summaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/SparseBitVector.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/ADT/SparseBitVector.h')
-rw-r--r--include/llvm/ADT/SparseBitVector.h901
1 files changed, 901 insertions, 0 deletions
diff --git a/include/llvm/ADT/SparseBitVector.h b/include/llvm/ADT/SparseBitVector.h
new file mode 100644
index 0000000..6230135
--- /dev/null
+++ b/include/llvm/ADT/SparseBitVector.h
@@ -0,0 +1,901 @@
+//===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector -*- C++ -*- ===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the SparseBitVector class. See the doxygen comment for
+// SparseBitVector for more details on the algorithm used.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_SPARSEBITVECTOR_H
+#define LLVM_ADT_SPARSEBITVECTOR_H
+
+#include <cassert>
+#include <climits>
+#include <cstring>
+#include "llvm/Support/DataTypes.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/ADT/ilist.h"
+
+namespace llvm {
+
+/// SparseBitVector is an implementation of a bitvector that is sparse by only
+/// storing the elements that have non-zero bits set. In order to make this
+/// fast for the most common cases, SparseBitVector is implemented as a linked
+/// list of SparseBitVectorElements. We maintain a pointer to the last
+/// SparseBitVectorElement accessed (in the form of a list iterator), in order
+/// to make multiple in-order test/set constant time after the first one is
+/// executed. Note that using vectors to store SparseBitVectorElement's does
+/// not work out very well because it causes insertion in the middle to take
+/// enormous amounts of time with a large amount of bits. Other structures that
+/// have better worst cases for insertion in the middle (various balanced trees,
+/// etc) do not perform as well in practice as a linked list with this iterator
+/// kept up to date. They are also significantly more memory intensive.
+
+
+template <unsigned ElementSize = 128>
+struct SparseBitVectorElement
+ : ilist_node<SparseBitVectorElement<ElementSize> > {
+public:
+ typedef unsigned long BitWord;
+ enum {
+ BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT,
+ BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE,
+ BITS_PER_ELEMENT = ElementSize
+ };
+
+private:
+ // Index of Element in terms of where first bit starts.
+ unsigned ElementIndex;
+ BitWord Bits[BITWORDS_PER_ELEMENT];
+ // Needed for sentinels
+ friend struct ilist_sentinel_traits<SparseBitVectorElement>;
+ SparseBitVectorElement() {
+ ElementIndex = ~0U;
+ memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
+ }
+
+public:
+ explicit SparseBitVectorElement(unsigned Idx) {
+ ElementIndex = Idx;
+ memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
+ }
+
+ // Comparison.
+ bool operator==(const SparseBitVectorElement &RHS) const {
+ if (ElementIndex != RHS.ElementIndex)
+ return false;
+ for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
+ if (Bits[i] != RHS.Bits[i])
+ return false;
+ return true;
+ }
+
+ bool operator!=(const SparseBitVectorElement &RHS) const {
+ return !(*this == RHS);
+ }
+
+ // Return the bits that make up word Idx in our element.
+ BitWord word(unsigned Idx) const {
+ assert (Idx < BITWORDS_PER_ELEMENT);
+ return Bits[Idx];
+ }
+
+ unsigned index() const {
+ return ElementIndex;
+ }
+
+ bool empty() const {
+ for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
+ if (Bits[i])
+ return false;
+ return true;
+ }
+
+ void set(unsigned Idx) {
+ Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
+ }
+
+ bool test_and_set (unsigned Idx) {
+ bool old = test(Idx);
+ if (!old) {
+ set(Idx);
+ return true;
+ }
+ return false;
+ }
+
+ void reset(unsigned Idx) {
+ Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
+ }
+
+ bool test(unsigned Idx) const {
+ return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE));
+ }
+
+ unsigned count() const {
+ unsigned NumBits = 0;
+ for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
+ if (sizeof(BitWord) == 4)
+ NumBits += CountPopulation_32(Bits[i]);
+ else if (sizeof(BitWord) == 8)
+ NumBits += CountPopulation_64(Bits[i]);
+ else
+ assert(0 && "Unsupported!");
+ return NumBits;
+ }
+
+ /// find_first - Returns the index of the first set bit.
+ int find_first() const {
+ for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
+ if (Bits[i] != 0) {
+ if (sizeof(BitWord) == 4)
+ return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]);
+ else if (sizeof(BitWord) == 8)
+ return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
+ else
+ assert(0 && "Unsupported!");
+ }
+ assert(0 && "Illegal empty element");
+ return 0; // Not reached
+ }
+
+ /// find_next - Returns the index of the next set bit starting from the
+ /// "Curr" bit. Returns -1 if the next set bit is not found.
+ int find_next(unsigned Curr) const {
+ if (Curr >= BITS_PER_ELEMENT)
+ return -1;
+
+ unsigned WordPos = Curr / BITWORD_SIZE;
+ unsigned BitPos = Curr % BITWORD_SIZE;
+ BitWord Copy = Bits[WordPos];
+ assert (WordPos <= BITWORDS_PER_ELEMENT
+ && "Word Position outside of element");
+
+ // Mask off previous bits.
+ Copy &= ~0L << BitPos;
+
+ if (Copy != 0) {
+ if (sizeof(BitWord) == 4)
+ return WordPos * BITWORD_SIZE + CountTrailingZeros_32(Copy);
+ else if (sizeof(BitWord) == 8)
+ return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
+ else
+ assert(0 && "Unsupported!");
+ }
+
+ // Check subsequent words.
+ for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i)
+ if (Bits[i] != 0) {
+ if (sizeof(BitWord) == 4)
+ return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]);
+ else if (sizeof(BitWord) == 8)
+ return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
+ else
+ assert(0 && "Unsupported!");
+ }
+ return -1;
+ }
+
+ // Union this element with RHS and return true if this one changed.
+ bool unionWith(const SparseBitVectorElement &RHS) {
+ bool changed = false;
+ for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
+ BitWord old = changed ? 0 : Bits[i];
+
+ Bits[i] |= RHS.Bits[i];
+ if (!changed && old != Bits[i])
+ changed = true;
+ }
+ return changed;
+ }
+
+ // Return true if we have any bits in common with RHS
+ bool intersects(const SparseBitVectorElement &RHS) const {
+ for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
+ if (RHS.Bits[i] & Bits[i])
+ return true;
+ }
+ return false;
+ }
+
+ // Intersect this Element with RHS and return true if this one changed.
+ // BecameZero is set to true if this element became all-zero bits.
+ bool intersectWith(const SparseBitVectorElement &RHS,
+ bool &BecameZero) {
+ bool changed = false;
+ bool allzero = true;
+
+ BecameZero = false;
+ for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
+ BitWord old = changed ? 0 : Bits[i];
+
+ Bits[i] &= RHS.Bits[i];
+ if (Bits[i] != 0)
+ allzero = false;
+
+ if (!changed && old != Bits[i])
+ changed = true;
+ }
+ BecameZero = allzero;
+ return changed;
+ }
+ // Intersect this Element with the complement of RHS and return true if this
+ // one changed. BecameZero is set to true if this element became all-zero
+ // bits.
+ bool intersectWithComplement(const SparseBitVectorElement &RHS,
+ bool &BecameZero) {
+ bool changed = false;
+ bool allzero = true;
+
+ BecameZero = false;
+ for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
+ BitWord old = changed ? 0 : Bits[i];
+
+ Bits[i] &= ~RHS.Bits[i];
+ if (Bits[i] != 0)
+ allzero = false;
+
+ if (!changed && old != Bits[i])
+ changed = true;
+ }
+ BecameZero = allzero;
+ return changed;
+ }
+ // Three argument version of intersectWithComplement that intersects
+ // RHS1 & ~RHS2 into this element
+ void intersectWithComplement(const SparseBitVectorElement &RHS1,
+ const SparseBitVectorElement &RHS2,
+ bool &BecameZero) {
+ bool allzero = true;
+
+ BecameZero = false;
+ for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
+ Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i];
+ if (Bits[i] != 0)
+ allzero = false;
+ }
+ BecameZero = allzero;
+ }
+
+ // Get a hash value for this element;
+ uint64_t getHashValue() const {
+ uint64_t HashVal = 0;
+ for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
+ HashVal ^= Bits[i];
+ }
+ return HashVal;
+ }
+};
+
+template <unsigned ElementSize = 128>
+class SparseBitVector {
+ typedef ilist<SparseBitVectorElement<ElementSize> > ElementList;
+ typedef typename ElementList::iterator ElementListIter;
+ typedef typename ElementList::const_iterator ElementListConstIter;
+ enum {
+ BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE
+ };
+
+ // Pointer to our current Element.
+ ElementListIter CurrElementIter;
+ ElementList Elements;
+
+ // This is like std::lower_bound, except we do linear searching from the
+ // current position.
+ ElementListIter FindLowerBound(unsigned ElementIndex) {
+
+ if (Elements.empty()) {
+ CurrElementIter = Elements.begin();
+ return Elements.begin();
+ }
+
+ // Make sure our current iterator is valid.
+ if (CurrElementIter == Elements.end())
+ --CurrElementIter;
+
+ // Search from our current iterator, either backwards or forwards,
+ // depending on what element we are looking for.
+ ElementListIter ElementIter = CurrElementIter;
+ if (CurrElementIter->index() == ElementIndex) {
+ return ElementIter;
+ } else if (CurrElementIter->index() > ElementIndex) {
+ while (ElementIter != Elements.begin()
+ && ElementIter->index() > ElementIndex)
+ --ElementIter;
+ } else {
+ while (ElementIter != Elements.end() &&
+ ElementIter->index() < ElementIndex)
+ ++ElementIter;
+ }
+ CurrElementIter = ElementIter;
+ return ElementIter;
+ }
+
+ // Iterator to walk set bits in the bitmap. This iterator is a lot uglier
+ // than it would be, in order to be efficient.
+ class SparseBitVectorIterator {
+ private:
+ bool AtEnd;
+
+ const SparseBitVector<ElementSize> *BitVector;
+
+ // Current element inside of bitmap.
+ ElementListConstIter Iter;
+
+ // Current bit number inside of our bitmap.
+ unsigned BitNumber;
+
+ // Current word number inside of our element.
+ unsigned WordNumber;
+
+ // Current bits from the element.
+ typename SparseBitVectorElement<ElementSize>::BitWord Bits;
+
+ // Move our iterator to the first non-zero bit in the bitmap.
+ void AdvanceToFirstNonZero() {
+ if (AtEnd)
+ return;
+ if (BitVector->Elements.empty()) {
+ AtEnd = true;
+ return;
+ }
+ Iter = BitVector->Elements.begin();
+ BitNumber = Iter->index() * ElementSize;
+ unsigned BitPos = Iter->find_first();
+ BitNumber += BitPos;
+ WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
+ Bits = Iter->word(WordNumber);
+ Bits >>= BitPos % BITWORD_SIZE;
+ }
+
+ // Move our iterator to the next non-zero bit.
+ void AdvanceToNextNonZero() {
+ if (AtEnd)
+ return;
+
+ while (Bits && !(Bits & 1)) {
+ Bits >>= 1;
+ BitNumber += 1;
+ }
+
+ // See if we ran out of Bits in this word.
+ if (!Bits) {
+ int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ;
+ // If we ran out of set bits in this element, move to next element.
+ if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) {
+ ++Iter;
+ WordNumber = 0;
+
+ // We may run out of elements in the bitmap.
+ if (Iter == BitVector->Elements.end()) {
+ AtEnd = true;
+ return;
+ }
+ // Set up for next non zero word in bitmap.
+ BitNumber = Iter->index() * ElementSize;
+ NextSetBitNumber = Iter->find_first();
+ BitNumber += NextSetBitNumber;
+ WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
+ Bits = Iter->word(WordNumber);
+ Bits >>= NextSetBitNumber % BITWORD_SIZE;
+ } else {
+ WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE;
+ Bits = Iter->word(WordNumber);
+ Bits >>= NextSetBitNumber % BITWORD_SIZE;
+ BitNumber = Iter->index() * ElementSize;
+ BitNumber += NextSetBitNumber;
+ }
+ }
+ }
+ public:
+ // Preincrement.
+ inline SparseBitVectorIterator& operator++() {
+ ++BitNumber;
+ Bits >>= 1;
+ AdvanceToNextNonZero();
+ return *this;
+ }
+
+ // Postincrement.
+ inline SparseBitVectorIterator operator++(int) {
+ SparseBitVectorIterator tmp = *this;
+ ++*this;
+ return tmp;
+ }
+
+ // Return the current set bit number.
+ unsigned operator*() const {
+ return BitNumber;
+ }
+
+ bool operator==(const SparseBitVectorIterator &RHS) const {
+ // If they are both at the end, ignore the rest of the fields.
+ if (AtEnd && RHS.AtEnd)
+ return true;
+ // Otherwise they are the same if they have the same bit number and
+ // bitmap.
+ return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber;
+ }
+ bool operator!=(const SparseBitVectorIterator &RHS) const {
+ return !(*this == RHS);
+ }
+ SparseBitVectorIterator(): BitVector(NULL) {
+ }
+
+
+ SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS,
+ bool end = false):BitVector(RHS) {
+ Iter = BitVector->Elements.begin();
+ BitNumber = 0;
+ Bits = 0;
+ WordNumber = ~0;
+ AtEnd = end;
+ AdvanceToFirstNonZero();
+ }
+ };
+public:
+ typedef SparseBitVectorIterator iterator;
+
+ SparseBitVector () {
+ CurrElementIter = Elements.begin ();
+ }
+
+ ~SparseBitVector() {
+ }
+
+ // SparseBitVector copy ctor.
+ SparseBitVector(const SparseBitVector &RHS) {
+ ElementListConstIter ElementIter = RHS.Elements.begin();
+ while (ElementIter != RHS.Elements.end()) {
+ Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
+ ++ElementIter;
+ }
+
+ CurrElementIter = Elements.begin ();
+ }
+
+ // Clear.
+ void clear() {
+ Elements.clear();
+ }
+
+ // Assignment
+ SparseBitVector& operator=(const SparseBitVector& RHS) {
+ Elements.clear();
+
+ ElementListConstIter ElementIter = RHS.Elements.begin();
+ while (ElementIter != RHS.Elements.end()) {
+ Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
+ ++ElementIter;
+ }
+
+ CurrElementIter = Elements.begin ();
+
+ return *this;
+ }
+
+ // Test, Reset, and Set a bit in the bitmap.
+ bool test(unsigned Idx) {
+ if (Elements.empty())
+ return false;
+
+ unsigned ElementIndex = Idx / ElementSize;
+ ElementListIter ElementIter = FindLowerBound(ElementIndex);
+
+ // If we can't find an element that is supposed to contain this bit, there
+ // is nothing more to do.
+ if (ElementIter == Elements.end() ||
+ ElementIter->index() != ElementIndex)
+ return false;
+ return ElementIter->test(Idx % ElementSize);
+ }
+
+ void reset(unsigned Idx) {
+ if (Elements.empty())
+ return;
+
+ unsigned ElementIndex = Idx / ElementSize;
+ ElementListIter ElementIter = FindLowerBound(ElementIndex);
+
+ // If we can't find an element that is supposed to contain this bit, there
+ // is nothing more to do.
+ if (ElementIter == Elements.end() ||
+ ElementIter->index() != ElementIndex)
+ return;
+ ElementIter->reset(Idx % ElementSize);
+
+ // When the element is zeroed out, delete it.
+ if (ElementIter->empty()) {
+ ++CurrElementIter;
+ Elements.erase(ElementIter);
+ }
+ }
+
+ void set(unsigned Idx) {
+ unsigned ElementIndex = Idx / ElementSize;
+ SparseBitVectorElement<ElementSize> *Element;
+ ElementListIter ElementIter;
+ if (Elements.empty()) {
+ Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
+ ElementIter = Elements.insert(Elements.end(), Element);
+
+ } else {
+ ElementIter = FindLowerBound(ElementIndex);
+
+ if (ElementIter == Elements.end() ||
+ ElementIter->index() != ElementIndex) {
+ Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
+ // We may have hit the beginning of our SparseBitVector, in which case,
+ // we may need to insert right after this element, which requires moving
+ // the current iterator forward one, because insert does insert before.
+ if (ElementIter != Elements.end() &&
+ ElementIter->index() < ElementIndex)
+ ElementIter = Elements.insert(++ElementIter, Element);
+ else
+ ElementIter = Elements.insert(ElementIter, Element);
+ }
+ }
+ CurrElementIter = ElementIter;
+
+ ElementIter->set(Idx % ElementSize);
+ }
+
+ bool test_and_set (unsigned Idx) {
+ bool old = test(Idx);
+ if (!old) {
+ set(Idx);
+ return true;
+ }
+ return false;
+ }
+
+ bool operator!=(const SparseBitVector &RHS) const {
+ return !(*this == RHS);
+ }
+
+ bool operator==(const SparseBitVector &RHS) const {
+ ElementListConstIter Iter1 = Elements.begin();
+ ElementListConstIter Iter2 = RHS.Elements.begin();
+
+ for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end();
+ ++Iter1, ++Iter2) {
+ if (*Iter1 != *Iter2)
+ return false;
+ }
+ return Iter1 == Elements.end() && Iter2 == RHS.Elements.end();
+ }
+
+ // Union our bitmap with the RHS and return true if we changed.
+ bool operator|=(const SparseBitVector &RHS) {
+ bool changed = false;
+ ElementListIter Iter1 = Elements.begin();
+ ElementListConstIter Iter2 = RHS.Elements.begin();
+
+ // If RHS is empty, we are done
+ if (RHS.Elements.empty())
+ return false;
+
+ while (Iter2 != RHS.Elements.end()) {
+ if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) {
+ Elements.insert(Iter1,
+ new SparseBitVectorElement<ElementSize>(*Iter2));
+ ++Iter2;
+ changed = true;
+ } else if (Iter1->index() == Iter2->index()) {
+ changed |= Iter1->unionWith(*Iter2);
+ ++Iter1;
+ ++Iter2;
+ } else {
+ ++Iter1;
+ }
+ }
+ CurrElementIter = Elements.begin();
+ return changed;
+ }
+
+ // Intersect our bitmap with the RHS and return true if ours changed.
+ bool operator&=(const SparseBitVector &RHS) {
+ bool changed = false;
+ ElementListIter Iter1 = Elements.begin();
+ ElementListConstIter Iter2 = RHS.Elements.begin();
+
+ // Check if both bitmaps are empty.
+ if (Elements.empty() && RHS.Elements.empty())
+ return false;
+
+ // Loop through, intersecting as we go, erasing elements when necessary.
+ while (Iter2 != RHS.Elements.end()) {
+ if (Iter1 == Elements.end()) {
+ CurrElementIter = Elements.begin();
+ return changed;
+ }
+
+ if (Iter1->index() > Iter2->index()) {
+ ++Iter2;
+ } else if (Iter1->index() == Iter2->index()) {
+ bool BecameZero;
+ changed |= Iter1->intersectWith(*Iter2, BecameZero);
+ if (BecameZero) {
+ ElementListIter IterTmp = Iter1;
+ ++Iter1;
+ Elements.erase(IterTmp);
+ } else {
+ ++Iter1;
+ }
+ ++Iter2;
+ } else {
+ ElementListIter IterTmp = Iter1;
+ ++Iter1;
+ Elements.erase(IterTmp);
+ }
+ }
+ Elements.erase(Iter1, Elements.end());
+ CurrElementIter = Elements.begin();
+ return changed;
+ }
+
+ // Intersect our bitmap with the complement of the RHS and return true
+ // if ours changed.
+ bool intersectWithComplement(const SparseBitVector &RHS) {
+ bool changed = false;
+ ElementListIter Iter1 = Elements.begin();
+ ElementListConstIter Iter2 = RHS.Elements.begin();
+
+ // If either our bitmap or RHS is empty, we are done
+ if (Elements.empty() || RHS.Elements.empty())
+ return false;
+
+ // Loop through, intersecting as we go, erasing elements when necessary.
+ while (Iter2 != RHS.Elements.end()) {
+ if (Iter1 == Elements.end()) {
+ CurrElementIter = Elements.begin();
+ return changed;
+ }
+
+ if (Iter1->index() > Iter2->index()) {
+ ++Iter2;
+ } else if (Iter1->index() == Iter2->index()) {
+ bool BecameZero;
+ changed |= Iter1->intersectWithComplement(*Iter2, BecameZero);
+ if (BecameZero) {
+ ElementListIter IterTmp = Iter1;
+ ++Iter1;
+ Elements.erase(IterTmp);
+ } else {
+ ++Iter1;
+ }
+ ++Iter2;
+ } else {
+ ++Iter1;
+ }
+ }
+ CurrElementIter = Elements.begin();
+ return changed;
+ }
+
+ bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const {
+ return intersectWithComplement(*RHS);
+ }
+
+
+ // Three argument version of intersectWithComplement.
+ // Result of RHS1 & ~RHS2 is stored into this bitmap.
+ void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1,
+ const SparseBitVector<ElementSize> &RHS2)
+ {
+ Elements.clear();
+ CurrElementIter = Elements.begin();
+ ElementListConstIter Iter1 = RHS1.Elements.begin();
+ ElementListConstIter Iter2 = RHS2.Elements.begin();
+
+ // If RHS1 is empty, we are done
+ // If RHS2 is empty, we still have to copy RHS1
+ if (RHS1.Elements.empty())
+ return;
+
+ // Loop through, intersecting as we go, erasing elements when necessary.
+ while (Iter2 != RHS2.Elements.end()) {
+ if (Iter1 == RHS1.Elements.end())
+ return;
+
+ if (Iter1->index() > Iter2->index()) {
+ ++Iter2;
+ } else if (Iter1->index() == Iter2->index()) {
+ bool BecameZero = false;
+ SparseBitVectorElement<ElementSize> *NewElement =
+ new SparseBitVectorElement<ElementSize>(Iter1->index());
+ NewElement->intersectWithComplement(*Iter1, *Iter2, BecameZero);
+ if (!BecameZero) {
+ Elements.push_back(NewElement);
+ }
+ else
+ delete NewElement;
+ ++Iter1;
+ ++Iter2;
+ } else {
+ SparseBitVectorElement<ElementSize> *NewElement =
+ new SparseBitVectorElement<ElementSize>(*Iter1);
+ Elements.push_back(NewElement);
+ ++Iter1;
+ }
+ }
+
+ // copy the remaining elements
+ while (Iter1 != RHS1.Elements.end()) {
+ SparseBitVectorElement<ElementSize> *NewElement =
+ new SparseBitVectorElement<ElementSize>(*Iter1);
+ Elements.push_back(NewElement);
+ ++Iter1;
+ }
+
+ return;
+ }
+
+ void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1,
+ const SparseBitVector<ElementSize> *RHS2) {
+ intersectWithComplement(*RHS1, *RHS2);
+ }
+
+ bool intersects(const SparseBitVector<ElementSize> *RHS) const {
+ return intersects(*RHS);
+ }
+
+ // Return true if we share any bits in common with RHS
+ bool intersects(const SparseBitVector<ElementSize> &RHS) const {
+ ElementListConstIter Iter1 = Elements.begin();
+ ElementListConstIter Iter2 = RHS.Elements.begin();
+
+ // Check if both bitmaps are empty.
+ if (Elements.empty() && RHS.Elements.empty())
+ return false;
+
+ // Loop through, intersecting stopping when we hit bits in common.
+ while (Iter2 != RHS.Elements.end()) {
+ if (Iter1 == Elements.end())
+ return false;
+
+ if (Iter1->index() > Iter2->index()) {
+ ++Iter2;
+ } else if (Iter1->index() == Iter2->index()) {
+ if (Iter1->intersects(*Iter2))
+ return true;
+ ++Iter1;
+ ++Iter2;
+ } else {
+ ++Iter1;
+ }
+ }
+ return false;
+ }
+
+ // Return true iff all bits set in this SparseBitVector are
+ // also set in RHS.
+ bool contains(const SparseBitVector<ElementSize> &RHS) const {
+ SparseBitVector<ElementSize> Result(*this);
+ Result &= RHS;
+ return (Result == RHS);
+ }
+
+ // Return the first set bit in the bitmap. Return -1 if no bits are set.
+ int find_first() const {
+ if (Elements.empty())
+ return -1;
+ const SparseBitVectorElement<ElementSize> &First = *(Elements.begin());
+ return (First.index() * ElementSize) + First.find_first();
+ }
+
+ // Return true if the SparseBitVector is empty
+ bool empty() const {
+ return Elements.empty();
+ }
+
+ unsigned count() const {
+ unsigned BitCount = 0;
+ for (ElementListConstIter Iter = Elements.begin();
+ Iter != Elements.end();
+ ++Iter)
+ BitCount += Iter->count();
+
+ return BitCount;
+ }
+ iterator begin() const {
+ return iterator(this);
+ }
+
+ iterator end() const {
+ return iterator(this, true);
+ }
+
+ // Get a hash value for this bitmap.
+ uint64_t getHashValue() const {
+ uint64_t HashVal = 0;
+ for (ElementListConstIter Iter = Elements.begin();
+ Iter != Elements.end();
+ ++Iter) {
+ HashVal ^= Iter->index();
+ HashVal ^= Iter->getHashValue();
+ }
+ return HashVal;
+ }
+};
+
+// Convenience functions to allow Or and And without dereferencing in the user
+// code.
+
+template <unsigned ElementSize>
+inline bool operator |=(SparseBitVector<ElementSize> &LHS,
+ const SparseBitVector<ElementSize> *RHS) {
+ return LHS |= *RHS;
+}
+
+template <unsigned ElementSize>
+inline bool operator |=(SparseBitVector<ElementSize> *LHS,
+ const SparseBitVector<ElementSize> &RHS) {
+ return LHS->operator|=(RHS);
+}
+
+template <unsigned ElementSize>
+inline bool operator &=(SparseBitVector<ElementSize> *LHS,
+ const SparseBitVector<ElementSize> &RHS) {
+ return LHS->operator&=(RHS);
+}
+
+template <unsigned ElementSize>
+inline bool operator &=(SparseBitVector<ElementSize> &LHS,
+ const SparseBitVector<ElementSize> *RHS) {
+ return LHS &= *RHS;
+}
+
+// Convenience functions for infix union, intersection, difference operators.
+
+template <unsigned ElementSize>
+inline SparseBitVector<ElementSize>
+operator|(const SparseBitVector<ElementSize> &LHS,
+ const SparseBitVector<ElementSize> &RHS) {
+ SparseBitVector<ElementSize> Result(LHS);
+ Result |= RHS;
+ return Result;
+}
+
+template <unsigned ElementSize>
+inline SparseBitVector<ElementSize>
+operator&(const SparseBitVector<ElementSize> &LHS,
+ const SparseBitVector<ElementSize> &RHS) {
+ SparseBitVector<ElementSize> Result(LHS);
+ Result &= RHS;
+ return Result;
+}
+
+template <unsigned ElementSize>
+inline SparseBitVector<ElementSize>
+operator-(const SparseBitVector<ElementSize> &LHS,
+ const SparseBitVector<ElementSize> &RHS) {
+ SparseBitVector<ElementSize> Result;
+ Result.intersectWithComplement(LHS, RHS);
+ return Result;
+}
+
+
+
+
+// Dump a SparseBitVector to a stream
+template <unsigned ElementSize>
+void dump(const SparseBitVector<ElementSize> &LHS, llvm::OStream &out) {
+ out << "[ ";
+
+ typename SparseBitVector<ElementSize>::iterator bi;
+ for (bi = LHS.begin(); bi != LHS.end(); ++bi) {
+ out << *bi << " ";
+ }
+ out << " ]\n";
+}
+} // end namespace llvm
+
+#endif
OpenPOWER on IntegriCloud