diff options
Diffstat (limited to 'include/llvm/CodeGen/SelectionDAGNodes.h')
-rw-r--r-- | include/llvm/CodeGen/SelectionDAGNodes.h | 2568 |
1 files changed, 2568 insertions, 0 deletions
diff --git a/include/llvm/CodeGen/SelectionDAGNodes.h b/include/llvm/CodeGen/SelectionDAGNodes.h new file mode 100644 index 0000000..ad48510 --- /dev/null +++ b/include/llvm/CodeGen/SelectionDAGNodes.h @@ -0,0 +1,2568 @@ +//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file declares the SDNode class and derived classes, which are used to +// represent the nodes and operations present in a SelectionDAG. These nodes +// and operations are machine code level operations, with some similarities to +// the GCC RTL representation. +// +// Clients should include the SelectionDAG.h file instead of this file directly. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H +#define LLVM_CODEGEN_SELECTIONDAGNODES_H + +#include "llvm/Constants.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/iterator.h" +#include "llvm/ADT/ilist_node.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/RecyclingAllocator.h" +#include "llvm/Support/DataTypes.h" +#include "llvm/CodeGen/DebugLoc.h" +#include <cassert> +#include <climits> + +namespace llvm { + +class SelectionDAG; +class GlobalValue; +class MachineBasicBlock; +class MachineConstantPoolValue; +class SDNode; +class Value; +template <typename T> struct DenseMapInfo; +template <typename T> struct simplify_type; +template <typename T> struct ilist_traits; + +/// SDVTList - This represents a list of ValueType's that has been intern'd by +/// a SelectionDAG. Instances of this simple value class are returned by +/// SelectionDAG::getVTList(...). +/// +struct SDVTList { + const MVT *VTs; + unsigned int NumVTs; +}; + +/// ISD namespace - This namespace contains an enum which represents all of the +/// SelectionDAG node types and value types. +/// +namespace ISD { + + //===--------------------------------------------------------------------===// + /// ISD::NodeType enum - This enum defines the target-independent operators + /// for a SelectionDAG. + /// + /// Targets may also define target-dependent operator codes for SDNodes. For + /// example, on x86, these are the enum values in the X86ISD namespace. + /// Targets should aim to use target-independent operators to model their + /// instruction sets as much as possible, and only use target-dependent + /// operators when they have special requirements. + /// + /// Finally, during and after selection proper, SNodes may use special + /// operator codes that correspond directly with MachineInstr opcodes. These + /// are used to represent selected instructions. See the isMachineOpcode() + /// and getMachineOpcode() member functions of SDNode. + /// + enum NodeType { + // DELETED_NODE - This is an illegal value that is used to catch + // errors. This opcode is not a legal opcode for any node. + DELETED_NODE, + + // EntryToken - This is the marker used to indicate the start of the region. + EntryToken, + + // TokenFactor - This node takes multiple tokens as input and produces a + // single token result. This is used to represent the fact that the operand + // operators are independent of each other. + TokenFactor, + + // AssertSext, AssertZext - These nodes record if a register contains a + // value that has already been zero or sign extended from a narrower type. + // These nodes take two operands. The first is the node that has already + // been extended, and the second is a value type node indicating the width + // of the extension + AssertSext, AssertZext, + + // Various leaf nodes. + BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register, + Constant, ConstantFP, + GlobalAddress, GlobalTLSAddress, FrameIndex, + JumpTable, ConstantPool, ExternalSymbol, + + // The address of the GOT + GLOBAL_OFFSET_TABLE, + + // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and + // llvm.returnaddress on the DAG. These nodes take one operand, the index + // of the frame or return address to return. An index of zero corresponds + // to the current function's frame or return address, an index of one to the + // parent's frame or return address, and so on. + FRAMEADDR, RETURNADDR, + + // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to + // first (possible) on-stack argument. This is needed for correct stack + // adjustment during unwind. + FRAME_TO_ARGS_OFFSET, + + // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the + // address of the exception block on entry to an landing pad block. + EXCEPTIONADDR, + + // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents + // the selection index of the exception thrown. + EHSELECTION, + + // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents + // 'eh_return' gcc dwarf builtin, which is used to return from + // exception. The general meaning is: adjust stack by OFFSET and pass + // execution to HANDLER. Many platform-related details also :) + EH_RETURN, + + // TargetConstant* - Like Constant*, but the DAG does not do any folding or + // simplification of the constant. + TargetConstant, + TargetConstantFP, + + // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or + // anything else with this node, and this is valid in the target-specific + // dag, turning into a GlobalAddress operand. + TargetGlobalAddress, + TargetGlobalTLSAddress, + TargetFrameIndex, + TargetJumpTable, + TargetConstantPool, + TargetExternalSymbol, + + /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) + /// This node represents a target intrinsic function with no side effects. + /// The first operand is the ID number of the intrinsic from the + /// llvm::Intrinsic namespace. The operands to the intrinsic follow. The + /// node has returns the result of the intrinsic. + INTRINSIC_WO_CHAIN, + + /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) + /// This node represents a target intrinsic function with side effects that + /// returns a result. The first operand is a chain pointer. The second is + /// the ID number of the intrinsic from the llvm::Intrinsic namespace. The + /// operands to the intrinsic follow. The node has two results, the result + /// of the intrinsic and an output chain. + INTRINSIC_W_CHAIN, + + /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) + /// This node represents a target intrinsic function with side effects that + /// does not return a result. The first operand is a chain pointer. The + /// second is the ID number of the intrinsic from the llvm::Intrinsic + /// namespace. The operands to the intrinsic follow. + INTRINSIC_VOID, + + // CopyToReg - This node has three operands: a chain, a register number to + // set to this value, and a value. + CopyToReg, + + // CopyFromReg - This node indicates that the input value is a virtual or + // physical register that is defined outside of the scope of this + // SelectionDAG. The register is available from the RegisterSDNode object. + CopyFromReg, + + // UNDEF - An undefined node + UNDEF, + + /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node + /// represents the formal arguments for a function. CC# is a Constant value + /// indicating the calling convention of the function, and ISVARARG is a + /// flag that indicates whether the function is varargs or not. This node + /// has one result value for each incoming argument, plus one for the output + /// chain. It must be custom legalized. See description of CALL node for + /// FLAG argument contents explanation. + /// + FORMAL_ARGUMENTS, + + /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CALLEE, + /// ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn) + /// This node represents a fully general function call, before the legalizer + /// runs. This has one result value for each argument / flag pair, plus + /// a chain result. It must be custom legalized. Flag argument indicates + /// misc. argument attributes. Currently: + /// Bit 0 - signness + /// Bit 1 - 'inreg' attribute + /// Bit 2 - 'sret' attribute + /// Bit 4 - 'byval' attribute + /// Bit 5 - 'nest' attribute + /// Bit 6-9 - alignment of byval structures + /// Bit 10-26 - size of byval structures + /// Bits 31:27 - argument ABI alignment in the first argument piece and + /// alignment '1' in other argument pieces. + /// + /// CALL nodes use the CallSDNode subclass of SDNode, which + /// additionally carries information about the calling convention, + /// whether the call is varargs, and if it's marked as a tail call. + /// + CALL, + + // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by + // a Constant, which is required to be operand #1) half of the integer or + // float value specified as operand #0. This is only for use before + // legalization, for values that will be broken into multiple registers. + EXTRACT_ELEMENT, + + // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given + // two values of the same integer value type, this produces a value twice as + // big. Like EXTRACT_ELEMENT, this can only be used before legalization. + BUILD_PAIR, + + // MERGE_VALUES - This node takes multiple discrete operands and returns + // them all as its individual results. This nodes has exactly the same + // number of inputs and outputs, and is only valid before legalization. + // This node is useful for some pieces of the code generator that want to + // think about a single node with multiple results, not multiple nodes. + MERGE_VALUES, + + // Simple integer binary arithmetic operators. + ADD, SUB, MUL, SDIV, UDIV, SREM, UREM, + + // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing + // a signed/unsigned value of type i[2*N], and return the full value as + // two results, each of type iN. + SMUL_LOHI, UMUL_LOHI, + + // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and + // remainder result. + SDIVREM, UDIVREM, + + // CARRY_FALSE - This node is used when folding other nodes, + // like ADDC/SUBC, which indicate the carry result is always false. + CARRY_FALSE, + + // Carry-setting nodes for multiple precision addition and subtraction. + // These nodes take two operands of the same value type, and produce two + // results. The first result is the normal add or sub result, the second + // result is the carry flag result. + ADDC, SUBC, + + // Carry-using nodes for multiple precision addition and subtraction. These + // nodes take three operands: The first two are the normal lhs and rhs to + // the add or sub, and the third is the input carry flag. These nodes + // produce two results; the normal result of the add or sub, and the output + // carry flag. These nodes both read and write a carry flag to allow them + // to them to be chained together for add and sub of arbitrarily large + // values. + ADDE, SUBE, + + // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition. + // These nodes take two operands: the normal LHS and RHS to the add. They + // produce two results: the normal result of the add, and a boolean that + // indicates if an overflow occured (*not* a flag, because it may be stored + // to memory, etc.). If the type of the boolean is not i1 then the high + // bits conform to getBooleanContents. + // These nodes are generated from the llvm.[su]add.with.overflow intrinsics. + SADDO, UADDO, + + // Same for subtraction + SSUBO, USUBO, + + // Same for multiplication + SMULO, UMULO, + + // Simple binary floating point operators. + FADD, FSUB, FMUL, FDIV, FREM, + + // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This + // DAG node does not require that X and Y have the same type, just that they + // are both floating point. X and the result must have the same type. + // FCOPYSIGN(f32, f64) is allowed. + FCOPYSIGN, + + // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point + // value as an integer 0/1 value. + FGETSIGN, + + /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the + /// specified, possibly variable, elements. The number of elements is + /// required to be a power of two. The types of the operands must all be + /// the same and must match the vector element type, except that integer + /// types are allowed to be larger than the element type, in which case + /// the operands are implicitly truncated. + BUILD_VECTOR, + + /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element + /// at IDX replaced with VAL. If the type of VAL is larger than the vector + /// element type then VAL is truncated before replacement. + INSERT_VECTOR_ELT, + + /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR + /// identified by the (potentially variable) element number IDX. + EXTRACT_VECTOR_ELT, + + /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of + /// vector type with the same length and element type, this produces a + /// concatenated vector result value, with length equal to the sum of the + /// lengths of the input vectors. + CONCAT_VECTORS, + + /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an + /// vector value) starting with the (potentially variable) element number + /// IDX, which must be a multiple of the result vector length. + EXTRACT_SUBVECTOR, + + /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as + /// VEC1/VEC2. A VECTOR_SHUFFLE node also contains an array of constant int + /// values that indicate which value (or undef) each result element will + /// get. These constant ints are accessible through the + /// ShuffleVectorSDNode class. This is quite similar to the Altivec + /// 'vperm' instruction, except that the indices must be constants and are + /// in terms of the element size of VEC1/VEC2, not in terms of bytes. + VECTOR_SHUFFLE, + + /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a + /// scalar value into element 0 of the resultant vector type. The top + /// elements 1 to N-1 of the N-element vector are undefined. The type + /// of the operand must match the vector element type, except when they + /// are integer types. In this case the operand is allowed to be wider + /// than the vector element type, and is implicitly truncated to it. + SCALAR_TO_VECTOR, + + // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing + // an unsigned/signed value of type i[2*N], then return the top part. + MULHU, MULHS, + + // Bitwise operators - logical and, logical or, logical xor, shift left, + // shift right algebraic (shift in sign bits), shift right logical (shift in + // zeroes), rotate left, rotate right, and byteswap. + AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP, + + // Counting operators + CTTZ, CTLZ, CTPOP, + + // Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not + // i1 then the high bits must conform to getBooleanContents. + SELECT, + + // Select with condition operator - This selects between a true value and + // a false value (ops #2 and #3) based on the boolean result of comparing + // the lhs and rhs (ops #0 and #1) of a conditional expression with the + // condition code in op #4, a CondCodeSDNode. + SELECT_CC, + + // SetCC operator - This evaluates to a true value iff the condition is + // true. If the result value type is not i1 then the high bits conform + // to getBooleanContents. The operands to this are the left and right + // operands to compare (ops #0, and #1) and the condition code to compare + // them with (op #2) as a CondCodeSDNode. + SETCC, + + // Vector SetCC operator - This evaluates to a vector of integer elements + // with the high bit in each element set to true if the comparison is true + // and false if the comparison is false. All other bits in each element + // are undefined. The operands to this are the left and right operands + // to compare (ops #0, and #1) and the condition code to compare them with + // (op #2) as a CondCodeSDNode. + VSETCC, + + // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded + // integer shift operations, just like ADD/SUB_PARTS. The operation + // ordering is: + // [Lo,Hi] = op [LoLHS,HiLHS], Amt + SHL_PARTS, SRA_PARTS, SRL_PARTS, + + // Conversion operators. These are all single input single output + // operations. For all of these, the result type must be strictly + // wider or narrower (depending on the operation) than the source + // type. + + // SIGN_EXTEND - Used for integer types, replicating the sign bit + // into new bits. + SIGN_EXTEND, + + // ZERO_EXTEND - Used for integer types, zeroing the new bits. + ZERO_EXTEND, + + // ANY_EXTEND - Used for integer types. The high bits are undefined. + ANY_EXTEND, + + // TRUNCATE - Completely drop the high bits. + TRUNCATE, + + // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign + // depends on the first letter) to floating point. + SINT_TO_FP, + UINT_TO_FP, + + // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to + // sign extend a small value in a large integer register (e.g. sign + // extending the low 8 bits of a 32-bit register to fill the top 24 bits + // with the 7th bit). The size of the smaller type is indicated by the 1th + // operand, a ValueType node. + SIGN_EXTEND_INREG, + + /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned + /// integer. + FP_TO_SINT, + FP_TO_UINT, + + /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type + /// down to the precision of the destination VT. TRUNC is a flag, which is + /// always an integer that is zero or one. If TRUNC is 0, this is a + /// normal rounding, if it is 1, this FP_ROUND is known to not change the + /// value of Y. + /// + /// The TRUNC = 1 case is used in cases where we know that the value will + /// not be modified by the node, because Y is not using any of the extra + /// precision of source type. This allows certain transformations like + /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for + /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed. + FP_ROUND, + + // FLT_ROUNDS_ - Returns current rounding mode: + // -1 Undefined + // 0 Round to 0 + // 1 Round to nearest + // 2 Round to +inf + // 3 Round to -inf + FLT_ROUNDS_, + + /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and + /// rounds it to a floating point value. It then promotes it and returns it + /// in a register of the same size. This operation effectively just + /// discards excess precision. The type to round down to is specified by + /// the VT operand, a VTSDNode. + FP_ROUND_INREG, + + /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type. + FP_EXTEND, + + // BIT_CONVERT - Theis operator converts between integer and FP values, as + // if one was stored to memory as integer and the other was loaded from the + // same address (or equivalently for vector format conversions, etc). The + // source and result are required to have the same bit size (e.g. + // f32 <-> i32). This can also be used for int-to-int or fp-to-fp + // conversions, but that is a noop, deleted by getNode(). + BIT_CONVERT, + + // CONVERT_RNDSAT - This operator is used to support various conversions + // between various types (float, signed, unsigned and vectors of those + // types) with rounding and saturation. NOTE: Avoid using this operator as + // most target don't support it and the operator might be removed in the + // future. It takes the following arguments: + // 0) value + // 1) dest type (type to convert to) + // 2) src type (type to convert from) + // 3) rounding imm + // 4) saturation imm + // 5) ISD::CvtCode indicating the type of conversion to do + CONVERT_RNDSAT, + + // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW, + // FLOG, FLOG2, FLOG10, FEXP, FEXP2, + // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating + // point operations. These are inspired by libm. + FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW, + FLOG, FLOG2, FLOG10, FEXP, FEXP2, + FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR, + + // LOAD and STORE have token chains as their first operand, then the same + // operands as an LLVM load/store instruction, then an offset node that + // is added / subtracted from the base pointer to form the address (for + // indexed memory ops). + LOAD, STORE, + + // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned + // to a specified boundary. This node always has two return values: a new + // stack pointer value and a chain. The first operand is the token chain, + // the second is the number of bytes to allocate, and the third is the + // alignment boundary. The size is guaranteed to be a multiple of the stack + // alignment, and the alignment is guaranteed to be bigger than the stack + // alignment (if required) or 0 to get standard stack alignment. + DYNAMIC_STACKALLOC, + + // Control flow instructions. These all have token chains. + + // BR - Unconditional branch. The first operand is the chain + // operand, the second is the MBB to branch to. + BR, + + // BRIND - Indirect branch. The first operand is the chain, the second + // is the value to branch to, which must be of the same type as the target's + // pointer type. + BRIND, + + // BR_JT - Jumptable branch. The first operand is the chain, the second + // is the jumptable index, the last one is the jumptable entry index. + BR_JT, + + // BRCOND - Conditional branch. The first operand is the chain, the + // second is the condition, the third is the block to branch to if the + // condition is true. If the type of the condition is not i1, then the + // high bits must conform to getBooleanContents. + BRCOND, + + // BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in + // that the condition is represented as condition code, and two nodes to + // compare, rather than as a combined SetCC node. The operands in order are + // chain, cc, lhs, rhs, block to branch to if condition is true. + BR_CC, + + // RET - Return from function. The first operand is the chain, + // and any subsequent operands are pairs of return value and return value + // attributes (see CALL for description of attributes) for the function. + // This operation can have variable number of operands. + RET, + + // INLINEASM - Represents an inline asm block. This node always has two + // return values: a chain and a flag result. The inputs are as follows: + // Operand #0 : Input chain. + // Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string. + // Operand #2n+2: A RegisterNode. + // Operand #2n+3: A TargetConstant, indicating if the reg is a use/def + // Operand #last: Optional, an incoming flag. + INLINEASM, + + // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track + // locations needed for debug and exception handling tables. These nodes + // take a chain as input and return a chain. + DBG_LABEL, + EH_LABEL, + + // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track + // local variable declarations for debugging information. First operand is + // a chain, while the next two operands are first two arguments (address + // and variable) of a llvm.dbg.declare instruction. + DECLARE, + + // STACKSAVE - STACKSAVE has one operand, an input chain. It produces a + // value, the same type as the pointer type for the system, and an output + // chain. + STACKSAVE, + + // STACKRESTORE has two operands, an input chain and a pointer to restore to + // it returns an output chain. + STACKRESTORE, + + // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of + // a call sequence, and carry arbitrary information that target might want + // to know. The first operand is a chain, the rest are specified by the + // target and not touched by the DAG optimizers. + // CALLSEQ_START..CALLSEQ_END pairs may not be nested. + CALLSEQ_START, // Beginning of a call sequence + CALLSEQ_END, // End of a call sequence + + // VAARG - VAARG has three operands: an input chain, a pointer, and a + // SRCVALUE. It returns a pair of values: the vaarg value and a new chain. + VAARG, + + // VACOPY - VACOPY has five operands: an input chain, a destination pointer, + // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the + // source. + VACOPY, + + // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a + // pointer, and a SRCVALUE. + VAEND, VASTART, + + // SRCVALUE - This is a node type that holds a Value* that is used to + // make reference to a value in the LLVM IR. + SRCVALUE, + + // MEMOPERAND - This is a node that contains a MachineMemOperand which + // records information about a memory reference. This is used to make + // AliasAnalysis queries from the backend. + MEMOPERAND, + + // PCMARKER - This corresponds to the pcmarker intrinsic. + PCMARKER, + + // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic. + // The only operand is a chain and a value and a chain are produced. The + // value is the contents of the architecture specific cycle counter like + // register (or other high accuracy low latency clock source) + READCYCLECOUNTER, + + // HANDLENODE node - Used as a handle for various purposes. + HANDLENODE, + + // DBG_STOPPOINT - This node is used to represent a source location for + // debug info. It takes token chain as input, and carries a line number, + // column number, and a pointer to a CompileUnit object identifying + // the containing compilation unit. It produces a token chain as output. + DBG_STOPPOINT, + + // DEBUG_LOC - This node is used to represent source line information + // embedded in the code. It takes a token chain as input, then a line + // number, then a column then a file id (provided by MachineModuleInfo.) It + // produces a token chain as output. + DEBUG_LOC, + + // TRAMPOLINE - This corresponds to the init_trampoline intrinsic. + // It takes as input a token chain, the pointer to the trampoline, + // the pointer to the nested function, the pointer to pass for the + // 'nest' parameter, a SRCVALUE for the trampoline and another for + // the nested function (allowing targets to access the original + // Function*). It produces the result of the intrinsic and a token + // chain as output. + TRAMPOLINE, + + // TRAP - Trapping instruction + TRAP, + + // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are + // their first operand. The other operands are the address to prefetch, + // read / write specifier, and locality specifier. + PREFETCH, + + // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load, + // store-store, device) + // This corresponds to the memory.barrier intrinsic. + // it takes an input chain, 4 operands to specify the type of barrier, an + // operand specifying if the barrier applies to device and uncached memory + // and produces an output chain. + MEMBARRIER, + + // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) + // this corresponds to the atomic.lcs intrinsic. + // cmp is compared to *ptr, and if equal, swap is stored in *ptr. + // the return is always the original value in *ptr + ATOMIC_CMP_SWAP, + + // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) + // this corresponds to the atomic.swap intrinsic. + // amt is stored to *ptr atomically. + // the return is always the original value in *ptr + ATOMIC_SWAP, + + // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt) + // this corresponds to the atomic.load.[OpName] intrinsic. + // op(*ptr, amt) is stored to *ptr atomically. + // the return is always the original value in *ptr + ATOMIC_LOAD_ADD, + ATOMIC_LOAD_SUB, + ATOMIC_LOAD_AND, + ATOMIC_LOAD_OR, + ATOMIC_LOAD_XOR, + ATOMIC_LOAD_NAND, + ATOMIC_LOAD_MIN, + ATOMIC_LOAD_MAX, + ATOMIC_LOAD_UMIN, + ATOMIC_LOAD_UMAX, + + // BUILTIN_OP_END - This must be the last enum value in this list. + BUILTIN_OP_END + }; + + /// Node predicates + + /// isBuildVectorAllOnes - Return true if the specified node is a + /// BUILD_VECTOR where all of the elements are ~0 or undef. + bool isBuildVectorAllOnes(const SDNode *N); + + /// isBuildVectorAllZeros - Return true if the specified node is a + /// BUILD_VECTOR where all of the elements are 0 or undef. + bool isBuildVectorAllZeros(const SDNode *N); + + /// isScalarToVector - Return true if the specified node is a + /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low + /// element is not an undef. + bool isScalarToVector(const SDNode *N); + + /// isDebugLabel - Return true if the specified node represents a debug + /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node). + bool isDebugLabel(const SDNode *N); + + //===--------------------------------------------------------------------===// + /// MemIndexedMode enum - This enum defines the load / store indexed + /// addressing modes. + /// + /// UNINDEXED "Normal" load / store. The effective address is already + /// computed and is available in the base pointer. The offset + /// operand is always undefined. In addition to producing a + /// chain, an unindexed load produces one value (result of the + /// load); an unindexed store does not produce a value. + /// + /// PRE_INC Similar to the unindexed mode where the effective address is + /// PRE_DEC the value of the base pointer add / subtract the offset. + /// It considers the computation as being folded into the load / + /// store operation (i.e. the load / store does the address + /// computation as well as performing the memory transaction). + /// The base operand is always undefined. In addition to + /// producing a chain, pre-indexed load produces two values + /// (result of the load and the result of the address + /// computation); a pre-indexed store produces one value (result + /// of the address computation). + /// + /// POST_INC The effective address is the value of the base pointer. The + /// POST_DEC value of the offset operand is then added to / subtracted + /// from the base after memory transaction. In addition to + /// producing a chain, post-indexed load produces two values + /// (the result of the load and the result of the base +/- offset + /// computation); a post-indexed store produces one value (the + /// the result of the base +/- offset computation). + /// + enum MemIndexedMode { + UNINDEXED = 0, + PRE_INC, + PRE_DEC, + POST_INC, + POST_DEC, + LAST_INDEXED_MODE + }; + + //===--------------------------------------------------------------------===// + /// LoadExtType enum - This enum defines the three variants of LOADEXT + /// (load with extension). + /// + /// SEXTLOAD loads the integer operand and sign extends it to a larger + /// integer result type. + /// ZEXTLOAD loads the integer operand and zero extends it to a larger + /// integer result type. + /// EXTLOAD is used for three things: floating point extending loads, + /// integer extending loads [the top bits are undefined], and vector + /// extending loads [load into low elt]. + /// + enum LoadExtType { + NON_EXTLOAD = 0, + EXTLOAD, + SEXTLOAD, + ZEXTLOAD, + LAST_LOADEXT_TYPE + }; + + //===--------------------------------------------------------------------===// + /// ISD::CondCode enum - These are ordered carefully to make the bitfields + /// below work out, when considering SETFALSE (something that never exists + /// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered + /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal + /// to. If the "N" column is 1, the result of the comparison is undefined if + /// the input is a NAN. + /// + /// All of these (except for the 'always folded ops') should be handled for + /// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT, + /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used. + /// + /// Note that these are laid out in a specific order to allow bit-twiddling + /// to transform conditions. + enum CondCode { + // Opcode N U L G E Intuitive operation + SETFALSE, // 0 0 0 0 Always false (always folded) + SETOEQ, // 0 0 0 1 True if ordered and equal + SETOGT, // 0 0 1 0 True if ordered and greater than + SETOGE, // 0 0 1 1 True if ordered and greater than or equal + SETOLT, // 0 1 0 0 True if ordered and less than + SETOLE, // 0 1 0 1 True if ordered and less than or equal + SETONE, // 0 1 1 0 True if ordered and operands are unequal + SETO, // 0 1 1 1 True if ordered (no nans) + SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y) + SETUEQ, // 1 0 0 1 True if unordered or equal + SETUGT, // 1 0 1 0 True if unordered or greater than + SETUGE, // 1 0 1 1 True if unordered, greater than, or equal + SETULT, // 1 1 0 0 True if unordered or less than + SETULE, // 1 1 0 1 True if unordered, less than, or equal + SETUNE, // 1 1 1 0 True if unordered or not equal + SETTRUE, // 1 1 1 1 Always true (always folded) + // Don't care operations: undefined if the input is a nan. + SETFALSE2, // 1 X 0 0 0 Always false (always folded) + SETEQ, // 1 X 0 0 1 True if equal + SETGT, // 1 X 0 1 0 True if greater than + SETGE, // 1 X 0 1 1 True if greater than or equal + SETLT, // 1 X 1 0 0 True if less than + SETLE, // 1 X 1 0 1 True if less than or equal + SETNE, // 1 X 1 1 0 True if not equal + SETTRUE2, // 1 X 1 1 1 Always true (always folded) + + SETCC_INVALID // Marker value. + }; + + /// isSignedIntSetCC - Return true if this is a setcc instruction that + /// performs a signed comparison when used with integer operands. + inline bool isSignedIntSetCC(CondCode Code) { + return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE; + } + + /// isUnsignedIntSetCC - Return true if this is a setcc instruction that + /// performs an unsigned comparison when used with integer operands. + inline bool isUnsignedIntSetCC(CondCode Code) { + return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE; + } + + /// isTrueWhenEqual - Return true if the specified condition returns true if + /// the two operands to the condition are equal. Note that if one of the two + /// operands is a NaN, this value is meaningless. + inline bool isTrueWhenEqual(CondCode Cond) { + return ((int)Cond & 1) != 0; + } + + /// getUnorderedFlavor - This function returns 0 if the condition is always + /// false if an operand is a NaN, 1 if the condition is always true if the + /// operand is a NaN, and 2 if the condition is undefined if the operand is a + /// NaN. + inline unsigned getUnorderedFlavor(CondCode Cond) { + return ((int)Cond >> 3) & 3; + } + + /// getSetCCInverse - Return the operation corresponding to !(X op Y), where + /// 'op' is a valid SetCC operation. + CondCode getSetCCInverse(CondCode Operation, bool isInteger); + + /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) + /// when given the operation for (X op Y). + CondCode getSetCCSwappedOperands(CondCode Operation); + + /// getSetCCOrOperation - Return the result of a logical OR between different + /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This + /// function returns SETCC_INVALID if it is not possible to represent the + /// resultant comparison. + CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger); + + /// getSetCCAndOperation - Return the result of a logical AND between + /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This + /// function returns SETCC_INVALID if it is not possible to represent the + /// resultant comparison. + CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger); + + //===--------------------------------------------------------------------===// + /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT + /// supports. + enum CvtCode { + CVT_FF, // Float from Float + CVT_FS, // Float from Signed + CVT_FU, // Float from Unsigned + CVT_SF, // Signed from Float + CVT_UF, // Unsigned from Float + CVT_SS, // Signed from Signed + CVT_SU, // Signed from Unsigned + CVT_US, // Unsigned from Signed + CVT_UU, // Unsigned from Unsigned + CVT_INVALID // Marker - Invalid opcode + }; +} // end llvm::ISD namespace + + +//===----------------------------------------------------------------------===// +/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple +/// values as the result of a computation. Many nodes return multiple values, +/// from loads (which define a token and a return value) to ADDC (which returns +/// a result and a carry value), to calls (which may return an arbitrary number +/// of values). +/// +/// As such, each use of a SelectionDAG computation must indicate the node that +/// computes it as well as which return value to use from that node. This pair +/// of information is represented with the SDValue value type. +/// +class SDValue { + SDNode *Node; // The node defining the value we are using. + unsigned ResNo; // Which return value of the node we are using. +public: + SDValue() : Node(0), ResNo(0) {} + SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {} + + /// get the index which selects a specific result in the SDNode + unsigned getResNo() const { return ResNo; } + + /// get the SDNode which holds the desired result + SDNode *getNode() const { return Node; } + + /// set the SDNode + void setNode(SDNode *N) { Node = N; } + + bool operator==(const SDValue &O) const { + return Node == O.Node && ResNo == O.ResNo; + } + bool operator!=(const SDValue &O) const { + return !operator==(O); + } + bool operator<(const SDValue &O) const { + return Node < O.Node || (Node == O.Node && ResNo < O.ResNo); + } + + SDValue getValue(unsigned R) const { + return SDValue(Node, R); + } + + // isOperandOf - Return true if this node is an operand of N. + bool isOperandOf(SDNode *N) const; + + /// getValueType - Return the ValueType of the referenced return value. + /// + inline MVT getValueType() const; + + /// getValueSizeInBits - Returns the size of the value in bits. + /// + unsigned getValueSizeInBits() const { + return getValueType().getSizeInBits(); + } + + // Forwarding methods - These forward to the corresponding methods in SDNode. + inline unsigned getOpcode() const; + inline unsigned getNumOperands() const; + inline const SDValue &getOperand(unsigned i) const; + inline uint64_t getConstantOperandVal(unsigned i) const; + inline bool isTargetOpcode() const; + inline bool isMachineOpcode() const; + inline unsigned getMachineOpcode() const; + inline const DebugLoc getDebugLoc() const; + + + /// reachesChainWithoutSideEffects - Return true if this operand (which must + /// be a chain) reaches the specified operand without crossing any + /// side-effecting instructions. In practice, this looks through token + /// factors and non-volatile loads. In order to remain efficient, this only + /// looks a couple of nodes in, it does not do an exhaustive search. + bool reachesChainWithoutSideEffects(SDValue Dest, + unsigned Depth = 2) const; + + /// use_empty - Return true if there are no nodes using value ResNo + /// of Node. + /// + inline bool use_empty() const; + + /// hasOneUse - Return true if there is exactly one node using value + /// ResNo of Node. + /// + inline bool hasOneUse() const; +}; + + +template<> struct DenseMapInfo<SDValue> { + static inline SDValue getEmptyKey() { + return SDValue((SDNode*)-1, -1U); + } + static inline SDValue getTombstoneKey() { + return SDValue((SDNode*)-1, 0); + } + static unsigned getHashValue(const SDValue &Val) { + return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^ + (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo(); + } + static bool isEqual(const SDValue &LHS, const SDValue &RHS) { + return LHS == RHS; + } + static bool isPod() { return true; } +}; + +/// simplify_type specializations - Allow casting operators to work directly on +/// SDValues as if they were SDNode*'s. +template<> struct simplify_type<SDValue> { + typedef SDNode* SimpleType; + static SimpleType getSimplifiedValue(const SDValue &Val) { + return static_cast<SimpleType>(Val.getNode()); + } +}; +template<> struct simplify_type<const SDValue> { + typedef SDNode* SimpleType; + static SimpleType getSimplifiedValue(const SDValue &Val) { + return static_cast<SimpleType>(Val.getNode()); + } +}; + +/// SDUse - Represents a use of a SDNode. This class holds an SDValue, +/// which records the SDNode being used and the result number, a +/// pointer to the SDNode using the value, and Next and Prev pointers, +/// which link together all the uses of an SDNode. +/// +class SDUse { + /// Val - The value being used. + SDValue Val; + /// User - The user of this value. + SDNode *User; + /// Prev, Next - Pointers to the uses list of the SDNode referred by + /// this operand. + SDUse **Prev, *Next; + + SDUse(const SDUse &U); // Do not implement + void operator=(const SDUse &U); // Do not implement + +public: + SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {} + + /// Normally SDUse will just implicitly convert to an SDValue that it holds. + operator const SDValue&() const { return Val; } + + /// If implicit conversion to SDValue doesn't work, the get() method returns + /// the SDValue. + const SDValue &get() const { return Val; } + + /// getUser - This returns the SDNode that contains this Use. + SDNode *getUser() { return User; } + + /// getNext - Get the next SDUse in the use list. + SDUse *getNext() const { return Next; } + + /// getNode - Convenience function for get().getNode(). + SDNode *getNode() const { return Val.getNode(); } + /// getResNo - Convenience function for get().getResNo(). + unsigned getResNo() const { return Val.getResNo(); } + /// getValueType - Convenience function for get().getValueType(). + MVT getValueType() const { return Val.getValueType(); } + + /// operator== - Convenience function for get().operator== + bool operator==(const SDValue &V) const { + return Val == V; + } + + /// operator!= - Convenience function for get().operator!= + bool operator!=(const SDValue &V) const { + return Val != V; + } + + /// operator< - Convenience function for get().operator< + bool operator<(const SDValue &V) const { + return Val < V; + } + +private: + friend class SelectionDAG; + friend class SDNode; + + void setUser(SDNode *p) { User = p; } + + /// set - Remove this use from its existing use list, assign it the + /// given value, and add it to the new value's node's use list. + inline void set(const SDValue &V); + /// setInitial - like set, but only supports initializing a newly-allocated + /// SDUse with a non-null value. + inline void setInitial(const SDValue &V); + /// setNode - like set, but only sets the Node portion of the value, + /// leaving the ResNo portion unmodified. + inline void setNode(SDNode *N); + + void addToList(SDUse **List) { + Next = *List; + if (Next) Next->Prev = &Next; + Prev = List; + *List = this; + } + + void removeFromList() { + *Prev = Next; + if (Next) Next->Prev = Prev; + } +}; + +/// simplify_type specializations - Allow casting operators to work directly on +/// SDValues as if they were SDNode*'s. +template<> struct simplify_type<SDUse> { + typedef SDNode* SimpleType; + static SimpleType getSimplifiedValue(const SDUse &Val) { + return static_cast<SimpleType>(Val.getNode()); + } +}; +template<> struct simplify_type<const SDUse> { + typedef SDNode* SimpleType; + static SimpleType getSimplifiedValue(const SDUse &Val) { + return static_cast<SimpleType>(Val.getNode()); + } +}; + + +/// SDNode - Represents one node in the SelectionDAG. +/// +class SDNode : public FoldingSetNode, public ilist_node<SDNode> { +private: + /// NodeType - The operation that this node performs. + /// + short NodeType; + + /// OperandsNeedDelete - This is true if OperandList was new[]'d. If true, + /// then they will be delete[]'d when the node is destroyed. + unsigned short OperandsNeedDelete : 1; + +protected: + /// SubclassData - This member is defined by this class, but is not used for + /// anything. Subclasses can use it to hold whatever state they find useful. + /// This field is initialized to zero by the ctor. + unsigned short SubclassData : 15; + +private: + /// NodeId - Unique id per SDNode in the DAG. + int NodeId; + + /// OperandList - The values that are used by this operation. + /// + SDUse *OperandList; + + /// ValueList - The types of the values this node defines. SDNode's may + /// define multiple values simultaneously. + const MVT *ValueList; + + /// UseList - List of uses for this SDNode. + SDUse *UseList; + + /// NumOperands/NumValues - The number of entries in the Operand/Value list. + unsigned short NumOperands, NumValues; + + /// debugLoc - source line information. + DebugLoc debugLoc; + + /// getValueTypeList - Return a pointer to the specified value type. + static const MVT *getValueTypeList(MVT VT); + + friend class SelectionDAG; + friend struct ilist_traits<SDNode>; + +public: + //===--------------------------------------------------------------------===// + // Accessors + // + + /// getOpcode - Return the SelectionDAG opcode value for this node. For + /// pre-isel nodes (those for which isMachineOpcode returns false), these + /// are the opcode values in the ISD and <target>ISD namespaces. For + /// post-isel opcodes, see getMachineOpcode. + unsigned getOpcode() const { return (unsigned short)NodeType; } + + /// isTargetOpcode - Test if this node has a target-specific opcode (in the + /// \<target\>ISD namespace). + bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; } + + /// isMachineOpcode - Test if this node has a post-isel opcode, directly + /// corresponding to a MachineInstr opcode. + bool isMachineOpcode() const { return NodeType < 0; } + + /// getMachineOpcode - This may only be called if isMachineOpcode returns + /// true. It returns the MachineInstr opcode value that the node's opcode + /// corresponds to. + unsigned getMachineOpcode() const { + assert(isMachineOpcode() && "Not a MachineInstr opcode!"); + return ~NodeType; + } + + /// use_empty - Return true if there are no uses of this node. + /// + bool use_empty() const { return UseList == NULL; } + + /// hasOneUse - Return true if there is exactly one use of this node. + /// + bool hasOneUse() const { + return !use_empty() && next(use_begin()) == use_end(); + } + + /// use_size - Return the number of uses of this node. This method takes + /// time proportional to the number of uses. + /// + size_t use_size() const { return std::distance(use_begin(), use_end()); } + + /// getNodeId - Return the unique node id. + /// + int getNodeId() const { return NodeId; } + + /// setNodeId - Set unique node id. + void setNodeId(int Id) { NodeId = Id; } + + /// getDebugLoc - Return the source location info. + const DebugLoc getDebugLoc() const { return debugLoc; } + + /// setDebugLoc - Set source location info. Try to avoid this, putting + /// it in the constructor is preferable. + void setDebugLoc(const DebugLoc dl) { debugLoc = dl; } + + /// use_iterator - This class provides iterator support for SDUse + /// operands that use a specific SDNode. + class use_iterator + : public forward_iterator<SDUse, ptrdiff_t> { + SDUse *Op; + explicit use_iterator(SDUse *op) : Op(op) { + } + friend class SDNode; + public: + typedef forward_iterator<SDUse, ptrdiff_t>::reference reference; + typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer; + + use_iterator(const use_iterator &I) : Op(I.Op) {} + use_iterator() : Op(0) {} + + bool operator==(const use_iterator &x) const { + return Op == x.Op; + } + bool operator!=(const use_iterator &x) const { + return !operator==(x); + } + + /// atEnd - return true if this iterator is at the end of uses list. + bool atEnd() const { return Op == 0; } + + // Iterator traversal: forward iteration only. + use_iterator &operator++() { // Preincrement + assert(Op && "Cannot increment end iterator!"); + Op = Op->getNext(); + return *this; + } + + use_iterator operator++(int) { // Postincrement + use_iterator tmp = *this; ++*this; return tmp; + } + + /// Retrieve a pointer to the current user node. + SDNode *operator*() const { + assert(Op && "Cannot dereference end iterator!"); + return Op->getUser(); + } + + SDNode *operator->() const { return operator*(); } + + SDUse &getUse() const { return *Op; } + + /// getOperandNo - Retrieve the operand # of this use in its user. + /// + unsigned getOperandNo() const { + assert(Op && "Cannot dereference end iterator!"); + return (unsigned)(Op - Op->getUser()->OperandList); + } + }; + + /// use_begin/use_end - Provide iteration support to walk over all uses + /// of an SDNode. + + use_iterator use_begin() const { + return use_iterator(UseList); + } + + static use_iterator use_end() { return use_iterator(0); } + + + /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the + /// indicated value. This method ignores uses of other values defined by this + /// operation. + bool hasNUsesOfValue(unsigned NUses, unsigned Value) const; + + /// hasAnyUseOfValue - Return true if there are any use of the indicated + /// value. This method ignores uses of other values defined by this operation. + bool hasAnyUseOfValue(unsigned Value) const; + + /// isOnlyUserOf - Return true if this node is the only use of N. + /// + bool isOnlyUserOf(SDNode *N) const; + + /// isOperandOf - Return true if this node is an operand of N. + /// + bool isOperandOf(SDNode *N) const; + + /// isPredecessorOf - Return true if this node is a predecessor of N. This + /// node is either an operand of N or it can be reached by recursively + /// traversing up the operands. + /// NOTE: this is an expensive method. Use it carefully. + bool isPredecessorOf(SDNode *N) const; + + /// getNumOperands - Return the number of values used by this operation. + /// + unsigned getNumOperands() const { return NumOperands; } + + /// getConstantOperandVal - Helper method returns the integer value of a + /// ConstantSDNode operand. + uint64_t getConstantOperandVal(unsigned Num) const; + + const SDValue &getOperand(unsigned Num) const { + assert(Num < NumOperands && "Invalid child # of SDNode!"); + return OperandList[Num]; + } + + typedef SDUse* op_iterator; + op_iterator op_begin() const { return OperandList; } + op_iterator op_end() const { return OperandList+NumOperands; } + + SDVTList getVTList() const { + SDVTList X = { ValueList, NumValues }; + return X; + }; + + /// getFlaggedNode - If this node has a flag operand, return the node + /// to which the flag operand points. Otherwise return NULL. + SDNode *getFlaggedNode() const { + if (getNumOperands() != 0 && + getOperand(getNumOperands()-1).getValueType() == MVT::Flag) + return getOperand(getNumOperands()-1).getNode(); + return 0; + } + + // If this is a pseudo op, like copyfromreg, look to see if there is a + // real target node flagged to it. If so, return the target node. + const SDNode *getFlaggedMachineNode() const { + const SDNode *FoundNode = this; + + // Climb up flag edges until a machine-opcode node is found, or the + // end of the chain is reached. + while (!FoundNode->isMachineOpcode()) { + const SDNode *N = FoundNode->getFlaggedNode(); + if (!N) break; + FoundNode = N; + } + + return FoundNode; + } + + /// getNumValues - Return the number of values defined/returned by this + /// operator. + /// + unsigned getNumValues() const { return NumValues; } + + /// getValueType - Return the type of a specified result. + /// + MVT getValueType(unsigned ResNo) const { + assert(ResNo < NumValues && "Illegal result number!"); + return ValueList[ResNo]; + } + + /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)). + /// + unsigned getValueSizeInBits(unsigned ResNo) const { + return getValueType(ResNo).getSizeInBits(); + } + + typedef const MVT* value_iterator; + value_iterator value_begin() const { return ValueList; } + value_iterator value_end() const { return ValueList+NumValues; } + + /// getOperationName - Return the opcode of this operation for printing. + /// + std::string getOperationName(const SelectionDAG *G = 0) const; + static const char* getIndexedModeName(ISD::MemIndexedMode AM); + void print_types(raw_ostream &OS, const SelectionDAG *G) const; + void print_details(raw_ostream &OS, const SelectionDAG *G) const; + void print(raw_ostream &OS, const SelectionDAG *G = 0) const; + void printr(raw_ostream &OS, const SelectionDAG *G = 0) const; + void dump() const; + void dumpr() const; + void dump(const SelectionDAG *G) const; + + static bool classof(const SDNode *) { return true; } + + /// Profile - Gather unique data for the node. + /// + void Profile(FoldingSetNodeID &ID) const; + + /// addUse - This method should only be used by the SDUse class. + /// + void addUse(SDUse &U) { U.addToList(&UseList); } + +protected: + static SDVTList getSDVTList(MVT VT) { + SDVTList Ret = { getValueTypeList(VT), 1 }; + return Ret; + } + + SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops, + unsigned NumOps) + : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0), + NodeId(-1), + OperandList(NumOps ? new SDUse[NumOps] : 0), + ValueList(VTs.VTs), UseList(NULL), + NumOperands(NumOps), NumValues(VTs.NumVTs), + debugLoc(dl) { + for (unsigned i = 0; i != NumOps; ++i) { + OperandList[i].setUser(this); + OperandList[i].setInitial(Ops[i]); + } + } + + /// This constructor adds no operands itself; operands can be + /// set later with InitOperands. + SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs) + : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0), + NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL), + NumOperands(0), NumValues(VTs.NumVTs), + debugLoc(dl) {} + + /// InitOperands - Initialize the operands list of this with 1 operand. + void InitOperands(SDUse *Ops, const SDValue &Op0) { + Ops[0].setUser(this); + Ops[0].setInitial(Op0); + NumOperands = 1; + OperandList = Ops; + } + + /// InitOperands - Initialize the operands list of this with 2 operands. + void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) { + Ops[0].setUser(this); + Ops[0].setInitial(Op0); + Ops[1].setUser(this); + Ops[1].setInitial(Op1); + NumOperands = 2; + OperandList = Ops; + } + + /// InitOperands - Initialize the operands list of this with 3 operands. + void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1, + const SDValue &Op2) { + Ops[0].setUser(this); + Ops[0].setInitial(Op0); + Ops[1].setUser(this); + Ops[1].setInitial(Op1); + Ops[2].setUser(this); + Ops[2].setInitial(Op2); + NumOperands = 3; + OperandList = Ops; + } + + /// InitOperands - Initialize the operands list of this with 4 operands. + void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1, + const SDValue &Op2, const SDValue &Op3) { + Ops[0].setUser(this); + Ops[0].setInitial(Op0); + Ops[1].setUser(this); + Ops[1].setInitial(Op1); + Ops[2].setUser(this); + Ops[2].setInitial(Op2); + Ops[3].setUser(this); + Ops[3].setInitial(Op3); + NumOperands = 4; + OperandList = Ops; + } + + /// InitOperands - Initialize the operands list of this with N operands. + void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) { + for (unsigned i = 0; i != N; ++i) { + Ops[i].setUser(this); + Ops[i].setInitial(Vals[i]); + } + NumOperands = N; + OperandList = Ops; + } + + /// DropOperands - Release the operands and set this node to have + /// zero operands. + void DropOperands(); +}; + + +// Define inline functions from the SDValue class. + +inline unsigned SDValue::getOpcode() const { + return Node->getOpcode(); +} +inline MVT SDValue::getValueType() const { + return Node->getValueType(ResNo); +} +inline unsigned SDValue::getNumOperands() const { + return Node->getNumOperands(); +} +inline const SDValue &SDValue::getOperand(unsigned i) const { + return Node->getOperand(i); +} +inline uint64_t SDValue::getConstantOperandVal(unsigned i) const { + return Node->getConstantOperandVal(i); +} +inline bool SDValue::isTargetOpcode() const { + return Node->isTargetOpcode(); +} +inline bool SDValue::isMachineOpcode() const { + return Node->isMachineOpcode(); +} +inline unsigned SDValue::getMachineOpcode() const { + return Node->getMachineOpcode(); +} +inline bool SDValue::use_empty() const { + return !Node->hasAnyUseOfValue(ResNo); +} +inline bool SDValue::hasOneUse() const { + return Node->hasNUsesOfValue(1, ResNo); +} +inline const DebugLoc SDValue::getDebugLoc() const { + return Node->getDebugLoc(); +} + +// Define inline functions from the SDUse class. + +inline void SDUse::set(const SDValue &V) { + if (Val.getNode()) removeFromList(); + Val = V; + if (V.getNode()) V.getNode()->addUse(*this); +} + +inline void SDUse::setInitial(const SDValue &V) { + Val = V; + V.getNode()->addUse(*this); +} + +inline void SDUse::setNode(SDNode *N) { + if (Val.getNode()) removeFromList(); + Val.setNode(N); + if (N) N->addUse(*this); +} + +/// UnarySDNode - This class is used for single-operand SDNodes. This is solely +/// to allow co-allocation of node operands with the node itself. +class UnarySDNode : public SDNode { + SDUse Op; +public: + UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X) + : SDNode(Opc, dl, VTs) { + InitOperands(&Op, X); + } +}; + +/// BinarySDNode - This class is used for two-operand SDNodes. This is solely +/// to allow co-allocation of node operands with the node itself. +class BinarySDNode : public SDNode { + SDUse Ops[2]; +public: + BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y) + : SDNode(Opc, dl, VTs) { + InitOperands(Ops, X, Y); + } +}; + +/// TernarySDNode - This class is used for three-operand SDNodes. This is solely +/// to allow co-allocation of node operands with the node itself. +class TernarySDNode : public SDNode { + SDUse Ops[3]; +public: + TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y, + SDValue Z) + : SDNode(Opc, dl, VTs) { + InitOperands(Ops, X, Y, Z); + } +}; + + +/// HandleSDNode - This class is used to form a handle around another node that +/// is persistant and is updated across invocations of replaceAllUsesWith on its +/// operand. This node should be directly created by end-users and not added to +/// the AllNodes list. +class HandleSDNode : public SDNode { + SDUse Op; +public: + // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is + // fixed. +#ifdef __GNUC__ + explicit __attribute__((__noinline__)) HandleSDNode(SDValue X) +#else + explicit HandleSDNode(SDValue X) +#endif + : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(), + getSDVTList(MVT::Other)) { + InitOperands(&Op, X); + } + ~HandleSDNode(); + const SDValue &getValue() const { return Op; } +}; + +/// Abstact virtual class for operations for memory operations +class MemSDNode : public SDNode { +private: + // MemoryVT - VT of in-memory value. + MVT MemoryVT; + + //! SrcValue - Memory location for alias analysis. + const Value *SrcValue; + + //! SVOffset - Memory location offset. Note that base is defined in MemSDNode + int SVOffset; + +public: + MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT MemoryVT, + const Value *srcValue, int SVOff, + unsigned alignment, bool isvolatile); + + MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops, + unsigned NumOps, MVT MemoryVT, const Value *srcValue, int SVOff, + unsigned alignment, bool isvolatile); + + /// Returns alignment and volatility of the memory access + unsigned getAlignment() const { return (1u << (SubclassData >> 6)) >> 1; } + bool isVolatile() const { return (SubclassData >> 5) & 1; } + + /// getRawSubclassData - Return the SubclassData value, which contains an + /// encoding of the alignment and volatile information, as well as bits + /// used by subclasses. This function should only be used to compute a + /// FoldingSetNodeID value. + unsigned getRawSubclassData() const { + return SubclassData; + } + + /// Returns the SrcValue and offset that describes the location of the access + const Value *getSrcValue() const { return SrcValue; } + int getSrcValueOffset() const { return SVOffset; } + + /// getMemoryVT - Return the type of the in-memory value. + MVT getMemoryVT() const { return MemoryVT; } + + /// getMemOperand - Return a MachineMemOperand object describing the memory + /// reference performed by operation. + MachineMemOperand getMemOperand() const; + + const SDValue &getChain() const { return getOperand(0); } + const SDValue &getBasePtr() const { + return getOperand(getOpcode() == ISD::STORE ? 2 : 1); + } + + // Methods to support isa and dyn_cast + static bool classof(const MemSDNode *) { return true; } + static bool classof(const SDNode *N) { + // For some targets, we lower some target intrinsics to a MemIntrinsicNode + // with either an intrinsic or a target opcode. + return N->getOpcode() == ISD::LOAD || + N->getOpcode() == ISD::STORE || + N->getOpcode() == ISD::ATOMIC_CMP_SWAP || + N->getOpcode() == ISD::ATOMIC_SWAP || + N->getOpcode() == ISD::ATOMIC_LOAD_ADD || + N->getOpcode() == ISD::ATOMIC_LOAD_SUB || + N->getOpcode() == ISD::ATOMIC_LOAD_AND || + N->getOpcode() == ISD::ATOMIC_LOAD_OR || + N->getOpcode() == ISD::ATOMIC_LOAD_XOR || + N->getOpcode() == ISD::ATOMIC_LOAD_NAND || + N->getOpcode() == ISD::ATOMIC_LOAD_MIN || + N->getOpcode() == ISD::ATOMIC_LOAD_MAX || + N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || + N->getOpcode() == ISD::ATOMIC_LOAD_UMAX || + N->getOpcode() == ISD::INTRINSIC_W_CHAIN || + N->getOpcode() == ISD::INTRINSIC_VOID || + N->isTargetOpcode(); + } +}; + +/// AtomicSDNode - A SDNode reprenting atomic operations. +/// +class AtomicSDNode : public MemSDNode { + SDUse Ops[4]; + +public: + // Opc: opcode for atomic + // VTL: value type list + // Chain: memory chain for operaand + // Ptr: address to update as a SDValue + // Cmp: compare value + // Swp: swap value + // SrcVal: address to update as a Value (used for MemOperand) + // Align: alignment of memory + AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, MVT MemVT, + SDValue Chain, SDValue Ptr, + SDValue Cmp, SDValue Swp, const Value* SrcVal, + unsigned Align=0) + : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0, + Align, /*isVolatile=*/true) { + InitOperands(Ops, Chain, Ptr, Cmp, Swp); + } + AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, MVT MemVT, + SDValue Chain, SDValue Ptr, + SDValue Val, const Value* SrcVal, unsigned Align=0) + : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0, + Align, /*isVolatile=*/true) { + InitOperands(Ops, Chain, Ptr, Val); + } + + const SDValue &getBasePtr() const { return getOperand(1); } + const SDValue &getVal() const { return getOperand(2); } + + bool isCompareAndSwap() const { + unsigned Op = getOpcode(); + return Op == ISD::ATOMIC_CMP_SWAP; + } + + // Methods to support isa and dyn_cast + static bool classof(const AtomicSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::ATOMIC_CMP_SWAP || + N->getOpcode() == ISD::ATOMIC_SWAP || + N->getOpcode() == ISD::ATOMIC_LOAD_ADD || + N->getOpcode() == ISD::ATOMIC_LOAD_SUB || + N->getOpcode() == ISD::ATOMIC_LOAD_AND || + N->getOpcode() == ISD::ATOMIC_LOAD_OR || + N->getOpcode() == ISD::ATOMIC_LOAD_XOR || + N->getOpcode() == ISD::ATOMIC_LOAD_NAND || + N->getOpcode() == ISD::ATOMIC_LOAD_MIN || + N->getOpcode() == ISD::ATOMIC_LOAD_MAX || + N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || + N->getOpcode() == ISD::ATOMIC_LOAD_UMAX; + } +}; + +/// MemIntrinsicSDNode - This SDNode is used for target intrinsic that touches +/// memory and need an associated memory operand. +/// +class MemIntrinsicSDNode : public MemSDNode { + bool ReadMem; // Intrinsic reads memory + bool WriteMem; // Intrinsic writes memory +public: + MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, + const SDValue *Ops, unsigned NumOps, + MVT MemoryVT, const Value *srcValue, int SVO, + unsigned Align, bool Vol, bool ReadMem, bool WriteMem) + : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol), + ReadMem(ReadMem), WriteMem(WriteMem) { + } + + bool readMem() const { return ReadMem; } + bool writeMem() const { return WriteMem; } + + // Methods to support isa and dyn_cast + static bool classof(const MemIntrinsicSDNode *) { return true; } + static bool classof(const SDNode *N) { + // We lower some target intrinsics to their target opcode + // early a node with a target opcode can be of this class + return N->getOpcode() == ISD::INTRINSIC_W_CHAIN || + N->getOpcode() == ISD::INTRINSIC_VOID || + N->isTargetOpcode(); + } +}; + +/// ShuffleVectorSDNode - This SDNode is used to implement the code generator +/// support for the llvm IR shufflevector instruction. It combines elements +/// from two input vectors into a new input vector, with the selection and +/// ordering of elements determined by an array of integers, referred to as +/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1 +/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS. +/// An index of -1 is treated as undef, such that the code generator may put +/// any value in the corresponding element of the result. +class ShuffleVectorSDNode : public SDNode { + SDUse Ops[2]; + + // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and + // is freed when the SelectionDAG object is destroyed. + const int *Mask; +protected: + friend class SelectionDAG; + ShuffleVectorSDNode(MVT VT, DebugLoc dl, SDValue N1, SDValue N2, + const int *M) + : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) { + InitOperands(Ops, N1, N2); + } +public: + + void getMask(SmallVectorImpl<int> &M) const { + MVT VT = getValueType(0); + M.clear(); + for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) + M.push_back(Mask[i]); + } + int getMaskElt(unsigned Idx) const { + assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!"); + return Mask[Idx]; + } + + bool isSplat() const { return isSplatMask(Mask, getValueType(0)); } + int getSplatIndex() const { + assert(isSplat() && "Cannot get splat index for non-splat!"); + return Mask[0]; + } + static bool isSplatMask(const int *Mask, MVT VT); + + static bool classof(const ShuffleVectorSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::VECTOR_SHUFFLE; + } +}; + +class ConstantSDNode : public SDNode { + const ConstantInt *Value; + friend class SelectionDAG; + ConstantSDNode(bool isTarget, const ConstantInt *val, MVT VT) + : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, + DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) { + } +public: + + const ConstantInt *getConstantIntValue() const { return Value; } + const APInt &getAPIntValue() const { return Value->getValue(); } + uint64_t getZExtValue() const { return Value->getZExtValue(); } + int64_t getSExtValue() const { return Value->getSExtValue(); } + + bool isNullValue() const { return Value->isNullValue(); } + bool isAllOnesValue() const { return Value->isAllOnesValue(); } + + static bool classof(const ConstantSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::Constant || + N->getOpcode() == ISD::TargetConstant; + } +}; + +class ConstantFPSDNode : public SDNode { + const ConstantFP *Value; + friend class SelectionDAG; + ConstantFPSDNode(bool isTarget, const ConstantFP *val, MVT VT) + : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, + DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) { + } +public: + + const APFloat& getValueAPF() const { return Value->getValueAPF(); } + const ConstantFP *getConstantFPValue() const { return Value; } + + /// isExactlyValue - We don't rely on operator== working on double values, as + /// it returns true for things that are clearly not equal, like -0.0 and 0.0. + /// As such, this method can be used to do an exact bit-for-bit comparison of + /// two floating point values. + + /// We leave the version with the double argument here because it's just so + /// convenient to write "2.0" and the like. Without this function we'd + /// have to duplicate its logic everywhere it's called. + bool isExactlyValue(double V) const { + bool ignored; + // convert is not supported on this type + if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) + return false; + APFloat Tmp(V); + Tmp.convert(Value->getValueAPF().getSemantics(), + APFloat::rmNearestTiesToEven, &ignored); + return isExactlyValue(Tmp); + } + bool isExactlyValue(const APFloat& V) const; + + bool isValueValidForType(MVT VT, const APFloat& Val); + + static bool classof(const ConstantFPSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::ConstantFP || + N->getOpcode() == ISD::TargetConstantFP; + } +}; + +class GlobalAddressSDNode : public SDNode { + GlobalValue *TheGlobal; + int64_t Offset; + friend class SelectionDAG; + GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT, + int64_t o = 0); +public: + + GlobalValue *getGlobal() const { return TheGlobal; } + int64_t getOffset() const { return Offset; } + // Return the address space this GlobalAddress belongs to. + unsigned getAddressSpace() const; + + static bool classof(const GlobalAddressSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::GlobalAddress || + N->getOpcode() == ISD::TargetGlobalAddress || + N->getOpcode() == ISD::GlobalTLSAddress || + N->getOpcode() == ISD::TargetGlobalTLSAddress; + } +}; + +class FrameIndexSDNode : public SDNode { + int FI; + friend class SelectionDAG; + FrameIndexSDNode(int fi, MVT VT, bool isTarg) + : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, + DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) { + } +public: + + int getIndex() const { return FI; } + + static bool classof(const FrameIndexSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::FrameIndex || + N->getOpcode() == ISD::TargetFrameIndex; + } +}; + +class JumpTableSDNode : public SDNode { + int JTI; + friend class SelectionDAG; + JumpTableSDNode(int jti, MVT VT, bool isTarg) + : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, + DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti) { + } +public: + + int getIndex() const { return JTI; } + + static bool classof(const JumpTableSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::JumpTable || + N->getOpcode() == ISD::TargetJumpTable; + } +}; + +class ConstantPoolSDNode : public SDNode { + union { + Constant *ConstVal; + MachineConstantPoolValue *MachineCPVal; + } Val; + int Offset; // It's a MachineConstantPoolValue if top bit is set. + unsigned Alignment; // Minimum alignment requirement of CP (not log2 value). + friend class SelectionDAG; + ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0) + : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, + DebugLoc::getUnknownLoc(), + getSDVTList(VT)), Offset(o), Alignment(0) { + assert((int)Offset >= 0 && "Offset is too large"); + Val.ConstVal = c; + } + ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align) + : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, + DebugLoc::getUnknownLoc(), + getSDVTList(VT)), Offset(o), Alignment(Align) { + assert((int)Offset >= 0 && "Offset is too large"); + Val.ConstVal = c; + } + ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, + MVT VT, int o=0) + : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, + DebugLoc::getUnknownLoc(), + getSDVTList(VT)), Offset(o), Alignment(0) { + assert((int)Offset >= 0 && "Offset is too large"); + Val.MachineCPVal = v; + Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1); + } + ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, + MVT VT, int o, unsigned Align) + : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, + DebugLoc::getUnknownLoc(), + getSDVTList(VT)), Offset(o), Alignment(Align) { + assert((int)Offset >= 0 && "Offset is too large"); + Val.MachineCPVal = v; + Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1); + } +public: + + bool isMachineConstantPoolEntry() const { + return (int)Offset < 0; + } + + Constant *getConstVal() const { + assert(!isMachineConstantPoolEntry() && "Wrong constantpool type"); + return Val.ConstVal; + } + + MachineConstantPoolValue *getMachineCPVal() const { + assert(isMachineConstantPoolEntry() && "Wrong constantpool type"); + return Val.MachineCPVal; + } + + int getOffset() const { + return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1)); + } + + // Return the alignment of this constant pool object, which is either 0 (for + // default alignment) or the desired value. + unsigned getAlignment() const { return Alignment; } + + const Type *getType() const; + + static bool classof(const ConstantPoolSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::ConstantPool || + N->getOpcode() == ISD::TargetConstantPool; + } +}; + +class BasicBlockSDNode : public SDNode { + MachineBasicBlock *MBB; + friend class SelectionDAG; + /// Debug info is meaningful and potentially useful here, but we create + /// blocks out of order when they're jumped to, which makes it a bit + /// harder. Let's see if we need it first. + explicit BasicBlockSDNode(MachineBasicBlock *mbb) + : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(), + getSDVTList(MVT::Other)), MBB(mbb) { + } +public: + + MachineBasicBlock *getBasicBlock() const { return MBB; } + + static bool classof(const BasicBlockSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::BasicBlock; + } +}; + +/// BuildVectorSDNode - A "pseudo-class" with methods for operating on +/// BUILD_VECTORs. +class BuildVectorSDNode : public SDNode { + // These are constructed as SDNodes and then cast to BuildVectorSDNodes. + explicit BuildVectorSDNode(); // Do not implement +public: + /// isConstantSplat - Check if this is a constant splat, and if so, find the + /// smallest element size that splats the vector. If MinSplatBits is + /// nonzero, the element size must be at least that large. Note that the + /// splat element may be the entire vector (i.e., a one element vector). + /// Returns the splat element value in SplatValue. Any undefined bits in + /// that value are zero, and the corresponding bits in the SplatUndef mask + /// are set. The SplatBitSize value is set to the splat element size in + /// bits. HasAnyUndefs is set to true if any bits in the vector are + /// undefined. + bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, + unsigned &SplatBitSize, bool &HasAnyUndefs, + unsigned MinSplatBits = 0); + + static inline bool classof(const BuildVectorSDNode *) { return true; } + static inline bool classof(const SDNode *N) { + return N->getOpcode() == ISD::BUILD_VECTOR; + } +}; + +/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is +/// used when the SelectionDAG needs to make a simple reference to something +/// in the LLVM IR representation. +/// +/// Note that this is not used for carrying alias information; that is done +/// with MemOperandSDNode, which includes a Value which is required to be a +/// pointer, and several other fields specific to memory references. +/// +class SrcValueSDNode : public SDNode { + const Value *V; + friend class SelectionDAG; + /// Create a SrcValue for a general value. + explicit SrcValueSDNode(const Value *v) + : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(), + getSDVTList(MVT::Other)), V(v) {} + +public: + /// getValue - return the contained Value. + const Value *getValue() const { return V; } + + static bool classof(const SrcValueSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::SRCVALUE; + } +}; + + +/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is +/// used to represent a reference to memory after ISD::LOAD +/// and ISD::STORE have been lowered. +/// +class MemOperandSDNode : public SDNode { + friend class SelectionDAG; + /// Create a MachineMemOperand node + explicit MemOperandSDNode(const MachineMemOperand &mo) + : SDNode(ISD::MEMOPERAND, DebugLoc::getUnknownLoc(), + getSDVTList(MVT::Other)), MO(mo) {} + +public: + /// MO - The contained MachineMemOperand. + const MachineMemOperand MO; + + static bool classof(const MemOperandSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::MEMOPERAND; + } +}; + + +class RegisterSDNode : public SDNode { + unsigned Reg; + friend class SelectionDAG; + RegisterSDNode(unsigned reg, MVT VT) + : SDNode(ISD::Register, DebugLoc::getUnknownLoc(), + getSDVTList(VT)), Reg(reg) { + } +public: + + unsigned getReg() const { return Reg; } + + static bool classof(const RegisterSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::Register; + } +}; + +class DbgStopPointSDNode : public SDNode { + SDUse Chain; + unsigned Line; + unsigned Column; + Value *CU; + friend class SelectionDAG; + DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c, + Value *cu) + : SDNode(ISD::DBG_STOPPOINT, DebugLoc::getUnknownLoc(), + getSDVTList(MVT::Other)), Line(l), Column(c), CU(cu) { + InitOperands(&Chain, ch); + } +public: + unsigned getLine() const { return Line; } + unsigned getColumn() const { return Column; } + Value *getCompileUnit() const { return CU; } + + static bool classof(const DbgStopPointSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::DBG_STOPPOINT; + } +}; + +class LabelSDNode : public SDNode { + SDUse Chain; + unsigned LabelID; + friend class SelectionDAG; +LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id) + : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) { + InitOperands(&Chain, ch); + } +public: + unsigned getLabelID() const { return LabelID; } + + static bool classof(const LabelSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::DBG_LABEL || + N->getOpcode() == ISD::EH_LABEL; + } +}; + +class ExternalSymbolSDNode : public SDNode { + const char *Symbol; + friend class SelectionDAG; + ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT) + : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, + DebugLoc::getUnknownLoc(), + getSDVTList(VT)), Symbol(Sym) { + } +public: + + const char *getSymbol() const { return Symbol; } + + static bool classof(const ExternalSymbolSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::ExternalSymbol || + N->getOpcode() == ISD::TargetExternalSymbol; + } +}; + +class CondCodeSDNode : public SDNode { + ISD::CondCode Condition; + friend class SelectionDAG; + explicit CondCodeSDNode(ISD::CondCode Cond) + : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(), + getSDVTList(MVT::Other)), Condition(Cond) { + } +public: + + ISD::CondCode get() const { return Condition; } + + static bool classof(const CondCodeSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::CONDCODE; + } +}; + +/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the +/// future and most targets don't support it. +class CvtRndSatSDNode : public SDNode { + ISD::CvtCode CvtCode; + friend class SelectionDAG; + explicit CvtRndSatSDNode(MVT VT, DebugLoc dl, const SDValue *Ops, + unsigned NumOps, ISD::CvtCode Code) + : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps), + CvtCode(Code) { + assert(NumOps == 5 && "wrong number of operations"); + } +public: + ISD::CvtCode getCvtCode() const { return CvtCode; } + + static bool classof(const CvtRndSatSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::CONVERT_RNDSAT; + } +}; + +namespace ISD { + struct ArgFlagsTy { + private: + static const uint64_t NoFlagSet = 0ULL; + static const uint64_t ZExt = 1ULL<<0; ///< Zero extended + static const uint64_t ZExtOffs = 0; + static const uint64_t SExt = 1ULL<<1; ///< Sign extended + static const uint64_t SExtOffs = 1; + static const uint64_t InReg = 1ULL<<2; ///< Passed in register + static const uint64_t InRegOffs = 2; + static const uint64_t SRet = 1ULL<<3; ///< Hidden struct-ret ptr + static const uint64_t SRetOffs = 3; + static const uint64_t ByVal = 1ULL<<4; ///< Struct passed by value + static const uint64_t ByValOffs = 4; + static const uint64_t Nest = 1ULL<<5; ///< Nested fn static chain + static const uint64_t NestOffs = 5; + static const uint64_t ByValAlign = 0xFULL << 6; //< Struct alignment + static const uint64_t ByValAlignOffs = 6; + static const uint64_t Split = 1ULL << 10; + static const uint64_t SplitOffs = 10; + static const uint64_t OrigAlign = 0x1FULL<<27; + static const uint64_t OrigAlignOffs = 27; + static const uint64_t ByValSize = 0xffffffffULL << 32; //< Struct size + static const uint64_t ByValSizeOffs = 32; + + static const uint64_t One = 1ULL; //< 1 of this type, for shifts + + uint64_t Flags; + public: + ArgFlagsTy() : Flags(0) { } + + bool isZExt() const { return Flags & ZExt; } + void setZExt() { Flags |= One << ZExtOffs; } + + bool isSExt() const { return Flags & SExt; } + void setSExt() { Flags |= One << SExtOffs; } + + bool isInReg() const { return Flags & InReg; } + void setInReg() { Flags |= One << InRegOffs; } + + bool isSRet() const { return Flags & SRet; } + void setSRet() { Flags |= One << SRetOffs; } + + bool isByVal() const { return Flags & ByVal; } + void setByVal() { Flags |= One << ByValOffs; } + + bool isNest() const { return Flags & Nest; } + void setNest() { Flags |= One << NestOffs; } + + unsigned getByValAlign() const { + return (unsigned) + ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2); + } + void setByValAlign(unsigned A) { + Flags = (Flags & ~ByValAlign) | + (uint64_t(Log2_32(A) + 1) << ByValAlignOffs); + } + + bool isSplit() const { return Flags & Split; } + void setSplit() { Flags |= One << SplitOffs; } + + unsigned getOrigAlign() const { + return (unsigned) + ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2); + } + void setOrigAlign(unsigned A) { + Flags = (Flags & ~OrigAlign) | + (uint64_t(Log2_32(A) + 1) << OrigAlignOffs); + } + + unsigned getByValSize() const { + return (unsigned)((Flags & ByValSize) >> ByValSizeOffs); + } + void setByValSize(unsigned S) { + Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs); + } + + /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4". + std::string getArgFlagsString(); + + /// getRawBits - Represent the flags as a bunch of bits. + uint64_t getRawBits() const { return Flags; } + }; +} + +/// ARG_FLAGSSDNode - Leaf node holding parameter flags. +class ARG_FLAGSSDNode : public SDNode { + ISD::ArgFlagsTy TheFlags; + friend class SelectionDAG; + explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags) + : SDNode(ISD::ARG_FLAGS, DebugLoc::getUnknownLoc(), + getSDVTList(MVT::Other)), TheFlags(Flags) { + } +public: + ISD::ArgFlagsTy getArgFlags() const { return TheFlags; } + + static bool classof(const ARG_FLAGSSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::ARG_FLAGS; + } +}; + +/// CallSDNode - Node for calls -- ISD::CALL. +class CallSDNode : public SDNode { + unsigned CallingConv; + bool IsVarArg; + bool IsTailCall; + // We might eventually want a full-blown Attributes for the result; that + // will expand the size of the representation. At the moment we only + // need Inreg. + bool Inreg; + friend class SelectionDAG; + CallSDNode(unsigned cc, DebugLoc dl, bool isvararg, bool istailcall, + bool isinreg, SDVTList VTs, const SDValue *Operands, + unsigned numOperands) + : SDNode(ISD::CALL, dl, VTs, Operands, numOperands), + CallingConv(cc), IsVarArg(isvararg), IsTailCall(istailcall), + Inreg(isinreg) {} +public: + unsigned getCallingConv() const { return CallingConv; } + unsigned isVarArg() const { return IsVarArg; } + unsigned isTailCall() const { return IsTailCall; } + unsigned isInreg() const { return Inreg; } + + /// Set this call to not be marked as a tail call. Normally setter + /// methods in SDNodes are unsafe because it breaks the CSE map, + /// but we don't include the tail call flag for calls so it's ok + /// in this case. + void setNotTailCall() { IsTailCall = false; } + + SDValue getChain() const { return getOperand(0); } + SDValue getCallee() const { return getOperand(1); } + + unsigned getNumArgs() const { return (getNumOperands() - 2) / 2; } + SDValue getArg(unsigned i) const { return getOperand(2+2*i); } + SDValue getArgFlagsVal(unsigned i) const { + return getOperand(3+2*i); + } + ISD::ArgFlagsTy getArgFlags(unsigned i) const { + return cast<ARG_FLAGSSDNode>(getArgFlagsVal(i).getNode())->getArgFlags(); + } + + unsigned getNumRetVals() const { return getNumValues() - 1; } + MVT getRetValType(unsigned i) const { return getValueType(i); } + + static bool classof(const CallSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::CALL; + } +}; + +/// VTSDNode - This class is used to represent MVT's, which are used +/// to parameterize some operations. +class VTSDNode : public SDNode { + MVT ValueType; + friend class SelectionDAG; + explicit VTSDNode(MVT VT) + : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(), + getSDVTList(MVT::Other)), ValueType(VT) { + } +public: + + MVT getVT() const { return ValueType; } + + static bool classof(const VTSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::VALUETYPE; + } +}; + +/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode +/// +class LSBaseSDNode : public MemSDNode { + //! Operand array for load and store + /*! + \note Moving this array to the base class captures more + common functionality shared between LoadSDNode and + StoreSDNode + */ + SDUse Ops[4]; +public: + LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands, + unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM, + MVT VT, const Value *SV, int SVO, unsigned Align, bool Vol) + : MemSDNode(NodeTy, dl, VTs, VT, SV, SVO, Align, Vol) { + assert(Align != 0 && "Loads and stores should have non-zero aligment"); + SubclassData |= AM << 2; + assert(getAddressingMode() == AM && "MemIndexedMode encoding error!"); + InitOperands(Ops, Operands, numOperands); + assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) && + "Only indexed loads and stores have a non-undef offset operand"); + } + + const SDValue &getOffset() const { + return getOperand(getOpcode() == ISD::LOAD ? 2 : 3); + } + + /// getAddressingMode - Return the addressing mode for this load or store: + /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. + ISD::MemIndexedMode getAddressingMode() const { + return ISD::MemIndexedMode((SubclassData >> 2) & 7); + } + + /// isIndexed - Return true if this is a pre/post inc/dec load/store. + bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } + + /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store. + bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } + + static bool classof(const LSBaseSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::LOAD || + N->getOpcode() == ISD::STORE; + } +}; + +/// LoadSDNode - This class is used to represent ISD::LOAD nodes. +/// +class LoadSDNode : public LSBaseSDNode { + friend class SelectionDAG; + LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs, + ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT, + const Value *SV, int O=0, unsigned Align=0, bool Vol=false) + : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3, + VTs, AM, LVT, SV, O, Align, Vol) { + SubclassData |= (unsigned short)ETy; + assert(getExtensionType() == ETy && "LoadExtType encoding error!"); + } +public: + + /// getExtensionType - Return whether this is a plain node, + /// or one of the varieties of value-extending loads. + ISD::LoadExtType getExtensionType() const { + return ISD::LoadExtType(SubclassData & 3); + } + + const SDValue &getBasePtr() const { return getOperand(1); } + const SDValue &getOffset() const { return getOperand(2); } + + static bool classof(const LoadSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::LOAD; + } +}; + +/// StoreSDNode - This class is used to represent ISD::STORE nodes. +/// +class StoreSDNode : public LSBaseSDNode { + friend class SelectionDAG; + StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs, + ISD::MemIndexedMode AM, bool isTrunc, MVT SVT, + const Value *SV, int O=0, unsigned Align=0, bool Vol=false) + : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4, + VTs, AM, SVT, SV, O, Align, Vol) { + SubclassData |= (unsigned short)isTrunc; + assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!"); + } +public: + + /// isTruncatingStore - Return true if the op does a truncation before store. + /// For integers this is the same as doing a TRUNCATE and storing the result. + /// For floats, it is the same as doing an FP_ROUND and storing the result. + bool isTruncatingStore() const { return SubclassData & 1; } + + const SDValue &getValue() const { return getOperand(1); } + const SDValue &getBasePtr() const { return getOperand(2); } + const SDValue &getOffset() const { return getOperand(3); } + + static bool classof(const StoreSDNode *) { return true; } + static bool classof(const SDNode *N) { + return N->getOpcode() == ISD::STORE; + } +}; + + +class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> { + SDNode *Node; + unsigned Operand; + + SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {} +public: + bool operator==(const SDNodeIterator& x) const { + return Operand == x.Operand; + } + bool operator!=(const SDNodeIterator& x) const { return !operator==(x); } + + const SDNodeIterator &operator=(const SDNodeIterator &I) { + assert(I.Node == Node && "Cannot assign iterators to two different nodes!"); + Operand = I.Operand; + return *this; + } + + pointer operator*() const { + return Node->getOperand(Operand).getNode(); + } + pointer operator->() const { return operator*(); } + + SDNodeIterator& operator++() { // Preincrement + ++Operand; + return *this; + } + SDNodeIterator operator++(int) { // Postincrement + SDNodeIterator tmp = *this; ++*this; return tmp; + } + + static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); } + static SDNodeIterator end (SDNode *N) { + return SDNodeIterator(N, N->getNumOperands()); + } + + unsigned getOperand() const { return Operand; } + const SDNode *getNode() const { return Node; } +}; + +template <> struct GraphTraits<SDNode*> { + typedef SDNode NodeType; + typedef SDNodeIterator ChildIteratorType; + static inline NodeType *getEntryNode(SDNode *N) { return N; } + static inline ChildIteratorType child_begin(NodeType *N) { + return SDNodeIterator::begin(N); + } + static inline ChildIteratorType child_end(NodeType *N) { + return SDNodeIterator::end(N); + } +}; + +/// LargestSDNode - The largest SDNode class. +/// +typedef LoadSDNode LargestSDNode; + +/// MostAlignedSDNode - The SDNode class with the greatest alignment +/// requirement. +/// +typedef ARG_FLAGSSDNode MostAlignedSDNode; + +namespace ISD { + /// isNormalLoad - Returns true if the specified node is a non-extending + /// and unindexed load. + inline bool isNormalLoad(const SDNode *N) { + const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N); + return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD && + Ld->getAddressingMode() == ISD::UNINDEXED; + } + + /// isNON_EXTLoad - Returns true if the specified node is a non-extending + /// load. + inline bool isNON_EXTLoad(const SDNode *N) { + return isa<LoadSDNode>(N) && + cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD; + } + + /// isEXTLoad - Returns true if the specified node is a EXTLOAD. + /// + inline bool isEXTLoad(const SDNode *N) { + return isa<LoadSDNode>(N) && + cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD; + } + + /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD. + /// + inline bool isSEXTLoad(const SDNode *N) { + return isa<LoadSDNode>(N) && + cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; + } + + /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD. + /// + inline bool isZEXTLoad(const SDNode *N) { + return isa<LoadSDNode>(N) && + cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; + } + + /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load. + /// + inline bool isUNINDEXEDLoad(const SDNode *N) { + return isa<LoadSDNode>(N) && + cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; + } + + /// isNormalStore - Returns true if the specified node is a non-truncating + /// and unindexed store. + inline bool isNormalStore(const SDNode *N) { + const StoreSDNode *St = dyn_cast<StoreSDNode>(N); + return St && !St->isTruncatingStore() && + St->getAddressingMode() == ISD::UNINDEXED; + } + + /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating + /// store. + inline bool isNON_TRUNCStore(const SDNode *N) { + return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore(); + } + + /// isTRUNCStore - Returns true if the specified node is a truncating + /// store. + inline bool isTRUNCStore(const SDNode *N) { + return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore(); + } + + /// isUNINDEXEDStore - Returns true if the specified node is an + /// unindexed store. + inline bool isUNINDEXEDStore(const SDNode *N) { + return isa<StoreSDNode>(N) && + cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; + } +} + + +} // end llvm namespace + +#endif |