diff options
Diffstat (limited to 'include/llvm/ADT/SmallVector.h')
-rw-r--r-- | include/llvm/ADT/SmallVector.h | 544 |
1 files changed, 308 insertions, 236 deletions
diff --git a/include/llvm/ADT/SmallVector.h b/include/llvm/ADT/SmallVector.h index b16649e..89acefd 100644 --- a/include/llvm/ADT/SmallVector.h +++ b/include/llvm/ADT/SmallVector.h @@ -80,55 +80,56 @@ protected: return BeginX == static_cast<const void*>(&FirstEl); } + /// size_in_bytes - This returns size()*sizeof(T). + size_t size_in_bytes() const { + return size_t((char*)EndX - (char*)BeginX); + } + + /// capacity_in_bytes - This returns capacity()*sizeof(T). + size_t capacity_in_bytes() const { + return size_t((char*)CapacityX - (char*)BeginX); + } + + /// grow_pod - This is an implementation of the grow() method which only works + /// on POD-like datatypes and is out of line to reduce code duplication. + void grow_pod(size_t MinSizeInBytes, size_t TSize); public: bool empty() const { return BeginX == EndX; } }; -/// SmallVectorImpl - This class consists of common code factored out of the -/// SmallVector class to reduce code duplication based on the SmallVector 'N' -/// template parameter. + template <typename T> -class SmallVectorImpl : public SmallVectorBase { - void setEnd(T *P) { EndX = P; } +class SmallVectorTemplateCommon : public SmallVectorBase { +protected: + void setEnd(T *P) { this->EndX = P; } public: - // Default ctor - Initialize to empty. - explicit SmallVectorImpl(unsigned N) : SmallVectorBase(N*sizeof(T)) { - } - - ~SmallVectorImpl() { - // Destroy the constructed elements in the vector. - destroy_range(begin(), end()); - - // If this wasn't grown from the inline copy, deallocate the old space. - if (!isSmall()) - operator delete(begin()); - } - + SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {} + typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T value_type; typedef T *iterator; typedef const T *const_iterator; - + typedef std::reverse_iterator<const_iterator> const_reverse_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; - + typedef T &reference; typedef const T &const_reference; typedef T *pointer; typedef const T *const_pointer; - + // forward iterator creation methods. - iterator begin() { return (iterator)BeginX; } - const_iterator begin() const { return (const_iterator)BeginX; } - iterator end() { return (iterator)EndX; } - const_iterator end() const { return (const_iterator)EndX; } -private: - iterator capacity_ptr() { return (iterator)CapacityX; } - const_iterator capacity_ptr() const { return (const_iterator)CapacityX; } + iterator begin() { return (iterator)this->BeginX; } + const_iterator begin() const { return (const_iterator)this->BeginX; } + iterator end() { return (iterator)this->EndX; } + const_iterator end() const { return (const_iterator)this->EndX; } +protected: + iterator capacity_ptr() { return (iterator)this->CapacityX; } + const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;} public: - + // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } @@ -169,248 +170,359 @@ public: const_reference back() const { return end()[-1]; } +}; + +/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method +/// implementations that are designed to work with non-POD-like T's. +template <typename T, bool isPodLike> +class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { +public: + SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} - void push_back(const_reference Elt) { - if (EndX < CapacityX) { - Retry: - new (end()) T(Elt); - setEnd(end()+1); - return; + static void destroy_range(T *S, T *E) { + while (S != E) { + --E; + E->~T(); } - grow(); - goto Retry; } - - void pop_back() { - setEnd(end()-1); - end()->~T(); + + /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template<typename It1, typename It2> + static void uninitialized_copy(It1 I, It1 E, It2 Dest) { + std::uninitialized_copy(I, E, Dest); } + + /// grow - double the size of the allocated memory, guaranteeing space for at + /// least one more element or MinSize if specified. + void grow(size_t MinSize = 0); +}; - T pop_back_val() { - T Result = back(); - pop_back(); - return Result; +// Define this out-of-line to dissuade the C++ compiler from inlining it. +template <typename T, bool isPodLike> +void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) { + size_t CurCapacity = this->capacity(); + size_t CurSize = this->size(); + size_t NewCapacity = 2*CurCapacity; + if (NewCapacity < MinSize) + NewCapacity = MinSize; + T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T))); + + // Copy the elements over. + this->uninitialized_copy(this->begin(), this->end(), NewElts); + + // Destroy the original elements. + destroy_range(this->begin(), this->end()); + + // If this wasn't grown from the inline copy, deallocate the old space. + if (!this->isSmall()) + operator delete(this->begin()); + + this->setEnd(NewElts+CurSize); + this->BeginX = NewElts; + this->CapacityX = this->begin()+NewCapacity; +} + + +/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method +/// implementations that are designed to work with POD-like T's. +template <typename T> +class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { +public: + SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} + + // No need to do a destroy loop for POD's. + static void destroy_range(T *, T *) {} + + /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template<typename It1, typename It2> + static void uninitialized_copy(It1 I, It1 E, It2 Dest) { + // Use memcpy for PODs: std::uninitialized_copy optimizes to memmove, memcpy + // is better. + memcpy(&*Dest, &*I, (E-I)*sizeof(T)); } - + + /// grow - double the size of the allocated memory, guaranteeing space for at + /// least one more element or MinSize if specified. + void grow(size_t MinSize = 0) { + this->grow_pod(MinSize*sizeof(T), sizeof(T)); + } +}; + + +/// SmallVectorImpl - This class consists of common code factored out of the +/// SmallVector class to reduce code duplication based on the SmallVector 'N' +/// template parameter. +template <typename T> +class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> { + typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass; +public: + typedef typename SuperClass::iterator iterator; + typedef typename SuperClass::size_type size_type; + + // Default ctor - Initialize to empty. + explicit SmallVectorImpl(unsigned N) + : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) { + } + + ~SmallVectorImpl() { + // Destroy the constructed elements in the vector. + this->destroy_range(this->begin(), this->end()); + + // If this wasn't grown from the inline copy, deallocate the old space. + if (!this->isSmall()) + operator delete(this->begin()); + } + + void clear() { - destroy_range(begin(), end()); - EndX = BeginX; + this->destroy_range(this->begin(), this->end()); + this->EndX = this->BeginX; } void resize(unsigned N) { - if (N < size()) { - destroy_range(begin()+N, end()); - setEnd(begin()+N); - } else if (N > size()) { - if (capacity() < N) - grow(N); - construct_range(end(), begin()+N, T()); - setEnd(begin()+N); + if (N < this->size()) { + this->destroy_range(this->begin()+N, this->end()); + this->setEnd(this->begin()+N); + } else if (N > this->size()) { + if (this->capacity() < N) + this->grow(N); + this->construct_range(this->end(), this->begin()+N, T()); + this->setEnd(this->begin()+N); } } void resize(unsigned N, const T &NV) { - if (N < size()) { - destroy_range(begin()+N, end()); - setEnd(begin()+N); - } else if (N > size()) { - if (capacity() < N) - grow(N); - construct_range(end(), begin()+N, NV); - setEnd(begin()+N); + if (N < this->size()) { + this->destroy_range(this->begin()+N, this->end()); + this->setEnd(this->begin()+N); + } else if (N > this->size()) { + if (this->capacity() < N) + this->grow(N); + construct_range(this->end(), this->begin()+N, NV); + this->setEnd(this->begin()+N); } } void reserve(unsigned N) { - if (capacity() < N) - grow(N); + if (this->capacity() < N) + this->grow(N); } - + + void push_back(const T &Elt) { + if (this->EndX < this->CapacityX) { + Retry: + new (this->end()) T(Elt); + this->setEnd(this->end()+1); + return; + } + this->grow(); + goto Retry; + } + + void pop_back() { + this->setEnd(this->end()-1); + this->end()->~T(); + } + + T pop_back_val() { + T Result = this->back(); + pop_back(); + return Result; + } + + void swap(SmallVectorImpl &RHS); - + /// append - Add the specified range to the end of the SmallVector. /// template<typename in_iter> void append(in_iter in_start, in_iter in_end) { size_type NumInputs = std::distance(in_start, in_end); // Grow allocated space if needed. - if (NumInputs > size_type(capacity_ptr()-end())) - grow(size()+NumInputs); - + if (NumInputs > size_type(this->capacity_ptr()-this->end())) + this->grow(this->size()+NumInputs); + // Copy the new elements over. - std::uninitialized_copy(in_start, in_end, end()); - setEnd(end() + NumInputs); + // TODO: NEED To compile time dispatch on whether in_iter is a random access + // iterator to use the fast uninitialized_copy. + std::uninitialized_copy(in_start, in_end, this->end()); + this->setEnd(this->end() + NumInputs); } - + /// append - Add the specified range to the end of the SmallVector. /// void append(size_type NumInputs, const T &Elt) { // Grow allocated space if needed. - if (NumInputs > size_type(capacity_ptr()-end())) - grow(size()+NumInputs); - + if (NumInputs > size_type(this->capacity_ptr()-this->end())) + this->grow(this->size()+NumInputs); + // Copy the new elements over. - std::uninitialized_fill_n(end(), NumInputs, Elt); - setEnd(end() + NumInputs); + std::uninitialized_fill_n(this->end(), NumInputs, Elt); + this->setEnd(this->end() + NumInputs); } - + void assign(unsigned NumElts, const T &Elt) { clear(); - if (capacity() < NumElts) - grow(NumElts); - setEnd(begin()+NumElts); - construct_range(begin(), end(), Elt); + if (this->capacity() < NumElts) + this->grow(NumElts); + this->setEnd(this->begin()+NumElts); + construct_range(this->begin(), this->end(), Elt); } - + iterator erase(iterator I) { iterator N = I; // Shift all elts down one. - std::copy(I+1, end(), I); + std::copy(I+1, this->end(), I); // Drop the last elt. pop_back(); return(N); } - + iterator erase(iterator S, iterator E) { iterator N = S; // Shift all elts down. - iterator I = std::copy(E, end(), S); + iterator I = std::copy(E, this->end(), S); // Drop the last elts. - destroy_range(I, end()); - setEnd(I); + this->destroy_range(I, this->end()); + this->setEnd(I); return(N); } - + iterator insert(iterator I, const T &Elt) { - if (I == end()) { // Important special case for empty vector. + if (I == this->end()) { // Important special case for empty vector. push_back(Elt); - return end()-1; + return this->end()-1; } - - if (EndX < CapacityX) { - Retry: - new (end()) T(back()); - setEnd(end()+1); + + if (this->EndX < this->CapacityX) { + Retry: + new (this->end()) T(this->back()); + this->setEnd(this->end()+1); // Push everything else over. - std::copy_backward(I, end()-1, end()); + std::copy_backward(I, this->end()-1, this->end()); *I = Elt; return I; } - size_t EltNo = I-begin(); - grow(); - I = begin()+EltNo; + size_t EltNo = I-this->begin(); + this->grow(); + I = this->begin()+EltNo; goto Retry; } - + iterator insert(iterator I, size_type NumToInsert, const T &Elt) { - if (I == end()) { // Important special case for empty vector. + if (I == this->end()) { // Important special case for empty vector. append(NumToInsert, Elt); - return end()-1; + return this->end()-1; } - + // Convert iterator to elt# to avoid invalidating iterator when we reserve() - size_t InsertElt = I-begin(); - + size_t InsertElt = I - this->begin(); + // Ensure there is enough space. - reserve(static_cast<unsigned>(size() + NumToInsert)); - + reserve(static_cast<unsigned>(this->size() + NumToInsert)); + // Uninvalidate the iterator. - I = begin()+InsertElt; - + I = this->begin()+InsertElt; + // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. - if (size_t(end()-I) >= NumToInsert) { - T *OldEnd = end(); - append(end()-NumToInsert, end()); - + if (size_t(this->end()-I) >= NumToInsert) { + T *OldEnd = this->end(); + append(this->end()-NumToInsert, this->end()); + // Copy the existing elements that get replaced. std::copy_backward(I, OldEnd-NumToInsert, OldEnd); - + std::fill_n(I, NumToInsert, Elt); return I; } - + // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. - + // Copy over the elements that we're about to overwrite. - T *OldEnd = end(); - setEnd(end() + NumToInsert); + T *OldEnd = this->end(); + this->setEnd(this->end() + NumToInsert); size_t NumOverwritten = OldEnd-I; - std::uninitialized_copy(I, OldEnd, end()-NumOverwritten); - + this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); + // Replace the overwritten part. std::fill_n(I, NumOverwritten, Elt); - + // Insert the non-overwritten middle part. std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); return I; } - + template<typename ItTy> iterator insert(iterator I, ItTy From, ItTy To) { - if (I == end()) { // Important special case for empty vector. + if (I == this->end()) { // Important special case for empty vector. append(From, To); - return end()-1; + return this->end()-1; } - + size_t NumToInsert = std::distance(From, To); // Convert iterator to elt# to avoid invalidating iterator when we reserve() - size_t InsertElt = I-begin(); - + size_t InsertElt = I - this->begin(); + // Ensure there is enough space. - reserve(static_cast<unsigned>(size() + NumToInsert)); - + reserve(static_cast<unsigned>(this->size() + NumToInsert)); + // Uninvalidate the iterator. - I = begin()+InsertElt; - + I = this->begin()+InsertElt; + // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. - if (size_t(end()-I) >= NumToInsert) { - T *OldEnd = end(); - append(end()-NumToInsert, end()); - + if (size_t(this->end()-I) >= NumToInsert) { + T *OldEnd = this->end(); + append(this->end()-NumToInsert, this->end()); + // Copy the existing elements that get replaced. std::copy_backward(I, OldEnd-NumToInsert, OldEnd); - + std::copy(From, To, I); return I; } - + // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. - + // Copy over the elements that we're about to overwrite. - T *OldEnd = end(); - setEnd(end() + NumToInsert); + T *OldEnd = this->end(); + this->setEnd(this->end() + NumToInsert); size_t NumOverwritten = OldEnd-I; - std::uninitialized_copy(I, OldEnd, end()-NumOverwritten); - + this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); + // Replace the overwritten part. std::copy(From, From+NumOverwritten, I); - + // Insert the non-overwritten middle part. - std::uninitialized_copy(From+NumOverwritten, To, OldEnd); + this->uninitialized_copy(From+NumOverwritten, To, OldEnd); return I; } - - const SmallVectorImpl &operator=(const SmallVectorImpl &RHS); - + + const SmallVectorImpl + &operator=(const SmallVectorImpl &RHS); + bool operator==(const SmallVectorImpl &RHS) const { - if (size() != RHS.size()) return false; - return std::equal(begin(), end(), RHS.begin()); + if (this->size() != RHS.size()) return false; + return std::equal(this->begin(), this->end(), RHS.begin()); } - bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); } - + bool operator!=(const SmallVectorImpl &RHS) const { + return !(*this == RHS); + } + bool operator<(const SmallVectorImpl &RHS) const { - return std::lexicographical_compare(begin(), end(), + return std::lexicographical_compare(this->begin(), this->end(), RHS.begin(), RHS.end()); } - + /// set_size - Set the array size to \arg N, which the current array must have /// enough capacity for. /// @@ -421,145 +533,105 @@ public: /// update the size later. This avoids the cost of value initializing elements /// which will only be overwritten. void set_size(unsigned N) { - assert(N <= capacity()); - setEnd(begin() + N); + assert(N <= this->capacity()); + this->setEnd(this->begin() + N); } - + private: - /// grow - double the size of the allocated memory, guaranteeing space for at - /// least one more element or MinSize if specified. - void grow(size_type MinSize = 0); - - void construct_range(T *S, T *E, const T &Elt) { + static void construct_range(T *S, T *E, const T &Elt) { for (; S != E; ++S) new (S) T(Elt); } - - void destroy_range(T *S, T *E) { - // No need to do a destroy loop for POD's. - if (isPodLike<T>::value) return; - - while (S != E) { - --E; - E->~T(); - } - } }; - -// Define this out-of-line to dissuade the C++ compiler from inlining it. -template <typename T> -void SmallVectorImpl<T>::grow(size_t MinSize) { - size_t CurCapacity = capacity(); - size_t CurSize = size(); - size_t NewCapacity = 2*CurCapacity; - if (NewCapacity < MinSize) - NewCapacity = MinSize; - T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T))); - - // Copy the elements over. - if (isPodLike<T>::value) - // Use memcpy for PODs: std::uninitialized_copy optimizes to memmove. - memcpy(NewElts, begin(), CurSize * sizeof(T)); - else - std::uninitialized_copy(begin(), end(), NewElts); - - // Destroy the original elements. - destroy_range(begin(), end()); - - // If this wasn't grown from the inline copy, deallocate the old space. - if (!isSmall()) - operator delete(begin()); - - setEnd(NewElts+CurSize); - BeginX = NewElts; - CapacityX = begin()+NewCapacity; -} + template <typename T> void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { if (this == &RHS) return; // We can only avoid copying elements if neither vector is small. - if (!isSmall() && !RHS.isSmall()) { - std::swap(BeginX, RHS.BeginX); - std::swap(EndX, RHS.EndX); - std::swap(CapacityX, RHS.CapacityX); + if (!this->isSmall() && !RHS.isSmall()) { + std::swap(this->BeginX, RHS.BeginX); + std::swap(this->EndX, RHS.EndX); + std::swap(this->CapacityX, RHS.CapacityX); return; } - if (RHS.size() > capacity()) - grow(RHS.size()); - if (size() > RHS.capacity()) - RHS.grow(size()); + if (RHS.size() > this->capacity()) + this->grow(RHS.size()); + if (this->size() > RHS.capacity()) + RHS.grow(this->size()); // Swap the shared elements. - size_t NumShared = size(); + size_t NumShared = this->size(); if (NumShared > RHS.size()) NumShared = RHS.size(); for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i) std::swap((*this)[i], RHS[i]); // Copy over the extra elts. - if (size() > RHS.size()) { - size_t EltDiff = size() - RHS.size(); - std::uninitialized_copy(begin()+NumShared, end(), RHS.end()); + if (this->size() > RHS.size()) { + size_t EltDiff = this->size() - RHS.size(); + this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); RHS.setEnd(RHS.end()+EltDiff); - destroy_range(begin()+NumShared, end()); - setEnd(begin()+NumShared); - } else if (RHS.size() > size()) { - size_t EltDiff = RHS.size() - size(); - std::uninitialized_copy(RHS.begin()+NumShared, RHS.end(), end()); - setEnd(end() + EltDiff); - destroy_range(RHS.begin()+NumShared, RHS.end()); + this->destroy_range(this->begin()+NumShared, this->end()); + this->setEnd(this->begin()+NumShared); + } else if (RHS.size() > this->size()) { + size_t EltDiff = RHS.size() - this->size(); + this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); + this->setEnd(this->end() + EltDiff); + this->destroy_range(RHS.begin()+NumShared, RHS.end()); RHS.setEnd(RHS.begin()+NumShared); } } template <typename T> -const SmallVectorImpl<T> & -SmallVectorImpl<T>::operator=(const SmallVectorImpl<T> &RHS) { +const SmallVectorImpl<T> &SmallVectorImpl<T>:: + operator=(const SmallVectorImpl<T> &RHS) { // Avoid self-assignment. if (this == &RHS) return *this; // If we already have sufficient space, assign the common elements, then // destroy any excess. size_t RHSSize = RHS.size(); - size_t CurSize = size(); + size_t CurSize = this->size(); if (CurSize >= RHSSize) { // Assign common elements. iterator NewEnd; if (RHSSize) - NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, begin()); + NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); else - NewEnd = begin(); + NewEnd = this->begin(); // Destroy excess elements. - destroy_range(NewEnd, end()); + this->destroy_range(NewEnd, this->end()); // Trim. - setEnd(NewEnd); + this->setEnd(NewEnd); return *this; } // If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. - if (capacity() < RHSSize) { + if (this->capacity() < RHSSize) { // Destroy current elements. - destroy_range(begin(), end()); - setEnd(begin()); + this->destroy_range(this->begin(), this->end()); + this->setEnd(this->begin()); CurSize = 0; - grow(RHSSize); + this->grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements. - std::copy(RHS.begin(), RHS.begin()+CurSize, begin()); + std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); } // Copy construct the new elements in place. - std::uninitialized_copy(RHS.begin()+CurSize, RHS.end(), begin()+CurSize); + this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), + this->begin()+CurSize); // Set end. - setEnd(begin()+RHSSize); + this->setEnd(this->begin()+RHSSize); return *this; } + /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized /// for the case when the array is small. It contains some number of elements /// in-place, which allows it to avoid heap allocation when the actual number of |