summaryrefslogtreecommitdiffstats
path: root/include/llvm/Constants.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Constants.h')
-rw-r--r--include/llvm/Constants.h887
1 files changed, 887 insertions, 0 deletions
diff --git a/include/llvm/Constants.h b/include/llvm/Constants.h
new file mode 100644
index 0000000..9e95a08
--- /dev/null
+++ b/include/llvm/Constants.h
@@ -0,0 +1,887 @@
+//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// @file
+/// This file contains the declarations for the subclasses of Constant,
+/// which represent the different flavors of constant values that live in LLVM.
+/// Note that Constants are immutable (once created they never change) and are
+/// fully shared by structural equivalence. This means that two structurally
+/// equivalent constants will always have the same address. Constant's are
+/// created on demand as needed and never deleted: thus clients don't have to
+/// worry about the lifetime of the objects.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CONSTANTS_H
+#define LLVM_CONSTANTS_H
+
+#include "llvm/Constant.h"
+#include "llvm/Type.h"
+#include "llvm/OperandTraits.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/SmallVector.h"
+
+namespace llvm {
+
+class ArrayType;
+class StructType;
+class PointerType;
+class VectorType;
+
+template<class ConstantClass, class TypeClass, class ValType>
+struct ConstantCreator;
+template<class ConstantClass, class TypeClass>
+struct ConvertConstantType;
+
+//===----------------------------------------------------------------------===//
+/// This is the shared class of boolean and integer constants. This class
+/// represents both boolean and integral constants.
+/// @brief Class for constant integers.
+class ConstantInt : public Constant {
+ static ConstantInt *TheTrueVal, *TheFalseVal;
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+ ConstantInt(const ConstantInt &); // DO NOT IMPLEMENT
+ ConstantInt(const IntegerType *Ty, const APInt& V);
+ APInt Val;
+protected:
+ // allocate space for exactly zero operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 0);
+ }
+public:
+ /// Return the constant as an APInt value reference. This allows clients to
+ /// obtain a copy of the value, with all its precision in tact.
+ /// @brief Return the constant's value.
+ inline const APInt& getValue() const {
+ return Val;
+ }
+
+ /// getBitWidth - Return the bitwidth of this constant.
+ unsigned getBitWidth() const { return Val.getBitWidth(); }
+
+ /// Return the constant as a 64-bit unsigned integer value after it
+ /// has been zero extended as appropriate for the type of this constant. Note
+ /// that this method can assert if the value does not fit in 64 bits.
+ /// @deprecated
+ /// @brief Return the zero extended value.
+ inline uint64_t getZExtValue() const {
+ return Val.getZExtValue();
+ }
+
+ /// Return the constant as a 64-bit integer value after it has been sign
+ /// extended as appropriate for the type of this constant. Note that
+ /// this method can assert if the value does not fit in 64 bits.
+ /// @deprecated
+ /// @brief Return the sign extended value.
+ inline int64_t getSExtValue() const {
+ return Val.getSExtValue();
+ }
+
+ /// A helper method that can be used to determine if the constant contained
+ /// within is equal to a constant. This only works for very small values,
+ /// because this is all that can be represented with all types.
+ /// @brief Determine if this constant's value is same as an unsigned char.
+ bool equalsInt(uint64_t V) const {
+ return Val == V;
+ }
+
+ /// getTrue/getFalse - Return the singleton true/false values.
+ static inline ConstantInt *getTrue() {
+ if (TheTrueVal) return TheTrueVal;
+ return CreateTrueFalseVals(true);
+ }
+ static inline ConstantInt *getFalse() {
+ if (TheFalseVal) return TheFalseVal;
+ return CreateTrueFalseVals(false);
+ }
+
+ /// Return a ConstantInt with the specified value for the specified type. The
+ /// value V will be canonicalized to an unsigned APInt. Accessing it with
+ /// either getSExtValue() or getZExtValue() will yield a correctly sized and
+ /// signed value for the type Ty.
+ /// @brief Get a ConstantInt for a specific value.
+ static ConstantInt *get(const Type *Ty, uint64_t V, bool isSigned = false);
+
+ /// Return a ConstantInt with the specified value for the specified type. The
+ /// value V will be canonicalized to a an unsigned APInt. Accessing it with
+ /// either getSExtValue() or getZExtValue() will yield a correctly sized and
+ /// signed value for the type Ty.
+ /// @brief Get a ConstantInt for a specific signed value.
+ static ConstantInt *getSigned(const Type *Ty, int64_t V) {
+ return get(Ty, V, true);
+ }
+
+ /// Return a ConstantInt with the specified value and an implied Type. The
+ /// type is the integer type that corresponds to the bit width of the value.
+ static ConstantInt *get(const APInt &V);
+
+ /// getType - Specialize the getType() method to always return an IntegerType,
+ /// which reduces the amount of casting needed in parts of the compiler.
+ ///
+ inline const IntegerType *getType() const {
+ return reinterpret_cast<const IntegerType*>(Value::getType());
+ }
+
+ /// This static method returns true if the type Ty is big enough to
+ /// represent the value V. This can be used to avoid having the get method
+ /// assert when V is larger than Ty can represent. Note that there are two
+ /// versions of this method, one for unsigned and one for signed integers.
+ /// Although ConstantInt canonicalizes everything to an unsigned integer,
+ /// the signed version avoids callers having to convert a signed quantity
+ /// to the appropriate unsigned type before calling the method.
+ /// @returns true if V is a valid value for type Ty
+ /// @brief Determine if the value is in range for the given type.
+ static bool isValueValidForType(const Type *Ty, uint64_t V);
+ static bool isValueValidForType(const Type *Ty, int64_t V);
+
+ /// This function will return true iff this constant represents the "null"
+ /// value that would be returned by the getNullValue method.
+ /// @returns true if this is the null integer value.
+ /// @brief Determine if the value is null.
+ virtual bool isNullValue() const {
+ return Val == 0;
+ }
+
+ /// This is just a convenience method to make client code smaller for a
+ /// common code. It also correctly performs the comparison without the
+ /// potential for an assertion from getZExtValue().
+ bool isZero() const {
+ return Val == 0;
+ }
+
+ /// This is just a convenience method to make client code smaller for a
+ /// common case. It also correctly performs the comparison without the
+ /// potential for an assertion from getZExtValue().
+ /// @brief Determine if the value is one.
+ bool isOne() const {
+ return Val == 1;
+ }
+
+ /// This function will return true iff every bit in this constant is set
+ /// to true.
+ /// @returns true iff this constant's bits are all set to true.
+ /// @brief Determine if the value is all ones.
+ bool isAllOnesValue() const {
+ return Val.isAllOnesValue();
+ }
+
+ /// This function will return true iff this constant represents the largest
+ /// value that may be represented by the constant's type.
+ /// @returns true iff this is the largest value that may be represented
+ /// by this type.
+ /// @brief Determine if the value is maximal.
+ bool isMaxValue(bool isSigned) const {
+ if (isSigned)
+ return Val.isMaxSignedValue();
+ else
+ return Val.isMaxValue();
+ }
+
+ /// This function will return true iff this constant represents the smallest
+ /// value that may be represented by this constant's type.
+ /// @returns true if this is the smallest value that may be represented by
+ /// this type.
+ /// @brief Determine if the value is minimal.
+ bool isMinValue(bool isSigned) const {
+ if (isSigned)
+ return Val.isMinSignedValue();
+ else
+ return Val.isMinValue();
+ }
+
+ /// This function will return true iff this constant represents a value with
+ /// active bits bigger than 64 bits or a value greater than the given uint64_t
+ /// value.
+ /// @returns true iff this constant is greater or equal to the given number.
+ /// @brief Determine if the value is greater or equal to the given number.
+ bool uge(uint64_t Num) {
+ return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
+ }
+
+ /// getLimitedValue - If the value is smaller than the specified limit,
+ /// return it, otherwise return the limit value. This causes the value
+ /// to saturate to the limit.
+ /// @returns the min of the value of the constant and the specified value
+ /// @brief Get the constant's value with a saturation limit
+ uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
+ return Val.getLimitedValue(Limit);
+ }
+
+ /// @returns the value for an integer constant of the given type that has all
+ /// its bits set to true.
+ /// @brief Get the all ones value
+ static ConstantInt *getAllOnesValue(const Type *Ty);
+
+ /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
+ static inline bool classof(const ConstantInt *) { return true; }
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantIntVal;
+ }
+ static void ResetTrueFalse() { TheTrueVal = TheFalseVal = 0; }
+private:
+ static ConstantInt *CreateTrueFalseVals(bool WhichOne);
+};
+
+
+//===----------------------------------------------------------------------===//
+/// ConstantFP - Floating Point Values [float, double]
+///
+class ConstantFP : public Constant {
+ APFloat Val;
+ void *operator new(size_t, unsigned);// DO NOT IMPLEMENT
+ ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT
+protected:
+ ConstantFP(const Type *Ty, const APFloat& V);
+protected:
+ // allocate space for exactly zero operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 0);
+ }
+public:
+ /// get() - Static factory methods - Return objects of the specified value
+ static ConstantFP *get(const APFloat &V);
+
+ /// get() - This returns a constant fp for the specified value in the
+ /// specified type. This should only be used for simple constant values like
+ /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
+ static ConstantFP *get(const Type *Ty, double V);
+
+ /// isValueValidForType - return true if Ty is big enough to represent V.
+ static bool isValueValidForType(const Type *Ty, const APFloat& V);
+ inline const APFloat& getValueAPF() const { return Val; }
+
+ /// isNullValue - Return true if this is the value that would be returned by
+ /// getNullValue. Don't depend on == for doubles to tell us it's zero, it
+ /// considers -0.0 to be null as well as 0.0. :(
+ virtual bool isNullValue() const;
+
+ // Get a negative zero.
+ static ConstantFP *getNegativeZero(const Type* Ty);
+
+ /// isExactlyValue - We don't rely on operator== working on double values, as
+ /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
+ /// As such, this method can be used to do an exact bit-for-bit comparison of
+ /// two floating point values. The version with a double operand is retained
+ /// because it's so convenient to write isExactlyValue(2.0), but please use
+ /// it only for simple constants.
+ bool isExactlyValue(const APFloat& V) const;
+
+ bool isExactlyValue(double V) const {
+ bool ignored;
+ // convert is not supported on this type
+ if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
+ return false;
+ APFloat FV(V);
+ FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
+ return isExactlyValue(FV);
+ }
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const ConstantFP *) { return true; }
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantFPVal;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// ConstantAggregateZero - All zero aggregate value
+///
+class ConstantAggregateZero : public Constant {
+ friend struct ConstantCreator<ConstantAggregateZero, Type, char>;
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+ ConstantAggregateZero(const ConstantAggregateZero &); // DO NOT IMPLEMENT
+protected:
+ explicit ConstantAggregateZero(const Type *ty)
+ : Constant(ty, ConstantAggregateZeroVal, 0, 0) {}
+protected:
+ // allocate space for exactly zero operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 0);
+ }
+public:
+ /// get() - static factory method for creating a null aggregate. It is
+ /// illegal to call this method with a non-aggregate type.
+ static ConstantAggregateZero *get(const Type *Ty);
+
+ /// isNullValue - Return true if this is the value that would be returned by
+ /// getNullValue.
+ virtual bool isNullValue() const { return true; }
+
+ virtual void destroyConstant();
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ ///
+ static bool classof(const ConstantAggregateZero *) { return true; }
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantAggregateZeroVal;
+ }
+};
+
+
+//===----------------------------------------------------------------------===//
+/// ConstantArray - Constant Array Declarations
+///
+class ConstantArray : public Constant {
+ friend struct ConstantCreator<ConstantArray, ArrayType,
+ std::vector<Constant*> >;
+ ConstantArray(const ConstantArray &); // DO NOT IMPLEMENT
+protected:
+ ConstantArray(const ArrayType *T, const std::vector<Constant*> &Val);
+public:
+ /// get() - Static factory methods - Return objects of the specified value
+ static Constant *get(const ArrayType *T, const std::vector<Constant*> &);
+ static Constant *get(const ArrayType *T,
+ Constant*const*Vals, unsigned NumVals) {
+ // FIXME: make this the primary ctor method.
+ return get(T, std::vector<Constant*>(Vals, Vals+NumVals));
+ }
+
+ /// This method constructs a ConstantArray and initializes it with a text
+ /// string. The default behavior (AddNull==true) causes a null terminator to
+ /// be placed at the end of the array. This effectively increases the length
+ /// of the array by one (you've been warned). However, in some situations
+ /// this is not desired so if AddNull==false then the string is copied without
+ /// null termination.
+ static Constant *get(const std::string &Initializer, bool AddNull = true);
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
+
+ /// getType - Specialize the getType() method to always return an ArrayType,
+ /// which reduces the amount of casting needed in parts of the compiler.
+ ///
+ inline const ArrayType *getType() const {
+ return reinterpret_cast<const ArrayType*>(Value::getType());
+ }
+
+ /// isString - This method returns true if the array is an array of i8 and
+ /// the elements of the array are all ConstantInt's.
+ bool isString() const;
+
+ /// isCString - This method returns true if the array is a string (see
+ /// @verbatim
+ /// isString) and it ends in a null byte \0 and does not contains any other
+ /// @endverbatim
+ /// null bytes except its terminator.
+ bool isCString() const;
+
+ /// getAsString - If this array is isString(), then this method converts the
+ /// array to an std::string and returns it. Otherwise, it asserts out.
+ ///
+ std::string getAsString() const;
+
+ /// isNullValue - Return true if this is the value that would be returned by
+ /// getNullValue. This always returns false because zero arrays are always
+ /// created as ConstantAggregateZero objects.
+ virtual bool isNullValue() const { return false; }
+
+ virtual void destroyConstant();
+ virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const ConstantArray *) { return true; }
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantArrayVal;
+ }
+};
+
+template <>
+struct OperandTraits<ConstantArray> : VariadicOperandTraits<> {
+};
+
+DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantArray, Constant)
+
+//===----------------------------------------------------------------------===//
+// ConstantStruct - Constant Struct Declarations
+//
+class ConstantStruct : public Constant {
+ friend struct ConstantCreator<ConstantStruct, StructType,
+ std::vector<Constant*> >;
+ ConstantStruct(const ConstantStruct &); // DO NOT IMPLEMENT
+protected:
+ ConstantStruct(const StructType *T, const std::vector<Constant*> &Val);
+public:
+ /// get() - Static factory methods - Return objects of the specified value
+ ///
+ static Constant *get(const StructType *T, const std::vector<Constant*> &V);
+ static Constant *get(const std::vector<Constant*> &V, bool Packed = false);
+ static Constant *get(Constant*const* Vals, unsigned NumVals,
+ bool Packed = false) {
+ // FIXME: make this the primary ctor method.
+ return get(std::vector<Constant*>(Vals, Vals+NumVals), Packed);
+ }
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
+
+ /// getType() specialization - Reduce amount of casting...
+ ///
+ inline const StructType *getType() const {
+ return reinterpret_cast<const StructType*>(Value::getType());
+ }
+
+ /// isNullValue - Return true if this is the value that would be returned by
+ /// getNullValue. This always returns false because zero structs are always
+ /// created as ConstantAggregateZero objects.
+ virtual bool isNullValue() const {
+ return false;
+ }
+
+ virtual void destroyConstant();
+ virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const ConstantStruct *) { return true; }
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantStructVal;
+ }
+};
+
+template <>
+struct OperandTraits<ConstantStruct> : VariadicOperandTraits<> {
+};
+
+DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantStruct, Constant)
+
+//===----------------------------------------------------------------------===//
+/// ConstantVector - Constant Vector Declarations
+///
+class ConstantVector : public Constant {
+ friend struct ConstantCreator<ConstantVector, VectorType,
+ std::vector<Constant*> >;
+ ConstantVector(const ConstantVector &); // DO NOT IMPLEMENT
+protected:
+ ConstantVector(const VectorType *T, const std::vector<Constant*> &Val);
+public:
+ /// get() - Static factory methods - Return objects of the specified value
+ static Constant *get(const VectorType *T, const std::vector<Constant*> &);
+ static Constant *get(const std::vector<Constant*> &V);
+ static Constant *get(Constant*const* Vals, unsigned NumVals) {
+ // FIXME: make this the primary ctor method.
+ return get(std::vector<Constant*>(Vals, Vals+NumVals));
+ }
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
+
+ /// getType - Specialize the getType() method to always return a VectorType,
+ /// which reduces the amount of casting needed in parts of the compiler.
+ ///
+ inline const VectorType *getType() const {
+ return reinterpret_cast<const VectorType*>(Value::getType());
+ }
+
+ /// @returns the value for a vector integer constant of the given type that
+ /// has all its bits set to true.
+ /// @brief Get the all ones value
+ static ConstantVector *getAllOnesValue(const VectorType *Ty);
+
+ /// isNullValue - Return true if this is the value that would be returned by
+ /// getNullValue. This always returns false because zero vectors are always
+ /// created as ConstantAggregateZero objects.
+ virtual bool isNullValue() const { return false; }
+
+ /// This function will return true iff every element in this vector constant
+ /// is set to all ones.
+ /// @returns true iff this constant's emements are all set to all ones.
+ /// @brief Determine if the value is all ones.
+ bool isAllOnesValue() const;
+
+ /// getSplatValue - If this is a splat constant, meaning that all of the
+ /// elements have the same value, return that value. Otherwise return NULL.
+ Constant *getSplatValue();
+
+ virtual void destroyConstant();
+ virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const ConstantVector *) { return true; }
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantVectorVal;
+ }
+};
+
+template <>
+struct OperandTraits<ConstantVector> : VariadicOperandTraits<> {
+};
+
+DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantVector, Constant)
+
+//===----------------------------------------------------------------------===//
+/// ConstantPointerNull - a constant pointer value that points to null
+///
+class ConstantPointerNull : public Constant {
+ friend struct ConstantCreator<ConstantPointerNull, PointerType, char>;
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+ ConstantPointerNull(const ConstantPointerNull &); // DO NOT IMPLEMENT
+protected:
+ explicit ConstantPointerNull(const PointerType *T)
+ : Constant(reinterpret_cast<const Type*>(T),
+ Value::ConstantPointerNullVal, 0, 0) {}
+
+protected:
+ // allocate space for exactly zero operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 0);
+ }
+public:
+ /// get() - Static factory methods - Return objects of the specified value
+ static ConstantPointerNull *get(const PointerType *T);
+
+ /// isNullValue - Return true if this is the value that would be returned by
+ /// getNullValue.
+ virtual bool isNullValue() const { return true; }
+
+ virtual void destroyConstant();
+
+ /// getType - Specialize the getType() method to always return an PointerType,
+ /// which reduces the amount of casting needed in parts of the compiler.
+ ///
+ inline const PointerType *getType() const {
+ return reinterpret_cast<const PointerType*>(Value::getType());
+ }
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const ConstantPointerNull *) { return true; }
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantPointerNullVal;
+ }
+};
+
+
+/// ConstantExpr - a constant value that is initialized with an expression using
+/// other constant values.
+///
+/// This class uses the standard Instruction opcodes to define the various
+/// constant expressions. The Opcode field for the ConstantExpr class is
+/// maintained in the Value::SubclassData field.
+class ConstantExpr : public Constant {
+ friend struct ConstantCreator<ConstantExpr,Type,
+ std::pair<unsigned, std::vector<Constant*> > >;
+ friend struct ConvertConstantType<ConstantExpr, Type>;
+
+protected:
+ ConstantExpr(const Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
+ : Constant(ty, ConstantExprVal, Ops, NumOps) {
+ // Operation type (an Instruction opcode) is stored as the SubclassData.
+ SubclassData = Opcode;
+ }
+
+ // These private methods are used by the type resolution code to create
+ // ConstantExprs in intermediate forms.
+ static Constant *getTy(const Type *Ty, unsigned Opcode,
+ Constant *C1, Constant *C2);
+ static Constant *getCompareTy(unsigned short pred, Constant *C1,
+ Constant *C2);
+ static Constant *getSelectTy(const Type *Ty,
+ Constant *C1, Constant *C2, Constant *C3);
+ static Constant *getGetElementPtrTy(const Type *Ty, Constant *C,
+ Value* const *Idxs, unsigned NumIdxs);
+ static Constant *getExtractElementTy(const Type *Ty, Constant *Val,
+ Constant *Idx);
+ static Constant *getInsertElementTy(const Type *Ty, Constant *Val,
+ Constant *Elt, Constant *Idx);
+ static Constant *getShuffleVectorTy(const Type *Ty, Constant *V1,
+ Constant *V2, Constant *Mask);
+ static Constant *getExtractValueTy(const Type *Ty, Constant *Agg,
+ const unsigned *Idxs, unsigned NumIdxs);
+ static Constant *getInsertValueTy(const Type *Ty, Constant *Agg,
+ Constant *Val,
+ const unsigned *Idxs, unsigned NumIdxs);
+
+public:
+ // Static methods to construct a ConstantExpr of different kinds. Note that
+ // these methods may return a object that is not an instance of the
+ // ConstantExpr class, because they will attempt to fold the constant
+ // expression into something simpler if possible.
+
+ /// Cast constant expr
+ ///
+ static Constant *getTrunc (Constant *C, const Type *Ty);
+ static Constant *getSExt (Constant *C, const Type *Ty);
+ static Constant *getZExt (Constant *C, const Type *Ty);
+ static Constant *getFPTrunc (Constant *C, const Type *Ty);
+ static Constant *getFPExtend(Constant *C, const Type *Ty);
+ static Constant *getUIToFP (Constant *C, const Type *Ty);
+ static Constant *getSIToFP (Constant *C, const Type *Ty);
+ static Constant *getFPToUI (Constant *C, const Type *Ty);
+ static Constant *getFPToSI (Constant *C, const Type *Ty);
+ static Constant *getPtrToInt(Constant *C, const Type *Ty);
+ static Constant *getIntToPtr(Constant *C, const Type *Ty);
+ static Constant *getBitCast (Constant *C, const Type *Ty);
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
+
+ // @brief Convenience function for getting one of the casting operations
+ // using a CastOps opcode.
+ static Constant *getCast(
+ unsigned ops, ///< The opcode for the conversion
+ Constant *C, ///< The constant to be converted
+ const Type *Ty ///< The type to which the constant is converted
+ );
+
+ // @brief Create a ZExt or BitCast cast constant expression
+ static Constant *getZExtOrBitCast(
+ Constant *C, ///< The constant to zext or bitcast
+ const Type *Ty ///< The type to zext or bitcast C to
+ );
+
+ // @brief Create a SExt or BitCast cast constant expression
+ static Constant *getSExtOrBitCast(
+ Constant *C, ///< The constant to sext or bitcast
+ const Type *Ty ///< The type to sext or bitcast C to
+ );
+
+ // @brief Create a Trunc or BitCast cast constant expression
+ static Constant *getTruncOrBitCast(
+ Constant *C, ///< The constant to trunc or bitcast
+ const Type *Ty ///< The type to trunc or bitcast C to
+ );
+
+ /// @brief Create a BitCast or a PtrToInt cast constant expression
+ static Constant *getPointerCast(
+ Constant *C, ///< The pointer value to be casted (operand 0)
+ const Type *Ty ///< The type to which cast should be made
+ );
+
+ /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
+ static Constant *getIntegerCast(
+ Constant *C, ///< The integer constant to be casted
+ const Type *Ty, ///< The integer type to cast to
+ bool isSigned ///< Whether C should be treated as signed or not
+ );
+
+ /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
+ static Constant *getFPCast(
+ Constant *C, ///< The integer constant to be casted
+ const Type *Ty ///< The integer type to cast to
+ );
+
+ /// @brief Return true if this is a convert constant expression
+ bool isCast() const;
+
+ /// @brief Return true if this is a compare constant expression
+ bool isCompare() const;
+
+ /// @brief Return true if this is an insertvalue or extractvalue expression,
+ /// and the getIndices() method may be used.
+ bool hasIndices() const;
+
+ /// Select constant expr
+ ///
+ static Constant *getSelect(Constant *C, Constant *V1, Constant *V2) {
+ return getSelectTy(V1->getType(), C, V1, V2);
+ }
+
+ /// getAlignOf constant expr - computes the alignment of a type in a target
+ /// independent way (Note: the return type is an i32; Note: assumes that i8
+ /// is byte aligned).
+ ///
+ static Constant *getAlignOf(const Type *Ty);
+
+ /// getSizeOf constant expr - computes the size of a type in a target
+ /// independent way (Note: the return type is an i64).
+ ///
+ static Constant *getSizeOf(const Type *Ty);
+
+ /// ConstantExpr::get - Return a binary or shift operator constant expression,
+ /// folding if possible.
+ ///
+ static Constant *get(unsigned Opcode, Constant *C1, Constant *C2);
+
+ /// @brief Return an ICmp, FCmp, VICmp, or VFCmp comparison operator constant
+ /// expression.
+ static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2);
+
+ /// ConstantExpr::get* - Return some common constants without having to
+ /// specify the full Instruction::OPCODE identifier.
+ ///
+ static Constant *getNeg(Constant *C);
+ static Constant *getNot(Constant *C);
+ static Constant *getAdd(Constant *C1, Constant *C2);
+ static Constant *getSub(Constant *C1, Constant *C2);
+ static Constant *getMul(Constant *C1, Constant *C2);
+ static Constant *getUDiv(Constant *C1, Constant *C2);
+ static Constant *getSDiv(Constant *C1, Constant *C2);
+ static Constant *getFDiv(Constant *C1, Constant *C2);
+ static Constant *getURem(Constant *C1, Constant *C2); // unsigned rem
+ static Constant *getSRem(Constant *C1, Constant *C2); // signed rem
+ static Constant *getFRem(Constant *C1, Constant *C2);
+ static Constant *getAnd(Constant *C1, Constant *C2);
+ static Constant *getOr(Constant *C1, Constant *C2);
+ static Constant *getXor(Constant *C1, Constant *C2);
+ static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS);
+ static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS);
+ static Constant *getVICmp(unsigned short pred, Constant *LHS, Constant *RHS);
+ static Constant *getVFCmp(unsigned short pred, Constant *LHS, Constant *RHS);
+ static Constant *getShl(Constant *C1, Constant *C2);
+ static Constant *getLShr(Constant *C1, Constant *C2);
+ static Constant *getAShr(Constant *C1, Constant *C2);
+
+ /// Getelementptr form. std::vector<Value*> is only accepted for convenience:
+ /// all elements must be Constant's.
+ ///
+ static Constant *getGetElementPtr(Constant *C,
+ Constant* const *IdxList, unsigned NumIdx);
+ static Constant *getGetElementPtr(Constant *C,
+ Value* const *IdxList, unsigned NumIdx);
+
+ static Constant *getExtractElement(Constant *Vec, Constant *Idx);
+ static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx);
+ static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask);
+ static Constant *getExtractValue(Constant *Agg,
+ const unsigned *IdxList, unsigned NumIdx);
+ static Constant *getInsertValue(Constant *Agg, Constant *Val,
+ const unsigned *IdxList, unsigned NumIdx);
+
+ /// Floating point negation must be implemented with f(x) = -0.0 - x. This
+ /// method returns the negative zero constant for floating point or vector
+ /// floating point types; for all other types, it returns the null value.
+ static Constant *getZeroValueForNegationExpr(const Type *Ty);
+
+ /// isNullValue - Return true if this is the value that would be returned by
+ /// getNullValue.
+ virtual bool isNullValue() const { return false; }
+
+ /// getOpcode - Return the opcode at the root of this constant expression
+ unsigned getOpcode() const { return SubclassData; }
+
+ /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
+ /// not an ICMP or FCMP constant expression.
+ unsigned getPredicate() const;
+
+ /// getIndices - Assert that this is an insertvalue or exactvalue
+ /// expression and return the list of indices.
+ const SmallVector<unsigned, 4> &getIndices() const;
+
+ /// getOpcodeName - Return a string representation for an opcode.
+ const char *getOpcodeName() const;
+
+ /// getWithOperandReplaced - Return a constant expression identical to this
+ /// one, but with the specified operand set to the specified value.
+ Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
+
+ /// getWithOperands - This returns the current constant expression with the
+ /// operands replaced with the specified values. The specified operands must
+ /// match count and type with the existing ones.
+ Constant *getWithOperands(const std::vector<Constant*> &Ops) const {
+ return getWithOperands(&Ops[0], (unsigned)Ops.size());
+ }
+ Constant *getWithOperands(Constant* const *Ops, unsigned NumOps) const;
+
+ virtual void destroyConstant();
+ virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const ConstantExpr *) { return true; }
+ static inline bool classof(const Value *V) {
+ return V->getValueID() == ConstantExprVal;
+ }
+};
+
+template <>
+struct OperandTraits<ConstantExpr> : VariadicOperandTraits<1> {
+};
+
+DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantExpr, Constant)
+
+//===----------------------------------------------------------------------===//
+/// UndefValue - 'undef' values are things that do not have specified contents.
+/// These are used for a variety of purposes, including global variable
+/// initializers and operands to instructions. 'undef' values can occur with
+/// any type.
+///
+class UndefValue : public Constant {
+ friend struct ConstantCreator<UndefValue, Type, char>;
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+ UndefValue(const UndefValue &); // DO NOT IMPLEMENT
+protected:
+ explicit UndefValue(const Type *T) : Constant(T, UndefValueVal, 0, 0) {}
+protected:
+ // allocate space for exactly zero operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 0);
+ }
+public:
+ /// get() - Static factory methods - Return an 'undef' object of the specified
+ /// type.
+ ///
+ static UndefValue *get(const Type *T);
+
+ /// isNullValue - Return true if this is the value that would be returned by
+ /// getNullValue.
+ virtual bool isNullValue() const { return false; }
+
+ virtual void destroyConstant();
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const UndefValue *) { return true; }
+ static bool classof(const Value *V) {
+ return V->getValueID() == UndefValueVal;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// MDString - a single uniqued string.
+/// These are used to efficiently contain a byte sequence for metadata.
+///
+class MDString : public Constant {
+ MDString(const MDString &); // DO NOT IMPLEMENT
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+ MDString(const char *begin, const char *end);
+
+ const char *StrBegin, *StrEnd;
+protected:
+ // allocate space for exactly zero operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 0);
+ }
+public:
+ /// get() - Static factory methods - Return objects of the specified value.
+ ///
+ static MDString *get(const char *StrBegin, const char *StrEnd);
+
+ /// size() - The length of this string.
+ ///
+ intptr_t size() const { return StrEnd - StrBegin; }
+
+ /// begin() - Pointer to the first byte of the string.
+ ///
+ const char *begin() const { return StrBegin; }
+
+ /// end() - Pointer to one byte past the end of the string.
+ ///
+ const char *end() const { return StrEnd; }
+
+ /// getType() specialization - Type is always MetadataTy.
+ ///
+ inline const Type *getType() const {
+ return Type::MetadataTy;
+ }
+
+ /// isNullValue - Return true if this is the value that would be returned by
+ /// getNullValue. This always returns false because getNullValue will never
+ /// produce metadata.
+ virtual bool isNullValue() const {
+ return false;
+ }
+
+ virtual void destroyConstant();
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const MDString *) { return true; }
+ static bool classof(const Value *V) {
+ return V->getValueID() == MDStringVal;
+ }
+};
+
+} // End llvm namespace
+
+#endif
OpenPOWER on IntegriCloud