summaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/LiveVariables.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/CodeGen/LiveVariables.h')
-rw-r--r--include/llvm/CodeGen/LiveVariables.h269
1 files changed, 269 insertions, 0 deletions
diff --git a/include/llvm/CodeGen/LiveVariables.h b/include/llvm/CodeGen/LiveVariables.h
new file mode 100644
index 0000000..26c0362
--- /dev/null
+++ b/include/llvm/CodeGen/LiveVariables.h
@@ -0,0 +1,269 @@
+//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveVariables analysis pass. For each machine
+// instruction in the function, this pass calculates the set of registers that
+// are immediately dead after the instruction (i.e., the instruction calculates
+// the value, but it is never used) and the set of registers that are used by
+// the instruction, but are never used after the instruction (i.e., they are
+// killed).
+//
+// This class computes live variables using a sparse implementation based on
+// the machine code SSA form. This class computes live variable information for
+// each virtual and _register allocatable_ physical register in a function. It
+// uses the dominance properties of SSA form to efficiently compute live
+// variables for virtual registers, and assumes that physical registers are only
+// live within a single basic block (allowing it to do a single local analysis
+// to resolve physical register lifetimes in each basic block). If a physical
+// register is not register allocatable, it is not tracked. This is useful for
+// things like the stack pointer and condition codes.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_LIVEVARIABLES_H
+#define LLVM_CODEGEN_LIVEVARIABLES_H
+
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SparseBitVector.h"
+
+namespace llvm {
+
+class MachineRegisterInfo;
+class TargetRegisterInfo;
+
+class LiveVariables : public MachineFunctionPass {
+public:
+ static char ID; // Pass identification, replacement for typeid
+ LiveVariables() : MachineFunctionPass(&ID) {}
+
+ /// VarInfo - This represents the regions where a virtual register is live in
+ /// the program. We represent this with three different pieces of
+ /// information: the set of blocks in which the instruction is live
+ /// throughout, the set of blocks in which the instruction is actually used,
+ /// and the set of non-phi instructions that are the last users of the value.
+ ///
+ /// In the common case where a value is defined and killed in the same block,
+ /// There is one killing instruction, and AliveBlocks is empty.
+ ///
+ /// Otherwise, the value is live out of the block. If the value is live
+ /// throughout any blocks, these blocks are listed in AliveBlocks. Blocks
+ /// where the liveness range ends are not included in AliveBlocks, instead
+ /// being captured by the Kills set. In these blocks, the value is live into
+ /// the block (unless the value is defined and killed in the same block) and
+ /// lives until the specified instruction. Note that there cannot ever be a
+ /// value whose Kills set contains two instructions from the same basic block.
+ ///
+ /// PHI nodes complicate things a bit. If a PHI node is the last user of a
+ /// value in one of its predecessor blocks, it is not listed in the kills set,
+ /// but does include the predecessor block in the AliveBlocks set (unless that
+ /// block also defines the value). This leads to the (perfectly sensical)
+ /// situation where a value is defined in a block, and the last use is a phi
+ /// node in the successor. In this case, AliveBlocks is empty (the value is
+ /// not live across any blocks) and Kills is empty (phi nodes are not
+ /// included). This is sensical because the value must be live to the end of
+ /// the block, but is not live in any successor blocks.
+ struct VarInfo {
+ /// AliveBlocks - Set of blocks in which this value is alive completely
+ /// through. This is a bit set which uses the basic block number as an
+ /// index.
+ ///
+ SparseBitVector<> AliveBlocks;
+
+ /// NumUses - Number of uses of this register across the entire function.
+ ///
+ unsigned NumUses;
+
+ /// Kills - List of MachineInstruction's which are the last use of this
+ /// virtual register (kill it) in their basic block.
+ ///
+ std::vector<MachineInstr*> Kills;
+
+ VarInfo() : NumUses(0) {}
+
+ /// removeKill - Delete a kill corresponding to the specified
+ /// machine instruction. Returns true if there was a kill
+ /// corresponding to this instruction, false otherwise.
+ bool removeKill(MachineInstr *MI) {
+ std::vector<MachineInstr*>::iterator
+ I = std::find(Kills.begin(), Kills.end(), MI);
+ if (I == Kills.end())
+ return false;
+ Kills.erase(I);
+ return true;
+ }
+
+ void dump() const;
+ };
+
+private:
+ /// VirtRegInfo - This list is a mapping from virtual register number to
+ /// variable information. FirstVirtualRegister is subtracted from the virtual
+ /// register number before indexing into this list.
+ ///
+ std::vector<VarInfo> VirtRegInfo;
+
+ /// ReservedRegisters - This vector keeps track of which registers
+ /// are reserved register which are not allocatable by the target machine.
+ /// We can not track liveness for values that are in this set.
+ ///
+ BitVector ReservedRegisters;
+
+private: // Intermediate data structures
+ MachineFunction *MF;
+
+ MachineRegisterInfo* MRI;
+
+ const TargetRegisterInfo *TRI;
+
+ // PhysRegInfo - Keep track of which instruction was the last def of a
+ // physical register. This is a purely local property, because all physical
+ // register references are presumed dead across basic blocks.
+ MachineInstr **PhysRegDef;
+
+ // PhysRegInfo - Keep track of which instruction was the last use of a
+ // physical register. This is a purely local property, because all physical
+ // register references are presumed dead across basic blocks.
+ MachineInstr **PhysRegUse;
+
+ SmallVector<unsigned, 4> *PHIVarInfo;
+
+ // DistanceMap - Keep track the distance of a MI from the start of the
+ // current basic block.
+ DenseMap<MachineInstr*, unsigned> DistanceMap;
+
+ /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
+ /// uses. Pay special attention to the sub-register uses which may come below
+ /// the last use of the whole register.
+ bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
+
+ void HandlePhysRegUse(unsigned Reg, MachineInstr *MI);
+ void HandlePhysRegDef(unsigned Reg, MachineInstr *MI);
+
+ /// FindLastPartialDef - Return the last partial def of the specified register.
+ /// Also returns the sub-register that's defined.
+ MachineInstr *FindLastPartialDef(unsigned Reg, unsigned &PartDefReg);
+
+ /// hasRegisterUseBelow - Return true if the specified register is used after
+ /// the current instruction and before it's next definition.
+ bool hasRegisterUseBelow(unsigned Reg, MachineBasicBlock::iterator I,
+ MachineBasicBlock *MBB);
+
+ /// analyzePHINodes - Gather information about the PHI nodes in here. In
+ /// particular, we want to map the variable information of a virtual
+ /// register which is used in a PHI node. We map that to the BB the vreg
+ /// is coming from.
+ void analyzePHINodes(const MachineFunction& Fn);
+public:
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ /// RegisterDefIsDead - Return true if the specified instruction defines the
+ /// specified register, but that definition is dead.
+ bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const;
+
+ //===--------------------------------------------------------------------===//
+ // API to update live variable information
+
+ /// replaceKillInstruction - Update register kill info by replacing a kill
+ /// instruction with a new one.
+ void replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
+ MachineInstr *NewMI);
+
+ /// addVirtualRegisterKilled - Add information about the fact that the
+ /// specified register is killed after being used by the specified
+ /// instruction. If AddIfNotFound is true, add a implicit operand if it's
+ /// not found.
+ void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
+ bool AddIfNotFound = false) {
+ if (MI->addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
+ getVarInfo(IncomingReg).Kills.push_back(MI);
+ }
+
+ /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
+ /// register from the live variable information. Returns true if the
+ /// variable was marked as killed by the specified instruction,
+ /// false otherwise.
+ bool removeVirtualRegisterKilled(unsigned reg, MachineInstr *MI) {
+ if (!getVarInfo(reg).removeKill(MI))
+ return false;
+
+ bool Removed = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
+ MO.setIsKill(false);
+ Removed = true;
+ break;
+ }
+ }
+
+ assert(Removed && "Register is not used by this instruction!");
+ return true;
+ }
+
+ /// removeVirtualRegistersKilled - Remove all killed info for the specified
+ /// instruction.
+ void removeVirtualRegistersKilled(MachineInstr *MI);
+
+ /// addVirtualRegisterDead - Add information about the fact that the specified
+ /// register is dead after being used by the specified instruction. If
+ /// AddIfNotFound is true, add a implicit operand if it's not found.
+ void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI,
+ bool AddIfNotFound = false) {
+ if (MI->addRegisterDead(IncomingReg, TRI, AddIfNotFound))
+ getVarInfo(IncomingReg).Kills.push_back(MI);
+ }
+
+ /// removeVirtualRegisterDead - Remove the specified kill of the virtual
+ /// register from the live variable information. Returns true if the
+ /// variable was marked dead at the specified instruction, false
+ /// otherwise.
+ bool removeVirtualRegisterDead(unsigned reg, MachineInstr *MI) {
+ if (!getVarInfo(reg).removeKill(MI))
+ return false;
+
+ bool Removed = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
+ MO.setIsDead(false);
+ Removed = true;
+ break;
+ }
+ }
+ assert(Removed && "Register is not defined by this instruction!");
+ return true;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ virtual void releaseMemory() {
+ VirtRegInfo.clear();
+ }
+
+ /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
+ /// register.
+ VarInfo &getVarInfo(unsigned RegIdx);
+
+ void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
+ MachineBasicBlock *BB);
+ void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
+ MachineBasicBlock *BB,
+ std::vector<MachineBasicBlock*> &WorkList);
+ void HandleVirtRegDef(unsigned reg, MachineInstr *MI);
+ void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
+ MachineInstr *MI);
+};
+
+} // End llvm namespace
+
+#endif
OpenPOWER on IntegriCloud