summaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/SmallVector.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/ADT/SmallVector.h')
-rw-r--r--include/llvm/ADT/SmallVector.h544
1 files changed, 308 insertions, 236 deletions
diff --git a/include/llvm/ADT/SmallVector.h b/include/llvm/ADT/SmallVector.h
index b16649e..89acefd 100644
--- a/include/llvm/ADT/SmallVector.h
+++ b/include/llvm/ADT/SmallVector.h
@@ -80,55 +80,56 @@ protected:
return BeginX == static_cast<const void*>(&FirstEl);
}
+ /// size_in_bytes - This returns size()*sizeof(T).
+ size_t size_in_bytes() const {
+ return size_t((char*)EndX - (char*)BeginX);
+ }
+
+ /// capacity_in_bytes - This returns capacity()*sizeof(T).
+ size_t capacity_in_bytes() const {
+ return size_t((char*)CapacityX - (char*)BeginX);
+ }
+
+ /// grow_pod - This is an implementation of the grow() method which only works
+ /// on POD-like datatypes and is out of line to reduce code duplication.
+ void grow_pod(size_t MinSizeInBytes, size_t TSize);
public:
bool empty() const { return BeginX == EndX; }
};
-/// SmallVectorImpl - This class consists of common code factored out of the
-/// SmallVector class to reduce code duplication based on the SmallVector 'N'
-/// template parameter.
+
template <typename T>
-class SmallVectorImpl : public SmallVectorBase {
- void setEnd(T *P) { EndX = P; }
+class SmallVectorTemplateCommon : public SmallVectorBase {
+protected:
+ void setEnd(T *P) { this->EndX = P; }
public:
- // Default ctor - Initialize to empty.
- explicit SmallVectorImpl(unsigned N) : SmallVectorBase(N*sizeof(T)) {
- }
-
- ~SmallVectorImpl() {
- // Destroy the constructed elements in the vector.
- destroy_range(begin(), end());
-
- // If this wasn't grown from the inline copy, deallocate the old space.
- if (!isSmall())
- operator delete(begin());
- }
-
+ SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {}
+
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T *iterator;
typedef const T *const_iterator;
-
+
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
-
+
typedef T &reference;
typedef const T &const_reference;
typedef T *pointer;
typedef const T *const_pointer;
-
+
// forward iterator creation methods.
- iterator begin() { return (iterator)BeginX; }
- const_iterator begin() const { return (const_iterator)BeginX; }
- iterator end() { return (iterator)EndX; }
- const_iterator end() const { return (const_iterator)EndX; }
-private:
- iterator capacity_ptr() { return (iterator)CapacityX; }
- const_iterator capacity_ptr() const { return (const_iterator)CapacityX; }
+ iterator begin() { return (iterator)this->BeginX; }
+ const_iterator begin() const { return (const_iterator)this->BeginX; }
+ iterator end() { return (iterator)this->EndX; }
+ const_iterator end() const { return (const_iterator)this->EndX; }
+protected:
+ iterator capacity_ptr() { return (iterator)this->CapacityX; }
+ const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
public:
-
+
// reverse iterator creation methods.
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
@@ -169,248 +170,359 @@ public:
const_reference back() const {
return end()[-1];
}
+};
+
+/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
+/// implementations that are designed to work with non-POD-like T's.
+template <typename T, bool isPodLike>
+class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
+public:
+ SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
- void push_back(const_reference Elt) {
- if (EndX < CapacityX) {
- Retry:
- new (end()) T(Elt);
- setEnd(end()+1);
- return;
+ static void destroy_range(T *S, T *E) {
+ while (S != E) {
+ --E;
+ E->~T();
}
- grow();
- goto Retry;
}
-
- void pop_back() {
- setEnd(end()-1);
- end()->~T();
+
+ /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
+ /// starting with "Dest", constructing elements into it as needed.
+ template<typename It1, typename It2>
+ static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
+ std::uninitialized_copy(I, E, Dest);
}
+
+ /// grow - double the size of the allocated memory, guaranteeing space for at
+ /// least one more element or MinSize if specified.
+ void grow(size_t MinSize = 0);
+};
- T pop_back_val() {
- T Result = back();
- pop_back();
- return Result;
+// Define this out-of-line to dissuade the C++ compiler from inlining it.
+template <typename T, bool isPodLike>
+void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
+ size_t CurCapacity = this->capacity();
+ size_t CurSize = this->size();
+ size_t NewCapacity = 2*CurCapacity;
+ if (NewCapacity < MinSize)
+ NewCapacity = MinSize;
+ T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T)));
+
+ // Copy the elements over.
+ this->uninitialized_copy(this->begin(), this->end(), NewElts);
+
+ // Destroy the original elements.
+ destroy_range(this->begin(), this->end());
+
+ // If this wasn't grown from the inline copy, deallocate the old space.
+ if (!this->isSmall())
+ operator delete(this->begin());
+
+ this->setEnd(NewElts+CurSize);
+ this->BeginX = NewElts;
+ this->CapacityX = this->begin()+NewCapacity;
+}
+
+
+/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
+/// implementations that are designed to work with POD-like T's.
+template <typename T>
+class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
+public:
+ SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
+
+ // No need to do a destroy loop for POD's.
+ static void destroy_range(T *, T *) {}
+
+ /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
+ /// starting with "Dest", constructing elements into it as needed.
+ template<typename It1, typename It2>
+ static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
+ // Use memcpy for PODs: std::uninitialized_copy optimizes to memmove, memcpy
+ // is better.
+ memcpy(&*Dest, &*I, (E-I)*sizeof(T));
}
-
+
+ /// grow - double the size of the allocated memory, guaranteeing space for at
+ /// least one more element or MinSize if specified.
+ void grow(size_t MinSize = 0) {
+ this->grow_pod(MinSize*sizeof(T), sizeof(T));
+ }
+};
+
+
+/// SmallVectorImpl - This class consists of common code factored out of the
+/// SmallVector class to reduce code duplication based on the SmallVector 'N'
+/// template parameter.
+template <typename T>
+class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
+ typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
+public:
+ typedef typename SuperClass::iterator iterator;
+ typedef typename SuperClass::size_type size_type;
+
+ // Default ctor - Initialize to empty.
+ explicit SmallVectorImpl(unsigned N)
+ : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
+ }
+
+ ~SmallVectorImpl() {
+ // Destroy the constructed elements in the vector.
+ this->destroy_range(this->begin(), this->end());
+
+ // If this wasn't grown from the inline copy, deallocate the old space.
+ if (!this->isSmall())
+ operator delete(this->begin());
+ }
+
+
void clear() {
- destroy_range(begin(), end());
- EndX = BeginX;
+ this->destroy_range(this->begin(), this->end());
+ this->EndX = this->BeginX;
}
void resize(unsigned N) {
- if (N < size()) {
- destroy_range(begin()+N, end());
- setEnd(begin()+N);
- } else if (N > size()) {
- if (capacity() < N)
- grow(N);
- construct_range(end(), begin()+N, T());
- setEnd(begin()+N);
+ if (N < this->size()) {
+ this->destroy_range(this->begin()+N, this->end());
+ this->setEnd(this->begin()+N);
+ } else if (N > this->size()) {
+ if (this->capacity() < N)
+ this->grow(N);
+ this->construct_range(this->end(), this->begin()+N, T());
+ this->setEnd(this->begin()+N);
}
}
void resize(unsigned N, const T &NV) {
- if (N < size()) {
- destroy_range(begin()+N, end());
- setEnd(begin()+N);
- } else if (N > size()) {
- if (capacity() < N)
- grow(N);
- construct_range(end(), begin()+N, NV);
- setEnd(begin()+N);
+ if (N < this->size()) {
+ this->destroy_range(this->begin()+N, this->end());
+ this->setEnd(this->begin()+N);
+ } else if (N > this->size()) {
+ if (this->capacity() < N)
+ this->grow(N);
+ construct_range(this->end(), this->begin()+N, NV);
+ this->setEnd(this->begin()+N);
}
}
void reserve(unsigned N) {
- if (capacity() < N)
- grow(N);
+ if (this->capacity() < N)
+ this->grow(N);
}
-
+
+ void push_back(const T &Elt) {
+ if (this->EndX < this->CapacityX) {
+ Retry:
+ new (this->end()) T(Elt);
+ this->setEnd(this->end()+1);
+ return;
+ }
+ this->grow();
+ goto Retry;
+ }
+
+ void pop_back() {
+ this->setEnd(this->end()-1);
+ this->end()->~T();
+ }
+
+ T pop_back_val() {
+ T Result = this->back();
+ pop_back();
+ return Result;
+ }
+
+
void swap(SmallVectorImpl &RHS);
-
+
/// append - Add the specified range to the end of the SmallVector.
///
template<typename in_iter>
void append(in_iter in_start, in_iter in_end) {
size_type NumInputs = std::distance(in_start, in_end);
// Grow allocated space if needed.
- if (NumInputs > size_type(capacity_ptr()-end()))
- grow(size()+NumInputs);
-
+ if (NumInputs > size_type(this->capacity_ptr()-this->end()))
+ this->grow(this->size()+NumInputs);
+
// Copy the new elements over.
- std::uninitialized_copy(in_start, in_end, end());
- setEnd(end() + NumInputs);
+ // TODO: NEED To compile time dispatch on whether in_iter is a random access
+ // iterator to use the fast uninitialized_copy.
+ std::uninitialized_copy(in_start, in_end, this->end());
+ this->setEnd(this->end() + NumInputs);
}
-
+
/// append - Add the specified range to the end of the SmallVector.
///
void append(size_type NumInputs, const T &Elt) {
// Grow allocated space if needed.
- if (NumInputs > size_type(capacity_ptr()-end()))
- grow(size()+NumInputs);
-
+ if (NumInputs > size_type(this->capacity_ptr()-this->end()))
+ this->grow(this->size()+NumInputs);
+
// Copy the new elements over.
- std::uninitialized_fill_n(end(), NumInputs, Elt);
- setEnd(end() + NumInputs);
+ std::uninitialized_fill_n(this->end(), NumInputs, Elt);
+ this->setEnd(this->end() + NumInputs);
}
-
+
void assign(unsigned NumElts, const T &Elt) {
clear();
- if (capacity() < NumElts)
- grow(NumElts);
- setEnd(begin()+NumElts);
- construct_range(begin(), end(), Elt);
+ if (this->capacity() < NumElts)
+ this->grow(NumElts);
+ this->setEnd(this->begin()+NumElts);
+ construct_range(this->begin(), this->end(), Elt);
}
-
+
iterator erase(iterator I) {
iterator N = I;
// Shift all elts down one.
- std::copy(I+1, end(), I);
+ std::copy(I+1, this->end(), I);
// Drop the last elt.
pop_back();
return(N);
}
-
+
iterator erase(iterator S, iterator E) {
iterator N = S;
// Shift all elts down.
- iterator I = std::copy(E, end(), S);
+ iterator I = std::copy(E, this->end(), S);
// Drop the last elts.
- destroy_range(I, end());
- setEnd(I);
+ this->destroy_range(I, this->end());
+ this->setEnd(I);
return(N);
}
-
+
iterator insert(iterator I, const T &Elt) {
- if (I == end()) { // Important special case for empty vector.
+ if (I == this->end()) { // Important special case for empty vector.
push_back(Elt);
- return end()-1;
+ return this->end()-1;
}
-
- if (EndX < CapacityX) {
- Retry:
- new (end()) T(back());
- setEnd(end()+1);
+
+ if (this->EndX < this->CapacityX) {
+ Retry:
+ new (this->end()) T(this->back());
+ this->setEnd(this->end()+1);
// Push everything else over.
- std::copy_backward(I, end()-1, end());
+ std::copy_backward(I, this->end()-1, this->end());
*I = Elt;
return I;
}
- size_t EltNo = I-begin();
- grow();
- I = begin()+EltNo;
+ size_t EltNo = I-this->begin();
+ this->grow();
+ I = this->begin()+EltNo;
goto Retry;
}
-
+
iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
- if (I == end()) { // Important special case for empty vector.
+ if (I == this->end()) { // Important special case for empty vector.
append(NumToInsert, Elt);
- return end()-1;
+ return this->end()-1;
}
-
+
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
- size_t InsertElt = I-begin();
-
+ size_t InsertElt = I - this->begin();
+
// Ensure there is enough space.
- reserve(static_cast<unsigned>(size() + NumToInsert));
-
+ reserve(static_cast<unsigned>(this->size() + NumToInsert));
+
// Uninvalidate the iterator.
- I = begin()+InsertElt;
-
+ I = this->begin()+InsertElt;
+
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
// reallocate the vector.
- if (size_t(end()-I) >= NumToInsert) {
- T *OldEnd = end();
- append(end()-NumToInsert, end());
-
+ if (size_t(this->end()-I) >= NumToInsert) {
+ T *OldEnd = this->end();
+ append(this->end()-NumToInsert, this->end());
+
// Copy the existing elements that get replaced.
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
-
+
std::fill_n(I, NumToInsert, Elt);
return I;
}
-
+
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
-
+
// Copy over the elements that we're about to overwrite.
- T *OldEnd = end();
- setEnd(end() + NumToInsert);
+ T *OldEnd = this->end();
+ this->setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I;
- std::uninitialized_copy(I, OldEnd, end()-NumOverwritten);
-
+ this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
+
// Replace the overwritten part.
std::fill_n(I, NumOverwritten, Elt);
-
+
// Insert the non-overwritten middle part.
std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
return I;
}
-
+
template<typename ItTy>
iterator insert(iterator I, ItTy From, ItTy To) {
- if (I == end()) { // Important special case for empty vector.
+ if (I == this->end()) { // Important special case for empty vector.
append(From, To);
- return end()-1;
+ return this->end()-1;
}
-
+
size_t NumToInsert = std::distance(From, To);
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
- size_t InsertElt = I-begin();
-
+ size_t InsertElt = I - this->begin();
+
// Ensure there is enough space.
- reserve(static_cast<unsigned>(size() + NumToInsert));
-
+ reserve(static_cast<unsigned>(this->size() + NumToInsert));
+
// Uninvalidate the iterator.
- I = begin()+InsertElt;
-
+ I = this->begin()+InsertElt;
+
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
// reallocate the vector.
- if (size_t(end()-I) >= NumToInsert) {
- T *OldEnd = end();
- append(end()-NumToInsert, end());
-
+ if (size_t(this->end()-I) >= NumToInsert) {
+ T *OldEnd = this->end();
+ append(this->end()-NumToInsert, this->end());
+
// Copy the existing elements that get replaced.
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
-
+
std::copy(From, To, I);
return I;
}
-
+
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
-
+
// Copy over the elements that we're about to overwrite.
- T *OldEnd = end();
- setEnd(end() + NumToInsert);
+ T *OldEnd = this->end();
+ this->setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I;
- std::uninitialized_copy(I, OldEnd, end()-NumOverwritten);
-
+ this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
+
// Replace the overwritten part.
std::copy(From, From+NumOverwritten, I);
-
+
// Insert the non-overwritten middle part.
- std::uninitialized_copy(From+NumOverwritten, To, OldEnd);
+ this->uninitialized_copy(From+NumOverwritten, To, OldEnd);
return I;
}
-
- const SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
-
+
+ const SmallVectorImpl
+ &operator=(const SmallVectorImpl &RHS);
+
bool operator==(const SmallVectorImpl &RHS) const {
- if (size() != RHS.size()) return false;
- return std::equal(begin(), end(), RHS.begin());
+ if (this->size() != RHS.size()) return false;
+ return std::equal(this->begin(), this->end(), RHS.begin());
}
- bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); }
-
+ bool operator!=(const SmallVectorImpl &RHS) const {
+ return !(*this == RHS);
+ }
+
bool operator<(const SmallVectorImpl &RHS) const {
- return std::lexicographical_compare(begin(), end(),
+ return std::lexicographical_compare(this->begin(), this->end(),
RHS.begin(), RHS.end());
}
-
+
/// set_size - Set the array size to \arg N, which the current array must have
/// enough capacity for.
///
@@ -421,145 +533,105 @@ public:
/// update the size later. This avoids the cost of value initializing elements
/// which will only be overwritten.
void set_size(unsigned N) {
- assert(N <= capacity());
- setEnd(begin() + N);
+ assert(N <= this->capacity());
+ this->setEnd(this->begin() + N);
}
-
+
private:
- /// grow - double the size of the allocated memory, guaranteeing space for at
- /// least one more element or MinSize if specified.
- void grow(size_type MinSize = 0);
-
- void construct_range(T *S, T *E, const T &Elt) {
+ static void construct_range(T *S, T *E, const T &Elt) {
for (; S != E; ++S)
new (S) T(Elt);
}
-
- void destroy_range(T *S, T *E) {
- // No need to do a destroy loop for POD's.
- if (isPodLike<T>::value) return;
-
- while (S != E) {
- --E;
- E->~T();
- }
- }
};
-
-// Define this out-of-line to dissuade the C++ compiler from inlining it.
-template <typename T>
-void SmallVectorImpl<T>::grow(size_t MinSize) {
- size_t CurCapacity = capacity();
- size_t CurSize = size();
- size_t NewCapacity = 2*CurCapacity;
- if (NewCapacity < MinSize)
- NewCapacity = MinSize;
- T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T)));
-
- // Copy the elements over.
- if (isPodLike<T>::value)
- // Use memcpy for PODs: std::uninitialized_copy optimizes to memmove.
- memcpy(NewElts, begin(), CurSize * sizeof(T));
- else
- std::uninitialized_copy(begin(), end(), NewElts);
-
- // Destroy the original elements.
- destroy_range(begin(), end());
-
- // If this wasn't grown from the inline copy, deallocate the old space.
- if (!isSmall())
- operator delete(begin());
-
- setEnd(NewElts+CurSize);
- BeginX = NewElts;
- CapacityX = begin()+NewCapacity;
-}
+
template <typename T>
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
if (this == &RHS) return;
// We can only avoid copying elements if neither vector is small.
- if (!isSmall() && !RHS.isSmall()) {
- std::swap(BeginX, RHS.BeginX);
- std::swap(EndX, RHS.EndX);
- std::swap(CapacityX, RHS.CapacityX);
+ if (!this->isSmall() && !RHS.isSmall()) {
+ std::swap(this->BeginX, RHS.BeginX);
+ std::swap(this->EndX, RHS.EndX);
+ std::swap(this->CapacityX, RHS.CapacityX);
return;
}
- if (RHS.size() > capacity())
- grow(RHS.size());
- if (size() > RHS.capacity())
- RHS.grow(size());
+ if (RHS.size() > this->capacity())
+ this->grow(RHS.size());
+ if (this->size() > RHS.capacity())
+ RHS.grow(this->size());
// Swap the shared elements.
- size_t NumShared = size();
+ size_t NumShared = this->size();
if (NumShared > RHS.size()) NumShared = RHS.size();
for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
std::swap((*this)[i], RHS[i]);
// Copy over the extra elts.
- if (size() > RHS.size()) {
- size_t EltDiff = size() - RHS.size();
- std::uninitialized_copy(begin()+NumShared, end(), RHS.end());
+ if (this->size() > RHS.size()) {
+ size_t EltDiff = this->size() - RHS.size();
+ this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
RHS.setEnd(RHS.end()+EltDiff);
- destroy_range(begin()+NumShared, end());
- setEnd(begin()+NumShared);
- } else if (RHS.size() > size()) {
- size_t EltDiff = RHS.size() - size();
- std::uninitialized_copy(RHS.begin()+NumShared, RHS.end(), end());
- setEnd(end() + EltDiff);
- destroy_range(RHS.begin()+NumShared, RHS.end());
+ this->destroy_range(this->begin()+NumShared, this->end());
+ this->setEnd(this->begin()+NumShared);
+ } else if (RHS.size() > this->size()) {
+ size_t EltDiff = RHS.size() - this->size();
+ this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
+ this->setEnd(this->end() + EltDiff);
+ this->destroy_range(RHS.begin()+NumShared, RHS.end());
RHS.setEnd(RHS.begin()+NumShared);
}
}
template <typename T>
-const SmallVectorImpl<T> &
-SmallVectorImpl<T>::operator=(const SmallVectorImpl<T> &RHS) {
+const SmallVectorImpl<T> &SmallVectorImpl<T>::
+ operator=(const SmallVectorImpl<T> &RHS) {
// Avoid self-assignment.
if (this == &RHS) return *this;
// If we already have sufficient space, assign the common elements, then
// destroy any excess.
size_t RHSSize = RHS.size();
- size_t CurSize = size();
+ size_t CurSize = this->size();
if (CurSize >= RHSSize) {
// Assign common elements.
iterator NewEnd;
if (RHSSize)
- NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, begin());
+ NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
else
- NewEnd = begin();
+ NewEnd = this->begin();
// Destroy excess elements.
- destroy_range(NewEnd, end());
+ this->destroy_range(NewEnd, this->end());
// Trim.
- setEnd(NewEnd);
+ this->setEnd(NewEnd);
return *this;
}
// If we have to grow to have enough elements, destroy the current elements.
// This allows us to avoid copying them during the grow.
- if (capacity() < RHSSize) {
+ if (this->capacity() < RHSSize) {
// Destroy current elements.
- destroy_range(begin(), end());
- setEnd(begin());
+ this->destroy_range(this->begin(), this->end());
+ this->setEnd(this->begin());
CurSize = 0;
- grow(RHSSize);
+ this->grow(RHSSize);
} else if (CurSize) {
// Otherwise, use assignment for the already-constructed elements.
- std::copy(RHS.begin(), RHS.begin()+CurSize, begin());
+ std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
}
// Copy construct the new elements in place.
- std::uninitialized_copy(RHS.begin()+CurSize, RHS.end(), begin()+CurSize);
+ this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
+ this->begin()+CurSize);
// Set end.
- setEnd(begin()+RHSSize);
+ this->setEnd(this->begin()+RHSSize);
return *this;
}
+
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
/// for the case when the array is small. It contains some number of elements
/// in-place, which allows it to avoid heap allocation when the actual number of
OpenPOWER on IntegriCloud