summaryrefslogtreecommitdiffstats
path: root/lib/AST/ASTContext.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/AST/ASTContext.cpp')
-rw-r--r--lib/AST/ASTContext.cpp3332
1 files changed, 3332 insertions, 0 deletions
diff --git a/lib/AST/ASTContext.cpp b/lib/AST/ASTContext.cpp
new file mode 100644
index 0000000..29bca29
--- /dev/null
+++ b/lib/AST/ASTContext.cpp
@@ -0,0 +1,3332 @@
+//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ASTContext interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExternalASTSource.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MemoryBuffer.h"
+using namespace clang;
+
+enum FloatingRank {
+ FloatRank, DoubleRank, LongDoubleRank
+};
+
+ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
+ TargetInfo &t,
+ IdentifierTable &idents, SelectorTable &sels,
+ bool FreeMem, unsigned size_reserve,
+ bool InitializeBuiltins) :
+ GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
+ ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
+ FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
+ ExternalSource(0) {
+ if (size_reserve > 0) Types.reserve(size_reserve);
+ InitBuiltinTypes();
+ TUDecl = TranslationUnitDecl::Create(*this);
+ BuiltinInfo.InitializeTargetBuiltins(Target);
+ if (InitializeBuiltins)
+ this->InitializeBuiltins(idents);
+ PrintingPolicy.CPlusPlus = LangOpts.CPlusPlus;
+}
+
+ASTContext::~ASTContext() {
+ // Deallocate all the types.
+ while (!Types.empty()) {
+ Types.back()->Destroy(*this);
+ Types.pop_back();
+ }
+
+ {
+ llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
+ I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
+ while (I != E) {
+ ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
+ delete R;
+ }
+ }
+
+ {
+ llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
+ I = ObjCLayouts.begin(), E = ObjCLayouts.end();
+ while (I != E) {
+ ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
+ delete R;
+ }
+ }
+
+ // Destroy nested-name-specifiers.
+ for (llvm::FoldingSet<NestedNameSpecifier>::iterator
+ NNS = NestedNameSpecifiers.begin(),
+ NNSEnd = NestedNameSpecifiers.end();
+ NNS != NNSEnd;
+ /* Increment in loop */)
+ (*NNS++).Destroy(*this);
+
+ if (GlobalNestedNameSpecifier)
+ GlobalNestedNameSpecifier->Destroy(*this);
+
+ TUDecl->Destroy(*this);
+}
+
+void ASTContext::InitializeBuiltins(IdentifierTable &idents) {
+ BuiltinInfo.InitializeBuiltins(idents, LangOpts.NoBuiltin);
+}
+
+void
+ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
+ ExternalSource.reset(Source.take());
+}
+
+void ASTContext::PrintStats() const {
+ fprintf(stderr, "*** AST Context Stats:\n");
+ fprintf(stderr, " %d types total.\n", (int)Types.size());
+
+ unsigned counts[] = {
+#define TYPE(Name, Parent) 0,
+#define ABSTRACT_TYPE(Name, Parent)
+#include "clang/AST/TypeNodes.def"
+ 0 // Extra
+ };
+
+ for (unsigned i = 0, e = Types.size(); i != e; ++i) {
+ Type *T = Types[i];
+ counts[(unsigned)T->getTypeClass()]++;
+ }
+
+ unsigned Idx = 0;
+ unsigned TotalBytes = 0;
+#define TYPE(Name, Parent) \
+ if (counts[Idx]) \
+ fprintf(stderr, " %d %s types\n", (int)counts[Idx], #Name); \
+ TotalBytes += counts[Idx] * sizeof(Name##Type); \
+ ++Idx;
+#define ABSTRACT_TYPE(Name, Parent)
+#include "clang/AST/TypeNodes.def"
+
+ fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
+
+ if (ExternalSource.get()) {
+ fprintf(stderr, "\n");
+ ExternalSource->PrintStats();
+ }
+}
+
+
+void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
+ Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
+}
+
+void ASTContext::InitBuiltinTypes() {
+ assert(VoidTy.isNull() && "Context reinitialized?");
+
+ // C99 6.2.5p19.
+ InitBuiltinType(VoidTy, BuiltinType::Void);
+
+ // C99 6.2.5p2.
+ InitBuiltinType(BoolTy, BuiltinType::Bool);
+ // C99 6.2.5p3.
+ if (Target.isCharSigned())
+ InitBuiltinType(CharTy, BuiltinType::Char_S);
+ else
+ InitBuiltinType(CharTy, BuiltinType::Char_U);
+ // C99 6.2.5p4.
+ InitBuiltinType(SignedCharTy, BuiltinType::SChar);
+ InitBuiltinType(ShortTy, BuiltinType::Short);
+ InitBuiltinType(IntTy, BuiltinType::Int);
+ InitBuiltinType(LongTy, BuiltinType::Long);
+ InitBuiltinType(LongLongTy, BuiltinType::LongLong);
+
+ // C99 6.2.5p6.
+ InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
+ InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
+ InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
+ InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
+ InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
+
+ // C99 6.2.5p10.
+ InitBuiltinType(FloatTy, BuiltinType::Float);
+ InitBuiltinType(DoubleTy, BuiltinType::Double);
+ InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
+
+ // GNU extension, 128-bit integers.
+ InitBuiltinType(Int128Ty, BuiltinType::Int128);
+ InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
+
+ if (LangOpts.CPlusPlus) // C++ 3.9.1p5
+ InitBuiltinType(WCharTy, BuiltinType::WChar);
+ else // C99
+ WCharTy = getFromTargetType(Target.getWCharType());
+
+ // Placeholder type for functions.
+ InitBuiltinType(OverloadTy, BuiltinType::Overload);
+
+ // Placeholder type for type-dependent expressions whose type is
+ // completely unknown. No code should ever check a type against
+ // DependentTy and users should never see it; however, it is here to
+ // help diagnose failures to properly check for type-dependent
+ // expressions.
+ InitBuiltinType(DependentTy, BuiltinType::Dependent);
+
+ // C99 6.2.5p11.
+ FloatComplexTy = getComplexType(FloatTy);
+ DoubleComplexTy = getComplexType(DoubleTy);
+ LongDoubleComplexTy = getComplexType(LongDoubleTy);
+
+ BuiltinVaListType = QualType();
+ ObjCIdType = QualType();
+ IdStructType = 0;
+ ObjCClassType = QualType();
+ ClassStructType = 0;
+
+ ObjCConstantStringType = QualType();
+
+ // void * type
+ VoidPtrTy = getPointerType(VoidTy);
+
+ // nullptr type (C++0x 2.14.7)
+ InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
+}
+
+//===----------------------------------------------------------------------===//
+// Type Sizing and Analysis
+//===----------------------------------------------------------------------===//
+
+/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
+/// scalar floating point type.
+const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
+ const BuiltinType *BT = T->getAsBuiltinType();
+ assert(BT && "Not a floating point type!");
+ switch (BT->getKind()) {
+ default: assert(0 && "Not a floating point type!");
+ case BuiltinType::Float: return Target.getFloatFormat();
+ case BuiltinType::Double: return Target.getDoubleFormat();
+ case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
+ }
+}
+
+/// getDeclAlign - Return a conservative estimate of the alignment of the
+/// specified decl. Note that bitfields do not have a valid alignment, so
+/// this method will assert on them.
+unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
+ unsigned Align = Target.getCharWidth();
+
+ if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
+ Align = std::max(Align, AA->getAlignment());
+
+ if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
+ QualType T = VD->getType();
+ if (const ReferenceType* RT = T->getAsReferenceType()) {
+ unsigned AS = RT->getPointeeType().getAddressSpace();
+ Align = Target.getPointerAlign(AS);
+ } else if (!T->isIncompleteType() && !T->isFunctionType()) {
+ // Incomplete or function types default to 1.
+ while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
+ T = cast<ArrayType>(T)->getElementType();
+
+ Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
+ }
+ }
+
+ return Align / Target.getCharWidth();
+}
+
+/// getTypeSize - Return the size of the specified type, in bits. This method
+/// does not work on incomplete types.
+std::pair<uint64_t, unsigned>
+ASTContext::getTypeInfo(const Type *T) {
+ uint64_t Width=0;
+ unsigned Align=8;
+ switch (T->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ assert(false && "Should not see dependent types");
+ break;
+
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ // GCC extension: alignof(function) = 32 bits
+ Width = 0;
+ Align = 32;
+ break;
+
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ Width = 0;
+ Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
+ break;
+
+ case Type::ConstantArray: {
+ const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
+
+ std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
+ Width = EltInfo.first*CAT->getSize().getZExtValue();
+ Align = EltInfo.second;
+ break;
+ }
+ case Type::ExtVector:
+ case Type::Vector: {
+ std::pair<uint64_t, unsigned> EltInfo =
+ getTypeInfo(cast<VectorType>(T)->getElementType());
+ Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
+ Align = Width;
+ // If the alignment is not a power of 2, round up to the next power of 2.
+ // This happens for non-power-of-2 length vectors.
+ // FIXME: this should probably be a target property.
+ Align = 1 << llvm::Log2_32_Ceil(Align);
+ break;
+ }
+
+ case Type::Builtin:
+ switch (cast<BuiltinType>(T)->getKind()) {
+ default: assert(0 && "Unknown builtin type!");
+ case BuiltinType::Void:
+ // GCC extension: alignof(void) = 8 bits.
+ Width = 0;
+ Align = 8;
+ break;
+
+ case BuiltinType::Bool:
+ Width = Target.getBoolWidth();
+ Align = Target.getBoolAlign();
+ break;
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ case BuiltinType::SChar:
+ Width = Target.getCharWidth();
+ Align = Target.getCharAlign();
+ break;
+ case BuiltinType::WChar:
+ Width = Target.getWCharWidth();
+ Align = Target.getWCharAlign();
+ break;
+ case BuiltinType::UShort:
+ case BuiltinType::Short:
+ Width = Target.getShortWidth();
+ Align = Target.getShortAlign();
+ break;
+ case BuiltinType::UInt:
+ case BuiltinType::Int:
+ Width = Target.getIntWidth();
+ Align = Target.getIntAlign();
+ break;
+ case BuiltinType::ULong:
+ case BuiltinType::Long:
+ Width = Target.getLongWidth();
+ Align = Target.getLongAlign();
+ break;
+ case BuiltinType::ULongLong:
+ case BuiltinType::LongLong:
+ Width = Target.getLongLongWidth();
+ Align = Target.getLongLongAlign();
+ break;
+ case BuiltinType::Int128:
+ case BuiltinType::UInt128:
+ Width = 128;
+ Align = 128; // int128_t is 128-bit aligned on all targets.
+ break;
+ case BuiltinType::Float:
+ Width = Target.getFloatWidth();
+ Align = Target.getFloatAlign();
+ break;
+ case BuiltinType::Double:
+ Width = Target.getDoubleWidth();
+ Align = Target.getDoubleAlign();
+ break;
+ case BuiltinType::LongDouble:
+ Width = Target.getLongDoubleWidth();
+ Align = Target.getLongDoubleAlign();
+ break;
+ case BuiltinType::NullPtr:
+ Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
+ Align = Target.getPointerAlign(0); // == sizeof(void*)
+ break;
+ }
+ break;
+ case Type::FixedWidthInt:
+ // FIXME: This isn't precisely correct; the width/alignment should depend
+ // on the available types for the target
+ Width = cast<FixedWidthIntType>(T)->getWidth();
+ Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
+ Align = Width;
+ break;
+ case Type::ExtQual:
+ // FIXME: Pointers into different addr spaces could have different sizes and
+ // alignment requirements: getPointerInfo should take an AddrSpace.
+ return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
+ case Type::ObjCQualifiedId:
+ case Type::ObjCQualifiedInterface:
+ Width = Target.getPointerWidth(0);
+ Align = Target.getPointerAlign(0);
+ break;
+ case Type::BlockPointer: {
+ unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
+ Width = Target.getPointerWidth(AS);
+ Align = Target.getPointerAlign(AS);
+ break;
+ }
+ case Type::Pointer: {
+ unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
+ Width = Target.getPointerWidth(AS);
+ Align = Target.getPointerAlign(AS);
+ break;
+ }
+ case Type::LValueReference:
+ case Type::RValueReference:
+ // "When applied to a reference or a reference type, the result is the size
+ // of the referenced type." C++98 5.3.3p2: expr.sizeof.
+ // FIXME: This is wrong for struct layout: a reference in a struct has
+ // pointer size.
+ return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
+ case Type::MemberPointer: {
+ // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
+ // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
+ // If we ever want to support other ABIs this needs to be abstracted.
+
+ QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
+ std::pair<uint64_t, unsigned> PtrDiffInfo =
+ getTypeInfo(getPointerDiffType());
+ Width = PtrDiffInfo.first;
+ if (Pointee->isFunctionType())
+ Width *= 2;
+ Align = PtrDiffInfo.second;
+ break;
+ }
+ case Type::Complex: {
+ // Complex types have the same alignment as their elements, but twice the
+ // size.
+ std::pair<uint64_t, unsigned> EltInfo =
+ getTypeInfo(cast<ComplexType>(T)->getElementType());
+ Width = EltInfo.first*2;
+ Align = EltInfo.second;
+ break;
+ }
+ case Type::ObjCInterface: {
+ const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
+ const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
+ Width = Layout.getSize();
+ Align = Layout.getAlignment();
+ break;
+ }
+ case Type::Record:
+ case Type::Enum: {
+ const TagType *TT = cast<TagType>(T);
+
+ if (TT->getDecl()->isInvalidDecl()) {
+ Width = 1;
+ Align = 1;
+ break;
+ }
+
+ if (const EnumType *ET = dyn_cast<EnumType>(TT))
+ return getTypeInfo(ET->getDecl()->getIntegerType());
+
+ const RecordType *RT = cast<RecordType>(TT);
+ const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
+ Width = Layout.getSize();
+ Align = Layout.getAlignment();
+ break;
+ }
+
+ case Type::Typedef: {
+ const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
+ if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
+ Align = Aligned->getAlignment();
+ Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
+ } else
+ return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
+ break;
+ }
+
+ case Type::TypeOfExpr:
+ return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
+ .getTypePtr());
+
+ case Type::TypeOf:
+ return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
+
+ case Type::QualifiedName:
+ return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
+
+ case Type::TemplateSpecialization:
+ assert(getCanonicalType(T) != T &&
+ "Cannot request the size of a dependent type");
+ // FIXME: this is likely to be wrong once we support template
+ // aliases, since a template alias could refer to a typedef that
+ // has an __aligned__ attribute on it.
+ return getTypeInfo(getCanonicalType(T));
+ }
+
+ assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
+ return std::make_pair(Width, Align);
+}
+
+/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
+/// type for the current target in bits. This can be different than the ABI
+/// alignment in cases where it is beneficial for performance to overalign
+/// a data type.
+unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
+ unsigned ABIAlign = getTypeAlign(T);
+
+ // Double and long long should be naturally aligned if possible.
+ if (const ComplexType* CT = T->getAsComplexType())
+ T = CT->getElementType().getTypePtr();
+ if (T->isSpecificBuiltinType(BuiltinType::Double) ||
+ T->isSpecificBuiltinType(BuiltinType::LongLong))
+ return std::max(ABIAlign, (unsigned)getTypeSize(T));
+
+ return ABIAlign;
+}
+
+
+/// LayoutField - Field layout.
+void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
+ bool IsUnion, unsigned StructPacking,
+ ASTContext &Context) {
+ unsigned FieldPacking = StructPacking;
+ uint64_t FieldOffset = IsUnion ? 0 : Size;
+ uint64_t FieldSize;
+ unsigned FieldAlign;
+
+ // FIXME: Should this override struct packing? Probably we want to
+ // take the minimum?
+ if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
+ FieldPacking = PA->getAlignment();
+
+ if (const Expr *BitWidthExpr = FD->getBitWidth()) {
+ // TODO: Need to check this algorithm on other targets!
+ // (tested on Linux-X86)
+ FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
+
+ std::pair<uint64_t, unsigned> FieldInfo =
+ Context.getTypeInfo(FD->getType());
+ uint64_t TypeSize = FieldInfo.first;
+
+ // Determine the alignment of this bitfield. The packing
+ // attributes define a maximum and the alignment attribute defines
+ // a minimum.
+ // FIXME: What is the right behavior when the specified alignment
+ // is smaller than the specified packing?
+ FieldAlign = FieldInfo.second;
+ if (FieldPacking)
+ FieldAlign = std::min(FieldAlign, FieldPacking);
+ if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
+ FieldAlign = std::max(FieldAlign, AA->getAlignment());
+
+ // Check if we need to add padding to give the field the correct
+ // alignment.
+ if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
+ FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
+
+ // Padding members don't affect overall alignment
+ if (!FD->getIdentifier())
+ FieldAlign = 1;
+ } else {
+ if (FD->getType()->isIncompleteArrayType()) {
+ // This is a flexible array member; we can't directly
+ // query getTypeInfo about these, so we figure it out here.
+ // Flexible array members don't have any size, but they
+ // have to be aligned appropriately for their element type.
+ FieldSize = 0;
+ const ArrayType* ATy = Context.getAsArrayType(FD->getType());
+ FieldAlign = Context.getTypeAlign(ATy->getElementType());
+ } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
+ unsigned AS = RT->getPointeeType().getAddressSpace();
+ FieldSize = Context.Target.getPointerWidth(AS);
+ FieldAlign = Context.Target.getPointerAlign(AS);
+ } else {
+ std::pair<uint64_t, unsigned> FieldInfo =
+ Context.getTypeInfo(FD->getType());
+ FieldSize = FieldInfo.first;
+ FieldAlign = FieldInfo.second;
+ }
+
+ // Determine the alignment of this bitfield. The packing
+ // attributes define a maximum and the alignment attribute defines
+ // a minimum. Additionally, the packing alignment must be at least
+ // a byte for non-bitfields.
+ //
+ // FIXME: What is the right behavior when the specified alignment
+ // is smaller than the specified packing?
+ if (FieldPacking)
+ FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
+ if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
+ FieldAlign = std::max(FieldAlign, AA->getAlignment());
+
+ // Round up the current record size to the field's alignment boundary.
+ FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
+ }
+
+ // Place this field at the current location.
+ FieldOffsets[FieldNo] = FieldOffset;
+
+ // Reserve space for this field.
+ if (IsUnion) {
+ Size = std::max(Size, FieldSize);
+ } else {
+ Size = FieldOffset + FieldSize;
+ }
+
+ // Remember the next available offset.
+ NextOffset = Size;
+
+ // Remember max struct/class alignment.
+ Alignment = std::max(Alignment, FieldAlign);
+}
+
+static void CollectLocalObjCIvars(ASTContext *Ctx,
+ const ObjCInterfaceDecl *OI,
+ llvm::SmallVectorImpl<FieldDecl*> &Fields) {
+ for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
+ E = OI->ivar_end(); I != E; ++I) {
+ ObjCIvarDecl *IVDecl = *I;
+ if (!IVDecl->isInvalidDecl())
+ Fields.push_back(cast<FieldDecl>(IVDecl));
+ }
+}
+
+void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
+ llvm::SmallVectorImpl<FieldDecl*> &Fields) {
+ if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
+ CollectObjCIvars(SuperClass, Fields);
+ CollectLocalObjCIvars(this, OI, Fields);
+}
+
+void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
+ llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
+ for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
+ E = PD->prop_end(*this); I != E; ++I)
+ if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
+ Ivars.push_back(Ivar);
+
+ // Also look into nested protocols.
+ for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
+ E = PD->protocol_end(); P != E; ++P)
+ CollectProtocolSynthesizedIvars(*P, Ivars);
+}
+
+/// CollectSynthesizedIvars -
+/// This routine collect synthesized ivars for the designated class.
+///
+void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
+ llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
+ for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
+ E = OI->prop_end(*this); I != E; ++I) {
+ if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
+ Ivars.push_back(Ivar);
+ }
+ // Also look into interface's protocol list for properties declared
+ // in the protocol and whose ivars are synthesized.
+ for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
+ PE = OI->protocol_end(); P != PE; ++P) {
+ ObjCProtocolDecl *PD = (*P);
+ CollectProtocolSynthesizedIvars(PD, Ivars);
+ }
+}
+
+/// getInterfaceLayoutImpl - Get or compute information about the
+/// layout of the given interface.
+///
+/// \param Impl - If given, also include the layout of the interface's
+/// implementation. This may differ by including synthesized ivars.
+const ASTRecordLayout &
+ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
+ const ObjCImplementationDecl *Impl) {
+ assert(!D->isForwardDecl() && "Invalid interface decl!");
+
+ // Look up this layout, if already laid out, return what we have.
+ ObjCContainerDecl *Key =
+ Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
+ if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
+ return *Entry;
+
+ unsigned FieldCount = D->ivar_size();
+ // Add in synthesized ivar count if laying out an implementation.
+ if (Impl) {
+ llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
+ CollectSynthesizedIvars(D, Ivars);
+ FieldCount += Ivars.size();
+ // If there aren't any sythesized ivars then reuse the interface
+ // entry. Note we can't cache this because we simply free all
+ // entries later; however we shouldn't look up implementations
+ // frequently.
+ if (FieldCount == D->ivar_size())
+ return getObjCLayout(D, 0);
+ }
+
+ ASTRecordLayout *NewEntry = NULL;
+ if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
+ const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
+ unsigned Alignment = SL.getAlignment();
+
+ // We start laying out ivars not at the end of the superclass
+ // structure, but at the next byte following the last field.
+ uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);
+
+ ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
+ NewEntry->InitializeLayout(FieldCount);
+ } else {
+ ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
+ NewEntry->InitializeLayout(FieldCount);
+ }
+
+ unsigned StructPacking = 0;
+ if (const PackedAttr *PA = D->getAttr<PackedAttr>())
+ StructPacking = PA->getAlignment();
+
+ if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
+ NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
+ AA->getAlignment()));
+
+ // Layout each ivar sequentially.
+ unsigned i = 0;
+ for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
+ IVE = D->ivar_end(); IVI != IVE; ++IVI) {
+ const ObjCIvarDecl* Ivar = (*IVI);
+ NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
+ }
+ // And synthesized ivars, if this is an implementation.
+ if (Impl) {
+ // FIXME. Do we need to colltect twice?
+ llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
+ CollectSynthesizedIvars(D, Ivars);
+ for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
+ NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this);
+ }
+
+ // Finally, round the size of the total struct up to the alignment of the
+ // struct itself.
+ NewEntry->FinalizeLayout();
+ return *NewEntry;
+}
+
+const ASTRecordLayout &
+ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
+ return getObjCLayout(D, 0);
+}
+
+const ASTRecordLayout &
+ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
+ return getObjCLayout(D->getClassInterface(), D);
+}
+
+/// getASTRecordLayout - Get or compute information about the layout of the
+/// specified record (struct/union/class), which indicates its size and field
+/// position information.
+const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
+ D = D->getDefinition(*this);
+ assert(D && "Cannot get layout of forward declarations!");
+
+ // Look up this layout, if already laid out, return what we have.
+ const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
+ if (Entry) return *Entry;
+
+ // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
+ // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
+ ASTRecordLayout *NewEntry = new ASTRecordLayout();
+ Entry = NewEntry;
+
+ // FIXME: Avoid linear walk through the fields, if possible.
+ NewEntry->InitializeLayout(std::distance(D->field_begin(*this),
+ D->field_end(*this)));
+ bool IsUnion = D->isUnion();
+
+ unsigned StructPacking = 0;
+ if (const PackedAttr *PA = D->getAttr<PackedAttr>())
+ StructPacking = PA->getAlignment();
+
+ if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
+ NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
+ AA->getAlignment()));
+
+ // Layout each field, for now, just sequentially, respecting alignment. In
+ // the future, this will need to be tweakable by targets.
+ unsigned FieldIdx = 0;
+ for (RecordDecl::field_iterator Field = D->field_begin(*this),
+ FieldEnd = D->field_end(*this);
+ Field != FieldEnd; (void)++Field, ++FieldIdx)
+ NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
+
+ // Finally, round the size of the total struct up to the alignment of the
+ // struct itself.
+ NewEntry->FinalizeLayout(getLangOptions().CPlusPlus);
+ return *NewEntry;
+}
+
+//===----------------------------------------------------------------------===//
+// Type creation/memoization methods
+//===----------------------------------------------------------------------===//
+
+QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
+ QualType CanT = getCanonicalType(T);
+ if (CanT.getAddressSpace() == AddressSpace)
+ return T;
+
+ // If we are composing extended qualifiers together, merge together into one
+ // ExtQualType node.
+ unsigned CVRQuals = T.getCVRQualifiers();
+ QualType::GCAttrTypes GCAttr = QualType::GCNone;
+ Type *TypeNode = T.getTypePtr();
+
+ if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
+ // If this type already has an address space specified, it cannot get
+ // another one.
+ assert(EQT->getAddressSpace() == 0 &&
+ "Type cannot be in multiple addr spaces!");
+ GCAttr = EQT->getObjCGCAttr();
+ TypeNode = EQT->getBaseType();
+ }
+
+ // Check if we've already instantiated this type.
+ llvm::FoldingSetNodeID ID;
+ ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
+ void *InsertPos = 0;
+ if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(EXTQy, CVRQuals);
+
+ // If the base type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!TypeNode->isCanonical()) {
+ Canonical = getAddrSpaceQualType(CanT, AddressSpace);
+
+ // Update InsertPos, the previous call could have invalidated it.
+ ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+ ExtQualType *New =
+ new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
+ ExtQualTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, CVRQuals);
+}
+
+QualType ASTContext::getObjCGCQualType(QualType T,
+ QualType::GCAttrTypes GCAttr) {
+ QualType CanT = getCanonicalType(T);
+ if (CanT.getObjCGCAttr() == GCAttr)
+ return T;
+
+ // If we are composing extended qualifiers together, merge together into one
+ // ExtQualType node.
+ unsigned CVRQuals = T.getCVRQualifiers();
+ Type *TypeNode = T.getTypePtr();
+ unsigned AddressSpace = 0;
+
+ if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
+ // If this type already has an address space specified, it cannot get
+ // another one.
+ assert(EQT->getObjCGCAttr() == QualType::GCNone &&
+ "Type cannot be in multiple addr spaces!");
+ AddressSpace = EQT->getAddressSpace();
+ TypeNode = EQT->getBaseType();
+ }
+
+ // Check if we've already instantiated an gc qual'd type of this type.
+ llvm::FoldingSetNodeID ID;
+ ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
+ void *InsertPos = 0;
+ if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(EXTQy, CVRQuals);
+
+ // If the base type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ // FIXME: Isn't this also not canonical if the base type is a array
+ // or pointer type? I can't find any documentation for objc_gc, though...
+ QualType Canonical;
+ if (!T->isCanonical()) {
+ Canonical = getObjCGCQualType(CanT, GCAttr);
+
+ // Update InsertPos, the previous call could have invalidated it.
+ ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+ ExtQualType *New =
+ new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
+ ExtQualTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, CVRQuals);
+}
+
+/// getComplexType - Return the uniqued reference to the type for a complex
+/// number with the specified element type.
+QualType ASTContext::getComplexType(QualType T) {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ComplexType::Profile(ID, T);
+
+ void *InsertPos = 0;
+ if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(CT, 0);
+
+ // If the pointee type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!T->isCanonical()) {
+ Canonical = getComplexType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+ ComplexType *New = new (*this,8) ComplexType(T, Canonical);
+ Types.push_back(New);
+ ComplexTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
+ llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
+ SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
+ FixedWidthIntType *&Entry = Map[Width];
+ if (!Entry)
+ Entry = new FixedWidthIntType(Width, Signed);
+ return QualType(Entry, 0);
+}
+
+/// getPointerType - Return the uniqued reference to the type for a pointer to
+/// the specified type.
+QualType ASTContext::getPointerType(QualType T) {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ PointerType::Profile(ID, T);
+
+ void *InsertPos = 0;
+ if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the pointee type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!T->isCanonical()) {
+ Canonical = getPointerType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+ PointerType *New = new (*this,8) PointerType(T, Canonical);
+ Types.push_back(New);
+ PointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getBlockPointerType - Return the uniqued reference to the type for
+/// a pointer to the specified block.
+QualType ASTContext::getBlockPointerType(QualType T) {
+ assert(T->isFunctionType() && "block of function types only");
+ // Unique pointers, to guarantee there is only one block of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ BlockPointerType::Profile(ID, T);
+
+ void *InsertPos = 0;
+ if (BlockPointerType *PT =
+ BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the block pointee type isn't canonical, this won't be a canonical
+ // type either so fill in the canonical type field.
+ QualType Canonical;
+ if (!T->isCanonical()) {
+ Canonical = getBlockPointerType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ BlockPointerType *NewIP =
+ BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+ BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
+ Types.push_back(New);
+ BlockPointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getLValueReferenceType - Return the uniqued reference to the type for an
+/// lvalue reference to the specified type.
+QualType ASTContext::getLValueReferenceType(QualType T) {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ReferenceType::Profile(ID, T);
+
+ void *InsertPos = 0;
+ if (LValueReferenceType *RT =
+ LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(RT, 0);
+
+ // If the referencee type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!T->isCanonical()) {
+ Canonical = getLValueReferenceType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ LValueReferenceType *NewIP =
+ LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+
+ LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
+ Types.push_back(New);
+ LValueReferenceTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getRValueReferenceType - Return the uniqued reference to the type for an
+/// rvalue reference to the specified type.
+QualType ASTContext::getRValueReferenceType(QualType T) {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ReferenceType::Profile(ID, T);
+
+ void *InsertPos = 0;
+ if (RValueReferenceType *RT =
+ RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(RT, 0);
+
+ // If the referencee type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!T->isCanonical()) {
+ Canonical = getRValueReferenceType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ RValueReferenceType *NewIP =
+ RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+
+ RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
+ Types.push_back(New);
+ RValueReferenceTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getMemberPointerType - Return the uniqued reference to the type for a
+/// member pointer to the specified type, in the specified class.
+QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
+{
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ MemberPointerType::Profile(ID, T, Cls);
+
+ void *InsertPos = 0;
+ if (MemberPointerType *PT =
+ MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the pointee or class type isn't canonical, this won't be a canonical
+ // type either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!T->isCanonical()) {
+ Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
+
+ // Get the new insert position for the node we care about.
+ MemberPointerType *NewIP =
+ MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+ MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
+ Types.push_back(New);
+ MemberPointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getConstantArrayType - Return the unique reference to the type for an
+/// array of the specified element type.
+QualType ASTContext::getConstantArrayType(QualType EltTy,
+ const llvm::APInt &ArySizeIn,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned EltTypeQuals) {
+ assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
+ "Constant array of VLAs is illegal!");
+
+ // Convert the array size into a canonical width matching the pointer size for
+ // the target.
+ llvm::APInt ArySize(ArySizeIn);
+ ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
+
+ llvm::FoldingSetNodeID ID;
+ ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
+
+ void *InsertPos = 0;
+ if (ConstantArrayType *ATP =
+ ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(ATP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!EltTy->isCanonical()) {
+ Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
+ ASM, EltTypeQuals);
+ // Get the new insert position for the node we care about.
+ ConstantArrayType *NewIP =
+ ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+
+ ConstantArrayType *New =
+ new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
+ ConstantArrayTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getVariableArrayType - Returns a non-unique reference to the type for a
+/// variable array of the specified element type.
+QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned EltTypeQuals) {
+ // Since we don't unique expressions, it isn't possible to unique VLA's
+ // that have an expression provided for their size.
+
+ VariableArrayType *New =
+ new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
+
+ VariableArrayTypes.push_back(New);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getDependentSizedArrayType - Returns a non-unique reference to
+/// the type for a dependently-sized array of the specified element
+/// type. FIXME: We will need these to be uniqued, or at least
+/// comparable, at some point.
+QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned EltTypeQuals) {
+ assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
+ "Size must be type- or value-dependent!");
+
+ // Since we don't unique expressions, it isn't possible to unique
+ // dependently-sized array types.
+
+ DependentSizedArrayType *New =
+ new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
+ ASM, EltTypeQuals);
+
+ DependentSizedArrayTypes.push_back(New);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+QualType ASTContext::getIncompleteArrayType(QualType EltTy,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned EltTypeQuals) {
+ llvm::FoldingSetNodeID ID;
+ IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
+
+ void *InsertPos = 0;
+ if (IncompleteArrayType *ATP =
+ IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(ATP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+
+ if (!EltTy->isCanonical()) {
+ Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
+ ASM, EltTypeQuals);
+
+ // Get the new insert position for the node we care about.
+ IncompleteArrayType *NewIP =
+ IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+
+ IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
+ ASM, EltTypeQuals);
+
+ IncompleteArrayTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getVectorType - Return the unique reference to a vector type of
+/// the specified element type and size. VectorType must be a built-in type.
+QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
+ BuiltinType *baseType;
+
+ baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
+ assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
+
+ // Check if we've already instantiated a vector of this type.
+ llvm::FoldingSetNodeID ID;
+ VectorType::Profile(ID, vecType, NumElts, Type::Vector);
+ void *InsertPos = 0;
+ if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(VTP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!vecType->isCanonical()) {
+ Canonical = getVectorType(getCanonicalType(vecType), NumElts);
+
+ // Get the new insert position for the node we care about.
+ VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+ VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
+ VectorTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getExtVectorType - Return the unique reference to an extended vector type of
+/// the specified element type and size. VectorType must be a built-in type.
+QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
+ BuiltinType *baseType;
+
+ baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
+ assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
+
+ // Check if we've already instantiated a vector of this type.
+ llvm::FoldingSetNodeID ID;
+ VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
+ void *InsertPos = 0;
+ if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(VTP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!vecType->isCanonical()) {
+ Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
+
+ // Get the new insert position for the node we care about.
+ VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+ ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
+ VectorTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
+///
+QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
+ // Unique functions, to guarantee there is only one function of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ FunctionNoProtoType::Profile(ID, ResultTy);
+
+ void *InsertPos = 0;
+ if (FunctionNoProtoType *FT =
+ FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(FT, 0);
+
+ QualType Canonical;
+ if (!ResultTy->isCanonical()) {
+ Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
+
+ // Get the new insert position for the node we care about.
+ FunctionNoProtoType *NewIP =
+ FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+
+ FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
+ Types.push_back(New);
+ FunctionNoProtoTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getFunctionType - Return a normal function type with a typed argument
+/// list. isVariadic indicates whether the argument list includes '...'.
+QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
+ unsigned NumArgs, bool isVariadic,
+ unsigned TypeQuals, bool hasExceptionSpec,
+ bool hasAnyExceptionSpec, unsigned NumExs,
+ const QualType *ExArray) {
+ // Unique functions, to guarantee there is only one function of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
+ TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
+ NumExs, ExArray);
+
+ void *InsertPos = 0;
+ if (FunctionProtoType *FTP =
+ FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(FTP, 0);
+
+ // Determine whether the type being created is already canonical or not.
+ bool isCanonical = ResultTy->isCanonical();
+ if (hasExceptionSpec)
+ isCanonical = false;
+ for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
+ if (!ArgArray[i]->isCanonical())
+ isCanonical = false;
+
+ // If this type isn't canonical, get the canonical version of it.
+ // The exception spec is not part of the canonical type.
+ QualType Canonical;
+ if (!isCanonical) {
+ llvm::SmallVector<QualType, 16> CanonicalArgs;
+ CanonicalArgs.reserve(NumArgs);
+ for (unsigned i = 0; i != NumArgs; ++i)
+ CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
+
+ Canonical = getFunctionType(getCanonicalType(ResultTy),
+ CanonicalArgs.data(), NumArgs,
+ isVariadic, TypeQuals);
+
+ // Get the new insert position for the node we care about.
+ FunctionProtoType *NewIP =
+ FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+ }
+
+ // FunctionProtoType objects are allocated with extra bytes after them
+ // for two variable size arrays (for parameter and exception types) at the
+ // end of them.
+ FunctionProtoType *FTP =
+ (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
+ NumArgs*sizeof(QualType) +
+ NumExs*sizeof(QualType), 8);
+ new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
+ TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
+ ExArray, NumExs, Canonical);
+ Types.push_back(FTP);
+ FunctionProtoTypes.InsertNode(FTP, InsertPos);
+ return QualType(FTP, 0);
+}
+
+/// getTypeDeclType - Return the unique reference to the type for the
+/// specified type declaration.
+QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
+ assert(Decl && "Passed null for Decl param");
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
+ return getTypedefType(Typedef);
+ else if (isa<TemplateTypeParmDecl>(Decl)) {
+ assert(false && "Template type parameter types are always available.");
+ } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
+ return getObjCInterfaceType(ObjCInterface);
+
+ if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
+ if (PrevDecl)
+ Decl->TypeForDecl = PrevDecl->TypeForDecl;
+ else
+ Decl->TypeForDecl = new (*this,8) RecordType(Record);
+ }
+ else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
+ if (PrevDecl)
+ Decl->TypeForDecl = PrevDecl->TypeForDecl;
+ else
+ Decl->TypeForDecl = new (*this,8) EnumType(Enum);
+ }
+ else
+ assert(false && "TypeDecl without a type?");
+
+ if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
+ return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getTypedefType - Return the unique reference to the type for the
+/// specified typename decl.
+QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
+ Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
+ Types.push_back(Decl->TypeForDecl);
+ return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getObjCInterfaceType - Return the unique reference to the type for the
+/// specified ObjC interface decl.
+QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
+ Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
+ Types.push_back(Decl->TypeForDecl);
+ return QualType(Decl->TypeForDecl, 0);
+}
+
+/// \brief Retrieve the template type parameter type for a template
+/// parameter with the given depth, index, and (optionally) name.
+QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
+ IdentifierInfo *Name) {
+ llvm::FoldingSetNodeID ID;
+ TemplateTypeParmType::Profile(ID, Depth, Index, Name);
+ void *InsertPos = 0;
+ TemplateTypeParmType *TypeParm
+ = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (TypeParm)
+ return QualType(TypeParm, 0);
+
+ if (Name)
+ TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
+ getTemplateTypeParmType(Depth, Index));
+ else
+ TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
+
+ Types.push_back(TypeParm);
+ TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
+
+ return QualType(TypeParm, 0);
+}
+
+QualType
+ASTContext::getTemplateSpecializationType(TemplateName Template,
+ const TemplateArgument *Args,
+ unsigned NumArgs,
+ QualType Canon) {
+ if (!Canon.isNull())
+ Canon = getCanonicalType(Canon);
+
+ llvm::FoldingSetNodeID ID;
+ TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
+
+ void *InsertPos = 0;
+ TemplateSpecializationType *Spec
+ = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (Spec)
+ return QualType(Spec, 0);
+
+ void *Mem = Allocate((sizeof(TemplateSpecializationType) +
+ sizeof(TemplateArgument) * NumArgs),
+ 8);
+ Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
+ Types.push_back(Spec);
+ TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
+
+ return QualType(Spec, 0);
+}
+
+QualType
+ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
+ QualType NamedType) {
+ llvm::FoldingSetNodeID ID;
+ QualifiedNameType::Profile(ID, NNS, NamedType);
+
+ void *InsertPos = 0;
+ QualifiedNameType *T
+ = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ T = new (*this) QualifiedNameType(NNS, NamedType,
+ getCanonicalType(NamedType));
+ Types.push_back(T);
+ QualifiedNameTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name,
+ QualType Canon) {
+ assert(NNS->isDependent() && "nested-name-specifier must be dependent");
+
+ if (Canon.isNull()) {
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+ if (CanonNNS != NNS)
+ Canon = getTypenameType(CanonNNS, Name);
+ }
+
+ llvm::FoldingSetNodeID ID;
+ TypenameType::Profile(ID, NNS, Name);
+
+ void *InsertPos = 0;
+ TypenameType *T
+ = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ T = new (*this) TypenameType(NNS, Name, Canon);
+ Types.push_back(T);
+ TypenameTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType
+ASTContext::getTypenameType(NestedNameSpecifier *NNS,
+ const TemplateSpecializationType *TemplateId,
+ QualType Canon) {
+ assert(NNS->isDependent() && "nested-name-specifier must be dependent");
+
+ if (Canon.isNull()) {
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+ QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
+ if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
+ const TemplateSpecializationType *CanonTemplateId
+ = CanonType->getAsTemplateSpecializationType();
+ assert(CanonTemplateId &&
+ "Canonical type must also be a template specialization type");
+ Canon = getTypenameType(CanonNNS, CanonTemplateId);
+ }
+ }
+
+ llvm::FoldingSetNodeID ID;
+ TypenameType::Profile(ID, NNS, TemplateId);
+
+ void *InsertPos = 0;
+ TypenameType *T
+ = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ T = new (*this) TypenameType(NNS, TemplateId, Canon);
+ Types.push_back(T);
+ TypenameTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+/// CmpProtocolNames - Comparison predicate for sorting protocols
+/// alphabetically.
+static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
+ const ObjCProtocolDecl *RHS) {
+ return LHS->getDeclName() < RHS->getDeclName();
+}
+
+static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
+ unsigned &NumProtocols) {
+ ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
+
+ // Sort protocols, keyed by name.
+ std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
+
+ // Remove duplicates.
+ ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
+ NumProtocols = ProtocolsEnd-Protocols;
+}
+
+
+/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
+/// the given interface decl and the conforming protocol list.
+QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
+ ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
+ // Sort the protocol list alphabetically to canonicalize it.
+ SortAndUniqueProtocols(Protocols, NumProtocols);
+
+ llvm::FoldingSetNodeID ID;
+ ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
+
+ void *InsertPos = 0;
+ if (ObjCQualifiedInterfaceType *QT =
+ ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(QT, 0);
+
+ // No Match;
+ ObjCQualifiedInterfaceType *QType =
+ new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
+
+ Types.push_back(QType);
+ ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
+ return QualType(QType, 0);
+}
+
+/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
+/// and the conforming protocol list.
+QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
+ unsigned NumProtocols) {
+ // Sort the protocol list alphabetically to canonicalize it.
+ SortAndUniqueProtocols(Protocols, NumProtocols);
+
+ llvm::FoldingSetNodeID ID;
+ ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
+
+ void *InsertPos = 0;
+ if (ObjCQualifiedIdType *QT =
+ ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(QT, 0);
+
+ // No Match;
+ ObjCQualifiedIdType *QType =
+ new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
+ Types.push_back(QType);
+ ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
+ return QualType(QType, 0);
+}
+
+/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
+/// TypeOfExprType AST's (since expression's are never shared). For example,
+/// multiple declarations that refer to "typeof(x)" all contain different
+/// DeclRefExpr's. This doesn't effect the type checker, since it operates
+/// on canonical type's (which are always unique).
+QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
+ QualType Canonical = getCanonicalType(tofExpr->getType());
+ TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
+ Types.push_back(toe);
+ return QualType(toe, 0);
+}
+
+/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
+/// TypeOfType AST's. The only motivation to unique these nodes would be
+/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
+/// an issue. This doesn't effect the type checker, since it operates
+/// on canonical type's (which are always unique).
+QualType ASTContext::getTypeOfType(QualType tofType) {
+ QualType Canonical = getCanonicalType(tofType);
+ TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
+ Types.push_back(tot);
+ return QualType(tot, 0);
+}
+
+/// getTagDeclType - Return the unique reference to the type for the
+/// specified TagDecl (struct/union/class/enum) decl.
+QualType ASTContext::getTagDeclType(TagDecl *Decl) {
+ assert (Decl);
+ return getTypeDeclType(Decl);
+}
+
+/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
+/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
+/// needs to agree with the definition in <stddef.h>.
+QualType ASTContext::getSizeType() const {
+ return getFromTargetType(Target.getSizeType());
+}
+
+/// getSignedWCharType - Return the type of "signed wchar_t".
+/// Used when in C++, as a GCC extension.
+QualType ASTContext::getSignedWCharType() const {
+ // FIXME: derive from "Target" ?
+ return WCharTy;
+}
+
+/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
+/// Used when in C++, as a GCC extension.
+QualType ASTContext::getUnsignedWCharType() const {
+ // FIXME: derive from "Target" ?
+ return UnsignedIntTy;
+}
+
+/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
+/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
+QualType ASTContext::getPointerDiffType() const {
+ return getFromTargetType(Target.getPtrDiffType(0));
+}
+
+//===----------------------------------------------------------------------===//
+// Type Operators
+//===----------------------------------------------------------------------===//
+
+/// getCanonicalType - Return the canonical (structural) type corresponding to
+/// the specified potentially non-canonical type. The non-canonical version
+/// of a type may have many "decorated" versions of types. Decorators can
+/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
+/// to be free of any of these, allowing two canonical types to be compared
+/// for exact equality with a simple pointer comparison.
+QualType ASTContext::getCanonicalType(QualType T) {
+ QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
+
+ // If the result has type qualifiers, make sure to canonicalize them as well.
+ unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
+ if (TypeQuals == 0) return CanType;
+
+ // If the type qualifiers are on an array type, get the canonical type of the
+ // array with the qualifiers applied to the element type.
+ ArrayType *AT = dyn_cast<ArrayType>(CanType);
+ if (!AT)
+ return CanType.getQualifiedType(TypeQuals);
+
+ // Get the canonical version of the element with the extra qualifiers on it.
+ // This can recursively sink qualifiers through multiple levels of arrays.
+ QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
+ NewEltTy = getCanonicalType(NewEltTy);
+
+ if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
+ return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
+ CAT->getIndexTypeQualifier());
+ if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
+ return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
+ IAT->getIndexTypeQualifier());
+
+ if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
+ return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
+ DSAT->getSizeModifier(),
+ DSAT->getIndexTypeQualifier());
+
+ VariableArrayType *VAT = cast<VariableArrayType>(AT);
+ return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
+ VAT->getSizeModifier(),
+ VAT->getIndexTypeQualifier());
+}
+
+Decl *ASTContext::getCanonicalDecl(Decl *D) {
+ if (!D)
+ return 0;
+
+ if (TagDecl *Tag = dyn_cast<TagDecl>(D)) {
+ QualType T = getTagDeclType(Tag);
+ return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
+ ->getDecl());
+ }
+
+ if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(D)) {
+ while (Template->getPreviousDeclaration())
+ Template = Template->getPreviousDeclaration();
+ return Template;
+ }
+
+ if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
+ while (Function->getPreviousDeclaration())
+ Function = Function->getPreviousDeclaration();
+ return const_cast<FunctionDecl *>(Function);
+ }
+
+ if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ while (Var->getPreviousDeclaration())
+ Var = Var->getPreviousDeclaration();
+ return const_cast<VarDecl *>(Var);
+ }
+
+ return D;
+}
+
+TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
+ // If this template name refers to a template, the canonical
+ // template name merely stores the template itself.
+ if (TemplateDecl *Template = Name.getAsTemplateDecl())
+ return TemplateName(cast<TemplateDecl>(getCanonicalDecl(Template)));
+
+ DependentTemplateName *DTN = Name.getAsDependentTemplateName();
+ assert(DTN && "Non-dependent template names must refer to template decls.");
+ return DTN->CanonicalTemplateName;
+}
+
+NestedNameSpecifier *
+ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
+ if (!NNS)
+ return 0;
+
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ // Canonicalize the prefix but keep the identifier the same.
+ return NestedNameSpecifier::Create(*this,
+ getCanonicalNestedNameSpecifier(NNS->getPrefix()),
+ NNS->getAsIdentifier());
+
+ case NestedNameSpecifier::Namespace:
+ // A namespace is canonical; build a nested-name-specifier with
+ // this namespace and no prefix.
+ return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
+ NestedNameSpecifier *Prefix = 0;
+
+ // FIXME: This isn't the right check!
+ if (T->isDependentType())
+ Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
+
+ return NestedNameSpecifier::Create(*this, Prefix,
+ NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
+ T.getTypePtr());
+ }
+
+ case NestedNameSpecifier::Global:
+ // The global specifier is canonical and unique.
+ return NNS;
+ }
+
+ // Required to silence a GCC warning
+ return 0;
+}
+
+
+const ArrayType *ASTContext::getAsArrayType(QualType T) {
+ // Handle the non-qualified case efficiently.
+ if (T.getCVRQualifiers() == 0) {
+ // Handle the common positive case fast.
+ if (const ArrayType *AT = dyn_cast<ArrayType>(T))
+ return AT;
+ }
+
+ // Handle the common negative case fast, ignoring CVR qualifiers.
+ QualType CType = T->getCanonicalTypeInternal();
+
+ // Make sure to look through type qualifiers (like ExtQuals) for the negative
+ // test.
+ if (!isa<ArrayType>(CType) &&
+ !isa<ArrayType>(CType.getUnqualifiedType()))
+ return 0;
+
+ // Apply any CVR qualifiers from the array type to the element type. This
+ // implements C99 6.7.3p8: "If the specification of an array type includes
+ // any type qualifiers, the element type is so qualified, not the array type."
+
+ // If we get here, we either have type qualifiers on the type, or we have
+ // sugar such as a typedef in the way. If we have type qualifiers on the type
+ // we must propagate them down into the elemeng type.
+ unsigned CVRQuals = T.getCVRQualifiers();
+ unsigned AddrSpace = 0;
+ Type *Ty = T.getTypePtr();
+
+ // Rip through ExtQualType's and typedefs to get to a concrete type.
+ while (1) {
+ if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
+ AddrSpace = EXTQT->getAddressSpace();
+ Ty = EXTQT->getBaseType();
+ } else {
+ T = Ty->getDesugaredType();
+ if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
+ break;
+ CVRQuals |= T.getCVRQualifiers();
+ Ty = T.getTypePtr();
+ }
+ }
+
+ // If we have a simple case, just return now.
+ const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
+ if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
+ return ATy;
+
+ // Otherwise, we have an array and we have qualifiers on it. Push the
+ // qualifiers into the array element type and return a new array type.
+ // Get the canonical version of the element with the extra qualifiers on it.
+ // This can recursively sink qualifiers through multiple levels of arrays.
+ QualType NewEltTy = ATy->getElementType();
+ if (AddrSpace)
+ NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
+ NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
+
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
+ return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
+ CAT->getSizeModifier(),
+ CAT->getIndexTypeQualifier()));
+ if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
+ return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
+ IAT->getSizeModifier(),
+ IAT->getIndexTypeQualifier()));
+
+ if (const DependentSizedArrayType *DSAT
+ = dyn_cast<DependentSizedArrayType>(ATy))
+ return cast<ArrayType>(
+ getDependentSizedArrayType(NewEltTy,
+ DSAT->getSizeExpr(),
+ DSAT->getSizeModifier(),
+ DSAT->getIndexTypeQualifier()));
+
+ const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
+ return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
+ VAT->getSizeModifier(),
+ VAT->getIndexTypeQualifier()));
+}
+
+
+/// getArrayDecayedType - Return the properly qualified result of decaying the
+/// specified array type to a pointer. This operation is non-trivial when
+/// handling typedefs etc. The canonical type of "T" must be an array type,
+/// this returns a pointer to a properly qualified element of the array.
+///
+/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
+QualType ASTContext::getArrayDecayedType(QualType Ty) {
+ // Get the element type with 'getAsArrayType' so that we don't lose any
+ // typedefs in the element type of the array. This also handles propagation
+ // of type qualifiers from the array type into the element type if present
+ // (C99 6.7.3p8).
+ const ArrayType *PrettyArrayType = getAsArrayType(Ty);
+ assert(PrettyArrayType && "Not an array type!");
+
+ QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
+
+ // int x[restrict 4] -> int *restrict
+ return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
+}
+
+QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
+ QualType ElemTy = VAT->getElementType();
+
+ if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
+ return getBaseElementType(VAT);
+
+ return ElemTy;
+}
+
+/// getFloatingRank - Return a relative rank for floating point types.
+/// This routine will assert if passed a built-in type that isn't a float.
+static FloatingRank getFloatingRank(QualType T) {
+ if (const ComplexType *CT = T->getAsComplexType())
+ return getFloatingRank(CT->getElementType());
+
+ assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
+ switch (T->getAsBuiltinType()->getKind()) {
+ default: assert(0 && "getFloatingRank(): not a floating type");
+ case BuiltinType::Float: return FloatRank;
+ case BuiltinType::Double: return DoubleRank;
+ case BuiltinType::LongDouble: return LongDoubleRank;
+ }
+}
+
+/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
+/// point or a complex type (based on typeDomain/typeSize).
+/// 'typeDomain' is a real floating point or complex type.
+/// 'typeSize' is a real floating point or complex type.
+QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
+ QualType Domain) const {
+ FloatingRank EltRank = getFloatingRank(Size);
+ if (Domain->isComplexType()) {
+ switch (EltRank) {
+ default: assert(0 && "getFloatingRank(): illegal value for rank");
+ case FloatRank: return FloatComplexTy;
+ case DoubleRank: return DoubleComplexTy;
+ case LongDoubleRank: return LongDoubleComplexTy;
+ }
+ }
+
+ assert(Domain->isRealFloatingType() && "Unknown domain!");
+ switch (EltRank) {
+ default: assert(0 && "getFloatingRank(): illegal value for rank");
+ case FloatRank: return FloatTy;
+ case DoubleRank: return DoubleTy;
+ case LongDoubleRank: return LongDoubleTy;
+ }
+}
+
+/// getFloatingTypeOrder - Compare the rank of the two specified floating
+/// point types, ignoring the domain of the type (i.e. 'double' ==
+/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
+/// LHS < RHS, return -1.
+int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
+ FloatingRank LHSR = getFloatingRank(LHS);
+ FloatingRank RHSR = getFloatingRank(RHS);
+
+ if (LHSR == RHSR)
+ return 0;
+ if (LHSR > RHSR)
+ return 1;
+ return -1;
+}
+
+/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
+/// routine will assert if passed a built-in type that isn't an integer or enum,
+/// or if it is not canonicalized.
+unsigned ASTContext::getIntegerRank(Type *T) {
+ assert(T->isCanonical() && "T should be canonicalized");
+ if (EnumType* ET = dyn_cast<EnumType>(T))
+ T = ET->getDecl()->getIntegerType().getTypePtr();
+
+ // There are two things which impact the integer rank: the width, and
+ // the ordering of builtins. The builtin ordering is encoded in the
+ // bottom three bits; the width is encoded in the bits above that.
+ if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
+ return FWIT->getWidth() << 3;
+ }
+
+ switch (cast<BuiltinType>(T)->getKind()) {
+ default: assert(0 && "getIntegerRank(): not a built-in integer");
+ case BuiltinType::Bool:
+ return 1 + (getIntWidth(BoolTy) << 3);
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::SChar:
+ case BuiltinType::UChar:
+ return 2 + (getIntWidth(CharTy) << 3);
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ return 3 + (getIntWidth(ShortTy) << 3);
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ return 4 + (getIntWidth(IntTy) << 3);
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ return 5 + (getIntWidth(LongTy) << 3);
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ return 6 + (getIntWidth(LongLongTy) << 3);
+ case BuiltinType::Int128:
+ case BuiltinType::UInt128:
+ return 7 + (getIntWidth(Int128Ty) << 3);
+ }
+}
+
+/// getIntegerTypeOrder - Returns the highest ranked integer type:
+/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
+/// LHS < RHS, return -1.
+int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
+ Type *LHSC = getCanonicalType(LHS).getTypePtr();
+ Type *RHSC = getCanonicalType(RHS).getTypePtr();
+ if (LHSC == RHSC) return 0;
+
+ bool LHSUnsigned = LHSC->isUnsignedIntegerType();
+ bool RHSUnsigned = RHSC->isUnsignedIntegerType();
+
+ unsigned LHSRank = getIntegerRank(LHSC);
+ unsigned RHSRank = getIntegerRank(RHSC);
+
+ if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
+ if (LHSRank == RHSRank) return 0;
+ return LHSRank > RHSRank ? 1 : -1;
+ }
+
+ // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
+ if (LHSUnsigned) {
+ // If the unsigned [LHS] type is larger, return it.
+ if (LHSRank >= RHSRank)
+ return 1;
+
+ // If the signed type can represent all values of the unsigned type, it
+ // wins. Because we are dealing with 2's complement and types that are
+ // powers of two larger than each other, this is always safe.
+ return -1;
+ }
+
+ // If the unsigned [RHS] type is larger, return it.
+ if (RHSRank >= LHSRank)
+ return -1;
+
+ // If the signed type can represent all values of the unsigned type, it
+ // wins. Because we are dealing with 2's complement and types that are
+ // powers of two larger than each other, this is always safe.
+ return 1;
+}
+
+// getCFConstantStringType - Return the type used for constant CFStrings.
+QualType ASTContext::getCFConstantStringType() {
+ if (!CFConstantStringTypeDecl) {
+ CFConstantStringTypeDecl =
+ RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
+ &Idents.get("NSConstantString"));
+ QualType FieldTypes[4];
+
+ // const int *isa;
+ FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
+ // int flags;
+ FieldTypes[1] = IntTy;
+ // const char *str;
+ FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
+ // long length;
+ FieldTypes[3] = LongTy;
+
+ // Create fields
+ for (unsigned i = 0; i < 4; ++i) {
+ FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
+ SourceLocation(), 0,
+ FieldTypes[i], /*BitWidth=*/0,
+ /*Mutable=*/false);
+ CFConstantStringTypeDecl->addDecl(*this, Field);
+ }
+
+ CFConstantStringTypeDecl->completeDefinition(*this);
+ }
+
+ return getTagDeclType(CFConstantStringTypeDecl);
+}
+
+void ASTContext::setCFConstantStringType(QualType T) {
+ const RecordType *Rec = T->getAsRecordType();
+ assert(Rec && "Invalid CFConstantStringType");
+ CFConstantStringTypeDecl = Rec->getDecl();
+}
+
+QualType ASTContext::getObjCFastEnumerationStateType()
+{
+ if (!ObjCFastEnumerationStateTypeDecl) {
+ ObjCFastEnumerationStateTypeDecl =
+ RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
+ &Idents.get("__objcFastEnumerationState"));
+
+ QualType FieldTypes[] = {
+ UnsignedLongTy,
+ getPointerType(ObjCIdType),
+ getPointerType(UnsignedLongTy),
+ getConstantArrayType(UnsignedLongTy,
+ llvm::APInt(32, 5), ArrayType::Normal, 0)
+ };
+
+ for (size_t i = 0; i < 4; ++i) {
+ FieldDecl *Field = FieldDecl::Create(*this,
+ ObjCFastEnumerationStateTypeDecl,
+ SourceLocation(), 0,
+ FieldTypes[i], /*BitWidth=*/0,
+ /*Mutable=*/false);
+ ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
+ }
+
+ ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
+ }
+
+ return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
+}
+
+void ASTContext::setObjCFastEnumerationStateType(QualType T) {
+ const RecordType *Rec = T->getAsRecordType();
+ assert(Rec && "Invalid ObjCFAstEnumerationStateType");
+ ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
+}
+
+// This returns true if a type has been typedefed to BOOL:
+// typedef <type> BOOL;
+static bool isTypeTypedefedAsBOOL(QualType T) {
+ if (const TypedefType *TT = dyn_cast<TypedefType>(T))
+ if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
+ return II->isStr("BOOL");
+
+ return false;
+}
+
+/// getObjCEncodingTypeSize returns size of type for objective-c encoding
+/// purpose.
+int ASTContext::getObjCEncodingTypeSize(QualType type) {
+ uint64_t sz = getTypeSize(type);
+
+ // Make all integer and enum types at least as large as an int
+ if (sz > 0 && type->isIntegralType())
+ sz = std::max(sz, getTypeSize(IntTy));
+ // Treat arrays as pointers, since that's how they're passed in.
+ else if (type->isArrayType())
+ sz = getTypeSize(VoidPtrTy);
+ return sz / getTypeSize(CharTy);
+}
+
+/// getObjCEncodingForMethodDecl - Return the encoded type for this method
+/// declaration.
+void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
+ std::string& S) {
+ // FIXME: This is not very efficient.
+ // Encode type qualifer, 'in', 'inout', etc. for the return type.
+ getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
+ // Encode result type.
+ getObjCEncodingForType(Decl->getResultType(), S);
+ // Compute size of all parameters.
+ // Start with computing size of a pointer in number of bytes.
+ // FIXME: There might(should) be a better way of doing this computation!
+ SourceLocation Loc;
+ int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
+ // The first two arguments (self and _cmd) are pointers; account for
+ // their size.
+ int ParmOffset = 2 * PtrSize;
+ for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
+ E = Decl->param_end(); PI != E; ++PI) {
+ QualType PType = (*PI)->getType();
+ int sz = getObjCEncodingTypeSize(PType);
+ assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
+ ParmOffset += sz;
+ }
+ S += llvm::utostr(ParmOffset);
+ S += "@0:";
+ S += llvm::utostr(PtrSize);
+
+ // Argument types.
+ ParmOffset = 2 * PtrSize;
+ for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
+ E = Decl->param_end(); PI != E; ++PI) {
+ ParmVarDecl *PVDecl = *PI;
+ QualType PType = PVDecl->getOriginalType();
+ if (const ArrayType *AT =
+ dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
+ // Use array's original type only if it has known number of
+ // elements.
+ if (!isa<ConstantArrayType>(AT))
+ PType = PVDecl->getType();
+ } else if (PType->isFunctionType())
+ PType = PVDecl->getType();
+ // Process argument qualifiers for user supplied arguments; such as,
+ // 'in', 'inout', etc.
+ getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
+ getObjCEncodingForType(PType, S);
+ S += llvm::utostr(ParmOffset);
+ ParmOffset += getObjCEncodingTypeSize(PType);
+ }
+}
+
+/// getObjCEncodingForPropertyDecl - Return the encoded type for this
+/// property declaration. If non-NULL, Container must be either an
+/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
+/// NULL when getting encodings for protocol properties.
+/// Property attributes are stored as a comma-delimited C string. The simple
+/// attributes readonly and bycopy are encoded as single characters. The
+/// parametrized attributes, getter=name, setter=name, and ivar=name, are
+/// encoded as single characters, followed by an identifier. Property types
+/// are also encoded as a parametrized attribute. The characters used to encode
+/// these attributes are defined by the following enumeration:
+/// @code
+/// enum PropertyAttributes {
+/// kPropertyReadOnly = 'R', // property is read-only.
+/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
+/// kPropertyByref = '&', // property is a reference to the value last assigned
+/// kPropertyDynamic = 'D', // property is dynamic
+/// kPropertyGetter = 'G', // followed by getter selector name
+/// kPropertySetter = 'S', // followed by setter selector name
+/// kPropertyInstanceVariable = 'V' // followed by instance variable name
+/// kPropertyType = 't' // followed by old-style type encoding.
+/// kPropertyWeak = 'W' // 'weak' property
+/// kPropertyStrong = 'P' // property GC'able
+/// kPropertyNonAtomic = 'N' // property non-atomic
+/// };
+/// @endcode
+void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
+ const Decl *Container,
+ std::string& S) {
+ // Collect information from the property implementation decl(s).
+ bool Dynamic = false;
+ ObjCPropertyImplDecl *SynthesizePID = 0;
+
+ // FIXME: Duplicated code due to poor abstraction.
+ if (Container) {
+ if (const ObjCCategoryImplDecl *CID =
+ dyn_cast<ObjCCategoryImplDecl>(Container)) {
+ for (ObjCCategoryImplDecl::propimpl_iterator
+ i = CID->propimpl_begin(*this), e = CID->propimpl_end(*this);
+ i != e; ++i) {
+ ObjCPropertyImplDecl *PID = *i;
+ if (PID->getPropertyDecl() == PD) {
+ if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
+ Dynamic = true;
+ } else {
+ SynthesizePID = PID;
+ }
+ }
+ }
+ } else {
+ const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
+ for (ObjCCategoryImplDecl::propimpl_iterator
+ i = OID->propimpl_begin(*this), e = OID->propimpl_end(*this);
+ i != e; ++i) {
+ ObjCPropertyImplDecl *PID = *i;
+ if (PID->getPropertyDecl() == PD) {
+ if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
+ Dynamic = true;
+ } else {
+ SynthesizePID = PID;
+ }
+ }
+ }
+ }
+ }
+
+ // FIXME: This is not very efficient.
+ S = "T";
+
+ // Encode result type.
+ // GCC has some special rules regarding encoding of properties which
+ // closely resembles encoding of ivars.
+ getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
+ true /* outermost type */,
+ true /* encoding for property */);
+
+ if (PD->isReadOnly()) {
+ S += ",R";
+ } else {
+ switch (PD->getSetterKind()) {
+ case ObjCPropertyDecl::Assign: break;
+ case ObjCPropertyDecl::Copy: S += ",C"; break;
+ case ObjCPropertyDecl::Retain: S += ",&"; break;
+ }
+ }
+
+ // It really isn't clear at all what this means, since properties
+ // are "dynamic by default".
+ if (Dynamic)
+ S += ",D";
+
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
+ S += ",N";
+
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
+ S += ",G";
+ S += PD->getGetterName().getAsString();
+ }
+
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
+ S += ",S";
+ S += PD->getSetterName().getAsString();
+ }
+
+ if (SynthesizePID) {
+ const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
+ S += ",V";
+ S += OID->getNameAsString();
+ }
+
+ // FIXME: OBJCGC: weak & strong
+}
+
+/// getLegacyIntegralTypeEncoding -
+/// Another legacy compatibility encoding: 32-bit longs are encoded as
+/// 'l' or 'L' , but not always. For typedefs, we need to use
+/// 'i' or 'I' instead if encoding a struct field, or a pointer!
+///
+void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
+ if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
+ if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
+ if (BT->getKind() == BuiltinType::ULong &&
+ ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
+ PointeeTy = UnsignedIntTy;
+ else
+ if (BT->getKind() == BuiltinType::Long &&
+ ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
+ PointeeTy = IntTy;
+ }
+ }
+}
+
+void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
+ const FieldDecl *Field) {
+ // We follow the behavior of gcc, expanding structures which are
+ // directly pointed to, and expanding embedded structures. Note that
+ // these rules are sufficient to prevent recursive encoding of the
+ // same type.
+ getObjCEncodingForTypeImpl(T, S, true, true, Field,
+ true /* outermost type */);
+}
+
+static void EncodeBitField(const ASTContext *Context, std::string& S,
+ const FieldDecl *FD) {
+ const Expr *E = FD->getBitWidth();
+ assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
+ ASTContext *Ctx = const_cast<ASTContext*>(Context);
+ unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
+ S += 'b';
+ S += llvm::utostr(N);
+}
+
+void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
+ bool ExpandPointedToStructures,
+ bool ExpandStructures,
+ const FieldDecl *FD,
+ bool OutermostType,
+ bool EncodingProperty) {
+ if (const BuiltinType *BT = T->getAsBuiltinType()) {
+ if (FD && FD->isBitField()) {
+ EncodeBitField(this, S, FD);
+ }
+ else {
+ char encoding;
+ switch (BT->getKind()) {
+ default: assert(0 && "Unhandled builtin type kind");
+ case BuiltinType::Void: encoding = 'v'; break;
+ case BuiltinType::Bool: encoding = 'B'; break;
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar: encoding = 'C'; break;
+ case BuiltinType::UShort: encoding = 'S'; break;
+ case BuiltinType::UInt: encoding = 'I'; break;
+ case BuiltinType::ULong:
+ encoding =
+ (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
+ break;
+ case BuiltinType::UInt128: encoding = 'T'; break;
+ case BuiltinType::ULongLong: encoding = 'Q'; break;
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar: encoding = 'c'; break;
+ case BuiltinType::Short: encoding = 's'; break;
+ case BuiltinType::Int: encoding = 'i'; break;
+ case BuiltinType::Long:
+ encoding =
+ (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
+ break;
+ case BuiltinType::LongLong: encoding = 'q'; break;
+ case BuiltinType::Int128: encoding = 't'; break;
+ case BuiltinType::Float: encoding = 'f'; break;
+ case BuiltinType::Double: encoding = 'd'; break;
+ case BuiltinType::LongDouble: encoding = 'd'; break;
+ }
+
+ S += encoding;
+ }
+ } else if (const ComplexType *CT = T->getAsComplexType()) {
+ S += 'j';
+ getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
+ false);
+ } else if (T->isObjCQualifiedIdType()) {
+ getObjCEncodingForTypeImpl(getObjCIdType(), S,
+ ExpandPointedToStructures,
+ ExpandStructures, FD);
+ if (FD || EncodingProperty) {
+ // Note that we do extended encoding of protocol qualifer list
+ // Only when doing ivar or property encoding.
+ const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
+ S += '"';
+ for (ObjCQualifiedIdType::qual_iterator I = QIDT->qual_begin(),
+ E = QIDT->qual_end(); I != E; ++I) {
+ S += '<';
+ S += (*I)->getNameAsString();
+ S += '>';
+ }
+ S += '"';
+ }
+ return;
+ }
+ else if (const PointerType *PT = T->getAsPointerType()) {
+ QualType PointeeTy = PT->getPointeeType();
+ bool isReadOnly = false;
+ // For historical/compatibility reasons, the read-only qualifier of the
+ // pointee gets emitted _before_ the '^'. The read-only qualifier of
+ // the pointer itself gets ignored, _unless_ we are looking at a typedef!
+ // Also, do not emit the 'r' for anything but the outermost type!
+ if (dyn_cast<TypedefType>(T.getTypePtr())) {
+ if (OutermostType && T.isConstQualified()) {
+ isReadOnly = true;
+ S += 'r';
+ }
+ }
+ else if (OutermostType) {
+ QualType P = PointeeTy;
+ while (P->getAsPointerType())
+ P = P->getAsPointerType()->getPointeeType();
+ if (P.isConstQualified()) {
+ isReadOnly = true;
+ S += 'r';
+ }
+ }
+ if (isReadOnly) {
+ // Another legacy compatibility encoding. Some ObjC qualifier and type
+ // combinations need to be rearranged.
+ // Rewrite "in const" from "nr" to "rn"
+ const char * s = S.c_str();
+ int len = S.length();
+ if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
+ std::string replace = "rn";
+ S.replace(S.end()-2, S.end(), replace);
+ }
+ }
+ if (isObjCIdStructType(PointeeTy)) {
+ S += '@';
+ return;
+ }
+ else if (PointeeTy->isObjCInterfaceType()) {
+ if (!EncodingProperty &&
+ isa<TypedefType>(PointeeTy.getTypePtr())) {
+ // Another historical/compatibility reason.
+ // We encode the underlying type which comes out as
+ // {...};
+ S += '^';
+ getObjCEncodingForTypeImpl(PointeeTy, S,
+ false, ExpandPointedToStructures,
+ NULL);
+ return;
+ }
+ S += '@';
+ if (FD || EncodingProperty) {
+ const ObjCInterfaceType *OIT =
+ PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
+ ObjCInterfaceDecl *OI = OIT->getDecl();
+ S += '"';
+ S += OI->getNameAsCString();
+ for (ObjCInterfaceType::qual_iterator I = OIT->qual_begin(),
+ E = OIT->qual_end(); I != E; ++I) {
+ S += '<';
+ S += (*I)->getNameAsString();
+ S += '>';
+ }
+ S += '"';
+ }
+ return;
+ } else if (isObjCClassStructType(PointeeTy)) {
+ S += '#';
+ return;
+ } else if (isObjCSelType(PointeeTy)) {
+ S += ':';
+ return;
+ }
+
+ if (PointeeTy->isCharType()) {
+ // char pointer types should be encoded as '*' unless it is a
+ // type that has been typedef'd to 'BOOL'.
+ if (!isTypeTypedefedAsBOOL(PointeeTy)) {
+ S += '*';
+ return;
+ }
+ }
+
+ S += '^';
+ getLegacyIntegralTypeEncoding(PointeeTy);
+
+ getObjCEncodingForTypeImpl(PointeeTy, S,
+ false, ExpandPointedToStructures,
+ NULL);
+ } else if (const ArrayType *AT =
+ // Ignore type qualifiers etc.
+ dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
+ if (isa<IncompleteArrayType>(AT)) {
+ // Incomplete arrays are encoded as a pointer to the array element.
+ S += '^';
+
+ getObjCEncodingForTypeImpl(AT->getElementType(), S,
+ false, ExpandStructures, FD);
+ } else {
+ S += '[';
+
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
+ S += llvm::utostr(CAT->getSize().getZExtValue());
+ else {
+ //Variable length arrays are encoded as a regular array with 0 elements.
+ assert(isa<VariableArrayType>(AT) && "Unknown array type!");
+ S += '0';
+ }
+
+ getObjCEncodingForTypeImpl(AT->getElementType(), S,
+ false, ExpandStructures, FD);
+ S += ']';
+ }
+ } else if (T->getAsFunctionType()) {
+ S += '?';
+ } else if (const RecordType *RTy = T->getAsRecordType()) {
+ RecordDecl *RDecl = RTy->getDecl();
+ S += RDecl->isUnion() ? '(' : '{';
+ // Anonymous structures print as '?'
+ if (const IdentifierInfo *II = RDecl->getIdentifier()) {
+ S += II->getName();
+ } else {
+ S += '?';
+ }
+ if (ExpandStructures) {
+ S += '=';
+ for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
+ FieldEnd = RDecl->field_end(*this);
+ Field != FieldEnd; ++Field) {
+ if (FD) {
+ S += '"';
+ S += Field->getNameAsString();
+ S += '"';
+ }
+
+ // Special case bit-fields.
+ if (Field->isBitField()) {
+ getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
+ (*Field));
+ } else {
+ QualType qt = Field->getType();
+ getLegacyIntegralTypeEncoding(qt);
+ getObjCEncodingForTypeImpl(qt, S, false, true,
+ FD);
+ }
+ }
+ }
+ S += RDecl->isUnion() ? ')' : '}';
+ } else if (T->isEnumeralType()) {
+ if (FD && FD->isBitField())
+ EncodeBitField(this, S, FD);
+ else
+ S += 'i';
+ } else if (T->isBlockPointerType()) {
+ S += "@?"; // Unlike a pointer-to-function, which is "^?".
+ } else if (T->isObjCInterfaceType()) {
+ // @encode(class_name)
+ ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
+ S += '{';
+ const IdentifierInfo *II = OI->getIdentifier();
+ S += II->getName();
+ S += '=';
+ llvm::SmallVector<FieldDecl*, 32> RecFields;
+ CollectObjCIvars(OI, RecFields);
+ for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
+ if (RecFields[i]->isBitField())
+ getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
+ RecFields[i]);
+ else
+ getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
+ FD);
+ }
+ S += '}';
+ }
+ else
+ assert(0 && "@encode for type not implemented!");
+}
+
+void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
+ std::string& S) const {
+ if (QT & Decl::OBJC_TQ_In)
+ S += 'n';
+ if (QT & Decl::OBJC_TQ_Inout)
+ S += 'N';
+ if (QT & Decl::OBJC_TQ_Out)
+ S += 'o';
+ if (QT & Decl::OBJC_TQ_Bycopy)
+ S += 'O';
+ if (QT & Decl::OBJC_TQ_Byref)
+ S += 'R';
+ if (QT & Decl::OBJC_TQ_Oneway)
+ S += 'V';
+}
+
+void ASTContext::setBuiltinVaListType(QualType T)
+{
+ assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
+
+ BuiltinVaListType = T;
+}
+
+void ASTContext::setObjCIdType(QualType T)
+{
+ ObjCIdType = T;
+
+ const TypedefType *TT = T->getAsTypedefType();
+ if (!TT)
+ return;
+
+ TypedefDecl *TD = TT->getDecl();
+
+ // typedef struct objc_object *id;
+ const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
+ // User error - caller will issue diagnostics.
+ if (!ptr)
+ return;
+ const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
+ // User error - caller will issue diagnostics.
+ if (!rec)
+ return;
+ IdStructType = rec;
+}
+
+void ASTContext::setObjCSelType(QualType T)
+{
+ ObjCSelType = T;
+
+ const TypedefType *TT = T->getAsTypedefType();
+ if (!TT)
+ return;
+ TypedefDecl *TD = TT->getDecl();
+
+ // typedef struct objc_selector *SEL;
+ const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
+ if (!ptr)
+ return;
+ const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
+ if (!rec)
+ return;
+ SelStructType = rec;
+}
+
+void ASTContext::setObjCProtoType(QualType QT)
+{
+ ObjCProtoType = QT;
+}
+
+void ASTContext::setObjCClassType(QualType T)
+{
+ ObjCClassType = T;
+
+ const TypedefType *TT = T->getAsTypedefType();
+ if (!TT)
+ return;
+ TypedefDecl *TD = TT->getDecl();
+
+ // typedef struct objc_class *Class;
+ const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
+ assert(ptr && "'Class' incorrectly typed");
+ const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
+ assert(rec && "'Class' incorrectly typed");
+ ClassStructType = rec;
+}
+
+void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
+ assert(ObjCConstantStringType.isNull() &&
+ "'NSConstantString' type already set!");
+
+ ObjCConstantStringType = getObjCInterfaceType(Decl);
+}
+
+/// \brief Retrieve the template name that represents a qualified
+/// template name such as \c std::vector.
+TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
+ bool TemplateKeyword,
+ TemplateDecl *Template) {
+ llvm::FoldingSetNodeID ID;
+ QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
+
+ void *InsertPos = 0;
+ QualifiedTemplateName *QTN =
+ QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+ if (!QTN) {
+ QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
+ QualifiedTemplateNames.InsertNode(QTN, InsertPos);
+ }
+
+ return TemplateName(QTN);
+}
+
+/// \brief Retrieve the template name that represents a dependent
+/// template name such as \c MetaFun::template apply.
+TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name) {
+ assert(NNS->isDependent() && "Nested name specifier must be dependent");
+
+ llvm::FoldingSetNodeID ID;
+ DependentTemplateName::Profile(ID, NNS, Name);
+
+ void *InsertPos = 0;
+ DependentTemplateName *QTN =
+ DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (QTN)
+ return TemplateName(QTN);
+
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+ if (CanonNNS == NNS) {
+ QTN = new (*this,4) DependentTemplateName(NNS, Name);
+ } else {
+ TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
+ QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
+ }
+
+ DependentTemplateNames.InsertNode(QTN, InsertPos);
+ return TemplateName(QTN);
+}
+
+/// getFromTargetType - Given one of the integer types provided by
+/// TargetInfo, produce the corresponding type. The unsigned @p Type
+/// is actually a value of type @c TargetInfo::IntType.
+QualType ASTContext::getFromTargetType(unsigned Type) const {
+ switch (Type) {
+ case TargetInfo::NoInt: return QualType();
+ case TargetInfo::SignedShort: return ShortTy;
+ case TargetInfo::UnsignedShort: return UnsignedShortTy;
+ case TargetInfo::SignedInt: return IntTy;
+ case TargetInfo::UnsignedInt: return UnsignedIntTy;
+ case TargetInfo::SignedLong: return LongTy;
+ case TargetInfo::UnsignedLong: return UnsignedLongTy;
+ case TargetInfo::SignedLongLong: return LongLongTy;
+ case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
+ }
+
+ assert(false && "Unhandled TargetInfo::IntType value");
+ return QualType();
+}
+
+//===----------------------------------------------------------------------===//
+// Type Predicates.
+//===----------------------------------------------------------------------===//
+
+/// isObjCNSObjectType - Return true if this is an NSObject object using
+/// NSObject attribute on a c-style pointer type.
+/// FIXME - Make it work directly on types.
+///
+bool ASTContext::isObjCNSObjectType(QualType Ty) const {
+ if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
+ if (TypedefDecl *TD = TDT->getDecl())
+ if (TD->getAttr<ObjCNSObjectAttr>())
+ return true;
+ }
+ return false;
+}
+
+/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
+/// to an object type. This includes "id" and "Class" (two 'special' pointers
+/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
+/// ID type).
+bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
+ if (Ty->isObjCQualifiedIdType())
+ return true;
+
+ // Blocks are objects.
+ if (Ty->isBlockPointerType())
+ return true;
+
+ // All other object types are pointers.
+ const PointerType *PT = Ty->getAsPointerType();
+ if (PT == 0)
+ return false;
+
+ // If this a pointer to an interface (e.g. NSString*), it is ok.
+ if (PT->getPointeeType()->isObjCInterfaceType() ||
+ // If is has NSObject attribute, OK as well.
+ isObjCNSObjectType(Ty))
+ return true;
+
+ // Check to see if this is 'id' or 'Class', both of which are typedefs for
+ // pointer types. This looks for the typedef specifically, not for the
+ // underlying type. Iteratively strip off typedefs so that we can handle
+ // typedefs of typedefs.
+ while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
+ if (Ty.getUnqualifiedType() == getObjCIdType() ||
+ Ty.getUnqualifiedType() == getObjCClassType())
+ return true;
+
+ Ty = TDT->getDecl()->getUnderlyingType();
+ }
+
+ return false;
+}
+
+/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
+/// garbage collection attribute.
+///
+QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
+ QualType::GCAttrTypes GCAttrs = QualType::GCNone;
+ if (getLangOptions().ObjC1 &&
+ getLangOptions().getGCMode() != LangOptions::NonGC) {
+ GCAttrs = Ty.getObjCGCAttr();
+ // Default behavious under objective-c's gc is for objective-c pointers
+ // (or pointers to them) be treated as though they were declared
+ // as __strong.
+ if (GCAttrs == QualType::GCNone) {
+ if (isObjCObjectPointerType(Ty))
+ GCAttrs = QualType::Strong;
+ else if (Ty->isPointerType())
+ return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
+ }
+ // Non-pointers have none gc'able attribute regardless of the attribute
+ // set on them.
+ else if (!isObjCObjectPointerType(Ty) && !Ty->isPointerType())
+ return QualType::GCNone;
+ }
+ return GCAttrs;
+}
+
+//===----------------------------------------------------------------------===//
+// Type Compatibility Testing
+//===----------------------------------------------------------------------===//
+
+/// typesAreBlockCompatible - This routine is called when comparing two
+/// block types. Types must be strictly compatible here. For example,
+/// C unfortunately doesn't produce an error for the following:
+///
+/// int (*emptyArgFunc)();
+/// int (*intArgList)(int) = emptyArgFunc;
+///
+/// For blocks, we will produce an error for the following (similar to C++):
+///
+/// int (^emptyArgBlock)();
+/// int (^intArgBlock)(int) = emptyArgBlock;
+///
+/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
+///
+bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
+ const FunctionType *lbase = lhs->getAsFunctionType();
+ const FunctionType *rbase = rhs->getAsFunctionType();
+ const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
+ const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
+ if (lproto && rproto == 0)
+ return false;
+ return !mergeTypes(lhs, rhs).isNull();
+}
+
+/// areCompatVectorTypes - Return true if the two specified vector types are
+/// compatible.
+static bool areCompatVectorTypes(const VectorType *LHS,
+ const VectorType *RHS) {
+ assert(LHS->isCanonical() && RHS->isCanonical());
+ return LHS->getElementType() == RHS->getElementType() &&
+ LHS->getNumElements() == RHS->getNumElements();
+}
+
+/// canAssignObjCInterfaces - Return true if the two interface types are
+/// compatible for assignment from RHS to LHS. This handles validation of any
+/// protocol qualifiers on the LHS or RHS.
+///
+bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
+ const ObjCInterfaceType *RHS) {
+ // Verify that the base decls are compatible: the RHS must be a subclass of
+ // the LHS.
+ if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
+ return false;
+
+ // RHS must have a superset of the protocols in the LHS. If the LHS is not
+ // protocol qualified at all, then we are good.
+ if (!isa<ObjCQualifiedInterfaceType>(LHS))
+ return true;
+
+ // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it
+ // isn't a superset.
+ if (!isa<ObjCQualifiedInterfaceType>(RHS))
+ return true; // FIXME: should return false!
+
+ // Finally, we must have two protocol-qualified interfaces.
+ const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
+ const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
+
+ // All LHS protocols must have a presence on the RHS.
+ assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
+
+ for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
+ LHSPE = LHSP->qual_end();
+ LHSPI != LHSPE; LHSPI++) {
+ bool RHSImplementsProtocol = false;
+
+ // If the RHS doesn't implement the protocol on the left, the types
+ // are incompatible.
+ for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
+ RHSPE = RHSP->qual_end();
+ !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
+ if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
+ RHSImplementsProtocol = true;
+ }
+ // FIXME: For better diagnostics, consider passing back the protocol name.
+ if (!RHSImplementsProtocol)
+ return false;
+ }
+ // The RHS implements all protocols listed on the LHS.
+ return true;
+}
+
+bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
+ // get the "pointed to" types
+ const PointerType *LHSPT = LHS->getAsPointerType();
+ const PointerType *RHSPT = RHS->getAsPointerType();
+
+ if (!LHSPT || !RHSPT)
+ return false;
+
+ QualType lhptee = LHSPT->getPointeeType();
+ QualType rhptee = RHSPT->getPointeeType();
+ const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
+ const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
+ // ID acts sort of like void* for ObjC interfaces
+ if (LHSIface && isObjCIdStructType(rhptee))
+ return true;
+ if (RHSIface && isObjCIdStructType(lhptee))
+ return true;
+ if (!LHSIface || !RHSIface)
+ return false;
+ return canAssignObjCInterfaces(LHSIface, RHSIface) ||
+ canAssignObjCInterfaces(RHSIface, LHSIface);
+}
+
+/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
+/// both shall have the identically qualified version of a compatible type.
+/// C99 6.2.7p1: Two types have compatible types if their types are the
+/// same. See 6.7.[2,3,5] for additional rules.
+bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
+ return !mergeTypes(LHS, RHS).isNull();
+}
+
+QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
+ const FunctionType *lbase = lhs->getAsFunctionType();
+ const FunctionType *rbase = rhs->getAsFunctionType();
+ const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
+ const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
+ bool allLTypes = true;
+ bool allRTypes = true;
+
+ // Check return type
+ QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
+ if (retType.isNull()) return QualType();
+ if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
+ allLTypes = false;
+ if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
+ allRTypes = false;
+
+ if (lproto && rproto) { // two C99 style function prototypes
+ assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
+ "C++ shouldn't be here");
+ unsigned lproto_nargs = lproto->getNumArgs();
+ unsigned rproto_nargs = rproto->getNumArgs();
+
+ // Compatible functions must have the same number of arguments
+ if (lproto_nargs != rproto_nargs)
+ return QualType();
+
+ // Variadic and non-variadic functions aren't compatible
+ if (lproto->isVariadic() != rproto->isVariadic())
+ return QualType();
+
+ if (lproto->getTypeQuals() != rproto->getTypeQuals())
+ return QualType();
+
+ // Check argument compatibility
+ llvm::SmallVector<QualType, 10> types;
+ for (unsigned i = 0; i < lproto_nargs; i++) {
+ QualType largtype = lproto->getArgType(i).getUnqualifiedType();
+ QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
+ QualType argtype = mergeTypes(largtype, rargtype);
+ if (argtype.isNull()) return QualType();
+ types.push_back(argtype);
+ if (getCanonicalType(argtype) != getCanonicalType(largtype))
+ allLTypes = false;
+ if (getCanonicalType(argtype) != getCanonicalType(rargtype))
+ allRTypes = false;
+ }
+ if (allLTypes) return lhs;
+ if (allRTypes) return rhs;
+ return getFunctionType(retType, types.begin(), types.size(),
+ lproto->isVariadic(), lproto->getTypeQuals());
+ }
+
+ if (lproto) allRTypes = false;
+ if (rproto) allLTypes = false;
+
+ const FunctionProtoType *proto = lproto ? lproto : rproto;
+ if (proto) {
+ assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
+ if (proto->isVariadic()) return QualType();
+ // Check that the types are compatible with the types that
+ // would result from default argument promotions (C99 6.7.5.3p15).
+ // The only types actually affected are promotable integer
+ // types and floats, which would be passed as a different
+ // type depending on whether the prototype is visible.
+ unsigned proto_nargs = proto->getNumArgs();
+ for (unsigned i = 0; i < proto_nargs; ++i) {
+ QualType argTy = proto->getArgType(i);
+ if (argTy->isPromotableIntegerType() ||
+ getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
+ return QualType();
+ }
+
+ if (allLTypes) return lhs;
+ if (allRTypes) return rhs;
+ return getFunctionType(retType, proto->arg_type_begin(),
+ proto->getNumArgs(), lproto->isVariadic(),
+ lproto->getTypeQuals());
+ }
+
+ if (allLTypes) return lhs;
+ if (allRTypes) return rhs;
+ return getFunctionNoProtoType(retType);
+}
+
+QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
+ // C++ [expr]: If an expression initially has the type "reference to T", the
+ // type is adjusted to "T" prior to any further analysis, the expression
+ // designates the object or function denoted by the reference, and the
+ // expression is an lvalue unless the reference is an rvalue reference and
+ // the expression is a function call (possibly inside parentheses).
+ // FIXME: C++ shouldn't be going through here! The rules are different
+ // enough that they should be handled separately.
+ // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
+ // shouldn't be going through here!
+ if (const ReferenceType *RT = LHS->getAsReferenceType())
+ LHS = RT->getPointeeType();
+ if (const ReferenceType *RT = RHS->getAsReferenceType())
+ RHS = RT->getPointeeType();
+
+ QualType LHSCan = getCanonicalType(LHS),
+ RHSCan = getCanonicalType(RHS);
+
+ // If two types are identical, they are compatible.
+ if (LHSCan == RHSCan)
+ return LHS;
+
+ // If the qualifiers are different, the types aren't compatible
+ // Note that we handle extended qualifiers later, in the
+ // case for ExtQualType.
+ if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
+ return QualType();
+
+ Type::TypeClass LHSClass = LHSCan->getTypeClass();
+ Type::TypeClass RHSClass = RHSCan->getTypeClass();
+
+ // We want to consider the two function types to be the same for these
+ // comparisons, just force one to the other.
+ if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
+ if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
+
+ // Strip off objc_gc attributes off the top level so they can be merged.
+ // This is a complete mess, but the attribute itself doesn't make much sense.
+ if (RHSClass == Type::ExtQual) {
+ QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
+ if (GCAttr != QualType::GCNone) {
+ RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
+ RHS.getCVRQualifiers());
+ QualType Result = mergeTypes(LHS, RHS);
+ if (Result.getObjCGCAttr() == QualType::GCNone)
+ Result = getObjCGCQualType(Result, GCAttr);
+ else if (Result.getObjCGCAttr() != GCAttr)
+ Result = QualType();
+ return Result;
+ }
+ }
+ if (LHSClass == Type::ExtQual) {
+ QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
+ if (GCAttr != QualType::GCNone) {
+ LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
+ LHS.getCVRQualifiers());
+ QualType Result = mergeTypes(LHS, RHS);
+ if (Result.getObjCGCAttr() == QualType::GCNone)
+ Result = getObjCGCQualType(Result, GCAttr);
+ else if (Result.getObjCGCAttr() != GCAttr)
+ Result = QualType();
+ return Result;
+ }
+ }
+
+ // Same as above for arrays
+ if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
+ LHSClass = Type::ConstantArray;
+ if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
+ RHSClass = Type::ConstantArray;
+
+ // Canonicalize ExtVector -> Vector.
+ if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
+ if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
+
+ // Consider qualified interfaces and interfaces the same.
+ if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
+ if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
+
+ // If the canonical type classes don't match.
+ if (LHSClass != RHSClass) {
+ const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
+ const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
+
+ // 'id' and 'Class' act sort of like void* for ObjC interfaces
+ if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
+ return LHS;
+ if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
+ return RHS;
+
+ // ID is compatible with all qualified id types.
+ if (LHS->isObjCQualifiedIdType()) {
+ if (const PointerType *PT = RHS->getAsPointerType()) {
+ QualType pType = PT->getPointeeType();
+ if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
+ return LHS;
+ // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
+ // Unfortunately, this API is part of Sema (which we don't have access
+ // to. Need to refactor. The following check is insufficient, since we
+ // need to make sure the class implements the protocol.
+ if (pType->isObjCInterfaceType())
+ return LHS;
+ }
+ }
+ if (RHS->isObjCQualifiedIdType()) {
+ if (const PointerType *PT = LHS->getAsPointerType()) {
+ QualType pType = PT->getPointeeType();
+ if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
+ return RHS;
+ // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
+ // Unfortunately, this API is part of Sema (which we don't have access
+ // to. Need to refactor. The following check is insufficient, since we
+ // need to make sure the class implements the protocol.
+ if (pType->isObjCInterfaceType())
+ return RHS;
+ }
+ }
+ // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
+ // a signed integer type, or an unsigned integer type.
+ if (const EnumType* ETy = LHS->getAsEnumType()) {
+ if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
+ return RHS;
+ }
+ if (const EnumType* ETy = RHS->getAsEnumType()) {
+ if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
+ return LHS;
+ }
+
+ return QualType();
+ }
+
+ // The canonical type classes match.
+ switch (LHSClass) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ assert(false && "Non-canonical and dependent types shouldn't get here");
+ return QualType();
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ case Type::MemberPointer:
+ assert(false && "C++ should never be in mergeTypes");
+ return QualType();
+
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::FunctionProto:
+ case Type::ExtVector:
+ case Type::ObjCQualifiedInterface:
+ assert(false && "Types are eliminated above");
+ return QualType();
+
+ case Type::Pointer:
+ {
+ // Merge two pointer types, while trying to preserve typedef info
+ QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
+ QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
+ QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
+ if (ResultType.isNull()) return QualType();
+ if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
+ return LHS;
+ if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
+ return RHS;
+ return getPointerType(ResultType);
+ }
+ case Type::BlockPointer:
+ {
+ // Merge two block pointer types, while trying to preserve typedef info
+ QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
+ QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
+ QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
+ if (ResultType.isNull()) return QualType();
+ if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
+ return LHS;
+ if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
+ return RHS;
+ return getBlockPointerType(ResultType);
+ }
+ case Type::ConstantArray:
+ {
+ const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
+ const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
+ if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
+ return QualType();
+
+ QualType LHSElem = getAsArrayType(LHS)->getElementType();
+ QualType RHSElem = getAsArrayType(RHS)->getElementType();
+ QualType ResultType = mergeTypes(LHSElem, RHSElem);
+ if (ResultType.isNull()) return QualType();
+ if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
+ return LHS;
+ if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
+ return RHS;
+ if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
+ ArrayType::ArraySizeModifier(), 0);
+ if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
+ ArrayType::ArraySizeModifier(), 0);
+ const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
+ const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
+ if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
+ return LHS;
+ if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
+ return RHS;
+ if (LVAT) {
+ // FIXME: This isn't correct! But tricky to implement because
+ // the array's size has to be the size of LHS, but the type
+ // has to be different.
+ return LHS;
+ }
+ if (RVAT) {
+ // FIXME: This isn't correct! But tricky to implement because
+ // the array's size has to be the size of RHS, but the type
+ // has to be different.
+ return RHS;
+ }
+ if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
+ if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
+ return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
+ }
+ case Type::FunctionNoProto:
+ return mergeFunctionTypes(LHS, RHS);
+ case Type::Record:
+ case Type::Enum:
+ // FIXME: Why are these compatible?
+ if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
+ if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
+ return QualType();
+ case Type::Builtin:
+ // Only exactly equal builtin types are compatible, which is tested above.
+ return QualType();
+ case Type::Complex:
+ // Distinct complex types are incompatible.
+ return QualType();
+ case Type::Vector:
+ // FIXME: The merged type should be an ExtVector!
+ if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
+ return LHS;
+ return QualType();
+ case Type::ObjCInterface: {
+ // Check if the interfaces are assignment compatible.
+ // FIXME: This should be type compatibility, e.g. whether
+ // "LHS x; RHS x;" at global scope is legal.
+ const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
+ const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
+ if (LHSIface && RHSIface &&
+ canAssignObjCInterfaces(LHSIface, RHSIface))
+ return LHS;
+
+ return QualType();
+ }
+ case Type::ObjCQualifiedId:
+ // Distinct qualified id's are not compatible.
+ return QualType();
+ case Type::FixedWidthInt:
+ // Distinct fixed-width integers are not compatible.
+ return QualType();
+ case Type::ExtQual:
+ // FIXME: ExtQual types can be compatible even if they're not
+ // identical!
+ return QualType();
+ // First attempt at an implementation, but I'm not really sure it's
+ // right...
+#if 0
+ ExtQualType* LQual = cast<ExtQualType>(LHSCan);
+ ExtQualType* RQual = cast<ExtQualType>(RHSCan);
+ if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
+ LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
+ return QualType();
+ QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
+ LHSBase = QualType(LQual->getBaseType(), 0);
+ RHSBase = QualType(RQual->getBaseType(), 0);
+ ResultType = mergeTypes(LHSBase, RHSBase);
+ if (ResultType.isNull()) return QualType();
+ ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
+ if (LHSCan.getUnqualifiedType() == ResCanUnqual)
+ return LHS;
+ if (RHSCan.getUnqualifiedType() == ResCanUnqual)
+ return RHS;
+ ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
+ ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
+ ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
+ return ResultType;
+#endif
+
+ case Type::TemplateSpecialization:
+ assert(false && "Dependent types have no size");
+ break;
+ }
+
+ return QualType();
+}
+
+//===----------------------------------------------------------------------===//
+// Integer Predicates
+//===----------------------------------------------------------------------===//
+
+unsigned ASTContext::getIntWidth(QualType T) {
+ if (T == BoolTy)
+ return 1;
+ if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
+ return FWIT->getWidth();
+ }
+ // For builtin types, just use the standard type sizing method
+ return (unsigned)getTypeSize(T);
+}
+
+QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
+ assert(T->isSignedIntegerType() && "Unexpected type");
+ if (const EnumType* ETy = T->getAsEnumType())
+ T = ETy->getDecl()->getIntegerType();
+ const BuiltinType* BTy = T->getAsBuiltinType();
+ assert (BTy && "Unexpected signed integer type");
+ switch (BTy->getKind()) {
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ return UnsignedCharTy;
+ case BuiltinType::Short:
+ return UnsignedShortTy;
+ case BuiltinType::Int:
+ return UnsignedIntTy;
+ case BuiltinType::Long:
+ return UnsignedLongTy;
+ case BuiltinType::LongLong:
+ return UnsignedLongLongTy;
+ case BuiltinType::Int128:
+ return UnsignedInt128Ty;
+ default:
+ assert(0 && "Unexpected signed integer type");
+ return QualType();
+ }
+}
+
+ExternalASTSource::~ExternalASTSource() { }
+
+void ExternalASTSource::PrintStats() { }
OpenPOWER on IntegriCloud