diff options
Diffstat (limited to 'include/llvm/ADT/SparseBitVector.h')
-rw-r--r-- | include/llvm/ADT/SparseBitVector.h | 901 |
1 files changed, 901 insertions, 0 deletions
diff --git a/include/llvm/ADT/SparseBitVector.h b/include/llvm/ADT/SparseBitVector.h new file mode 100644 index 0000000..6230135 --- /dev/null +++ b/include/llvm/ADT/SparseBitVector.h @@ -0,0 +1,901 @@ +//===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector -*- C++ -*- ===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the SparseBitVector class. See the doxygen comment for +// SparseBitVector for more details on the algorithm used. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_SPARSEBITVECTOR_H +#define LLVM_ADT_SPARSEBITVECTOR_H + +#include <cassert> +#include <climits> +#include <cstring> +#include "llvm/Support/DataTypes.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/ADT/ilist.h" + +namespace llvm { + +/// SparseBitVector is an implementation of a bitvector that is sparse by only +/// storing the elements that have non-zero bits set. In order to make this +/// fast for the most common cases, SparseBitVector is implemented as a linked +/// list of SparseBitVectorElements. We maintain a pointer to the last +/// SparseBitVectorElement accessed (in the form of a list iterator), in order +/// to make multiple in-order test/set constant time after the first one is +/// executed. Note that using vectors to store SparseBitVectorElement's does +/// not work out very well because it causes insertion in the middle to take +/// enormous amounts of time with a large amount of bits. Other structures that +/// have better worst cases for insertion in the middle (various balanced trees, +/// etc) do not perform as well in practice as a linked list with this iterator +/// kept up to date. They are also significantly more memory intensive. + + +template <unsigned ElementSize = 128> +struct SparseBitVectorElement + : ilist_node<SparseBitVectorElement<ElementSize> > { +public: + typedef unsigned long BitWord; + enum { + BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT, + BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE, + BITS_PER_ELEMENT = ElementSize + }; + +private: + // Index of Element in terms of where first bit starts. + unsigned ElementIndex; + BitWord Bits[BITWORDS_PER_ELEMENT]; + // Needed for sentinels + friend struct ilist_sentinel_traits<SparseBitVectorElement>; + SparseBitVectorElement() { + ElementIndex = ~0U; + memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); + } + +public: + explicit SparseBitVectorElement(unsigned Idx) { + ElementIndex = Idx; + memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); + } + + // Comparison. + bool operator==(const SparseBitVectorElement &RHS) const { + if (ElementIndex != RHS.ElementIndex) + return false; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) + if (Bits[i] != RHS.Bits[i]) + return false; + return true; + } + + bool operator!=(const SparseBitVectorElement &RHS) const { + return !(*this == RHS); + } + + // Return the bits that make up word Idx in our element. + BitWord word(unsigned Idx) const { + assert (Idx < BITWORDS_PER_ELEMENT); + return Bits[Idx]; + } + + unsigned index() const { + return ElementIndex; + } + + bool empty() const { + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) + if (Bits[i]) + return false; + return true; + } + + void set(unsigned Idx) { + Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE); + } + + bool test_and_set (unsigned Idx) { + bool old = test(Idx); + if (!old) { + set(Idx); + return true; + } + return false; + } + + void reset(unsigned Idx) { + Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE)); + } + + bool test(unsigned Idx) const { + return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE)); + } + + unsigned count() const { + unsigned NumBits = 0; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) + if (sizeof(BitWord) == 4) + NumBits += CountPopulation_32(Bits[i]); + else if (sizeof(BitWord) == 8) + NumBits += CountPopulation_64(Bits[i]); + else + assert(0 && "Unsupported!"); + return NumBits; + } + + /// find_first - Returns the index of the first set bit. + int find_first() const { + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) + if (Bits[i] != 0) { + if (sizeof(BitWord) == 4) + return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]); + else if (sizeof(BitWord) == 8) + return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]); + else + assert(0 && "Unsupported!"); + } + assert(0 && "Illegal empty element"); + return 0; // Not reached + } + + /// find_next - Returns the index of the next set bit starting from the + /// "Curr" bit. Returns -1 if the next set bit is not found. + int find_next(unsigned Curr) const { + if (Curr >= BITS_PER_ELEMENT) + return -1; + + unsigned WordPos = Curr / BITWORD_SIZE; + unsigned BitPos = Curr % BITWORD_SIZE; + BitWord Copy = Bits[WordPos]; + assert (WordPos <= BITWORDS_PER_ELEMENT + && "Word Position outside of element"); + + // Mask off previous bits. + Copy &= ~0L << BitPos; + + if (Copy != 0) { + if (sizeof(BitWord) == 4) + return WordPos * BITWORD_SIZE + CountTrailingZeros_32(Copy); + else if (sizeof(BitWord) == 8) + return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy); + else + assert(0 && "Unsupported!"); + } + + // Check subsequent words. + for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i) + if (Bits[i] != 0) { + if (sizeof(BitWord) == 4) + return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]); + else if (sizeof(BitWord) == 8) + return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]); + else + assert(0 && "Unsupported!"); + } + return -1; + } + + // Union this element with RHS and return true if this one changed. + bool unionWith(const SparseBitVectorElement &RHS) { + bool changed = false; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { + BitWord old = changed ? 0 : Bits[i]; + + Bits[i] |= RHS.Bits[i]; + if (!changed && old != Bits[i]) + changed = true; + } + return changed; + } + + // Return true if we have any bits in common with RHS + bool intersects(const SparseBitVectorElement &RHS) const { + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { + if (RHS.Bits[i] & Bits[i]) + return true; + } + return false; + } + + // Intersect this Element with RHS and return true if this one changed. + // BecameZero is set to true if this element became all-zero bits. + bool intersectWith(const SparseBitVectorElement &RHS, + bool &BecameZero) { + bool changed = false; + bool allzero = true; + + BecameZero = false; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { + BitWord old = changed ? 0 : Bits[i]; + + Bits[i] &= RHS.Bits[i]; + if (Bits[i] != 0) + allzero = false; + + if (!changed && old != Bits[i]) + changed = true; + } + BecameZero = allzero; + return changed; + } + // Intersect this Element with the complement of RHS and return true if this + // one changed. BecameZero is set to true if this element became all-zero + // bits. + bool intersectWithComplement(const SparseBitVectorElement &RHS, + bool &BecameZero) { + bool changed = false; + bool allzero = true; + + BecameZero = false; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { + BitWord old = changed ? 0 : Bits[i]; + + Bits[i] &= ~RHS.Bits[i]; + if (Bits[i] != 0) + allzero = false; + + if (!changed && old != Bits[i]) + changed = true; + } + BecameZero = allzero; + return changed; + } + // Three argument version of intersectWithComplement that intersects + // RHS1 & ~RHS2 into this element + void intersectWithComplement(const SparseBitVectorElement &RHS1, + const SparseBitVectorElement &RHS2, + bool &BecameZero) { + bool allzero = true; + + BecameZero = false; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { + Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i]; + if (Bits[i] != 0) + allzero = false; + } + BecameZero = allzero; + } + + // Get a hash value for this element; + uint64_t getHashValue() const { + uint64_t HashVal = 0; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { + HashVal ^= Bits[i]; + } + return HashVal; + } +}; + +template <unsigned ElementSize = 128> +class SparseBitVector { + typedef ilist<SparseBitVectorElement<ElementSize> > ElementList; + typedef typename ElementList::iterator ElementListIter; + typedef typename ElementList::const_iterator ElementListConstIter; + enum { + BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE + }; + + // Pointer to our current Element. + ElementListIter CurrElementIter; + ElementList Elements; + + // This is like std::lower_bound, except we do linear searching from the + // current position. + ElementListIter FindLowerBound(unsigned ElementIndex) { + + if (Elements.empty()) { + CurrElementIter = Elements.begin(); + return Elements.begin(); + } + + // Make sure our current iterator is valid. + if (CurrElementIter == Elements.end()) + --CurrElementIter; + + // Search from our current iterator, either backwards or forwards, + // depending on what element we are looking for. + ElementListIter ElementIter = CurrElementIter; + if (CurrElementIter->index() == ElementIndex) { + return ElementIter; + } else if (CurrElementIter->index() > ElementIndex) { + while (ElementIter != Elements.begin() + && ElementIter->index() > ElementIndex) + --ElementIter; + } else { + while (ElementIter != Elements.end() && + ElementIter->index() < ElementIndex) + ++ElementIter; + } + CurrElementIter = ElementIter; + return ElementIter; + } + + // Iterator to walk set bits in the bitmap. This iterator is a lot uglier + // than it would be, in order to be efficient. + class SparseBitVectorIterator { + private: + bool AtEnd; + + const SparseBitVector<ElementSize> *BitVector; + + // Current element inside of bitmap. + ElementListConstIter Iter; + + // Current bit number inside of our bitmap. + unsigned BitNumber; + + // Current word number inside of our element. + unsigned WordNumber; + + // Current bits from the element. + typename SparseBitVectorElement<ElementSize>::BitWord Bits; + + // Move our iterator to the first non-zero bit in the bitmap. + void AdvanceToFirstNonZero() { + if (AtEnd) + return; + if (BitVector->Elements.empty()) { + AtEnd = true; + return; + } + Iter = BitVector->Elements.begin(); + BitNumber = Iter->index() * ElementSize; + unsigned BitPos = Iter->find_first(); + BitNumber += BitPos; + WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; + Bits = Iter->word(WordNumber); + Bits >>= BitPos % BITWORD_SIZE; + } + + // Move our iterator to the next non-zero bit. + void AdvanceToNextNonZero() { + if (AtEnd) + return; + + while (Bits && !(Bits & 1)) { + Bits >>= 1; + BitNumber += 1; + } + + // See if we ran out of Bits in this word. + if (!Bits) { + int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ; + // If we ran out of set bits in this element, move to next element. + if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) { + ++Iter; + WordNumber = 0; + + // We may run out of elements in the bitmap. + if (Iter == BitVector->Elements.end()) { + AtEnd = true; + return; + } + // Set up for next non zero word in bitmap. + BitNumber = Iter->index() * ElementSize; + NextSetBitNumber = Iter->find_first(); + BitNumber += NextSetBitNumber; + WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; + Bits = Iter->word(WordNumber); + Bits >>= NextSetBitNumber % BITWORD_SIZE; + } else { + WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE; + Bits = Iter->word(WordNumber); + Bits >>= NextSetBitNumber % BITWORD_SIZE; + BitNumber = Iter->index() * ElementSize; + BitNumber += NextSetBitNumber; + } + } + } + public: + // Preincrement. + inline SparseBitVectorIterator& operator++() { + ++BitNumber; + Bits >>= 1; + AdvanceToNextNonZero(); + return *this; + } + + // Postincrement. + inline SparseBitVectorIterator operator++(int) { + SparseBitVectorIterator tmp = *this; + ++*this; + return tmp; + } + + // Return the current set bit number. + unsigned operator*() const { + return BitNumber; + } + + bool operator==(const SparseBitVectorIterator &RHS) const { + // If they are both at the end, ignore the rest of the fields. + if (AtEnd && RHS.AtEnd) + return true; + // Otherwise they are the same if they have the same bit number and + // bitmap. + return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber; + } + bool operator!=(const SparseBitVectorIterator &RHS) const { + return !(*this == RHS); + } + SparseBitVectorIterator(): BitVector(NULL) { + } + + + SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS, + bool end = false):BitVector(RHS) { + Iter = BitVector->Elements.begin(); + BitNumber = 0; + Bits = 0; + WordNumber = ~0; + AtEnd = end; + AdvanceToFirstNonZero(); + } + }; +public: + typedef SparseBitVectorIterator iterator; + + SparseBitVector () { + CurrElementIter = Elements.begin (); + } + + ~SparseBitVector() { + } + + // SparseBitVector copy ctor. + SparseBitVector(const SparseBitVector &RHS) { + ElementListConstIter ElementIter = RHS.Elements.begin(); + while (ElementIter != RHS.Elements.end()) { + Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter)); + ++ElementIter; + } + + CurrElementIter = Elements.begin (); + } + + // Clear. + void clear() { + Elements.clear(); + } + + // Assignment + SparseBitVector& operator=(const SparseBitVector& RHS) { + Elements.clear(); + + ElementListConstIter ElementIter = RHS.Elements.begin(); + while (ElementIter != RHS.Elements.end()) { + Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter)); + ++ElementIter; + } + + CurrElementIter = Elements.begin (); + + return *this; + } + + // Test, Reset, and Set a bit in the bitmap. + bool test(unsigned Idx) { + if (Elements.empty()) + return false; + + unsigned ElementIndex = Idx / ElementSize; + ElementListIter ElementIter = FindLowerBound(ElementIndex); + + // If we can't find an element that is supposed to contain this bit, there + // is nothing more to do. + if (ElementIter == Elements.end() || + ElementIter->index() != ElementIndex) + return false; + return ElementIter->test(Idx % ElementSize); + } + + void reset(unsigned Idx) { + if (Elements.empty()) + return; + + unsigned ElementIndex = Idx / ElementSize; + ElementListIter ElementIter = FindLowerBound(ElementIndex); + + // If we can't find an element that is supposed to contain this bit, there + // is nothing more to do. + if (ElementIter == Elements.end() || + ElementIter->index() != ElementIndex) + return; + ElementIter->reset(Idx % ElementSize); + + // When the element is zeroed out, delete it. + if (ElementIter->empty()) { + ++CurrElementIter; + Elements.erase(ElementIter); + } + } + + void set(unsigned Idx) { + unsigned ElementIndex = Idx / ElementSize; + SparseBitVectorElement<ElementSize> *Element; + ElementListIter ElementIter; + if (Elements.empty()) { + Element = new SparseBitVectorElement<ElementSize>(ElementIndex); + ElementIter = Elements.insert(Elements.end(), Element); + + } else { + ElementIter = FindLowerBound(ElementIndex); + + if (ElementIter == Elements.end() || + ElementIter->index() != ElementIndex) { + Element = new SparseBitVectorElement<ElementSize>(ElementIndex); + // We may have hit the beginning of our SparseBitVector, in which case, + // we may need to insert right after this element, which requires moving + // the current iterator forward one, because insert does insert before. + if (ElementIter != Elements.end() && + ElementIter->index() < ElementIndex) + ElementIter = Elements.insert(++ElementIter, Element); + else + ElementIter = Elements.insert(ElementIter, Element); + } + } + CurrElementIter = ElementIter; + + ElementIter->set(Idx % ElementSize); + } + + bool test_and_set (unsigned Idx) { + bool old = test(Idx); + if (!old) { + set(Idx); + return true; + } + return false; + } + + bool operator!=(const SparseBitVector &RHS) const { + return !(*this == RHS); + } + + bool operator==(const SparseBitVector &RHS) const { + ElementListConstIter Iter1 = Elements.begin(); + ElementListConstIter Iter2 = RHS.Elements.begin(); + + for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end(); + ++Iter1, ++Iter2) { + if (*Iter1 != *Iter2) + return false; + } + return Iter1 == Elements.end() && Iter2 == RHS.Elements.end(); + } + + // Union our bitmap with the RHS and return true if we changed. + bool operator|=(const SparseBitVector &RHS) { + bool changed = false; + ElementListIter Iter1 = Elements.begin(); + ElementListConstIter Iter2 = RHS.Elements.begin(); + + // If RHS is empty, we are done + if (RHS.Elements.empty()) + return false; + + while (Iter2 != RHS.Elements.end()) { + if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) { + Elements.insert(Iter1, + new SparseBitVectorElement<ElementSize>(*Iter2)); + ++Iter2; + changed = true; + } else if (Iter1->index() == Iter2->index()) { + changed |= Iter1->unionWith(*Iter2); + ++Iter1; + ++Iter2; + } else { + ++Iter1; + } + } + CurrElementIter = Elements.begin(); + return changed; + } + + // Intersect our bitmap with the RHS and return true if ours changed. + bool operator&=(const SparseBitVector &RHS) { + bool changed = false; + ElementListIter Iter1 = Elements.begin(); + ElementListConstIter Iter2 = RHS.Elements.begin(); + + // Check if both bitmaps are empty. + if (Elements.empty() && RHS.Elements.empty()) + return false; + + // Loop through, intersecting as we go, erasing elements when necessary. + while (Iter2 != RHS.Elements.end()) { + if (Iter1 == Elements.end()) { + CurrElementIter = Elements.begin(); + return changed; + } + + if (Iter1->index() > Iter2->index()) { + ++Iter2; + } else if (Iter1->index() == Iter2->index()) { + bool BecameZero; + changed |= Iter1->intersectWith(*Iter2, BecameZero); + if (BecameZero) { + ElementListIter IterTmp = Iter1; + ++Iter1; + Elements.erase(IterTmp); + } else { + ++Iter1; + } + ++Iter2; + } else { + ElementListIter IterTmp = Iter1; + ++Iter1; + Elements.erase(IterTmp); + } + } + Elements.erase(Iter1, Elements.end()); + CurrElementIter = Elements.begin(); + return changed; + } + + // Intersect our bitmap with the complement of the RHS and return true + // if ours changed. + bool intersectWithComplement(const SparseBitVector &RHS) { + bool changed = false; + ElementListIter Iter1 = Elements.begin(); + ElementListConstIter Iter2 = RHS.Elements.begin(); + + // If either our bitmap or RHS is empty, we are done + if (Elements.empty() || RHS.Elements.empty()) + return false; + + // Loop through, intersecting as we go, erasing elements when necessary. + while (Iter2 != RHS.Elements.end()) { + if (Iter1 == Elements.end()) { + CurrElementIter = Elements.begin(); + return changed; + } + + if (Iter1->index() > Iter2->index()) { + ++Iter2; + } else if (Iter1->index() == Iter2->index()) { + bool BecameZero; + changed |= Iter1->intersectWithComplement(*Iter2, BecameZero); + if (BecameZero) { + ElementListIter IterTmp = Iter1; + ++Iter1; + Elements.erase(IterTmp); + } else { + ++Iter1; + } + ++Iter2; + } else { + ++Iter1; + } + } + CurrElementIter = Elements.begin(); + return changed; + } + + bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const { + return intersectWithComplement(*RHS); + } + + + // Three argument version of intersectWithComplement. + // Result of RHS1 & ~RHS2 is stored into this bitmap. + void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1, + const SparseBitVector<ElementSize> &RHS2) + { + Elements.clear(); + CurrElementIter = Elements.begin(); + ElementListConstIter Iter1 = RHS1.Elements.begin(); + ElementListConstIter Iter2 = RHS2.Elements.begin(); + + // If RHS1 is empty, we are done + // If RHS2 is empty, we still have to copy RHS1 + if (RHS1.Elements.empty()) + return; + + // Loop through, intersecting as we go, erasing elements when necessary. + while (Iter2 != RHS2.Elements.end()) { + if (Iter1 == RHS1.Elements.end()) + return; + + if (Iter1->index() > Iter2->index()) { + ++Iter2; + } else if (Iter1->index() == Iter2->index()) { + bool BecameZero = false; + SparseBitVectorElement<ElementSize> *NewElement = + new SparseBitVectorElement<ElementSize>(Iter1->index()); + NewElement->intersectWithComplement(*Iter1, *Iter2, BecameZero); + if (!BecameZero) { + Elements.push_back(NewElement); + } + else + delete NewElement; + ++Iter1; + ++Iter2; + } else { + SparseBitVectorElement<ElementSize> *NewElement = + new SparseBitVectorElement<ElementSize>(*Iter1); + Elements.push_back(NewElement); + ++Iter1; + } + } + + // copy the remaining elements + while (Iter1 != RHS1.Elements.end()) { + SparseBitVectorElement<ElementSize> *NewElement = + new SparseBitVectorElement<ElementSize>(*Iter1); + Elements.push_back(NewElement); + ++Iter1; + } + + return; + } + + void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1, + const SparseBitVector<ElementSize> *RHS2) { + intersectWithComplement(*RHS1, *RHS2); + } + + bool intersects(const SparseBitVector<ElementSize> *RHS) const { + return intersects(*RHS); + } + + // Return true if we share any bits in common with RHS + bool intersects(const SparseBitVector<ElementSize> &RHS) const { + ElementListConstIter Iter1 = Elements.begin(); + ElementListConstIter Iter2 = RHS.Elements.begin(); + + // Check if both bitmaps are empty. + if (Elements.empty() && RHS.Elements.empty()) + return false; + + // Loop through, intersecting stopping when we hit bits in common. + while (Iter2 != RHS.Elements.end()) { + if (Iter1 == Elements.end()) + return false; + + if (Iter1->index() > Iter2->index()) { + ++Iter2; + } else if (Iter1->index() == Iter2->index()) { + if (Iter1->intersects(*Iter2)) + return true; + ++Iter1; + ++Iter2; + } else { + ++Iter1; + } + } + return false; + } + + // Return true iff all bits set in this SparseBitVector are + // also set in RHS. + bool contains(const SparseBitVector<ElementSize> &RHS) const { + SparseBitVector<ElementSize> Result(*this); + Result &= RHS; + return (Result == RHS); + } + + // Return the first set bit in the bitmap. Return -1 if no bits are set. + int find_first() const { + if (Elements.empty()) + return -1; + const SparseBitVectorElement<ElementSize> &First = *(Elements.begin()); + return (First.index() * ElementSize) + First.find_first(); + } + + // Return true if the SparseBitVector is empty + bool empty() const { + return Elements.empty(); + } + + unsigned count() const { + unsigned BitCount = 0; + for (ElementListConstIter Iter = Elements.begin(); + Iter != Elements.end(); + ++Iter) + BitCount += Iter->count(); + + return BitCount; + } + iterator begin() const { + return iterator(this); + } + + iterator end() const { + return iterator(this, true); + } + + // Get a hash value for this bitmap. + uint64_t getHashValue() const { + uint64_t HashVal = 0; + for (ElementListConstIter Iter = Elements.begin(); + Iter != Elements.end(); + ++Iter) { + HashVal ^= Iter->index(); + HashVal ^= Iter->getHashValue(); + } + return HashVal; + } +}; + +// Convenience functions to allow Or and And without dereferencing in the user +// code. + +template <unsigned ElementSize> +inline bool operator |=(SparseBitVector<ElementSize> &LHS, + const SparseBitVector<ElementSize> *RHS) { + return LHS |= *RHS; +} + +template <unsigned ElementSize> +inline bool operator |=(SparseBitVector<ElementSize> *LHS, + const SparseBitVector<ElementSize> &RHS) { + return LHS->operator|=(RHS); +} + +template <unsigned ElementSize> +inline bool operator &=(SparseBitVector<ElementSize> *LHS, + const SparseBitVector<ElementSize> &RHS) { + return LHS->operator&=(RHS); +} + +template <unsigned ElementSize> +inline bool operator &=(SparseBitVector<ElementSize> &LHS, + const SparseBitVector<ElementSize> *RHS) { + return LHS &= *RHS; +} + +// Convenience functions for infix union, intersection, difference operators. + +template <unsigned ElementSize> +inline SparseBitVector<ElementSize> +operator|(const SparseBitVector<ElementSize> &LHS, + const SparseBitVector<ElementSize> &RHS) { + SparseBitVector<ElementSize> Result(LHS); + Result |= RHS; + return Result; +} + +template <unsigned ElementSize> +inline SparseBitVector<ElementSize> +operator&(const SparseBitVector<ElementSize> &LHS, + const SparseBitVector<ElementSize> &RHS) { + SparseBitVector<ElementSize> Result(LHS); + Result &= RHS; + return Result; +} + +template <unsigned ElementSize> +inline SparseBitVector<ElementSize> +operator-(const SparseBitVector<ElementSize> &LHS, + const SparseBitVector<ElementSize> &RHS) { + SparseBitVector<ElementSize> Result; + Result.intersectWithComplement(LHS, RHS); + return Result; +} + + + + +// Dump a SparseBitVector to a stream +template <unsigned ElementSize> +void dump(const SparseBitVector<ElementSize> &LHS, llvm::OStream &out) { + out << "[ "; + + typename SparseBitVector<ElementSize>::iterator bi; + for (bi = LHS.begin(); bi != LHS.end(); ++bi) { + out << *bi << " "; + } + out << " ]\n"; +} +} // end namespace llvm + +#endif |