diff options
Diffstat (limited to 'include/llvm/Constants.h')
-rw-r--r-- | include/llvm/Constants.h | 887 |
1 files changed, 887 insertions, 0 deletions
diff --git a/include/llvm/Constants.h b/include/llvm/Constants.h new file mode 100644 index 0000000..9e95a08 --- /dev/null +++ b/include/llvm/Constants.h @@ -0,0 +1,887 @@ +//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +/// @file +/// This file contains the declarations for the subclasses of Constant, +/// which represent the different flavors of constant values that live in LLVM. +/// Note that Constants are immutable (once created they never change) and are +/// fully shared by structural equivalence. This means that two structurally +/// equivalent constants will always have the same address. Constant's are +/// created on demand as needed and never deleted: thus clients don't have to +/// worry about the lifetime of the objects. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CONSTANTS_H +#define LLVM_CONSTANTS_H + +#include "llvm/Constant.h" +#include "llvm/Type.h" +#include "llvm/OperandTraits.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/SmallVector.h" + +namespace llvm { + +class ArrayType; +class StructType; +class PointerType; +class VectorType; + +template<class ConstantClass, class TypeClass, class ValType> +struct ConstantCreator; +template<class ConstantClass, class TypeClass> +struct ConvertConstantType; + +//===----------------------------------------------------------------------===// +/// This is the shared class of boolean and integer constants. This class +/// represents both boolean and integral constants. +/// @brief Class for constant integers. +class ConstantInt : public Constant { + static ConstantInt *TheTrueVal, *TheFalseVal; + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT + ConstantInt(const ConstantInt &); // DO NOT IMPLEMENT + ConstantInt(const IntegerType *Ty, const APInt& V); + APInt Val; +protected: + // allocate space for exactly zero operands + void *operator new(size_t s) { + return User::operator new(s, 0); + } +public: + /// Return the constant as an APInt value reference. This allows clients to + /// obtain a copy of the value, with all its precision in tact. + /// @brief Return the constant's value. + inline const APInt& getValue() const { + return Val; + } + + /// getBitWidth - Return the bitwidth of this constant. + unsigned getBitWidth() const { return Val.getBitWidth(); } + + /// Return the constant as a 64-bit unsigned integer value after it + /// has been zero extended as appropriate for the type of this constant. Note + /// that this method can assert if the value does not fit in 64 bits. + /// @deprecated + /// @brief Return the zero extended value. + inline uint64_t getZExtValue() const { + return Val.getZExtValue(); + } + + /// Return the constant as a 64-bit integer value after it has been sign + /// extended as appropriate for the type of this constant. Note that + /// this method can assert if the value does not fit in 64 bits. + /// @deprecated + /// @brief Return the sign extended value. + inline int64_t getSExtValue() const { + return Val.getSExtValue(); + } + + /// A helper method that can be used to determine if the constant contained + /// within is equal to a constant. This only works for very small values, + /// because this is all that can be represented with all types. + /// @brief Determine if this constant's value is same as an unsigned char. + bool equalsInt(uint64_t V) const { + return Val == V; + } + + /// getTrue/getFalse - Return the singleton true/false values. + static inline ConstantInt *getTrue() { + if (TheTrueVal) return TheTrueVal; + return CreateTrueFalseVals(true); + } + static inline ConstantInt *getFalse() { + if (TheFalseVal) return TheFalseVal; + return CreateTrueFalseVals(false); + } + + /// Return a ConstantInt with the specified value for the specified type. The + /// value V will be canonicalized to an unsigned APInt. Accessing it with + /// either getSExtValue() or getZExtValue() will yield a correctly sized and + /// signed value for the type Ty. + /// @brief Get a ConstantInt for a specific value. + static ConstantInt *get(const Type *Ty, uint64_t V, bool isSigned = false); + + /// Return a ConstantInt with the specified value for the specified type. The + /// value V will be canonicalized to a an unsigned APInt. Accessing it with + /// either getSExtValue() or getZExtValue() will yield a correctly sized and + /// signed value for the type Ty. + /// @brief Get a ConstantInt for a specific signed value. + static ConstantInt *getSigned(const Type *Ty, int64_t V) { + return get(Ty, V, true); + } + + /// Return a ConstantInt with the specified value and an implied Type. The + /// type is the integer type that corresponds to the bit width of the value. + static ConstantInt *get(const APInt &V); + + /// getType - Specialize the getType() method to always return an IntegerType, + /// which reduces the amount of casting needed in parts of the compiler. + /// + inline const IntegerType *getType() const { + return reinterpret_cast<const IntegerType*>(Value::getType()); + } + + /// This static method returns true if the type Ty is big enough to + /// represent the value V. This can be used to avoid having the get method + /// assert when V is larger than Ty can represent. Note that there are two + /// versions of this method, one for unsigned and one for signed integers. + /// Although ConstantInt canonicalizes everything to an unsigned integer, + /// the signed version avoids callers having to convert a signed quantity + /// to the appropriate unsigned type before calling the method. + /// @returns true if V is a valid value for type Ty + /// @brief Determine if the value is in range for the given type. + static bool isValueValidForType(const Type *Ty, uint64_t V); + static bool isValueValidForType(const Type *Ty, int64_t V); + + /// This function will return true iff this constant represents the "null" + /// value that would be returned by the getNullValue method. + /// @returns true if this is the null integer value. + /// @brief Determine if the value is null. + virtual bool isNullValue() const { + return Val == 0; + } + + /// This is just a convenience method to make client code smaller for a + /// common code. It also correctly performs the comparison without the + /// potential for an assertion from getZExtValue(). + bool isZero() const { + return Val == 0; + } + + /// This is just a convenience method to make client code smaller for a + /// common case. It also correctly performs the comparison without the + /// potential for an assertion from getZExtValue(). + /// @brief Determine if the value is one. + bool isOne() const { + return Val == 1; + } + + /// This function will return true iff every bit in this constant is set + /// to true. + /// @returns true iff this constant's bits are all set to true. + /// @brief Determine if the value is all ones. + bool isAllOnesValue() const { + return Val.isAllOnesValue(); + } + + /// This function will return true iff this constant represents the largest + /// value that may be represented by the constant's type. + /// @returns true iff this is the largest value that may be represented + /// by this type. + /// @brief Determine if the value is maximal. + bool isMaxValue(bool isSigned) const { + if (isSigned) + return Val.isMaxSignedValue(); + else + return Val.isMaxValue(); + } + + /// This function will return true iff this constant represents the smallest + /// value that may be represented by this constant's type. + /// @returns true if this is the smallest value that may be represented by + /// this type. + /// @brief Determine if the value is minimal. + bool isMinValue(bool isSigned) const { + if (isSigned) + return Val.isMinSignedValue(); + else + return Val.isMinValue(); + } + + /// This function will return true iff this constant represents a value with + /// active bits bigger than 64 bits or a value greater than the given uint64_t + /// value. + /// @returns true iff this constant is greater or equal to the given number. + /// @brief Determine if the value is greater or equal to the given number. + bool uge(uint64_t Num) { + return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num; + } + + /// getLimitedValue - If the value is smaller than the specified limit, + /// return it, otherwise return the limit value. This causes the value + /// to saturate to the limit. + /// @returns the min of the value of the constant and the specified value + /// @brief Get the constant's value with a saturation limit + uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { + return Val.getLimitedValue(Limit); + } + + /// @returns the value for an integer constant of the given type that has all + /// its bits set to true. + /// @brief Get the all ones value + static ConstantInt *getAllOnesValue(const Type *Ty); + + /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const ConstantInt *) { return true; } + static bool classof(const Value *V) { + return V->getValueID() == ConstantIntVal; + } + static void ResetTrueFalse() { TheTrueVal = TheFalseVal = 0; } +private: + static ConstantInt *CreateTrueFalseVals(bool WhichOne); +}; + + +//===----------------------------------------------------------------------===// +/// ConstantFP - Floating Point Values [float, double] +/// +class ConstantFP : public Constant { + APFloat Val; + void *operator new(size_t, unsigned);// DO NOT IMPLEMENT + ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT +protected: + ConstantFP(const Type *Ty, const APFloat& V); +protected: + // allocate space for exactly zero operands + void *operator new(size_t s) { + return User::operator new(s, 0); + } +public: + /// get() - Static factory methods - Return objects of the specified value + static ConstantFP *get(const APFloat &V); + + /// get() - This returns a constant fp for the specified value in the + /// specified type. This should only be used for simple constant values like + /// 2.0/1.0 etc, that are known-valid both as double and as the target format. + static ConstantFP *get(const Type *Ty, double V); + + /// isValueValidForType - return true if Ty is big enough to represent V. + static bool isValueValidForType(const Type *Ty, const APFloat& V); + inline const APFloat& getValueAPF() const { return Val; } + + /// isNullValue - Return true if this is the value that would be returned by + /// getNullValue. Don't depend on == for doubles to tell us it's zero, it + /// considers -0.0 to be null as well as 0.0. :( + virtual bool isNullValue() const; + + // Get a negative zero. + static ConstantFP *getNegativeZero(const Type* Ty); + + /// isExactlyValue - We don't rely on operator== working on double values, as + /// it returns true for things that are clearly not equal, like -0.0 and 0.0. + /// As such, this method can be used to do an exact bit-for-bit comparison of + /// two floating point values. The version with a double operand is retained + /// because it's so convenient to write isExactlyValue(2.0), but please use + /// it only for simple constants. + bool isExactlyValue(const APFloat& V) const; + + bool isExactlyValue(double V) const { + bool ignored; + // convert is not supported on this type + if (&Val.getSemantics() == &APFloat::PPCDoubleDouble) + return false; + APFloat FV(V); + FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); + return isExactlyValue(FV); + } + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const ConstantFP *) { return true; } + static bool classof(const Value *V) { + return V->getValueID() == ConstantFPVal; + } +}; + +//===----------------------------------------------------------------------===// +/// ConstantAggregateZero - All zero aggregate value +/// +class ConstantAggregateZero : public Constant { + friend struct ConstantCreator<ConstantAggregateZero, Type, char>; + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT + ConstantAggregateZero(const ConstantAggregateZero &); // DO NOT IMPLEMENT +protected: + explicit ConstantAggregateZero(const Type *ty) + : Constant(ty, ConstantAggregateZeroVal, 0, 0) {} +protected: + // allocate space for exactly zero operands + void *operator new(size_t s) { + return User::operator new(s, 0); + } +public: + /// get() - static factory method for creating a null aggregate. It is + /// illegal to call this method with a non-aggregate type. + static ConstantAggregateZero *get(const Type *Ty); + + /// isNullValue - Return true if this is the value that would be returned by + /// getNullValue. + virtual bool isNullValue() const { return true; } + + virtual void destroyConstant(); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + /// + static bool classof(const ConstantAggregateZero *) { return true; } + static bool classof(const Value *V) { + return V->getValueID() == ConstantAggregateZeroVal; + } +}; + + +//===----------------------------------------------------------------------===// +/// ConstantArray - Constant Array Declarations +/// +class ConstantArray : public Constant { + friend struct ConstantCreator<ConstantArray, ArrayType, + std::vector<Constant*> >; + ConstantArray(const ConstantArray &); // DO NOT IMPLEMENT +protected: + ConstantArray(const ArrayType *T, const std::vector<Constant*> &Val); +public: + /// get() - Static factory methods - Return objects of the specified value + static Constant *get(const ArrayType *T, const std::vector<Constant*> &); + static Constant *get(const ArrayType *T, + Constant*const*Vals, unsigned NumVals) { + // FIXME: make this the primary ctor method. + return get(T, std::vector<Constant*>(Vals, Vals+NumVals)); + } + + /// This method constructs a ConstantArray and initializes it with a text + /// string. The default behavior (AddNull==true) causes a null terminator to + /// be placed at the end of the array. This effectively increases the length + /// of the array by one (you've been warned). However, in some situations + /// this is not desired so if AddNull==false then the string is copied without + /// null termination. + static Constant *get(const std::string &Initializer, bool AddNull = true); + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); + + /// getType - Specialize the getType() method to always return an ArrayType, + /// which reduces the amount of casting needed in parts of the compiler. + /// + inline const ArrayType *getType() const { + return reinterpret_cast<const ArrayType*>(Value::getType()); + } + + /// isString - This method returns true if the array is an array of i8 and + /// the elements of the array are all ConstantInt's. + bool isString() const; + + /// isCString - This method returns true if the array is a string (see + /// @verbatim + /// isString) and it ends in a null byte \0 and does not contains any other + /// @endverbatim + /// null bytes except its terminator. + bool isCString() const; + + /// getAsString - If this array is isString(), then this method converts the + /// array to an std::string and returns it. Otherwise, it asserts out. + /// + std::string getAsString() const; + + /// isNullValue - Return true if this is the value that would be returned by + /// getNullValue. This always returns false because zero arrays are always + /// created as ConstantAggregateZero objects. + virtual bool isNullValue() const { return false; } + + virtual void destroyConstant(); + virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const ConstantArray *) { return true; } + static bool classof(const Value *V) { + return V->getValueID() == ConstantArrayVal; + } +}; + +template <> +struct OperandTraits<ConstantArray> : VariadicOperandTraits<> { +}; + +DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantArray, Constant) + +//===----------------------------------------------------------------------===// +// ConstantStruct - Constant Struct Declarations +// +class ConstantStruct : public Constant { + friend struct ConstantCreator<ConstantStruct, StructType, + std::vector<Constant*> >; + ConstantStruct(const ConstantStruct &); // DO NOT IMPLEMENT +protected: + ConstantStruct(const StructType *T, const std::vector<Constant*> &Val); +public: + /// get() - Static factory methods - Return objects of the specified value + /// + static Constant *get(const StructType *T, const std::vector<Constant*> &V); + static Constant *get(const std::vector<Constant*> &V, bool Packed = false); + static Constant *get(Constant*const* Vals, unsigned NumVals, + bool Packed = false) { + // FIXME: make this the primary ctor method. + return get(std::vector<Constant*>(Vals, Vals+NumVals), Packed); + } + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); + + /// getType() specialization - Reduce amount of casting... + /// + inline const StructType *getType() const { + return reinterpret_cast<const StructType*>(Value::getType()); + } + + /// isNullValue - Return true if this is the value that would be returned by + /// getNullValue. This always returns false because zero structs are always + /// created as ConstantAggregateZero objects. + virtual bool isNullValue() const { + return false; + } + + virtual void destroyConstant(); + virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const ConstantStruct *) { return true; } + static bool classof(const Value *V) { + return V->getValueID() == ConstantStructVal; + } +}; + +template <> +struct OperandTraits<ConstantStruct> : VariadicOperandTraits<> { +}; + +DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantStruct, Constant) + +//===----------------------------------------------------------------------===// +/// ConstantVector - Constant Vector Declarations +/// +class ConstantVector : public Constant { + friend struct ConstantCreator<ConstantVector, VectorType, + std::vector<Constant*> >; + ConstantVector(const ConstantVector &); // DO NOT IMPLEMENT +protected: + ConstantVector(const VectorType *T, const std::vector<Constant*> &Val); +public: + /// get() - Static factory methods - Return objects of the specified value + static Constant *get(const VectorType *T, const std::vector<Constant*> &); + static Constant *get(const std::vector<Constant*> &V); + static Constant *get(Constant*const* Vals, unsigned NumVals) { + // FIXME: make this the primary ctor method. + return get(std::vector<Constant*>(Vals, Vals+NumVals)); + } + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); + + /// getType - Specialize the getType() method to always return a VectorType, + /// which reduces the amount of casting needed in parts of the compiler. + /// + inline const VectorType *getType() const { + return reinterpret_cast<const VectorType*>(Value::getType()); + } + + /// @returns the value for a vector integer constant of the given type that + /// has all its bits set to true. + /// @brief Get the all ones value + static ConstantVector *getAllOnesValue(const VectorType *Ty); + + /// isNullValue - Return true if this is the value that would be returned by + /// getNullValue. This always returns false because zero vectors are always + /// created as ConstantAggregateZero objects. + virtual bool isNullValue() const { return false; } + + /// This function will return true iff every element in this vector constant + /// is set to all ones. + /// @returns true iff this constant's emements are all set to all ones. + /// @brief Determine if the value is all ones. + bool isAllOnesValue() const; + + /// getSplatValue - If this is a splat constant, meaning that all of the + /// elements have the same value, return that value. Otherwise return NULL. + Constant *getSplatValue(); + + virtual void destroyConstant(); + virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const ConstantVector *) { return true; } + static bool classof(const Value *V) { + return V->getValueID() == ConstantVectorVal; + } +}; + +template <> +struct OperandTraits<ConstantVector> : VariadicOperandTraits<> { +}; + +DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantVector, Constant) + +//===----------------------------------------------------------------------===// +/// ConstantPointerNull - a constant pointer value that points to null +/// +class ConstantPointerNull : public Constant { + friend struct ConstantCreator<ConstantPointerNull, PointerType, char>; + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT + ConstantPointerNull(const ConstantPointerNull &); // DO NOT IMPLEMENT +protected: + explicit ConstantPointerNull(const PointerType *T) + : Constant(reinterpret_cast<const Type*>(T), + Value::ConstantPointerNullVal, 0, 0) {} + +protected: + // allocate space for exactly zero operands + void *operator new(size_t s) { + return User::operator new(s, 0); + } +public: + /// get() - Static factory methods - Return objects of the specified value + static ConstantPointerNull *get(const PointerType *T); + + /// isNullValue - Return true if this is the value that would be returned by + /// getNullValue. + virtual bool isNullValue() const { return true; } + + virtual void destroyConstant(); + + /// getType - Specialize the getType() method to always return an PointerType, + /// which reduces the amount of casting needed in parts of the compiler. + /// + inline const PointerType *getType() const { + return reinterpret_cast<const PointerType*>(Value::getType()); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const ConstantPointerNull *) { return true; } + static bool classof(const Value *V) { + return V->getValueID() == ConstantPointerNullVal; + } +}; + + +/// ConstantExpr - a constant value that is initialized with an expression using +/// other constant values. +/// +/// This class uses the standard Instruction opcodes to define the various +/// constant expressions. The Opcode field for the ConstantExpr class is +/// maintained in the Value::SubclassData field. +class ConstantExpr : public Constant { + friend struct ConstantCreator<ConstantExpr,Type, + std::pair<unsigned, std::vector<Constant*> > >; + friend struct ConvertConstantType<ConstantExpr, Type>; + +protected: + ConstantExpr(const Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) + : Constant(ty, ConstantExprVal, Ops, NumOps) { + // Operation type (an Instruction opcode) is stored as the SubclassData. + SubclassData = Opcode; + } + + // These private methods are used by the type resolution code to create + // ConstantExprs in intermediate forms. + static Constant *getTy(const Type *Ty, unsigned Opcode, + Constant *C1, Constant *C2); + static Constant *getCompareTy(unsigned short pred, Constant *C1, + Constant *C2); + static Constant *getSelectTy(const Type *Ty, + Constant *C1, Constant *C2, Constant *C3); + static Constant *getGetElementPtrTy(const Type *Ty, Constant *C, + Value* const *Idxs, unsigned NumIdxs); + static Constant *getExtractElementTy(const Type *Ty, Constant *Val, + Constant *Idx); + static Constant *getInsertElementTy(const Type *Ty, Constant *Val, + Constant *Elt, Constant *Idx); + static Constant *getShuffleVectorTy(const Type *Ty, Constant *V1, + Constant *V2, Constant *Mask); + static Constant *getExtractValueTy(const Type *Ty, Constant *Agg, + const unsigned *Idxs, unsigned NumIdxs); + static Constant *getInsertValueTy(const Type *Ty, Constant *Agg, + Constant *Val, + const unsigned *Idxs, unsigned NumIdxs); + +public: + // Static methods to construct a ConstantExpr of different kinds. Note that + // these methods may return a object that is not an instance of the + // ConstantExpr class, because they will attempt to fold the constant + // expression into something simpler if possible. + + /// Cast constant expr + /// + static Constant *getTrunc (Constant *C, const Type *Ty); + static Constant *getSExt (Constant *C, const Type *Ty); + static Constant *getZExt (Constant *C, const Type *Ty); + static Constant *getFPTrunc (Constant *C, const Type *Ty); + static Constant *getFPExtend(Constant *C, const Type *Ty); + static Constant *getUIToFP (Constant *C, const Type *Ty); + static Constant *getSIToFP (Constant *C, const Type *Ty); + static Constant *getFPToUI (Constant *C, const Type *Ty); + static Constant *getFPToSI (Constant *C, const Type *Ty); + static Constant *getPtrToInt(Constant *C, const Type *Ty); + static Constant *getIntToPtr(Constant *C, const Type *Ty); + static Constant *getBitCast (Constant *C, const Type *Ty); + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); + + // @brief Convenience function for getting one of the casting operations + // using a CastOps opcode. + static Constant *getCast( + unsigned ops, ///< The opcode for the conversion + Constant *C, ///< The constant to be converted + const Type *Ty ///< The type to which the constant is converted + ); + + // @brief Create a ZExt or BitCast cast constant expression + static Constant *getZExtOrBitCast( + Constant *C, ///< The constant to zext or bitcast + const Type *Ty ///< The type to zext or bitcast C to + ); + + // @brief Create a SExt or BitCast cast constant expression + static Constant *getSExtOrBitCast( + Constant *C, ///< The constant to sext or bitcast + const Type *Ty ///< The type to sext or bitcast C to + ); + + // @brief Create a Trunc or BitCast cast constant expression + static Constant *getTruncOrBitCast( + Constant *C, ///< The constant to trunc or bitcast + const Type *Ty ///< The type to trunc or bitcast C to + ); + + /// @brief Create a BitCast or a PtrToInt cast constant expression + static Constant *getPointerCast( + Constant *C, ///< The pointer value to be casted (operand 0) + const Type *Ty ///< The type to which cast should be made + ); + + /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts + static Constant *getIntegerCast( + Constant *C, ///< The integer constant to be casted + const Type *Ty, ///< The integer type to cast to + bool isSigned ///< Whether C should be treated as signed or not + ); + + /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts + static Constant *getFPCast( + Constant *C, ///< The integer constant to be casted + const Type *Ty ///< The integer type to cast to + ); + + /// @brief Return true if this is a convert constant expression + bool isCast() const; + + /// @brief Return true if this is a compare constant expression + bool isCompare() const; + + /// @brief Return true if this is an insertvalue or extractvalue expression, + /// and the getIndices() method may be used. + bool hasIndices() const; + + /// Select constant expr + /// + static Constant *getSelect(Constant *C, Constant *V1, Constant *V2) { + return getSelectTy(V1->getType(), C, V1, V2); + } + + /// getAlignOf constant expr - computes the alignment of a type in a target + /// independent way (Note: the return type is an i32; Note: assumes that i8 + /// is byte aligned). + /// + static Constant *getAlignOf(const Type *Ty); + + /// getSizeOf constant expr - computes the size of a type in a target + /// independent way (Note: the return type is an i64). + /// + static Constant *getSizeOf(const Type *Ty); + + /// ConstantExpr::get - Return a binary or shift operator constant expression, + /// folding if possible. + /// + static Constant *get(unsigned Opcode, Constant *C1, Constant *C2); + + /// @brief Return an ICmp, FCmp, VICmp, or VFCmp comparison operator constant + /// expression. + static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2); + + /// ConstantExpr::get* - Return some common constants without having to + /// specify the full Instruction::OPCODE identifier. + /// + static Constant *getNeg(Constant *C); + static Constant *getNot(Constant *C); + static Constant *getAdd(Constant *C1, Constant *C2); + static Constant *getSub(Constant *C1, Constant *C2); + static Constant *getMul(Constant *C1, Constant *C2); + static Constant *getUDiv(Constant *C1, Constant *C2); + static Constant *getSDiv(Constant *C1, Constant *C2); + static Constant *getFDiv(Constant *C1, Constant *C2); + static Constant *getURem(Constant *C1, Constant *C2); // unsigned rem + static Constant *getSRem(Constant *C1, Constant *C2); // signed rem + static Constant *getFRem(Constant *C1, Constant *C2); + static Constant *getAnd(Constant *C1, Constant *C2); + static Constant *getOr(Constant *C1, Constant *C2); + static Constant *getXor(Constant *C1, Constant *C2); + static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS); + static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS); + static Constant *getVICmp(unsigned short pred, Constant *LHS, Constant *RHS); + static Constant *getVFCmp(unsigned short pred, Constant *LHS, Constant *RHS); + static Constant *getShl(Constant *C1, Constant *C2); + static Constant *getLShr(Constant *C1, Constant *C2); + static Constant *getAShr(Constant *C1, Constant *C2); + + /// Getelementptr form. std::vector<Value*> is only accepted for convenience: + /// all elements must be Constant's. + /// + static Constant *getGetElementPtr(Constant *C, + Constant* const *IdxList, unsigned NumIdx); + static Constant *getGetElementPtr(Constant *C, + Value* const *IdxList, unsigned NumIdx); + + static Constant *getExtractElement(Constant *Vec, Constant *Idx); + static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx); + static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask); + static Constant *getExtractValue(Constant *Agg, + const unsigned *IdxList, unsigned NumIdx); + static Constant *getInsertValue(Constant *Agg, Constant *Val, + const unsigned *IdxList, unsigned NumIdx); + + /// Floating point negation must be implemented with f(x) = -0.0 - x. This + /// method returns the negative zero constant for floating point or vector + /// floating point types; for all other types, it returns the null value. + static Constant *getZeroValueForNegationExpr(const Type *Ty); + + /// isNullValue - Return true if this is the value that would be returned by + /// getNullValue. + virtual bool isNullValue() const { return false; } + + /// getOpcode - Return the opcode at the root of this constant expression + unsigned getOpcode() const { return SubclassData; } + + /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is + /// not an ICMP or FCMP constant expression. + unsigned getPredicate() const; + + /// getIndices - Assert that this is an insertvalue or exactvalue + /// expression and return the list of indices. + const SmallVector<unsigned, 4> &getIndices() const; + + /// getOpcodeName - Return a string representation for an opcode. + const char *getOpcodeName() const; + + /// getWithOperandReplaced - Return a constant expression identical to this + /// one, but with the specified operand set to the specified value. + Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; + + /// getWithOperands - This returns the current constant expression with the + /// operands replaced with the specified values. The specified operands must + /// match count and type with the existing ones. + Constant *getWithOperands(const std::vector<Constant*> &Ops) const { + return getWithOperands(&Ops[0], (unsigned)Ops.size()); + } + Constant *getWithOperands(Constant* const *Ops, unsigned NumOps) const; + + virtual void destroyConstant(); + virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const ConstantExpr *) { return true; } + static inline bool classof(const Value *V) { + return V->getValueID() == ConstantExprVal; + } +}; + +template <> +struct OperandTraits<ConstantExpr> : VariadicOperandTraits<1> { +}; + +DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantExpr, Constant) + +//===----------------------------------------------------------------------===// +/// UndefValue - 'undef' values are things that do not have specified contents. +/// These are used for a variety of purposes, including global variable +/// initializers and operands to instructions. 'undef' values can occur with +/// any type. +/// +class UndefValue : public Constant { + friend struct ConstantCreator<UndefValue, Type, char>; + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT + UndefValue(const UndefValue &); // DO NOT IMPLEMENT +protected: + explicit UndefValue(const Type *T) : Constant(T, UndefValueVal, 0, 0) {} +protected: + // allocate space for exactly zero operands + void *operator new(size_t s) { + return User::operator new(s, 0); + } +public: + /// get() - Static factory methods - Return an 'undef' object of the specified + /// type. + /// + static UndefValue *get(const Type *T); + + /// isNullValue - Return true if this is the value that would be returned by + /// getNullValue. + virtual bool isNullValue() const { return false; } + + virtual void destroyConstant(); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const UndefValue *) { return true; } + static bool classof(const Value *V) { + return V->getValueID() == UndefValueVal; + } +}; + +//===----------------------------------------------------------------------===// +/// MDString - a single uniqued string. +/// These are used to efficiently contain a byte sequence for metadata. +/// +class MDString : public Constant { + MDString(const MDString &); // DO NOT IMPLEMENT + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT + MDString(const char *begin, const char *end); + + const char *StrBegin, *StrEnd; +protected: + // allocate space for exactly zero operands + void *operator new(size_t s) { + return User::operator new(s, 0); + } +public: + /// get() - Static factory methods - Return objects of the specified value. + /// + static MDString *get(const char *StrBegin, const char *StrEnd); + + /// size() - The length of this string. + /// + intptr_t size() const { return StrEnd - StrBegin; } + + /// begin() - Pointer to the first byte of the string. + /// + const char *begin() const { return StrBegin; } + + /// end() - Pointer to one byte past the end of the string. + /// + const char *end() const { return StrEnd; } + + /// getType() specialization - Type is always MetadataTy. + /// + inline const Type *getType() const { + return Type::MetadataTy; + } + + /// isNullValue - Return true if this is the value that would be returned by + /// getNullValue. This always returns false because getNullValue will never + /// produce metadata. + virtual bool isNullValue() const { + return false; + } + + virtual void destroyConstant(); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const MDString *) { return true; } + static bool classof(const Value *V) { + return V->getValueID() == MDStringVal; + } +}; + +} // End llvm namespace + +#endif |