiedNameType *Qual1 = cast<QualifiedNameType>(T1);
+ const QualifiedNameType *Qual2 = cast<QualifiedNameType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Qual1->getQualifier(),
+ Qual2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Qual1->getNamedType(),
+ Qual2->getNamedType()))
+ return false;
+ break;
+ }
+
+ case Type::Typename: {
+ const TypenameType *Typename1 = cast<TypenameType>(T1);
+ const TypenameType *Typename2 = cast<TypenameType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Typename1->getQualifier(),
+ Typename2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
+ Typename2->getIdentifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ QualType(Typename1->getTemplateId(), 0),
+ QualType(Typename2->getTemplateId(), 0)))
+ return false;
+
+ break;
+ }
+
+ case Type::ObjCInterface: {
+ const ObjCInterfaceType *Iface1 = cast<ObjCInterfaceType>(T1);
+ const ObjCInterfaceType *Iface2 = cast<ObjCInterfaceType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Iface1->getDecl(), Iface2->getDecl()))
+ return false;
+ if (Iface1->getNumProtocols() != Iface2->getNumProtocols())
+ return false;
+ for (unsigned I = 0, N = Iface1->getNumProtocols(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Iface1->getProtocol(I),
+ Iface2->getProtocol(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::ObjCObjectPointer: {
+ const ObjCObjectPointerType *Ptr1 = cast<ObjCObjectPointerType>(T1);
+ const ObjCObjectPointerType *Ptr2 = cast<ObjCObjectPointerType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Ptr1->getPointeeType(),
+ Ptr2->getPointeeType()))
+ return false;
+ if (Ptr1->getNumProtocols() != Ptr2->getNumProtocols())
+ return false;
+ for (unsigned I = 0, N = Ptr1->getNumProtocols(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Ptr1->getProtocol(I),
+ Ptr2->getProtocol(I)))
+ return false;
+ }
+ break;
+ }
+
+ } // end switch
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two records.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ RecordDecl *D1, RecordDecl *D2) {
+ if (D1->isUnion() != D2->isUnion()) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
+ << D1->getDeclName() << (unsigned)D1->getTagKind();
+ return false;
+ }
+
+ // Compare the definitions of these two records. If either or both are
+ // incomplete, we assume that they are equivalent.
+ D1 = D1->getDefinition();
+ D2 = D2->getDefinition();
+ if (!D1 || !D2)
+ return true;
+
+ if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
+ if (CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
+ if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
+ << D2CXX->getNumBases();
+ Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
+ << D1CXX->getNumBases();
+ return false;
+ }
+
+ // Check the base classes.
+ for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
+ BaseEnd1 = D1CXX->bases_end(),
+ Base2 = D2CXX->bases_begin();
+ Base1 != BaseEnd1;
+ ++Base1, ++Base2) {
+ if (!IsStructurallyEquivalent(Context,
+ Base1->getType(), Base2->getType())) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Base2->getSourceRange().getBegin(), diag::note_odr_base)
+ << Base2->getType()
+ << Base2->getSourceRange();
+ Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base)
+ << Base1->getType()
+ << Base1->getSourceRange();
+ return false;
+ }
+
+ // Check virtual vs. non-virtual inheritance mismatch.
+ if (Base1->isVirtual() != Base2->isVirtual()) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Base2->getSourceRange().getBegin(),
+ diag::note_odr_virtual_base)
+ << Base2->isVirtual() << Base2->getSourceRange();
+ Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base)
+ << Base1->isVirtual()
+ << Base1->getSourceRange();
+ return false;
+ }
+ }
+ } else if (D1CXX->getNumBases() > 0) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
+ Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base)
+ << Base1->getType()
+ << Base1->getSourceRange();
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
+ return false;
+ }
+ }
+
+ // Check the fields for consistency.
+ CXXRecordDecl::field_iterator Field2 = D2->field_begin(),
+ Field2End = D2->field_end();
+ for (CXXRecordDecl::field_iterator Field1 = D1->field_begin(),
+ Field1End = D1->field_end();
+ Field1 != Field1End;
+ ++Field1, ++Field2) {
+ if (Field2 == Field2End) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field)
+ << Field1->getDeclName() << Field1->getType();
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
+ return false;
+ }
+
+ if (!IsStructurallyEquivalent(Context,
+ Field1->getType(), Field2->getType())) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field)
+ << Field2->getDeclName() << Field2->getType();
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field)
+ << Field1->getDeclName() << Field1->getType();
+ return false;
+ }
+
+ if (Field1->isBitField() != Field2->isBitField()) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ if (Field1->isBitField()) {
+ llvm::APSInt Bits;
+ Field1->getBitWidth()->isIntegerConstantExpr(Bits, Context.C1);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
+ << Field1->getDeclName() << Field1->getType()
+ << Bits.toString(10, false);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field)
+ << Field2->getDeclName();
+ } else {
+ llvm::APSInt Bits;
+ Field2->getBitWidth()->isIntegerConstantExpr(Bits, Context.C2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
+ << Field2->getDeclName() << Field2->getType()
+ << Bits.toString(10, false);
+ Context.Diag1(Field1->getLocation(),
+ diag::note_odr_not_bit_field)
+ << Field1->getDeclName();
+ }
+ return false;
+ }
+
+ if (Field1->isBitField()) {
+ // Make sure that the bit-fields are the same length.
+ llvm::APSInt Bits1, Bits2;
+ if (!Field1->getBitWidth()->isIntegerConstantExpr(Bits1, Context.C1))
+ return false;
+ if (!Field2->getBitWidth()->isIntegerConstantExpr(Bits2, Context.C2))
+ return false;
+
+ if (!IsSameValue(Bits1, Bits2)) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
+ << Field2->getDeclName() << Field2->getType()
+ << Bits2.toString(10, false);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
+ << Field1->getDeclName() << Field1->getType()
+ << Bits1.toString(10, false);
+ return false;
+ }
+ }
+ }
+
+ if (Field2 != Field2End) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field)
+ << Field2->getDeclName() << Field2->getType();
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two enums.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ EnumDecl *D1, EnumDecl *D2) {
+ EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
+ EC2End = D2->enumerator_end();
+ for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
+ EC1End = D1->enumerator_end();
+ EC1 != EC1End; ++EC1, ++EC2) {
+ if (EC2 == EC2End) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
+ << EC1->getDeclName()
+ << EC1->getInitVal().toString(10);
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
+ return false;
+ }
+
+ llvm::APSInt Val1 = EC1->getInitVal();
+ llvm::APSInt Val2 = EC2->getInitVal();
+ if (!IsSameValue(Val1, Val2) ||
+ !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
+ << EC2->getDeclName()
+ << EC2->getInitVal().toString(10);
+ Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
+ << EC1->getDeclName()
+ << EC1->getInitVal().toString(10);
+ return false;
+ }
+ }
+
+ if (EC2 != EC2End) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
+ << EC2->getDeclName()
+ << EC2->getInitVal().toString(10);
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two declarations.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Decl *D1, Decl *D2) {
+ // FIXME: Check for known structural equivalences via a callback of some sort.
+
+ // Check whether we already know that these two declarations are not
+ // structurally equivalent.
+ if (Context.NonEquivalentDecls.count(std::make_pair(D1->getCanonicalDecl(),
+ D2->getCanonicalDecl())))
+ return false;
+
+ // Determine whether we've already produced a tentative equivalence for D1.
+ Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()];
+ if (EquivToD1)
+ return EquivToD1 == D2->getCanonicalDecl();
+
+ // Produce a tentative equivalence D1 <-> D2, which will be checked later.
+ EquivToD1 = D2->getCanonicalDecl();
+ Context.DeclsToCheck.push_back(D1->getCanonicalDecl());
+ return true;
+}
+
+bool StructuralEquivalenceContext::IsStructurallyEquivalent(Decl *D1,
+ Decl *D2) {
+ if (!::IsStructurallyEquivalent(*this, D1, D2))
+ return false;
+
+ return !Finish();
+}
+
+bool StructuralEquivalenceContext::IsStructurallyEquivalent(QualType T1,
+ QualType T2) {
+ if (!::IsStructurallyEquivalent(*this, T1, T2))
+ return false;
+
+ return !Finish();
+}
+
+bool StructuralEquivalenceContext::Finish() {
+ while (!DeclsToCheck.empty()) {
+ // Check the next declaration.
+ Decl *D1 = DeclsToCheck.front();
+ DeclsToCheck.pop_front();
+
+ Decl *D2 = TentativeEquivalences[D1];
+ assert(D2 && "Unrecorded tentative equivalence?");
+
+ bool Equivalent = true;
+
+ // FIXME: Switch on all declaration kinds. For now, we're just going to
+ // check the obvious ones.
+ if (RecordDecl *Record1 = dyn_cast<RecordDecl>(D1)) {
+ if (RecordDecl *Record2 = dyn_cast<RecordDecl>(D2)) {
+ // Check for equivalent structure names.
+ IdentifierInfo *Name1 = Record1->getIdentifier();
+ if (!Name1 && Record1->getTypedefForAnonDecl())
+ Name1 = Record1->getTypedefForAnonDecl()->getIdentifier();
+ IdentifierInfo *Name2 = Record2->getIdentifier();
+ if (!Name2 && Record2->getTypedefForAnonDecl())
+ Name2 = Record2->getTypedefForAnonDecl()->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2) ||
+ !::IsStructurallyEquivalent(*this, Record1, Record2))
+ Equivalent = false;
+ } else {
+ // Record/non-record mismatch.
+ Equivalent = false;
+ }
+ } else if (EnumDecl *Enum1 = dyn_cast<EnumDecl>(D1)) {
+ if (EnumDecl *Enum2 = dyn_cast<EnumDecl>(D2)) {
+ // Check for equivalent enum names.
+ IdentifierInfo *Name1 = Enum1->getIdentifier();
+ if (!Name1 && Enum1->getTypedefForAnonDecl())
+ Name1 = Enum1->getTypedefForAnonDecl()->getIdentifier();
+ IdentifierInfo *Name2 = Enum2->getIdentifier();
+ if (!Name2 && Enum2->getTypedefForAnonDecl())
+ Name2 = Enum2->getTypedefForAnonDecl()->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2) ||
+ !::IsStructurallyEquivalent(*this, Enum1, Enum2))
+ Equivalent = false;
+ } else {
+ // Enum/non-enum mismatch
+ Equivalent = false;
+ }
+ } else if (TypedefDecl *Typedef1 = dyn_cast<TypedefDecl>(D1)) {
+ if (TypedefDecl *Typedef2 = dyn_cast<TypedefDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(),
+ Typedef2->getIdentifier()) ||
+ !::IsStructurallyEquivalent(*this,
+ Typedef1->getUnderlyingType(),
+ Typedef2->getUnderlyingType()))
+ Equivalent = false;
+ } else {
+ // Typedef/non-typedef mismatch.
+ Equivalent = false;
+ }
+ }
+
+ if (!Equivalent) {
+ // Note that these two declarations are not equivalent (and we already
+ // know about it).
+ NonEquivalentDecls.insert(std::make_pair(D1->getCanonicalDecl(),
+ D2->getCanonicalDecl()));
+ return true;
+ }
+ // FIXME: Check other declaration kinds!
+ }
+
+ return false;
+}
+
+//----------------------------------------------------------------------------
+// Import Types
+//----------------------------------------------------------------------------
+
+QualType ASTNodeImporter::VisitType(Type *T) {
+ Importer.FromDiag(SourceLocation(), diag::err_unsupported_ast_node)
+ << T->getTypeClassName();
+ return QualType();
+}
+
+QualType ASTNodeImporter::VisitBuiltinType(BuiltinType *T) {
+ switch (T->getKind()) {
+ case BuiltinType::Void: return Importer.getToContext().VoidTy;
+ case BuiltinType::Bool: return Importer.getToContext().BoolTy;
+
+ case BuiltinType::Char_U:
+ // The context we're importing from has an unsigned 'char'. If we're
+ // importing into a context with a signed 'char', translate to
+ // 'unsigned char' instead.
+ if (Importer.getToContext().getLangOptions().CharIsSigned)
+ return Importer.getToContext().UnsignedCharTy;
+
+ return Importer.getToContext().CharTy;
+
+ case BuiltinType::UChar: return Importer.getToContext().UnsignedCharTy;
+
+ case BuiltinType::Char16:
+ // FIXME: Make sure that the "to" context supports C++!
+ return Importer.getToContext().Char16Ty;
+
+ case BuiltinType::Char32:
+ // FIXME: Make sure that the "to" context supports C++!
+ return Importer.getToContext().Char32Ty;
+
+ case BuiltinType::UShort: return Importer.getToContext().UnsignedShortTy;
+ case BuiltinType::UInt: return Importer.getToContext().UnsignedIntTy;
+ case BuiltinType::ULong: return Importer.getToContext().UnsignedLongTy;
+ case BuiltinType::ULongLong:
+ return Importer.getToContext().UnsignedLongLongTy;
+ case BuiltinType::UInt128: return Importer.getToContext().UnsignedInt128Ty;
+
+ case BuiltinType::Char_S:
+ // The context we're importing from has an unsigned 'char'. If we're
+ // importing into a context with a signed 'char', translate to
+ // 'unsigned char' instead.
+ if (!Importer.getToContext().getLangOptions().CharIsSigned)
+ return Importer.getToContext().SignedCharTy;
+
+ return Importer.getToContext().CharTy;
+
+ case BuiltinType::SChar: return Importer.getToContext().SignedCharTy;
+ case BuiltinType::WChar:
+ // FIXME: If not in C++, shall we translate to the C equivalent of
+ // wchar_t?
+ return Importer.getToContext().WCharTy;
+
+ case BuiltinType::Short : return Importer.getToContext().ShortTy;
+ case BuiltinType::Int : return Importer.getToContext().IntTy;
+ case BuiltinType::Long : return Importer.getToContext().LongTy;
+ case BuiltinType::LongLong : return Importer.getToContext().LongLongTy;
+ case BuiltinType::Int128 : return Importer.getToContext().Int128Ty;
+ case BuiltinType::Float: return Importer.getToContext().FloatTy;
+ case BuiltinType::Double: return Importer.getToContext().DoubleTy;
+ case BuiltinType::LongDouble: return Importer.getToContext().LongDoubleTy;
+
+ case BuiltinType::NullPtr:
+ // FIXME: Make sure that the "to" context supports C++0x!
+ return Importer.getToContext().NullPtrTy;
+
+ case BuiltinType::Overload: return Importer.getToContext().OverloadTy;
+ case BuiltinType::Dependent: return Importer.getToContext().DependentTy;
+ case BuiltinType::UndeducedAuto:
+ // FIXME: Make sure that the "to" context supports C++0x!
+ return Importer.getToContext().UndeducedAutoTy;
+
+ case BuiltinType::ObjCId:
+ // FIXME: Make sure that the "to" context supports Objective-C!
+ return Importer.getToContext().ObjCBuiltinIdTy;
+
+ case BuiltinType::ObjCClass:
+ return Importer.getToContext().ObjCBuiltinClassTy;
+
+ case BuiltinType::ObjCSel:
+ return Importer.getToContext().ObjCBuiltinSelTy;
+ }
+
+ return QualType();
+}
+
+QualType ASTNodeImporter::VisitComplexType(ComplexType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getComplexType(ToElementType);
+}
+
+QualType ASTNodeImporter::VisitPointerType(PointerType *T) {
+ QualType ToPointeeType = Importer.Import(T->getPointeeType());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getPointerType(ToPointeeType);
+}
+
+QualType ASTNodeImporter::VisitBlockPointerType(BlockPointerType *T) {
+ // FIXME: Check for blocks support in "to" context.
+ QualType ToPointeeType = Importer.Import(T->getPointeeType());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getBlockPointerType(ToPointeeType);
+}
+
+QualType ASTNodeImporter::VisitLValueReferenceType(LValueReferenceType *T) {
+ // FIXME: Check for C++ support in "to" context.
+ QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getLValueReferenceType(ToPointeeType);
+}
+
+QualType ASTNodeImporter::VisitRValueReferenceType(RValueReferenceType *T) {
+ // FIXME: Check for C++0x support in "to" context.
+ QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getRValueReferenceType(ToPointeeType);
+}
+
+QualType ASTNodeImporter::VisitMemberPointerType(MemberPointerType *T) {
+ // FIXME: Check for C++ support in "to" context.
+ QualType ToPointeeType = Importer.Import(T->getPointeeType());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ QualType ClassType = Importer.Import(QualType(T->getClass(), 0));
+ return Importer.getToContext().getMemberPointerType(ToPointeeType,
+ ClassType.getTypePtr());
+}
+
+QualType ASTNodeImporter::VisitConstantArrayType(ConstantArrayType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getConstantArrayType(ToElementType,
+ T->getSize(),
+ T->getSizeModifier(),
+ T->getIndexTypeCVRQualifiers());
+}
+
+QualType ASTNodeImporter::VisitIncompleteArrayType(IncompleteArrayType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getIncompleteArrayType(ToElementType,
+ T->getSizeModifier(),
+ T->getIndexTypeCVRQualifiers());
+}
+
+QualType ASTNodeImporter::VisitVariableArrayType(VariableArrayType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ Expr *Size = Importer.Import(T->getSizeExpr());
+ if (!Size)
+ return QualType();
+
+ SourceRange Brackets = Importer.Import(T->getBracketsRange());
+ return Importer.getToContext().getVariableArrayType(ToElementType, Size,
+ T->getSizeModifier(),
+ T->getIndexTypeCVRQualifiers(),
+ Brackets);
+}
+
+QualType ASTNodeImporter::VisitVectorType(VectorType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getVectorType(ToElementType,
+ T->getNumElements(),
+ T->isAltiVec(),
+ T->isPixel());
+}
+
+QualType ASTNodeImporter::VisitExtVectorType(ExtVectorType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getExtVectorType(ToElementType,
+ T->getNumElements());
+}
+
+QualType ASTNodeImporter::VisitFunctionNoProtoType(FunctionNoProtoType *T) {
+ // FIXME: What happens if we're importing a function without a prototype
+ // into C++? Should we make it variadic?
+ QualType ToResultType = Importer.Import(T->getResultType());
+ if (ToResultType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getFunctionNoProtoType(ToResultType,
+ T->getNoReturnAttr(),
+ T->getCallConv());
+}
+
+QualType ASTNodeImporter::VisitFunctionProtoType(FunctionProtoType *T) {
+ QualType ToResultType = Importer.Import(T->getResultType());
+ if (ToResultType.isNull())
+ return QualType();
+
+ // Import argument types
+ llvm::SmallVector<QualType, 4> ArgTypes;
+ for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
+ AEnd = T->arg_type_end();
+ A != AEnd; ++A) {
+ QualType ArgType = Importer.Import(*A);
+ if (ArgType.isNull())
+ return QualType();
+ ArgTypes.push_back(ArgType);
+ }
+
+ // Import exception types
+ llvm::SmallVector<QualType, 4> ExceptionTypes;
+ for (FunctionProtoType::exception_iterator E = T->exception_begin(),
+ EEnd = T->exception_end();
+ E != EEnd; ++E) {
+ QualType ExceptionType = Importer.Import(*E);
+ if (ExceptionType.isNull())
+ return QualType();
+ ExceptionTypes.push_back(ExceptionType);
+ }
+
+ return Importer.getToContext().getFunctionType(ToResultType, ArgTypes.data(),
+ ArgTypes.size(),
+ T->isVariadic(),
+ T->getTypeQuals(),
+ T->hasExceptionSpec(),
+ T->hasAnyExceptionSpec(),
+ ExceptionTypes.size(),
+ ExceptionTypes.data(),
+ T->getNoReturnAttr(),
+ T->getCallConv());
+}
+
+QualType ASTNodeImporter::VisitTypedefType(TypedefType *T) {
+ TypedefDecl *ToDecl
+ = dyn_cast_or_null<TypedefDecl>(Importer.Import(T->getDecl()));
+ if (!ToDecl)
+ return QualType();
+
+ return Importer.getToContext().getTypeDeclType(ToDecl);
+}
+
+QualType ASTNodeImporter::VisitTypeOfExprType(TypeOfExprType *T) {
+ Expr *ToExpr = Importer.Import(T->getUnderlyingExpr());
+ if (!ToExpr)
+ return QualType();
+
+ return Importer.getToContext().getTypeOfExprType(ToExpr);
+}
+
+QualType ASTNodeImporter::VisitTypeOfType(TypeOfType *T) {
+ QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType());
+ if (ToUnderlyingType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getTypeOfType(ToUnderlyingType);
+}
+
+QualType ASTNodeImporter::VisitDecltypeType(DecltypeType *T) {
+ Expr *ToExpr = Importer.Import(T->getUnderlyingExpr());
+ if (!ToExpr)
+ return QualType();
+
+ return Importer.getToContext().getDecltypeType(ToExpr);
+}
+
+QualType ASTNodeImporter::VisitRecordType(RecordType *T) {
+ RecordDecl *ToDecl
+ = dyn_cast_or_null<RecordDecl>(Importer.Import(T->getDecl()));
+ if (!ToDecl)
+ return QualType();
+
+ return Importer.getToContext().getTagDeclType(ToDecl);
+}
+
+QualType ASTNodeImporter::VisitEnumType(EnumType *T) {
+ EnumDecl *ToDecl
+ = dyn_cast_or_null<EnumDecl>(Importer.Import(T->getDecl()));
+ if (!ToDecl)
+ return QualType();
+
+ return Importer.getToContext().getTagDeclType(ToDecl);
+}
+
+QualType ASTNodeImporter::VisitElaboratedType(ElaboratedType *T) {
+ QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType());
+ if (ToUnderlyingType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getElaboratedType(ToUnderlyingType,
+ T->getTagKind());
+}
+
+QualType ASTNodeImporter::VisitQualifiedNameType(QualifiedNameType *T) {
+ NestedNameSpecifier *ToQualifier = Importer.Import(T->getQualifier());
+ if (!ToQualifier)
+ return QualType();
+
+ QualType ToNamedType = Importer.Import(T->getNamedType());
+ if (ToNamedType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getQualifiedNameType(ToQualifier, ToNamedType);
+}
+
+QualType ASTNodeImporter::VisitObjCInterfaceType(ObjCInterfaceType *T) {
+ ObjCInterfaceDecl *Class
+ = dyn_cast_or_null<ObjCInterfaceDecl>(Importer.Import(T->getDecl()));
+ if (!Class)
+ return QualType();
+
+ llvm::SmallVector<ObjCProtocolDecl *, 4> Protocols;
+ for (ObjCInterfaceType::qual_iterator P = T->qual_begin(),
+ PEnd = T->qual_end();
+ P != PEnd; ++P) {
+ ObjCProtocolDecl *Protocol
+ = dyn_cast_or_null<ObjCProtocolDecl>(Importer.Import(*P));
+ if (!Protocol)
+ return QualType();
+ Protocols.push_back(Protocol);
+ }
+
+ return Importer.getToContext().getObjCInterfaceType(Class,
+ Protocols.data(),
+ Protocols.size());
+}
+
+QualType ASTNodeImporter::VisitObjCObjectPointerType(ObjCObjectPointerType *T) {
+ QualType ToPointeeType = Importer.Import(T->getPointeeType());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ llvm::SmallVector<ObjCProtocolDecl *, 4> Protocols;
+ for (ObjCObjectPointerType::qual_iterator P = T->qual_begin(),
+ PEnd = T->qual_end();
+ P != PEnd; ++P) {
+ ObjCProtocolDecl *Protocol
+ = dyn_cast_or_null<ObjCProtocolDecl>(Importer.Import(*P));
+ if (!Protocol)
+ return QualType();
+ Protocols.push_back(Protocol);
+ }
+
+ return Importer.getToContext().getObjCObjectPointerType(ToPointeeType,
+ Protocols.data(),
+ Protocols.size());
+}
+
+//----------------------------------------------------------------------------
+// Import Declarations
+//----------------------------------------------------------------------------
+bool ASTNodeImporter::ImportDeclParts(NamedDecl *D, DeclContext *&DC,
+ DeclContext *&LexicalDC,
+ DeclarationName &Name,
+ SourceLocation &Loc) {
+ // Import the context of this declaration.
+ DC = Importer.ImportContext(D->getDeclContext());
+ if (!DC)
+ return true;
+
+ LexicalDC = DC;
+ if (D->getDeclContext() != D->getLexicalDeclContext()) {
+ LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
+ if (!LexicalDC)
+ return true;
+ }
+
+ // Import the name of this declaration.
+ Name = Importer.Import(D->getDeclName());
+ if (D->getDeclName() && !Name)
+ return true;
+
+ // Import the location of this declaration.
+ Loc = Importer.Import(D->getLocation());
+ return false;
+}
+
+bool ASTNodeImporter::IsStructuralMatch(RecordDecl *FromRecord,
+ RecordDecl *ToRecord) {
+ StructuralEquivalenceContext SEC(Importer.getFromContext(),
+ Importer.getToContext(),
+ Importer.getDiags(),
+ Importer.getNonEquivalentDecls());
+ return SEC.IsStructurallyEquivalent(FromRecord, ToRecord);
+}
+
+bool ASTNodeImporter::IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToEnum) {
+ StructuralEquivalenceContext SEC(Importer.getFromContext(),
+ Importer.getToContext(),
+ Importer.getDiags(),
+ Importer.getNonEquivalentDecls());
+ return SEC.IsStructurallyEquivalent(FromEnum, ToEnum);
+}
+
+Decl *ASTNodeImporter::VisitDecl(Decl *D) {
+ Importer.FromDiag(D->getLocation(), diag::err_unsupported_ast_node)
+ << D->getDeclKindName();
+ return 0;
+}
+
+Decl *ASTNodeImporter::VisitTypedefDecl(TypedefDecl *D) {
+ // Import the major distinguishing characteristics of this typedef.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // If this typedef is not in block scope, determine whether we've
+ // seen a typedef with the same name (that we can merge with) or any
+ // other entity by that name (which name lookup could conflict with).
+ if (!DC->isFunctionOrMethod()) {
+ llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ for (DeclContext::lookup_result Lookup = DC->lookup(Name);
+ Lookup.first != Lookup.second;
+ ++Lookup.first) {
+ if (!(*Lookup.first)->isInIdentifierNamespace(IDNS))
+ continue;
+ if (TypedefDecl *FoundTypedef = dyn_cast<TypedefDecl>(*Lookup.first)) {
+ if (Importer.IsStructurallyEquivalent(D->getUnderlyingType(),
+ FoundTypedef->getUnderlyingType()))
+ return Importer.Imported(D, FoundTypedef);
+ }
+
+ ConflictingDecls.push_back(*Lookup.first);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ if (!Name)
+ return 0;
+ }
+ }
+
+ // Import the underlying type of this typedef;
+ QualType T = Importer.Import(D->getUnderlyingType());
+ if (T.isNull())
+ return 0;
+
+ // Create the new typedef node.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ TypedefDecl *ToTypedef = TypedefDecl::Create(Importer.getToContext(), DC,
+ Loc, Name.getAsIdentifierInfo(),
+ TInfo);
+ ToTypedef->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToTypedef);
+ LexicalDC->addDecl(ToTypedef);
+
+ return ToTypedef;
+}
+
+Decl *ASTNodeImporter::VisitEnumDecl(EnumDecl *D) {
+ // Import the major distinguishing characteristics of this enum.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Figure out what enum name we're looking for.
+ unsigned IDNS = Decl::IDNS_Tag;
+ DeclarationName SearchName = Name;
+ if (!SearchName && D->getTypedefForAnonDecl()) {
+ SearchName = Importer.Import(D->getTypedefForAnonDecl()->getDeclName());
+ IDNS = Decl::IDNS_Ordinary;
+ } else if (Importer.getToContext().getLangOptions().CPlusPlus)
+ IDNS |= Decl::IDNS_Ordinary;
+
+ // We may already have an enum of the same name; try to find and match it.
+ if (!DC->isFunctionOrMethod() && SearchName) {
+ llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
+ for (DeclContext::lookup_result Lookup = DC->lookup(Name);
+ Lookup.first != Lookup.second;
+ ++Lookup.first) {
+ if (!(*Lookup.first)->isInIdentifierNamespace(IDNS))
+ continue;
+
+ Decl *Found = *Lookup.first;
+ if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Found)) {
+ if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>())
+ Found = Tag->getDecl();
+ }
+
+ if (EnumDecl *FoundEnum = dyn_cast<EnumDecl>(Found)) {
+ if (IsStructuralMatch(D, FoundEnum))
+ return Importer.Imported(D, FoundEnum);
+ }
+
+ ConflictingDecls.push_back(*Lookup.first);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ }
+ }
+
+ // Create the enum declaration.
+ EnumDecl *D2 = EnumDecl::Create(Importer.getToContext(), DC, Loc,
+ Name.getAsIdentifierInfo(),
+ Importer.Import(D->getTagKeywordLoc()),
+ 0);
+ D2->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, D2);
+ LexicalDC->addDecl(D2);
+
+ // Import the integer type.
+ QualType ToIntegerType = Importer.Import(D->getIntegerType());
+ if (ToIntegerType.isNull())
+ return 0;
+ D2->setIntegerType(ToIntegerType);
+
+ // Import the definition
+ if (D->isDefinition()) {
+ QualType T = Importer.Import(Importer.getFromContext().getTypeDeclType(D));
+ if (T.isNull())
+ return 0;
+
+ QualType ToPromotionType = Importer.Import(D->getPromotionType());
+ if (ToPromotionType.isNull())
+ return 0;
+
+ D2->startDefinition();
+ for (DeclContext::decl_iterator FromMem = D->decls_begin(),
+ FromMemEnd = D->decls_end();
+ FromMem != FromMemEnd;
+ ++FromMem)
+ Importer.Import(*FromMem);
+
+ D2->completeDefinition(T, ToPromotionType);
+ }
+
+ return D2;
+}
+
+Decl *ASTNodeImporter::VisitRecordDecl(RecordDecl *D) {
+ // If this record has a definition in the translation unit we're coming from,
+ // but this particular declaration is not that definition, import the
+ // definition and map to that.
+ TagDecl *Definition = D->getDefinition();
+ if (Definition && Definition != D) {
+ Decl *ImportedDef = Importer.Import(Definition);
+ if (!ImportedDef)
+ return 0;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ // Import the major distinguishing characteristics of this record.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Figure out what structure name we're looking for.
+ unsigned IDNS = Decl::IDNS_Tag;
+ DeclarationName SearchName = Name;
+ if (!SearchName && D->getTypedefForAnonDecl()) {
+ SearchName = Importer.Import(D->getTypedefForAnonDecl()->getDeclName());
+ IDNS = Decl::IDNS_Ordinary;
+ } else if (Importer.getToContext().getLangOptions().CPlusPlus)
+ IDNS |= Decl::IDNS_Ordinary;
+
+ // We may already have a record of the same name; try to find and match it.
+ RecordDecl *AdoptDecl = 0;
+ if (!DC->isFunctionOrMethod() && SearchName) {
+ llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
+ for (DeclContext::lookup_result Lookup = DC->lookup(Name);
+ Lookup.first != Lookup.second;
+ ++Lookup.first) {
+ if (!(*Lookup.first)->isInIdentifierNamespace(IDNS))
+ continue;
+
+ Decl *Found = *Lookup.first;
+ if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Found)) {
+ if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>())
+ Found = Tag->getDecl();
+ }
+
+ if (RecordDecl *FoundRecord = dyn_cast<RecordDecl>(Found)) {
+ if (RecordDecl *FoundDef = FoundRecord->getDefinition()) {
+ if (!D->isDefinition() || IsStructuralMatch(D, FoundDef)) {
+ // The record types structurally match, or the "from" translation
+ // unit only had a forward declaration anyway; call it the same
+ // function.
+ // FIXME: For C++, we should also merge methods here.
+ return Importer.Imported(D, FoundDef);
+ }
+ } else {
+ // We have a forward declaration of this type, so adopt that forward
+ // declaration rather than building a new one.
+ AdoptDecl = FoundRecord;
+ continue;
+ }
+ }
+
+ ConflictingDecls.push_back(*Lookup.first);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ }
+ }
+
+ // Create the record declaration.
+ RecordDecl *D2 = AdoptDecl;
+ if (!D2) {
+ if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D)) {
+ CXXRecordDecl *D2CXX = CXXRecordDecl::Create(Importer.getToContext(),
+ D->getTagKind(),
+ DC, Loc,
+ Name.getAsIdentifierInfo(),
+ Importer.Import(D->getTagKeywordLoc()));
+ D2 = D2CXX;
+
+ if (D->isDefinition()) {
+ // Add base classes.
+ llvm::SmallVector<CXXBaseSpecifier *, 4> Bases;
+ for (CXXRecordDecl::base_class_iterator
+ Base1 = D1CXX->bases_begin(),
+ FromBaseEnd = D1CXX->bases_end();
+ Base1 != FromBaseEnd;
+ ++Base1) {
+ QualType T = Importer.Import(Base1->getType());
+ if (T.isNull())
+ return 0;
+
+ Bases.push_back(
+ new (Importer.getToContext())
+ CXXBaseSpecifier(Importer.Import(Base1->getSourceRange()),
+ Base1->isVirtual(),
+ Base1->isBaseOfClass(),
+ Base1->getAccessSpecifierAsWritten(),
+ T));
+ }
+ if (!Bases.empty())
+ D2CXX->setBases(Bases.data(), Bases.size());
+ }
+ } else {
+ D2 = RecordDecl::Create(Importer.getToContext(), D->getTagKind(),
+ DC, Loc,
+ Name.getAsIdentifierInfo(),
+ Importer.Import(D->getTagKeywordLoc()));
+ }
+ D2->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDecl(D2);
+ }
+
+ Importer.Imported(D, D2);
+
+ if (D->isDefinition()) {
+ D2->startDefinition();
+ for (DeclContext::decl_iterator FromMem = D->decls_begin(),
+ FromMemEnd = D->decls_end();
+ FromMem != FromMemEnd;
+ ++FromMem)
+ Importer.Import(*FromMem);
+
+ D2->completeDefinition();
+ }
+
+ return D2;
+}
+
+Decl *ASTNodeImporter::VisitEnumConstantDecl(EnumConstantDecl *D) {
+ // Import the major distinguishing characteristics of this enumerator.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ // Determine whether there are any other declarations with the same name and
+ // in the same context.
+ if (!LexicalDC->isFunctionOrMethod()) {
+ llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ for (DeclContext::lookup_result Lookup = DC->lookup(Name);
+ Lookup.first != Lookup.second;
+ ++Lookup.first) {
+ if (!(*Lookup.first)->isInIdentifierNamespace(IDNS))
+ continue;
+
+ ConflictingDecls.push_back(*Lookup.first);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ if (!Name)
+ return 0;
+ }
+ }
+
+ Expr *Init = Importer.Import(D->getInitExpr());
+ if (D->getInitExpr() && !Init)
+ return 0;
+
+ EnumConstantDecl *ToEnumerator
+ = EnumConstantDecl::Create(Importer.getToContext(), cast<EnumDecl>(DC), Loc,
+ Name.getAsIdentifierInfo(), T,
+ Init, D->getInitVal());
+ ToEnumerator->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToEnumerator);
+ LexicalDC->addDecl(ToEnumerator);
+ return ToEnumerator;
+}
+
+Decl *ASTNodeImporter::VisitFunctionDecl(FunctionDecl *D) {
+ // Import the major distinguishing characteristics of this function.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Try to find a function in our own ("to") context with the same name, same
+ // type, and in the same context as the function we're importing.
+ if (!LexicalDC->isFunctionOrMethod()) {
+ llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ for (DeclContext::lookup_result Lookup = DC->lookup(Name);
+ Lookup.first != Lookup.second;
+ ++Lookup.first) {
+ if (!(*Lookup.first)->isInIdentifierNamespace(IDNS))
+ continue;
+
+ if (FunctionDecl *FoundFunction = dyn_cast<FunctionDecl>(*Lookup.first)) {
+ if (isExternalLinkage(FoundFunction->getLinkage()) &&
+ isExternalLinkage(D->getLinkage())) {
+ if (Importer.IsStructurallyEquivalent(D->getType(),
+ FoundFunction->getType())) {
+ // FIXME: Actually try to merge the body and other attributes.
+ return Importer.Imported(D, FoundFunction);
+ }
+
+ // FIXME: Check for overloading more carefully, e.g., by boosting
+ // Sema::IsOverload out to the AST library.
+
+ // Function overloading is okay in C++.
+ if (Importer.getToContext().getLangOptions().CPlusPlus)
+ continue;
+
+ // Complain about inconsistent function types.
+ Importer.ToDiag(Loc, diag::err_odr_function_type_inconsistent)
+ << Name << D->getType() << FoundFunction->getType();
+ Importer.ToDiag(FoundFunction->getLocation(),
+ diag::note_odr_value_here)
+ << FoundFunction->getType();
+ }
+ }
+
+ ConflictingDecls.push_back(*Lookup.first);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ if (!Name)
+ return 0;
+ }
+ }
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ // Import the function parameters.
+ llvm::SmallVector<ParmVarDecl *, 8> Parameters;
+ for (FunctionDecl::param_iterator P = D->param_begin(), PEnd = D->param_end();
+ P != PEnd; ++P) {
+ ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(*P));
+ if (!ToP)
+ return 0;
+
+ Parameters.push_back(ToP);
+ }
+
+ // Create the imported function.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ FunctionDecl *ToEnumerator
+ = FunctionDecl::Create(Importer.getToContext(), DC, Loc,
+ Name, T, TInfo, D->getStorageClass(),
+ D->isInlineSpecified(),
+ D->hasWrittenPrototype());
+ ToEnumerator->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToEnumerator);
+ LexicalDC->addDecl(ToEnumerator);
+
+ // Set the parameters.
+ for (unsigned I = 0, N = Parameters.size(); I != N; ++I) {
+ Parameters[I]->setOwningFunction(ToEnumerator);
+ ToEnumerator->addDecl(Parameters[I]);
+ }
+ ToEnumerator->setParams(Parameters.data(), Parameters.size());
+
+ // FIXME: Other bits to merge?
+
+ return ToEnumerator;
+}
+
+Decl *ASTNodeImporter::VisitFieldDecl(FieldDecl *D) {
+ // Import the major distinguishing characteristics of a variable.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ Expr *BitWidth = Importer.Import(D->getBitWidth());
+ if (!BitWidth && D->getBitWidth())
+ return 0;
+
+ FieldDecl *ToField = FieldDecl::Create(Importer.getToContext(), DC,
+ Loc, Name.getAsIdentifierInfo(),
+ T, TInfo, BitWidth, D->isMutable());
+ ToField->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToField);
+ LexicalDC->addDecl(ToField);
+ return ToField;
+}
+
+Decl *ASTNodeImporter::VisitVarDecl(VarDecl *D) {
+ // Import the major distinguishing characteristics of a variable.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Try to find a variable in our own ("to") context with the same name and
+ // in the same context as the variable we're importing.
+ if (D->isFileVarDecl()) {
+ VarDecl *MergeWithVar = 0;
+ llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ for (DeclContext::lookup_result Lookup = DC->lookup(Name);
+ Lookup.first != Lookup.second;
+ ++Lookup.first) {
+ if (!(*Lookup.first)->isInIdentifierNamespace(IDNS))
+ continue;
+
+ if (VarDecl *FoundVar = dyn_cast<VarDecl>(*Lookup.first)) {
+ // We have found a variable that we may need to merge with. Check it.
+ if (isExternalLinkage(FoundVar->getLinkage()) &&
+ isExternalLinkage(D->getLinkage())) {
+ if (Importer.IsStructurallyEquivalent(D->getType(),
+ FoundVar->getType())) {
+ MergeWithVar = FoundVar;
+ break;
+ }
+
+ const ArrayType *FoundArray
+ = Importer.getToContext().getAsArrayType(FoundVar->getType());
+ const ArrayType *TArray
+ = Importer.getToContext().getAsArrayType(D->getType());
+ if (FoundArray && TArray) {
+ if (isa<IncompleteArrayType>(FoundArray) &&
+ isa<ConstantArrayType>(TArray)) {
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ FoundVar->setType(T);
+ MergeWithVar = FoundVar;
+ break;
+ } else if (isa<IncompleteArrayType>(TArray) &&
+ isa<ConstantArrayType>(FoundArray)) {
+ MergeWithVar = FoundVar;
+ break;
+ }
+ }
+
+ Importer.ToDiag(Loc, diag::err_odr_variable_type_inconsistent)
+ << Name << D->getType() << FoundVar->getType();
+ Importer.ToDiag(FoundVar->getLocation(), diag::note_odr_value_here)
+ << FoundVar->getType();
+ }
+ }
+
+ ConflictingDecls.push_back(*Lookup.first);
+ }
+
+ if (MergeWithVar) {
+ // An equivalent variable with external linkage has been found. Link
+ // the two declarations, then merge them.
+ Importer.Imported(D, MergeWithVar);
+
+ if (VarDecl *DDef = D->getDefinition()) {
+ if (VarDecl *ExistingDef = MergeWithVar->getDefinition()) {
+ Importer.ToDiag(ExistingDef->getLocation(),
+ diag::err_odr_variable_multiple_def)
+ << Name;
+ Importer.FromDiag(DDef->getLocation(), diag::note_odr_defined_here);
+ } else {
+ Expr *Init = Importer.Import(DDef->getInit());
+ MergeWithVar->setInit(Init);
+ }
+ }
+
+ return MergeWithVar;
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ if (!Name)
+ return 0;
+ }
+ }
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ // Create the imported variable.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ VarDecl *ToVar = VarDecl::Create(Importer.getToContext(), DC, Loc,
+ Name.getAsIdentifierInfo(), T, TInfo,
+ D->getStorageClass());
+ ToVar->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToVar);
+ LexicalDC->addDecl(ToVar);
+
+ // Merge the initializer.
+ // FIXME: Can we really import any initializer? Alternatively, we could force
+ // ourselves to import every declaration of a variable and then only use
+ // getInit() here.
+ ToVar->setInit(Importer.Import(const_cast<Expr *>(D->getAnyInitializer())));
+
+ // FIXME: Other bits to merge?
+
+ return ToVar;
+}
+
+Decl *ASTNodeImporter::VisitParmVarDecl(ParmVarDecl *D) {
+ // Parameters are created in the translation unit's context, then moved
+ // into the function declaration's context afterward.
+ DeclContext *DC = Importer.getToContext().getTranslationUnitDecl();
+
+ // Import the name of this declaration.
+ DeclarationName Name = Importer.Import(D->getDeclName());
+ if (D->getDeclName() && !Name)
+ return 0;
+
+ // Import the location of this declaration.
+ SourceLocation Loc = Importer.Import(D->getLocation());
+
+ // Import the parameter's type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ // Create the imported parameter.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ ParmVarDecl *ToParm = ParmVarDecl::Create(Importer.getToContext(), DC,
+ Loc, Name.getAsIdentifierInfo(),
+ T, TInfo, D->getStorageClass(),
+ /*FIXME: Default argument*/ 0);
+ return Importer.Imported(D, ToParm);
+}
+
+Decl *ASTNodeImporter::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) {
+ // Import the major distinguishing characteristics of an @interface.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ ObjCInterfaceDecl *MergeWithIface = 0;
+ for (DeclContext::lookup_result Lookup = DC->lookup(Name);
+ Lookup.first != Lookup.second;
+ ++Lookup.first) {
+ if (!(*Lookup.first)->isInIdentifierNamespace(Decl::IDNS_Ordinary))
+ continue;
+
+ if ((MergeWithIface = dyn_cast<ObjCInterfaceDecl>(*Lookup.first)))
+ break;
+ }
+
+ ObjCInterfaceDecl *ToIface = MergeWithIface;
+ if (!ToIface || ToIface->isForwardDecl()) {
+ if (!ToIface) {
+ ToIface = ObjCInterfaceDecl::Create(Importer.getToContext(),
+ DC, Loc,
+ Name.getAsIdentifierInfo(),
+ Importer.Import(D->getClassLoc()),
+ D->isForwardDecl(),
+ D->isImplicitInterfaceDecl());
+ ToIface->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDecl(ToIface);
+ }
+ Importer.Imported(D, ToIface);
+
+ // Import superclass
+ // FIXME: If we're merging, make sure that both decls have the same
+ // superclass.
+ if (D->getSuperClass()) {
+ ObjCInterfaceDecl *Super
+ = cast_or_null<ObjCInterfaceDecl>(Importer.Import(D->getSuperClass()));
+ if (!Super)
+ return 0;
+
+ ToIface->setSuperClass(Super);
+ ToIface->setSuperClassLoc(Importer.Import(D->getSuperClassLoc()));
+ }
+
+ // Import protocols
+ llvm::SmallVector<ObjCProtocolDecl *, 4> Protocols;
+ llvm::SmallVector<SourceLocation, 4> ProtocolLocs;
+ ObjCInterfaceDecl::protocol_loc_iterator
+ FromProtoLoc = D->protocol_loc_begin();
+ for (ObjCInterfaceDecl::protocol_iterator FromProto = D->protocol_begin(),
+ FromProtoEnd = D->protocol_end();
+ FromProto != FromProtoEnd;
+ ++FromProto, ++FromProtoLoc) {
+ ObjCProtocolDecl *ToProto
+ = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
+ if (!ToProto)
+ return 0;
+ Protocols.push_back(ToProto);
+ ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
+ }
+
+ // FIXME: If we're merging, make sure that the protocol list is the same.
+ ToIface->setProtocolList(Protocols.data(), Protocols.size(),
+ ProtocolLocs.data(), Importer.getToContext());
+
+ // FIXME: Import categories
+
+ // Import @end range
+ ToIface->setAtEndRange(Importer.Import(D->getAtEndRange()));
+ } else {
+ Importer.Imported(D, ToIface);
+ }
+
+ // Import all of the members of this class.
+ for (DeclContext::decl_iterator FromMem = D->decls_begin(),
+ FromMemEnd = D->decls_end();
+ FromMem != FromMemEnd;
+ ++FromMem)
+ Importer.Import(*FromMem);
+
+ // If we have an @implementation, import it as well.
+ if (D->getImplementation()) {
+ ObjCImplementationDecl *Impl
+ = cast<ObjCImplementationDecl>(Importer.Import(D->getImplementation()));
+ if (!Impl)
+ return 0;
+
+ ToIface->setImplementation(Impl);
+ }
+
+ return 0;
+}
+
+//----------------------------------------------------------------------------
+// Import Statements
+//----------------------------------------------------------------------------
+
+Stmt *ASTNodeImporter::VisitStmt(Stmt *S) {
+ Importer.FromDiag(S->getLocStart(), diag::err_unsupported_ast_node)
+ << S->getStmtClassName();
+ return 0;
+}
+
+//----------------------------------------------------------------------------
+// Import Expressions
+//----------------------------------------------------------------------------
+Expr *ASTNodeImporter::VisitExpr(Expr *E) {
+ Importer.FromDiag(E->getLocStart(), diag::err_unsupported_ast_node)
+ << E->getStmtClassName();
+ return 0;
+}
+
+Expr *ASTNodeImporter::VisitIntegerLiteral(IntegerLiteral *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return 0;
+
+ return new (Importer.getToContext())
+ IntegerLiteral(E->getValue(), T, Importer.Import(E->getLocation()));
+}
+
+Expr *ASTNodeImporter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return 0;
+
+ Expr *SubExpr = Importer.Import(E->getSubExpr());
+ if (!SubExpr)
+ return 0;
+
+ return new (Importer.getToContext()) ImplicitCastExpr(T, E->getCastKind(),
+ SubExpr,
+ E->isLvalueCast());
+}
+
+ASTImporter::ASTImporter(Diagnostic &Diags,
+ ASTContext &ToContext, FileManager &ToFileManager,
+ ASTContext &FromContext, FileManager &FromFileManager)
+ : ToContext(ToContext), FromContext(FromContext),
+ ToFileManager(ToFileManager), FromFileManager(FromFileManager),
+ Diags(Diags) {
+ ImportedDecls[FromContext.getTranslationUnitDecl()]
+ = ToContext.getTranslationUnitDecl();
+}
+
+ASTImporter::~ASTImporter() { }
+
+QualType ASTImporter::Import(QualType FromT) {
+ if (FromT.isNull())
+ return QualType();
+
+ // Check whether we've already imported this type.
+ llvm::DenseMap<Type *, Type *>::iterator Pos
+ = ImportedTypes.find(FromT.getTypePtr());
+ if (Pos != ImportedTypes.end())
+ return ToContext.getQualifiedType(Pos->second, FromT.getQualifiers());
+
+ // Import the type
+ ASTNodeImporter Importer(*this);
+ QualType ToT = Importer.Visit(FromT.getTypePtr());
+ if (ToT.isNull())
+ return ToT;
+
+ // Record the imported type.
+ ImportedTypes[FromT.getTypePtr()] = ToT.getTypePtr();
+
+ return ToContext.getQualifiedType(ToT, FromT.getQualifiers());
+}
+
+TypeSourceInfo *ASTImporter::Import(TypeSourceInfo *FromTSI) {
+ if (!FromTSI)
+ return FromTSI;
+
+ // FIXME: For now we just create a "trivial" type source info based
+ // on the type and a seingle location. Implement a real version of
+ // this.
+ QualType T = Import(FromTSI->getType());
+ if (T.isNull())
+ return 0;
+
+ return ToContext.getTrivialTypeSourceInfo(T,
+ FromTSI->getTypeLoc().getFullSourceRange().getBegin());
+}
+
+Decl *ASTImporter::Import(Decl *FromD) {
+ if (!FromD)
+ return 0;
+
+ // Check whether we've already imported this declaration.
+ llvm::DenseMap<Decl *, Decl *>::iterator Pos = ImportedDecls.find(FromD);
+ if (Pos != ImportedDecls.end())
+ return Pos->second;
+
+ // Import the type
+ ASTNodeImporter Importer(*this);
+ Decl *ToD = Importer.Visit(FromD);
+ if (!ToD)
+ return 0;
+
+ // Record the imported declaration.
+ ImportedDecls[FromD] = ToD;
+
+ if (TagDecl *FromTag = dyn_cast<TagDecl>(FromD)) {
+ // Keep track of anonymous tags that have an associated typedef.
+ if (FromTag->getTypedefForAnonDecl())
+ AnonTagsWithPendingTypedefs.push_back(FromTag);
+ } else if (TypedefDecl *FromTypedef = dyn_cast<TypedefDecl>(FromD)) {
+ // When we've finished transforming a typedef, see whether it was the
+ // typedef for an anonymous tag.
+ for (llvm::SmallVector<TagDecl *, 4>::iterator
+ FromTag = AnonTagsWithPendingTypedefs.begin(),
+ FromTagEnd = AnonTagsWithPendingTypedefs.end();
+ FromTag != FromTagEnd; ++FromTag) {
+ if ((*FromTag)->getTypedefForAnonDecl() == FromTypedef) {
+ if (TagDecl *ToTag = cast_or_null<TagDecl>(Import(*FromTag))) {
+ // We found the typedef for an anonymous tag; link them.
+ ToTag->setTypedefForAnonDecl(cast<TypedefDecl>(ToD));
+ AnonTagsWithPendingTypedefs.erase(FromTag);
+ break;
+ }
+ }
+ }
+ }
+
+ return ToD;
+}
+
+DeclContext *ASTImporter::ImportContext(DeclContext *FromDC) {
+ if (!FromDC)
+ return FromDC;
+
+ return cast_or_null<DeclContext>(Import(cast<Decl>(FromDC)));
+}
+
+Expr *ASTImporter::Import(Expr *FromE) {
+ if (!FromE)
+ return 0;
+
+ return cast_or_null<Expr>(Import(cast<Stmt>(FromE)));
+}
+
+Stmt *ASTImporter::Import(Stmt *FromS) {
+ if (!FromS)
+ return 0;
+
+ // Check whether we've already imported this declaration.
+ llvm::DenseMap<Stmt *, Stmt *>::iterator Pos = ImportedStmts.find(FromS);
+ if (Pos != ImportedStmts.end())
+ return Pos->second;
+
+ // Import the type
+ ASTNodeImporter Importer(*this);
+ Stmt *ToS = Importer.Visit(FromS);
+ if (!ToS)
+ return 0;
+
+ // Record the imported declaration.
+ ImportedStmts[FromS] = ToS;
+ return ToS;
+}
+
+NestedNameSpecifier *ASTImporter::Import(NestedNameSpecifier *FromNNS) {
+ if (!FromNNS)
+ return 0;
+
+ // FIXME: Implement!
+ return 0;
+}
+
+SourceLocation ASTImporter::Import(SourceLocation FromLoc) {
+ if (FromLoc.isInvalid())
+ return SourceLocation();
+
+ SourceManager &FromSM = FromContext.getSourceManager();
+
+ // For now, map everything down to its spelling location, so that we
+ // don't have to import macro instantiations.
+ // FIXME: Import macro instantiations!
+ FromLoc = FromSM.getSpellingLoc(FromLoc);
+ std::pair<FileID, unsigned> Decomposed = FromSM.getDecomposedLoc(FromLoc);
+ SourceManager &ToSM = ToContext.getSourceManager();
+ return ToSM.getLocForStartOfFile(Import(Decomposed.first))
+ .getFileLocWithOffset(Decomposed.second);
+}
+
+SourceRange ASTImporter::Import(SourceRange FromRange) {
+ return SourceRange(Import(FromRange.getBegin()), Import(FromRange.getEnd()));
+}
+
+FileID ASTImporter::Import(FileID FromID) {
+ llvm::DenseMap<unsigned, FileID>::iterator Pos
+ = ImportedFileIDs.find(FromID.getHashValue());
+ if (Pos != ImportedFileIDs.end())
+ return Pos->second;
+
+ SourceManager &FromSM = FromContext.getSourceManager();
+ SourceManager &ToSM = ToContext.getSourceManager();
+ const SrcMgr::SLocEntry &FromSLoc = FromSM.getSLocEntry(FromID);
+ assert(FromSLoc.isFile() && "Cannot handle macro instantiations yet");
+
+ // Include location of this file.
+ SourceLocation ToIncludeLoc = Import(FromSLoc.getFile().getIncludeLoc());
+
+ // Map the FileID for to the "to" source manager.
+ FileID ToID;
+ const SrcMgr::ContentCache *Cache = FromSLoc.getFile().getContentCache();
+ if (Cache->Entry) {
+ // FIXME: We probably want to use getVirtualFile(), so we don't hit the
+ // disk again
+ // FIXME: We definitely want to re-use the existing MemoryBuffer, rather
+ // than mmap the files several times.
+ const FileEntry *Entry = ToFileManager.getFile(Cache->Entry->getName());
+ ToID = ToSM.createFileID(Entry, ToIncludeLoc,
+ FromSLoc.getFile().getFileCharacteristic());
+ } else {
+ // FIXME: We want to re-use the existing MemoryBuffer!
+ const llvm::MemoryBuffer *FromBuf = Cache->getBuffer();
+ llvm::MemoryBuffer *ToBuf
+ = llvm::MemoryBuffer::getMemBufferCopy(FromBuf->getBufferStart(),
+ FromBuf->getBufferEnd(),
+ FromBuf->getBufferIdentifier());
+ ToID = ToSM.createFileIDForMemBuffer(ToBuf);
+ }
+
+
+ ImportedFileIDs[FromID.getHashValue()] = ToID;
+ return ToID;
+}
+
+DeclarationName ASTImporter::Import(DeclarationName FromName) {
+ if (!FromName)
+ return DeclarationName();
+
+ switch (FromName.getNameKind()) {
+ case DeclarationName::Identifier:
+ return Import(FromName.getAsIdentifierInfo());
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ return Import(FromName.getObjCSelector());
+
+ case DeclarationName::CXXConstructorName: {
+ QualType T = Import(FromName.getCXXNameType());
+ if (T.isNull())
+ return DeclarationName();
+
+ return ToContext.DeclarationNames.getCXXConstructorName(
+ ToContext.getCanonicalType(T));
+ }
+
+ case DeclarationName::CXXDestructorName: {
+ QualType T = Import(FromName.getCXXNameType());
+ if (T.isNull())
+ return DeclarationName();
+
+ return ToContext.DeclarationNames.getCXXDestructorName(
+ ToContext.getCanonicalType(T));
+ }
+
+ case DeclarationName::CXXConversionFunctionName: {
+ QualType T = Import(FromName.getCXXNameType());
+ if (T.isNull())
+ return DeclarationName();
+
+ return ToContext.DeclarationNames.getCXXConversionFunctionName(
+ ToContext.getCanonicalType(T));
+ }
+
+ case DeclarationName::CXXOperatorName:
+ return ToContext.DeclarationNames.getCXXOperatorName(
+ FromName.getCXXOverloadedOperator());
+
+ case DeclarationName::CXXLiteralOperatorName:
+ return ToContext.DeclarationNames.getCXXLiteralOperatorName(
+ Import(FromName.getCXXLiteralIdentifier()));
+
+ case DeclarationName::CXXUsingDirective:
+ // FIXME: STATICS!
+ return DeclarationName::getUsingDirectiveName();
+ }
+
+ // Silence bogus GCC warning
+ return DeclarationName();
+}
+
+IdentifierInfo *ASTImporter::Import(IdentifierInfo *FromId) {
+ if (!FromId)
+ return 0;
+
+ return &ToContext.Idents.get(FromId->getName());
+}
+
+DeclarationName ASTImporter::HandleNameConflict(DeclarationName Name,
+ DeclContext *DC,
+ unsigned IDNS,
+ NamedDecl **Decls,
+ unsigned NumDecls) {
+ return Name;
+}
+
+DiagnosticBuilder ASTImporter::ToDiag(SourceLocation Loc, unsigned DiagID) {
+ return Diags.Report(FullSourceLoc(Loc, ToContext.getSourceManager()),
+ DiagID);
+}
+
+DiagnosticBuilder ASTImporter::FromDiag(SourceLocation Loc, unsigned DiagID) {
+ return Diags.Report(FullSourceLoc(Loc, FromContext.getSourceManager()),
+ DiagID);
+}
+
+Decl *ASTImporter::Imported(Decl *From, Decl *To) {
+ ImportedDecls[From] = To;
+ return To;
+}
+
+bool ASTImporter::IsStructurallyEquivalent(QualType From, QualType To) {
+ llvm::DenseMap<Type *, Type *>::iterator Pos
+ = ImportedTypes.find(From.getTypePtr());
+ if (Pos != ImportedTypes.end() && ToContext.hasSameType(Import(From), To))
+ return true;
+
+ StructuralEquivalenceContext SEC(FromContext, ToContext, Diags,
+ NonEquivalentDecls);
+ return SEC.IsStructurallyEquivalent(From, To);
+}
OpenPOWER on IntegriCloud