diff options
Diffstat (limited to 'include/llvm/Support/DataExtractor.h')
-rw-r--r-- | include/llvm/Support/DataExtractor.h | 352 |
1 files changed, 352 insertions, 0 deletions
diff --git a/include/llvm/Support/DataExtractor.h b/include/llvm/Support/DataExtractor.h new file mode 100644 index 0000000..506ec96 --- /dev/null +++ b/include/llvm/Support/DataExtractor.h @@ -0,0 +1,352 @@ +//===-- DataExtractor.h -----------------------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_SUPPORT_DATAEXTRACTOR_H +#define LLVM_SUPPORT_DATAEXTRACTOR_H + +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/DataTypes.h" + +namespace llvm { +class DataExtractor { + StringRef Data; + uint8_t IsLittleEndian; + uint8_t PointerSize; +public: + /// Construct with a buffer that is owned by the caller. + /// + /// This constructor allows us to use data that is owned by the + /// caller. The data must stay around as long as this object is + /// valid. + DataExtractor(StringRef Data, bool IsLittleEndian, uint8_t PointerSize) + : Data(Data), IsLittleEndian(IsLittleEndian), PointerSize(PointerSize) {} + + /// getData - Get the data pointed to by this extractor. + StringRef getData() const { return Data; } + /// isLittleEndian - Get the endianess for this extractor. + bool isLittleEndian() const { return IsLittleEndian; } + /// getAddressSize - Get the address size for this extractor. + uint8_t getAddressSize() const { return PointerSize; } + + /// Extract a C string from \a *offset_ptr. + /// + /// Returns a pointer to a C String from the data at the offset + /// pointed to by \a offset_ptr. A variable length NULL terminated C + /// string will be extracted and the \a offset_ptr will be + /// updated with the offset of the byte that follows the NULL + /// terminator byte. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @return + /// A pointer to the C string value in the data. If the offset + /// pointed to by \a offset_ptr is out of bounds, or if the + /// offset plus the length of the C string is out of bounds, + /// NULL will be returned. + const char *getCStr(uint32_t *offset_ptr) const; + + /// Extract an unsigned integer of size \a byte_size from \a + /// *offset_ptr. + /// + /// Extract a single unsigned integer value and update the offset + /// pointed to by \a offset_ptr. The size of the extracted integer + /// is specified by the \a byte_size argument. \a byte_size should + /// have a value greater than or equal to one and less than or equal + /// to eight since the return value is 64 bits wide. Any + /// \a byte_size values less than 1 or greater than 8 will result in + /// nothing being extracted, and zero being returned. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @param[in] byte_size + /// The size in byte of the integer to extract. + /// + /// @return + /// The unsigned integer value that was extracted, or zero on + /// failure. + uint64_t getUnsigned(uint32_t *offset_ptr, uint32_t byte_size) const; + + /// Extract an signed integer of size \a byte_size from \a *offset_ptr. + /// + /// Extract a single signed integer value (sign extending if required) + /// and update the offset pointed to by \a offset_ptr. The size of + /// the extracted integer is specified by the \a byte_size argument. + /// \a byte_size should have a value greater than or equal to one + /// and less than or equal to eight since the return value is 64 + /// bits wide. Any \a byte_size values less than 1 or greater than + /// 8 will result in nothing being extracted, and zero being returned. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @param[in] byte_size + /// The size in byte of the integer to extract. + /// + /// @return + /// The sign extended signed integer value that was extracted, + /// or zero on failure. + int64_t getSigned(uint32_t *offset_ptr, uint32_t size) const; + + //------------------------------------------------------------------ + /// Extract an pointer from \a *offset_ptr. + /// + /// Extract a single pointer from the data and update the offset + /// pointed to by \a offset_ptr. The size of the extracted pointer + /// comes from the \a m_addr_size member variable and should be + /// set correctly prior to extracting any pointer values. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @return + /// The extracted pointer value as a 64 integer. + uint64_t getAddress(uint32_t *offset_ptr) const { + return getUnsigned(offset_ptr, PointerSize); + } + + /// Extract a uint8_t value from \a *offset_ptr. + /// + /// Extract a single uint8_t from the binary data at the offset + /// pointed to by \a offset_ptr, and advance the offset on success. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @return + /// The extracted uint8_t value. + uint8_t getU8(uint32_t *offset_ptr) const; + + /// Extract \a count uint8_t values from \a *offset_ptr. + /// + /// Extract \a count uint8_t values from the binary data at the + /// offset pointed to by \a offset_ptr, and advance the offset on + /// success. The extracted values are copied into \a dst. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @param[out] dst + /// A buffer to copy \a count uint8_t values into. \a dst must + /// be large enough to hold all requested data. + /// + /// @param[in] count + /// The number of uint8_t values to extract. + /// + /// @return + /// \a dst if all values were properly extracted and copied, + /// NULL otherise. + uint8_t *getU8(uint32_t *offset_ptr, uint8_t *dst, uint32_t count) const; + + //------------------------------------------------------------------ + /// Extract a uint16_t value from \a *offset_ptr. + /// + /// Extract a single uint16_t from the binary data at the offset + /// pointed to by \a offset_ptr, and update the offset on success. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @return + /// The extracted uint16_t value. + //------------------------------------------------------------------ + uint16_t getU16(uint32_t *offset_ptr) const; + + /// Extract \a count uint16_t values from \a *offset_ptr. + /// + /// Extract \a count uint16_t values from the binary data at the + /// offset pointed to by \a offset_ptr, and advance the offset on + /// success. The extracted values are copied into \a dst. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @param[out] dst + /// A buffer to copy \a count uint16_t values into. \a dst must + /// be large enough to hold all requested data. + /// + /// @param[in] count + /// The number of uint16_t values to extract. + /// + /// @return + /// \a dst if all values were properly extracted and copied, + /// NULL otherise. + uint16_t *getU16(uint32_t *offset_ptr, uint16_t *dst, uint32_t count) const; + + /// Extract a uint32_t value from \a *offset_ptr. + /// + /// Extract a single uint32_t from the binary data at the offset + /// pointed to by \a offset_ptr, and update the offset on success. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @return + /// The extracted uint32_t value. + uint32_t getU32(uint32_t *offset_ptr) const; + + /// Extract \a count uint32_t values from \a *offset_ptr. + /// + /// Extract \a count uint32_t values from the binary data at the + /// offset pointed to by \a offset_ptr, and advance the offset on + /// success. The extracted values are copied into \a dst. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @param[out] dst + /// A buffer to copy \a count uint32_t values into. \a dst must + /// be large enough to hold all requested data. + /// + /// @param[in] count + /// The number of uint32_t values to extract. + /// + /// @return + /// \a dst if all values were properly extracted and copied, + /// NULL otherise. + uint32_t *getU32(uint32_t *offset_ptr, uint32_t *dst, uint32_t count) const; + + /// Extract a uint64_t value from \a *offset_ptr. + /// + /// Extract a single uint64_t from the binary data at the offset + /// pointed to by \a offset_ptr, and update the offset on success. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @return + /// The extracted uint64_t value. + uint64_t getU64(uint32_t *offset_ptr) const; + + /// Extract \a count uint64_t values from \a *offset_ptr. + /// + /// Extract \a count uint64_t values from the binary data at the + /// offset pointed to by \a offset_ptr, and advance the offset on + /// success. The extracted values are copied into \a dst. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @param[out] dst + /// A buffer to copy \a count uint64_t values into. \a dst must + /// be large enough to hold all requested data. + /// + /// @param[in] count + /// The number of uint64_t values to extract. + /// + /// @return + /// \a dst if all values were properly extracted and copied, + /// NULL otherise. + uint64_t *getU64(uint32_t *offset_ptr, uint64_t *dst, uint32_t count) const; + + /// Extract a signed LEB128 value from \a *offset_ptr. + /// + /// Extracts an signed LEB128 number from this object's data + /// starting at the offset pointed to by \a offset_ptr. The offset + /// pointed to by \a offset_ptr will be updated with the offset of + /// the byte following the last extracted byte. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @return + /// The extracted signed integer value. + int64_t getSLEB128(uint32_t *offset_ptr) const; + + /// Extract a unsigned LEB128 value from \a *offset_ptr. + /// + /// Extracts an unsigned LEB128 number from this object's data + /// starting at the offset pointed to by \a offset_ptr. The offset + /// pointed to by \a offset_ptr will be updated with the offset of + /// the byte following the last extracted byte. + /// + /// @param[in,out] offset_ptr + /// A pointer to an offset within the data that will be advanced + /// by the appropriate number of bytes if the value is extracted + /// correctly. If the offset is out of bounds or there are not + /// enough bytes to extract this value, the offset will be left + /// unmodified. + /// + /// @return + /// The extracted unsigned integer value. + uint64_t getULEB128(uint32_t *offset_ptr) const; + + /// Test the validity of \a offset. + /// + /// @return + /// \b true if \a offset is a valid offset into the data in this + /// object, \b false otherwise. + bool isValidOffset(uint32_t offset) const { return Data.size() > offset; } + + /// Test the availability of \a length bytes of data from \a offset. + /// + /// @return + /// \b true if \a offset is a valid offset and there are \a + /// length bytes available at that offset, \b false otherwise. + bool isValidOffsetForDataOfSize(uint32_t offset, uint32_t length) const { + return offset + length >= offset && isValidOffset(offset + length - 1); + } +}; + +} // namespace llvm + +#endif |