summaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/ADT')
-rw-r--r--include/llvm/ADT/DAGDeltaAlgorithm.h75
-rw-r--r--include/llvm/ADT/DenseMap.h1
-rw-r--r--include/llvm/ADT/EquivalenceClasses.h2
-rw-r--r--include/llvm/ADT/FoldingSet.h83
-rw-r--r--include/llvm/ADT/ImmutableIntervalMap.h12
-rw-r--r--include/llvm/ADT/PostOrderIterator.h17
-rw-r--r--include/llvm/ADT/SetVector.h8
-rw-r--r--include/llvm/ADT/SmallPtrSet.h49
-rw-r--r--include/llvm/ADT/SmallVector.h160
-rw-r--r--include/llvm/ADT/Statistic.h4
-rw-r--r--include/llvm/ADT/Triple.h7
-rw-r--r--include/llvm/ADT/ValueMap.h6
-rw-r--r--include/llvm/ADT/ilist.h1
13 files changed, 303 insertions, 122 deletions
diff --git a/include/llvm/ADT/DAGDeltaAlgorithm.h b/include/llvm/ADT/DAGDeltaAlgorithm.h
new file mode 100644
index 0000000..99ed15c
--- /dev/null
+++ b/include/llvm/ADT/DAGDeltaAlgorithm.h
@@ -0,0 +1,75 @@
+//===--- DAGDeltaAlgorithm.h - A DAG Minimization Algorithm ----*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_DAGDELTAALGORITHM_H
+#define LLVM_ADT_DAGDELTAALGORITHM_H
+
+#include <vector>
+#include <set>
+
+namespace llvm {
+
+/// DAGDeltaAlgorithm - Implements a "delta debugging" algorithm for minimizing
+/// directed acyclic graphs using a predicate function.
+///
+/// The result of the algorithm is a subset of the input change set which is
+/// guaranteed to satisfy the predicate, assuming that the input set did. For
+/// well formed predicates, the result set is guaranteed to be such that
+/// removing any single element not required by the dependencies on the other
+/// elements would falsify the predicate.
+///
+/// The DAG should be used to represent dependencies in the changes which are
+/// likely to hold across the predicate function. That is, for a particular
+/// changeset S and predicate P:
+///
+/// P(S) => P(S union pred(S))
+///
+/// The minization algorithm uses this dependency information to attempt to
+/// eagerly prune large subsets of changes. As with \see DeltaAlgorithm, the DAG
+/// is not required to satisfy this property, but the algorithm will run
+/// substantially fewer tests with appropriate dependencies. \see DeltaAlgorithm
+/// for more information on the properties which the predicate function itself
+/// should satisfy.
+class DAGDeltaAlgorithm {
+public:
+ typedef unsigned change_ty;
+ typedef std::pair<change_ty, change_ty> edge_ty;
+
+ // FIXME: Use a decent data structure.
+ typedef std::set<change_ty> changeset_ty;
+ typedef std::vector<changeset_ty> changesetlist_ty;
+
+public:
+ virtual ~DAGDeltaAlgorithm() {}
+
+ /// Run - Minimize the DAG formed by the \arg Changes vertices and the \arg
+ /// Dependencies edges by executing \see ExecuteOneTest() on subsets of
+ /// changes and returning the smallest set which still satisfies the test
+ /// predicate and the input \arg Dependencies.
+ ///
+ /// \param Changes The list of changes.
+ ///
+ /// \param Dependencies The list of dependencies amongst changes. For each
+ /// (x,y) in \arg Dependencies, both x and y must be in \arg Changes. The
+ /// minimization algorithm guarantees that for each tested changed set S, x
+ /// \in S implies y \in S. It is an error to have cyclic dependencies.
+ changeset_ty Run(const changeset_ty &Changes,
+ const std::vector<edge_ty> &Dependencies);
+
+ /// UpdatedSearchState - Callback used when the search state changes.
+ virtual void UpdatedSearchState(const changeset_ty &Changes,
+ const changesetlist_ty &Sets,
+ const changeset_ty &Required) {}
+
+ /// ExecuteOneTest - Execute a single test predicate on the change set \arg S.
+ virtual bool ExecuteOneTest(const changeset_ty &S) = 0;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/include/llvm/ADT/DenseMap.h b/include/llvm/ADT/DenseMap.h
index 5c99473..c53e255 100644
--- a/include/llvm/ADT/DenseMap.h
+++ b/include/llvm/ADT/DenseMap.h
@@ -22,6 +22,7 @@
#include <new>
#include <utility>
#include <cassert>
+#include <cstddef>
#include <cstring>
namespace llvm {
diff --git a/include/llvm/ADT/EquivalenceClasses.h b/include/llvm/ADT/EquivalenceClasses.h
index 91a1429..07a5edf 100644
--- a/include/llvm/ADT/EquivalenceClasses.h
+++ b/include/llvm/ADT/EquivalenceClasses.h
@@ -169,7 +169,7 @@ public:
/// getOrInsertLeaderValue - Return the leader for the specified value that is
/// in the set. If the member is not in the set, it is inserted, then
/// returned.
- const ElemTy &getOrInsertLeaderValue(const ElemTy &V) const {
+ const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
member_iterator MI = findLeader(insert(V));
assert(MI != member_end() && "Value is not in the set!");
return *MI;
diff --git a/include/llvm/ADT/FoldingSet.h b/include/llvm/ADT/FoldingSet.h
index e8979bb..fc8490a 100644
--- a/include/llvm/ADT/FoldingSet.h
+++ b/include/llvm/ADT/FoldingSet.h
@@ -166,6 +166,14 @@ public:
/// FindNodeOrInsertPos.
void InsertNode(Node *N, void *InsertPos);
+ /// InsertNode - Insert the specified node into the folding set, knowing that
+ /// it is not already in the folding set.
+ void InsertNode(Node *N) {
+ Node *Inserted = GetOrInsertNode(N);
+ (void)Inserted;
+ assert(Inserted == N && "Node already inserted!");
+ }
+
/// size - Returns the number of nodes in the folding set.
unsigned size() const { return NumNodes; }
@@ -196,6 +204,10 @@ protected:
template<typename T> struct FoldingSetTrait {
static inline void Profile(const T& X, FoldingSetNodeID& ID) { X.Profile(ID);}
static inline void Profile(T& X, FoldingSetNodeID& ID) { X.Profile(ID); }
+ template <typename Ctx>
+ static inline void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
+ X.Profile(ID, Context);
+ }
};
//===--------------------------------------------------------------------===//
@@ -322,6 +334,77 @@ public:
};
//===----------------------------------------------------------------------===//
+/// ContextualFoldingSet - This template class is a further refinement
+/// of FoldingSet which provides a context argument when calling
+/// Profile on its nodes. Currently, that argument is fixed at
+/// initialization time.
+///
+/// T must be a subclass of FoldingSetNode and implement a Profile
+/// function with signature
+/// void Profile(llvm::FoldingSetNodeID &, Ctx);
+template <class T, class Ctx>
+class ContextualFoldingSet : public FoldingSetImpl {
+ // Unfortunately, this can't derive from FoldingSet<T> because the
+ // construction vtable for FoldingSet<T> requires
+ // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
+ // requires a single-argument T::Profile().
+
+private:
+ Ctx Context;
+
+ /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
+ /// way to convert nodes into a unique specifier.
+ virtual void GetNodeProfile(FoldingSetNodeID &ID,
+ FoldingSetImpl::Node *N) const {
+ T *TN = static_cast<T *>(N);
+
+ // We must use explicit template arguments in case Ctx is a
+ // reference type.
+ FoldingSetTrait<T>::template Profile<Ctx>(*TN, ID, Context);
+ }
+
+public:
+ explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
+ : FoldingSetImpl(Log2InitSize), Context(Context)
+ {}
+
+ Ctx getContext() const { return Context; }
+
+
+ typedef FoldingSetIterator<T> iterator;
+ iterator begin() { return iterator(Buckets); }
+ iterator end() { return iterator(Buckets+NumBuckets); }
+
+ typedef FoldingSetIterator<const T> const_iterator;
+ const_iterator begin() const { return const_iterator(Buckets); }
+ const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
+
+ typedef FoldingSetBucketIterator<T> bucket_iterator;
+
+ bucket_iterator bucket_begin(unsigned hash) {
+ return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
+ }
+
+ bucket_iterator bucket_end(unsigned hash) {
+ return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
+ }
+
+ /// GetOrInsertNode - If there is an existing simple Node exactly
+ /// equal to the specified node, return it. Otherwise, insert 'N'
+ /// and return it instead.
+ T *GetOrInsertNode(Node *N) {
+ return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
+ }
+
+ /// FindNodeOrInsertPos - Look up the node specified by ID. If it
+ /// exists, return it. If not, return the insertion token that will
+ /// make insertion faster.
+ T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
+ return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
+ }
+};
+
+//===----------------------------------------------------------------------===//
/// FoldingSetIteratorImpl - This is the common iterator support shared by all
/// folding sets, which knows how to walk the folding set hash table.
class FoldingSetIteratorImpl {
diff --git a/include/llvm/ADT/ImmutableIntervalMap.h b/include/llvm/ADT/ImmutableIntervalMap.h
index f33fb1e..7aa3155 100644
--- a/include/llvm/ADT/ImmutableIntervalMap.h
+++ b/include/llvm/ADT/ImmutableIntervalMap.h
@@ -125,9 +125,11 @@ private:
key_type_ref KCurrent = ImutInfo::KeyOfValue(this->Value(T));
if (ImutInfo::isLess(K, KCurrent))
- return this->Balance(Add_internal(V, this->Left(T)), this->Value(T), this->Right(T));
+ return this->Balance(Add_internal(V, this->Left(T)), this->Value(T),
+ this->Right(T));
else
- return this->Balance(this->Left(T), this->Value(T), Add_internal(V, this->Right(T)));
+ return this->Balance(this->Left(T), this->Value(T),
+ Add_internal(V, this->Right(T)));
}
// Remove all overlaps from T.
@@ -150,9 +152,11 @@ private:
// If current key does not overlap the inserted key.
if (CurrentK.getStart() > K.getEnd())
- return this->Balance(RemoveOverlap(this->Left(T), K, Changed), this->Value(T), this->Right(T));
+ return this->Balance(RemoveOverlap(this->Left(T), K, Changed),
+ this->Value(T), this->Right(T));
else if (CurrentK.getEnd() < K.getStart())
- return this->Balance(this->Left(T), this->Value(T), RemoveOverlap(this->Right(T), K, Changed));
+ return this->Balance(this->Left(T), this->Value(T),
+ RemoveOverlap(this->Right(T), K, Changed));
// Current key overlaps with the inserted key.
// Remove the current key.
diff --git a/include/llvm/ADT/PostOrderIterator.h b/include/llvm/ADT/PostOrderIterator.h
index 8315bc9..47e5b2b 100644
--- a/include/llvm/ADT/PostOrderIterator.h
+++ b/include/llvm/ADT/PostOrderIterator.h
@@ -19,7 +19,6 @@
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <set>
-#include <stack>
#include <vector>
namespace llvm {
@@ -52,21 +51,21 @@ class po_iterator : public std::iterator<std::forward_iterator_tag,
// VisitStack - Used to maintain the ordering. Top = current block
// First element is basic block pointer, second is the 'next child' to visit
- std::stack<std::pair<NodeType *, ChildItTy> > VisitStack;
+ std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
void traverseChild() {
- while (VisitStack.top().second != GT::child_end(VisitStack.top().first)) {
- NodeType *BB = *VisitStack.top().second++;
+ while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
+ NodeType *BB = *VisitStack.back().second++;
if (!this->Visited.count(BB)) { // If the block is not visited...
this->Visited.insert(BB);
- VisitStack.push(std::make_pair(BB, GT::child_begin(BB)));
+ VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
}
}
}
inline po_iterator(NodeType *BB) {
this->Visited.insert(BB);
- VisitStack.push(std::make_pair(BB, GT::child_begin(BB)));
+ VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
inline po_iterator() {} // End is when stack is empty.
@@ -75,7 +74,7 @@ class po_iterator : public std::iterator<std::forward_iterator_tag,
po_iterator_storage<SetType, ExtStorage>(S) {
if(!S.count(BB)) {
this->Visited.insert(BB);
- VisitStack.push(std::make_pair(BB, GT::child_begin(BB)));
+ VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
}
@@ -102,7 +101,7 @@ public:
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const {
- return VisitStack.top().first;
+ return VisitStack.back().first;
}
// This is a nonstandard operator-> that dereferences the pointer an extra
@@ -112,7 +111,7 @@ public:
inline NodeType *operator->() const { return operator*(); }
inline _Self& operator++() { // Preincrement
- VisitStack.pop();
+ VisitStack.pop_back();
if (!VisitStack.empty())
traverseChild();
return *this;
diff --git a/include/llvm/ADT/SetVector.h b/include/llvm/ADT/SetVector.h
index fab133a..bf8286c 100644
--- a/include/llvm/ADT/SetVector.h
+++ b/include/llvm/ADT/SetVector.h
@@ -143,6 +143,14 @@ public:
vector_.pop_back();
}
+ bool operator==(const SetVector &that) const {
+ return vector_ == that.vector_;
+ }
+
+ bool operator!=(const SetVector &that) const {
+ return vector_ != that.vector_;
+ }
+
private:
set_type set_; ///< The set.
vector_type vector_; ///< The vector.
diff --git a/include/llvm/ADT/SmallPtrSet.h b/include/llvm/ADT/SmallPtrSet.h
index ef08125..424bdba 100644
--- a/include/llvm/ADT/SmallPtrSet.h
+++ b/include/llvm/ADT/SmallPtrSet.h
@@ -46,8 +46,10 @@ class SmallPtrSetIteratorImpl;
class SmallPtrSetImpl {
friend class SmallPtrSetIteratorImpl;
protected:
- /// CurArray - This is the current set of buckets. If it points to
- /// SmallArray, then the set is in 'small mode'.
+ /// SmallArray - Points to a fixed size set of buckets, used in 'small mode'.
+ const void **SmallArray;
+ /// CurArray - This is the current set of buckets. If equal to SmallArray,
+ /// then the set is in 'small mode'.
const void **CurArray;
/// CurArraySize - The allocated size of CurArray, always a power of two.
/// Note that CurArray points to an array that has CurArraySize+1 elements in
@@ -57,15 +59,13 @@ protected:
// If small, this is # elts allocated consequtively
unsigned NumElements;
unsigned NumTombstones;
- const void *SmallArray[1]; // Must be last ivar.
// Helper to copy construct a SmallPtrSet.
- SmallPtrSetImpl(const SmallPtrSetImpl& that);
- explicit SmallPtrSetImpl(unsigned SmallSize) {
+ SmallPtrSetImpl(const void **SmallStorage, const SmallPtrSetImpl& that);
+ explicit SmallPtrSetImpl(const void **SmallStorage, unsigned SmallSize) :
+ SmallArray(SmallStorage), CurArray(SmallStorage), CurArraySize(SmallSize) {
assert(SmallSize && (SmallSize & (SmallSize-1)) == 0 &&
"Initial size must be a power of two!");
- CurArray = &SmallArray[0];
- CurArraySize = SmallSize;
// The end pointer, always valid, is set to a valid element to help the
// iterator.
CurArray[SmallSize] = 0;
@@ -123,7 +123,7 @@ protected:
}
private:
- bool isSmall() const { return CurArray == &SmallArray[0]; }
+ bool isSmall() const { return CurArray == SmallArray; }
unsigned Hash(const void *Ptr) const {
return static_cast<unsigned>(((uintptr_t)Ptr >> 4) & (CurArraySize-1));
@@ -199,29 +199,29 @@ public:
}
};
-/// NextPowerOfTwo - This is a helper template that rounds N up to the next
-/// power of two.
+/// RoundUpToPowerOfTwo - This is a helper template that rounds N up to the next
+/// power of two (which means N itself if N is already a power of two).
template<unsigned N>
-struct NextPowerOfTwo;
+struct RoundUpToPowerOfTwo;
-/// NextPowerOfTwoH - If N is not a power of two, increase it. This is a helper
-/// template used to implement NextPowerOfTwo.
+/// RoundUpToPowerOfTwoH - If N is not a power of two, increase it. This is a
+/// helper template used to implement RoundUpToPowerOfTwo.
template<unsigned N, bool isPowerTwo>
-struct NextPowerOfTwoH {
+struct RoundUpToPowerOfTwoH {
enum { Val = N };
};
template<unsigned N>
-struct NextPowerOfTwoH<N, false> {
+struct RoundUpToPowerOfTwoH<N, false> {
enum {
// We could just use NextVal = N+1, but this converges faster. N|(N-1) sets
// the right-most zero bits to one all at once, e.g. 0b0011000 -> 0b0011111.
- Val = NextPowerOfTwo<(N|(N-1)) + 1>::Val
+ Val = RoundUpToPowerOfTwo<(N|(N-1)) + 1>::Val
};
};
template<unsigned N>
-struct NextPowerOfTwo {
- enum { Val = NextPowerOfTwoH<N, (N&(N-1)) == 0>::Val };
+struct RoundUpToPowerOfTwo {
+ enum { Val = RoundUpToPowerOfTwoH<N, (N&(N-1)) == 0>::Val };
};
@@ -232,16 +232,17 @@ struct NextPowerOfTwo {
template<class PtrType, unsigned SmallSize>
class SmallPtrSet : public SmallPtrSetImpl {
// Make sure that SmallSize is a power of two, round up if not.
- enum { SmallSizePowTwo = NextPowerOfTwo<SmallSize>::Val };
- void *SmallArray[SmallSizePowTwo];
+ enum { SmallSizePowTwo = RoundUpToPowerOfTwo<SmallSize>::Val };
+ /// SmallStorage - Fixed size storage used in 'small mode'. The extra element
+ /// ensures that the end iterator actually points to valid memory.
+ const void *SmallStorage[SmallSizePowTwo+1];
typedef PointerLikeTypeTraits<PtrType> PtrTraits;
public:
- SmallPtrSet() : SmallPtrSetImpl(NextPowerOfTwo<SmallSizePowTwo>::Val) {}
- SmallPtrSet(const SmallPtrSet &that) : SmallPtrSetImpl(that) {}
+ SmallPtrSet() : SmallPtrSetImpl(SmallStorage, SmallSizePowTwo) {}
+ SmallPtrSet(const SmallPtrSet &that) : SmallPtrSetImpl(SmallStorage, that) {}
template<typename It>
- SmallPtrSet(It I, It E)
- : SmallPtrSetImpl(NextPowerOfTwo<SmallSizePowTwo>::Val) {
+ SmallPtrSet(It I, It E) : SmallPtrSetImpl(SmallStorage, SmallSizePowTwo) {
insert(I, E);
}
diff --git a/include/llvm/ADT/SmallVector.h b/include/llvm/ADT/SmallVector.h
index 18c8619..fa61d20 100644
--- a/include/llvm/ADT/SmallVector.h
+++ b/include/llvm/ADT/SmallVector.h
@@ -17,6 +17,8 @@
#include "llvm/Support/type_traits.h"
#include <algorithm>
#include <cassert>
+#include <cstddef>
+#include <cstdlib>
#include <cstring>
#include <memory>
@@ -70,35 +72,35 @@ protected:
#endif
} FirstEl;
// Space after 'FirstEl' is clobbered, do not add any instance vars after it.
-
+
protected:
SmallVectorBase(size_t Size)
: BeginX(&FirstEl), EndX(&FirstEl), CapacityX((char*)&FirstEl+Size) {}
-
+
/// isSmall - Return true if this is a smallvector which has not had dynamic
/// memory allocated for it.
bool isSmall() const {
return BeginX == static_cast<const void*>(&FirstEl);
}
-
+
/// size_in_bytes - This returns size()*sizeof(T).
size_t size_in_bytes() const {
return size_t((char*)EndX - (char*)BeginX);
}
-
+
/// capacity_in_bytes - This returns capacity()*sizeof(T).
size_t capacity_in_bytes() const {
return size_t((char*)CapacityX - (char*)BeginX);
}
-
+
/// grow_pod - This is an implementation of the grow() method which only works
/// on POD-like datatypes and is out of line to reduce code duplication.
void grow_pod(size_t MinSizeInBytes, size_t TSize);
-
+
public:
bool empty() const { return BeginX == EndX; }
};
-
+
template <typename T>
class SmallVectorTemplateCommon : public SmallVectorBase {
@@ -106,21 +108,21 @@ protected:
void setEnd(T *P) { this->EndX = P; }
public:
SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {}
-
+
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T *iterator;
typedef const T *const_iterator;
-
+
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
-
+
typedef T &reference;
typedef const T &const_reference;
typedef T *pointer;
typedef const T *const_pointer;
-
+
// forward iterator creation methods.
iterator begin() { return (iterator)this->BeginX; }
const_iterator begin() const { return (const_iterator)this->BeginX; }
@@ -130,7 +132,7 @@ protected:
iterator capacity_ptr() { return (iterator)this->CapacityX; }
const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
public:
-
+
// reverse iterator creation methods.
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
@@ -139,16 +141,16 @@ public:
size_type size() const { return end()-begin(); }
size_type max_size() const { return size_type(-1) / sizeof(T); }
-
+
/// capacity - Return the total number of elements in the currently allocated
/// buffer.
size_t capacity() const { return capacity_ptr() - begin(); }
-
+
/// data - Return a pointer to the vector's buffer, even if empty().
pointer data() { return pointer(begin()); }
/// data - Return a pointer to the vector's buffer, even if empty().
const_pointer data() const { return const_pointer(begin()); }
-
+
reference operator[](unsigned idx) {
assert(begin() + idx < end());
return begin()[idx];
@@ -172,7 +174,7 @@ public:
return end()[-1];
}
};
-
+
/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
/// implementations that are designed to work with non-POD-like T's.
template <typename T, bool isPodLike>
@@ -186,14 +188,14 @@ public:
E->~T();
}
}
-
+
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
/// starting with "Dest", constructing elements into it as needed.
template<typename It1, typename It2>
static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
std::uninitialized_copy(I, E, Dest);
}
-
+
/// grow - double the size of the allocated memory, guaranteeing space for at
/// least one more element or MinSize if specified.
void grow(size_t MinSize = 0);
@@ -207,34 +209,34 @@ void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
size_t NewCapacity = 2*CurCapacity;
if (NewCapacity < MinSize)
NewCapacity = MinSize;
- T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T)));
-
+ T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
+
// Copy the elements over.
this->uninitialized_copy(this->begin(), this->end(), NewElts);
-
+
// Destroy the original elements.
destroy_range(this->begin(), this->end());
-
+
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall())
- operator delete(this->begin());
-
+ free(this->begin());
+
this->setEnd(NewElts+CurSize);
this->BeginX = NewElts;
this->CapacityX = this->begin()+NewCapacity;
}
-
-
+
+
/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
/// implementations that are designed to work with POD-like T's.
template <typename T>
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
public:
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
-
+
// No need to do a destroy loop for POD's.
static void destroy_range(T *, T *) {}
-
+
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
/// starting with "Dest", constructing elements into it as needed.
template<typename It1, typename It2>
@@ -259,33 +261,35 @@ public:
this->grow_pod(MinSize*sizeof(T), sizeof(T));
}
};
-
-
+
+
/// SmallVectorImpl - This class consists of common code factored out of the
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
/// template parameter.
template <typename T>
class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
+
+ SmallVectorImpl(const SmallVectorImpl&); // DISABLED.
public:
typedef typename SuperClass::iterator iterator;
typedef typename SuperClass::size_type size_type;
-
+
// Default ctor - Initialize to empty.
explicit SmallVectorImpl(unsigned N)
: SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
}
-
+
~SmallVectorImpl() {
// Destroy the constructed elements in the vector.
this->destroy_range(this->begin(), this->end());
-
+
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall())
- operator delete(this->begin());
+ free(this->begin());
}
-
-
+
+
void clear() {
this->destroy_range(this->begin(), this->end());
this->EndX = this->BeginX;
@@ -319,7 +323,7 @@ public:
if (this->capacity() < N)
this->grow(N);
}
-
+
void push_back(const T &Elt) {
if (this->EndX < this->CapacityX) {
Retry:
@@ -330,21 +334,21 @@ public:
this->grow();
goto Retry;
}
-
+
void pop_back() {
this->setEnd(this->end()-1);
this->end()->~T();
}
-
+
T pop_back_val() {
T Result = this->back();
pop_back();
return Result;
}
-
-
+
+
void swap(SmallVectorImpl &RHS);
-
+
/// append - Add the specified range to the end of the SmallVector.
///
template<typename in_iter>
@@ -353,26 +357,26 @@ public:
// Grow allocated space if needed.
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
this->grow(this->size()+NumInputs);
-
+
// Copy the new elements over.
// TODO: NEED To compile time dispatch on whether in_iter is a random access
// iterator to use the fast uninitialized_copy.
std::uninitialized_copy(in_start, in_end, this->end());
this->setEnd(this->end() + NumInputs);
}
-
+
/// append - Add the specified range to the end of the SmallVector.
///
void append(size_type NumInputs, const T &Elt) {
// Grow allocated space if needed.
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
this->grow(this->size()+NumInputs);
-
+
// Copy the new elements over.
std::uninitialized_fill_n(this->end(), NumInputs, Elt);
this->setEnd(this->end() + NumInputs);
}
-
+
void assign(unsigned NumElts, const T &Elt) {
clear();
if (this->capacity() < NumElts)
@@ -380,7 +384,7 @@ public:
this->setEnd(this->begin()+NumElts);
construct_range(this->begin(), this->end(), Elt);
}
-
+
iterator erase(iterator I) {
iterator N = I;
// Shift all elts down one.
@@ -389,7 +393,7 @@ public:
pop_back();
return(N);
}
-
+
iterator erase(iterator S, iterator E) {
iterator N = S;
// Shift all elts down.
@@ -399,13 +403,13 @@ public:
this->setEnd(I);
return(N);
}
-
+
iterator insert(iterator I, const T &Elt) {
if (I == this->end()) { // Important special case for empty vector.
push_back(Elt);
return this->end()-1;
}
-
+
if (this->EndX < this->CapacityX) {
Retry:
new (this->end()) T(this->back());
@@ -420,22 +424,22 @@ public:
I = this->begin()+EltNo;
goto Retry;
}
-
+
iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
if (I == this->end()) { // Important special case for empty vector.
append(NumToInsert, Elt);
return this->end()-1;
}
-
+
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I - this->begin();
-
+
// Ensure there is enough space.
reserve(static_cast<unsigned>(this->size() + NumToInsert));
-
+
// Uninvalidate the iterator.
I = this->begin()+InsertElt;
-
+
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
@@ -443,48 +447,48 @@ public:
if (size_t(this->end()-I) >= NumToInsert) {
T *OldEnd = this->end();
append(this->end()-NumToInsert, this->end());
-
+
// Copy the existing elements that get replaced.
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
-
+
std::fill_n(I, NumToInsert, Elt);
return I;
}
-
+
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
-
+
// Copy over the elements that we're about to overwrite.
T *OldEnd = this->end();
this->setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I;
this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
-
+
// Replace the overwritten part.
std::fill_n(I, NumOverwritten, Elt);
-
+
// Insert the non-overwritten middle part.
std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
return I;
}
-
+
template<typename ItTy>
iterator insert(iterator I, ItTy From, ItTy To) {
if (I == this->end()) { // Important special case for empty vector.
append(From, To);
return this->end()-1;
}
-
+
size_t NumToInsert = std::distance(From, To);
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I - this->begin();
-
+
// Ensure there is enough space.
reserve(static_cast<unsigned>(this->size() + NumToInsert));
-
+
// Uninvalidate the iterator.
I = this->begin()+InsertElt;
-
+
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
@@ -492,37 +496,37 @@ public:
if (size_t(this->end()-I) >= NumToInsert) {
T *OldEnd = this->end();
append(this->end()-NumToInsert, this->end());
-
+
// Copy the existing elements that get replaced.
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
-
+
std::copy(From, To, I);
return I;
}
-
+
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
-
+
// Copy over the elements that we're about to overwrite.
T *OldEnd = this->end();
this->setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I;
this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
-
+
// Replace the overwritten part.
for (; NumOverwritten > 0; --NumOverwritten) {
*I = *From;
++I; ++From;
}
-
+
// Insert the non-overwritten middle part.
this->uninitialized_copy(From, To, OldEnd);
return I;
}
-
+
const SmallVectorImpl
&operator=(const SmallVectorImpl &RHS);
-
+
bool operator==(const SmallVectorImpl &RHS) const {
if (this->size() != RHS.size()) return false;
return std::equal(this->begin(), this->end(), RHS.begin());
@@ -530,12 +534,12 @@ public:
bool operator!=(const SmallVectorImpl &RHS) const {
return !(*this == RHS);
}
-
+
bool operator<(const SmallVectorImpl &RHS) const {
return std::lexicographical_compare(this->begin(), this->end(),
RHS.begin(), RHS.end());
}
-
+
/// set_size - Set the array size to \arg N, which the current array must have
/// enough capacity for.
///
@@ -549,14 +553,14 @@ public:
assert(N <= this->capacity());
this->setEnd(this->begin() + N);
}
-
+
private:
static void construct_range(T *S, T *E, const T &Elt) {
for (; S != E; ++S)
new (S) T(Elt);
}
};
-
+
template <typename T>
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
diff --git a/include/llvm/ADT/Statistic.h b/include/llvm/ADT/Statistic.h
index c593c58..3a1319f 100644
--- a/include/llvm/ADT/Statistic.h
+++ b/include/llvm/ADT/Statistic.h
@@ -56,6 +56,10 @@ public:
}
const Statistic &operator++() {
+ // FIXME: This function and all those that follow carefully use an
+ // atomic operation to update the value safely in the presence of
+ // concurrent accesses, but not to read the return value, so the
+ // return value is not thread safe.
sys::AtomicIncrement(&Value);
return init();
}
diff --git a/include/llvm/ADT/Triple.h b/include/llvm/ADT/Triple.h
index be31ea0..feade6a 100644
--- a/include/llvm/ADT/Triple.h
+++ b/include/llvm/ADT/Triple.h
@@ -100,7 +100,8 @@ public:
Psp,
Solaris,
Win32,
- Haiku
+ Haiku,
+ Minix
};
private:
@@ -242,8 +243,8 @@ public:
/// environment components with a single string.
void setOSAndEnvironmentName(StringRef Str);
- /// getArchNameForAssembler - Get an architecture name that is understood by the
- /// target assembler.
+ /// getArchNameForAssembler - Get an architecture name that is understood by
+ /// the target assembler.
const char *getArchNameForAssembler();
/// @}
diff --git a/include/llvm/ADT/ValueMap.h b/include/llvm/ADT/ValueMap.h
index 6f57fe8..9e30bd4 100644
--- a/include/llvm/ADT/ValueMap.h
+++ b/include/llvm/ADT/ValueMap.h
@@ -59,16 +59,16 @@ struct ValueMapConfig {
struct ExtraData {};
template<typename ExtraDataT>
- static void onRAUW(const ExtraDataT &Data, KeyT Old, KeyT New) {}
+ static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
template<typename ExtraDataT>
- static void onDelete(const ExtraDataT &Data, KeyT Old) {}
+ static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
/// Returns a mutex that should be acquired around any changes to the map.
/// This is only acquired from the CallbackVH (and held around calls to onRAUW
/// and onDelete) and not inside other ValueMap methods. NULL means that no
/// mutex is necessary.
template<typename ExtraDataT>
- static sys::Mutex *getMutex(const ExtraDataT &Data) { return NULL; }
+ static sys::Mutex *getMutex(const ExtraDataT &/*Data*/) { return NULL; }
};
/// See the file comment.
diff --git a/include/llvm/ADT/ilist.h b/include/llvm/ADT/ilist.h
index e4d26dd..9479d00 100644
--- a/include/llvm/ADT/ilist.h
+++ b/include/llvm/ADT/ilist.h
@@ -39,6 +39,7 @@
#define LLVM_ADT_ILIST_H
#include <cassert>
+#include <cstddef>
#include <iterator>
namespace llvm {
OpenPOWER on IntegriCloud