diff options
Diffstat (limited to 'include/llvm/Target/TargetInstrInfo.h')
-rw-r--r-- | include/llvm/Target/TargetInstrInfo.h | 517 |
1 files changed, 517 insertions, 0 deletions
diff --git a/include/llvm/Target/TargetInstrInfo.h b/include/llvm/Target/TargetInstrInfo.h new file mode 100644 index 0000000..ecdd682 --- /dev/null +++ b/include/llvm/Target/TargetInstrInfo.h @@ -0,0 +1,517 @@ +//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file describes the target machine instruction set to the code generator. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_TARGET_TARGETINSTRINFO_H +#define LLVM_TARGET_TARGETINSTRINFO_H + +#include "llvm/Target/TargetInstrDesc.h" +#include "llvm/CodeGen/MachineFunction.h" + +namespace llvm { + +class TargetRegisterClass; +class TargetRegisterInfo; +class LiveVariables; +class CalleeSavedInfo; +class SDNode; +class SelectionDAG; + +template<class T> class SmallVectorImpl; + + +//--------------------------------------------------------------------------- +/// +/// TargetInstrInfo - Interface to description of machine instruction set +/// +class TargetInstrInfo { + const TargetInstrDesc *Descriptors; // Raw array to allow static init'n + unsigned NumOpcodes; // Number of entries in the desc array + + TargetInstrInfo(const TargetInstrInfo &); // DO NOT IMPLEMENT + void operator=(const TargetInstrInfo &); // DO NOT IMPLEMENT +public: + TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes); + virtual ~TargetInstrInfo(); + + // Invariant opcodes: All instruction sets have these as their low opcodes. + enum { + PHI = 0, + INLINEASM = 1, + DBG_LABEL = 2, + EH_LABEL = 3, + GC_LABEL = 4, + DECLARE = 5, + + /// EXTRACT_SUBREG - This instruction takes two operands: a register + /// that has subregisters, and a subregister index. It returns the + /// extracted subregister value. This is commonly used to implement + /// truncation operations on target architectures which support it. + EXTRACT_SUBREG = 6, + + /// INSERT_SUBREG - This instruction takes three operands: a register + /// that has subregisters, a register providing an insert value, and a + /// subregister index. It returns the value of the first register with + /// the value of the second register inserted. The first register is + /// often defined by an IMPLICIT_DEF, as is commonly used to implement + /// anyext operations on target architectures which support it. + INSERT_SUBREG = 7, + + /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef. + IMPLICIT_DEF = 8, + + /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except + /// that the first operand is an immediate integer constant. This constant + /// is often zero, as is commonly used to implement zext operations on + /// target architectures which support it, such as with x86-64 (with + /// zext from i32 to i64 via implicit zero-extension). + SUBREG_TO_REG = 9, + + /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain + /// register-to-register copy into a specific register class. This is only + /// used between instruction selection and MachineInstr creation, before + /// virtual registers have been created for all the instructions, and it's + /// only needed in cases where the register classes implied by the + /// instructions are insufficient. The actual MachineInstrs to perform + /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook. + COPY_TO_REGCLASS = 10 + }; + + unsigned getNumOpcodes() const { return NumOpcodes; } + + /// get - Return the machine instruction descriptor that corresponds to the + /// specified instruction opcode. + /// + const TargetInstrDesc &get(unsigned Opcode) const { + assert(Opcode < NumOpcodes && "Invalid opcode!"); + return Descriptors[Opcode]; + } + + /// isTriviallyReMaterializable - Return true if the instruction is trivially + /// rematerializable, meaning it has no side effects and requires no operands + /// that aren't always available. + bool isTriviallyReMaterializable(const MachineInstr *MI) const { + return MI->getDesc().isRematerializable() && + isReallyTriviallyReMaterializable(MI); + } + +protected: + /// isReallyTriviallyReMaterializable - For instructions with opcodes for + /// which the M_REMATERIALIZABLE flag is set, this function tests whether the + /// instruction itself is actually trivially rematerializable, considering + /// its operands. This is used for targets that have instructions that are + /// only trivially rematerializable for specific uses. This predicate must + /// return false if the instruction has any side effects other than + /// producing a value, or if it requres any address registers that are not + /// always available. + virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const { + return true; + } + +public: + /// Return true if the instruction is a register to register move and return + /// the source and dest operands and their sub-register indices by reference. + virtual bool isMoveInstr(const MachineInstr& MI, + unsigned& SrcReg, unsigned& DstReg, + unsigned& SrcSubIdx, unsigned& DstSubIdx) const { + return false; + } + + /// isLoadFromStackSlot - If the specified machine instruction is a direct + /// load from a stack slot, return the virtual or physical register number of + /// the destination along with the FrameIndex of the loaded stack slot. If + /// not, return 0. This predicate must return 0 if the instruction has + /// any side effects other than loading from the stack slot. + virtual unsigned isLoadFromStackSlot(const MachineInstr *MI, + int &FrameIndex) const { + return 0; + } + + /// isStoreToStackSlot - If the specified machine instruction is a direct + /// store to a stack slot, return the virtual or physical register number of + /// the source reg along with the FrameIndex of the loaded stack slot. If + /// not, return 0. This predicate must return 0 if the instruction has + /// any side effects other than storing to the stack slot. + virtual unsigned isStoreToStackSlot(const MachineInstr *MI, + int &FrameIndex) const { + return 0; + } + + /// reMaterialize - Re-issue the specified 'original' instruction at the + /// specific location targeting a new destination register. + virtual void reMaterialize(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, + const MachineInstr *Orig) const = 0; + + /// isInvariantLoad - Return true if the specified instruction (which is + /// marked mayLoad) is loading from a location whose value is invariant across + /// the function. For example, loading a value from the constant pool or from + /// from the argument area of a function if it does not change. This should + /// only return true of *all* loads the instruction does are invariant (if it + /// does multiple loads). + virtual bool isInvariantLoad(const MachineInstr *MI) const { + return false; + } + + /// convertToThreeAddress - This method must be implemented by targets that + /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target + /// may be able to convert a two-address instruction into one or more true + /// three-address instructions on demand. This allows the X86 target (for + /// example) to convert ADD and SHL instructions into LEA instructions if they + /// would require register copies due to two-addressness. + /// + /// This method returns a null pointer if the transformation cannot be + /// performed, otherwise it returns the last new instruction. + /// + virtual MachineInstr * + convertToThreeAddress(MachineFunction::iterator &MFI, + MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const { + return 0; + } + + /// commuteInstruction - If a target has any instructions that are commutable, + /// but require converting to a different instruction or making non-trivial + /// changes to commute them, this method can overloaded to do this. The + /// default implementation of this method simply swaps the first two operands + /// of MI and returns it. + /// + /// If a target wants to make more aggressive changes, they can construct and + /// return a new machine instruction. If an instruction cannot commute, it + /// can also return null. + /// + /// If NewMI is true, then a new machine instruction must be created. + /// + virtual MachineInstr *commuteInstruction(MachineInstr *MI, + bool NewMI = false) const = 0; + + /// CommuteChangesDestination - Return true if commuting the specified + /// instruction will also changes the destination operand. Also return the + /// current operand index of the would be new destination register by + /// reference. This can happen when the commutable instruction is also a + /// two-address instruction. + virtual bool CommuteChangesDestination(MachineInstr *MI, + unsigned &OpIdx) const = 0; + + /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning + /// true if it cannot be understood (e.g. it's a switch dispatch or isn't + /// implemented for a target). Upon success, this returns false and returns + /// with the following information in various cases: + /// + /// 1. If this block ends with no branches (it just falls through to its succ) + /// just return false, leaving TBB/FBB null. + /// 2. If this block ends with only an unconditional branch, it sets TBB to be + /// the destination block. + /// 3. If this block ends with an conditional branch and it falls through to + /// an successor block, it sets TBB to be the branch destination block and + /// a list of operands that evaluate the condition. These + /// operands can be passed to other TargetInstrInfo methods to create new + /// branches. + /// 4. If this block ends with an conditional branch and an unconditional + /// block, it returns the 'true' destination in TBB, the 'false' + /// destination in FBB, and a list of operands that evaluate the condition. + /// These operands can be passed to other TargetInstrInfo methods to create + /// new branches. + /// + /// Note that RemoveBranch and InsertBranch must be implemented to support + /// cases where this method returns success. + /// + /// If AllowModify is true, then this routine is allowed to modify the basic + /// block (e.g. delete instructions after the unconditional branch). + /// + virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, + MachineBasicBlock *&FBB, + SmallVectorImpl<MachineOperand> &Cond, + bool AllowModify = false) const { + return true; + } + + /// RemoveBranch - Remove the branching code at the end of the specific MBB. + /// This is only invoked in cases where AnalyzeBranch returns success. It + /// returns the number of instructions that were removed. + virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const { + assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!"); + return 0; + } + + /// InsertBranch - Insert a branch into the end of the specified + /// MachineBasicBlock. This operands to this method are the same as those + /// returned by AnalyzeBranch. This is invoked in cases where AnalyzeBranch + /// returns success and when an unconditional branch (TBB is non-null, FBB is + /// null, Cond is empty) needs to be inserted. It returns the number of + /// instructions inserted. + /// + /// It is also invoked by tail merging to add unconditional branches in + /// cases where AnalyzeBranch doesn't apply because there was no original + /// branch to analyze. At least this much must be implemented, else tail + /// merging needs to be disabled. + virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + const SmallVectorImpl<MachineOperand> &Cond) const { + assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!"); + return 0; + } + + /// copyRegToReg - Emit instructions to copy between a pair of registers. It + /// returns false if the target does not how to copy between the specified + /// registers. + virtual bool copyRegToReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, unsigned SrcReg, + const TargetRegisterClass *DestRC, + const TargetRegisterClass *SrcRC) const { + assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!"); + return false; + } + + /// storeRegToStackSlot - Store the specified register of the given register + /// class to the specified stack frame index. The store instruction is to be + /// added to the given machine basic block before the specified machine + /// instruction. If isKill is true, the register operand is the last use and + /// must be marked kill. + virtual void storeRegToStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned SrcReg, bool isKill, int FrameIndex, + const TargetRegisterClass *RC) const { + assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!"); + } + + /// storeRegToAddr - Store the specified register of the given register class + /// to the specified address. The store instruction is to be added to the + /// given machine basic block before the specified machine instruction. If + /// isKill is true, the register operand is the last use and must be marked + /// kill. + virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, + SmallVectorImpl<MachineOperand> &Addr, + const TargetRegisterClass *RC, + SmallVectorImpl<MachineInstr*> &NewMIs) const { + assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!"); + } + + /// loadRegFromStackSlot - Load the specified register of the given register + /// class from the specified stack frame index. The load instruction is to be + /// added to the given machine basic block before the specified machine + /// instruction. + virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, int FrameIndex, + const TargetRegisterClass *RC) const { + assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!"); + } + + /// loadRegFromAddr - Load the specified register of the given register class + /// class from the specified address. The load instruction is to be added to + /// the given machine basic block before the specified machine instruction. + virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, + SmallVectorImpl<MachineOperand> &Addr, + const TargetRegisterClass *RC, + SmallVectorImpl<MachineInstr*> &NewMIs) const { + assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!"); + } + + /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee + /// saved registers and returns true if it isn't possible / profitable to do + /// so by issuing a series of store instructions via + /// storeRegToStackSlot(). Returns false otherwise. + virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + const std::vector<CalleeSavedInfo> &CSI) const { + return false; + } + + /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee + /// saved registers and returns true if it isn't possible / profitable to do + /// so by issuing a series of load instructions via loadRegToStackSlot(). + /// Returns false otherwise. + virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + const std::vector<CalleeSavedInfo> &CSI) const { + return false; + } + + /// foldMemoryOperand - Attempt to fold a load or store of the specified stack + /// slot into the specified machine instruction for the specified operand(s). + /// If this is possible, a new instruction is returned with the specified + /// operand folded, otherwise NULL is returned. The client is responsible for + /// removing the old instruction and adding the new one in the instruction + /// stream. + MachineInstr* foldMemoryOperand(MachineFunction &MF, + MachineInstr* MI, + const SmallVectorImpl<unsigned> &Ops, + int FrameIndex) const; + + /// foldMemoryOperand - Same as the previous version except it allows folding + /// of any load and store from / to any address, not just from a specific + /// stack slot. + MachineInstr* foldMemoryOperand(MachineFunction &MF, + MachineInstr* MI, + const SmallVectorImpl<unsigned> &Ops, + MachineInstr* LoadMI) const; + +protected: + /// foldMemoryOperandImpl - Target-dependent implementation for + /// foldMemoryOperand. Target-independent code in foldMemoryOperand will + /// take care of adding a MachineMemOperand to the newly created instruction. + virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr* MI, + const SmallVectorImpl<unsigned> &Ops, + int FrameIndex) const { + return 0; + } + + /// foldMemoryOperandImpl - Target-dependent implementation for + /// foldMemoryOperand. Target-independent code in foldMemoryOperand will + /// take care of adding a MachineMemOperand to the newly created instruction. + virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr* MI, + const SmallVectorImpl<unsigned> &Ops, + MachineInstr* LoadMI) const { + return 0; + } + +public: + /// canFoldMemoryOperand - Returns true for the specified load / store if + /// folding is possible. + virtual + bool canFoldMemoryOperand(const MachineInstr *MI, + const SmallVectorImpl<unsigned> &Ops) const { + return false; + } + + /// unfoldMemoryOperand - Separate a single instruction which folded a load or + /// a store or a load and a store into two or more instruction. If this is + /// possible, returns true as well as the new instructions by reference. + virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, + unsigned Reg, bool UnfoldLoad, bool UnfoldStore, + SmallVectorImpl<MachineInstr*> &NewMIs) const{ + return false; + } + + virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, + SmallVectorImpl<SDNode*> &NewNodes) const { + return false; + } + + /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new + /// instruction after load / store are unfolded from an instruction of the + /// specified opcode. It returns zero if the specified unfolding is not + /// possible. + virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, + bool UnfoldLoad, bool UnfoldStore) const { + return 0; + } + + /// BlockHasNoFallThrough - Return true if the specified block does not + /// fall-through into its successor block. This is primarily used when a + /// branch is unanalyzable. It is useful for things like unconditional + /// indirect branches (jump tables). + virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const { + return false; + } + + /// ReverseBranchCondition - Reverses the branch condition of the specified + /// condition list, returning false on success and true if it cannot be + /// reversed. + virtual + bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { + return true; + } + + /// insertNoop - Insert a noop into the instruction stream at the specified + /// point. + virtual void insertNoop(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI) const { + assert(0 && "Target didn't implement insertNoop!"); + abort(); + } + + /// isPredicated - Returns true if the instruction is already predicated. + /// + virtual bool isPredicated(const MachineInstr *MI) const { + return false; + } + + /// isUnpredicatedTerminator - Returns true if the instruction is a + /// terminator instruction that has not been predicated. + virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const; + + /// PredicateInstruction - Convert the instruction into a predicated + /// instruction. It returns true if the operation was successful. + virtual + bool PredicateInstruction(MachineInstr *MI, + const SmallVectorImpl<MachineOperand> &Pred) const = 0; + + /// SubsumesPredicate - Returns true if the first specified predicate + /// subsumes the second, e.g. GE subsumes GT. + virtual + bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1, + const SmallVectorImpl<MachineOperand> &Pred2) const { + return false; + } + + /// DefinesPredicate - If the specified instruction defines any predicate + /// or condition code register(s) used for predication, returns true as well + /// as the definition predicate(s) by reference. + virtual bool DefinesPredicate(MachineInstr *MI, + std::vector<MachineOperand> &Pred) const { + return false; + } + + /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine + /// instruction that defines the specified register class. + virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { + return true; + } + + /// GetInstSize - Returns the size of the specified Instruction. + /// + virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const { + assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!"); + return 0; + } + + /// GetFunctionSizeInBytes - Returns the size of the specified MachineFunction. + /// + virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0; +}; + +/// TargetInstrInfoImpl - This is the default implementation of +/// TargetInstrInfo, which just provides a couple of default implementations +/// for various methods. This separated out because it is implemented in +/// libcodegen, not in libtarget. +class TargetInstrInfoImpl : public TargetInstrInfo { +protected: + TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes) + : TargetInstrInfo(desc, NumOpcodes) {} +public: + virtual MachineInstr *commuteInstruction(MachineInstr *MI, + bool NewMI = false) const; + virtual bool CommuteChangesDestination(MachineInstr *MI, + unsigned &OpIdx) const; + virtual bool PredicateInstruction(MachineInstr *MI, + const SmallVectorImpl<MachineOperand> &Pred) const; + virtual void reMaterialize(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, + const MachineInstr *Orig) const; + virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const; +}; + +/// getInstrOperandRegClass - Return register class of the operand of an +/// instruction of the specified TargetInstrDesc. +const TargetRegisterClass* +getInstrOperandRegClass(const TargetRegisterInfo *TRI, + const TargetInstrDesc &II, unsigned Op); + +} // End llvm namespace + +#endif |