summaryrefslogtreecommitdiffstats
path: root/include/clang/Analysis/Analyses/ThreadSafetyTIL.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/clang/Analysis/Analyses/ThreadSafetyTIL.h')
-rw-r--r--include/clang/Analysis/Analyses/ThreadSafetyTIL.h1918
1 files changed, 0 insertions, 1918 deletions
diff --git a/include/clang/Analysis/Analyses/ThreadSafetyTIL.h b/include/clang/Analysis/Analyses/ThreadSafetyTIL.h
deleted file mode 100644
index be8a710..0000000
--- a/include/clang/Analysis/Analyses/ThreadSafetyTIL.h
+++ /dev/null
@@ -1,1918 +0,0 @@
-//===- ThreadSafetyTIL.h ---------------------------------------*- C++ --*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT in the llvm repository for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines a simple Typed Intermediate Language, or TIL, that is used
-// by the thread safety analysis (See ThreadSafety.cpp). The TIL is intended
-// to be largely independent of clang, in the hope that the analysis can be
-// reused for other non-C++ languages. All dependencies on clang/llvm should
-// go in ThreadSafetyUtil.h.
-//
-// Thread safety analysis works by comparing mutex expressions, e.g.
-//
-// class A { Mutex mu; int dat GUARDED_BY(this->mu); }
-// class B { A a; }
-//
-// void foo(B* b) {
-// (*b).a.mu.lock(); // locks (*b).a.mu
-// b->a.dat = 0; // substitute &b->a for 'this';
-// // requires lock on (&b->a)->mu
-// (b->a.mu).unlock(); // unlocks (b->a.mu)
-// }
-//
-// As illustrated by the above example, clang Exprs are not well-suited to
-// represent mutex expressions directly, since there is no easy way to compare
-// Exprs for equivalence. The thread safety analysis thus lowers clang Exprs
-// into a simple intermediate language (IL). The IL supports:
-//
-// (1) comparisons for semantic equality of expressions
-// (2) SSA renaming of variables
-// (3) wildcards and pattern matching over expressions
-// (4) hash-based expression lookup
-//
-// The TIL is currently very experimental, is intended only for use within
-// the thread safety analysis, and is subject to change without notice.
-// After the API stabilizes and matures, it may be appropriate to make this
-// more generally available to other analyses.
-//
-// UNDER CONSTRUCTION. USE AT YOUR OWN RISK.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
-#define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
-
-// All clang include dependencies for this file must be put in
-// ThreadSafetyUtil.h.
-#include "ThreadSafetyUtil.h"
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <stdint.h>
-#include <utility>
-
-
-namespace clang {
-namespace threadSafety {
-namespace til {
-
-
-/// Enum for the different distinct classes of SExpr
-enum TIL_Opcode {
-#define TIL_OPCODE_DEF(X) COP_##X,
-#include "ThreadSafetyOps.def"
-#undef TIL_OPCODE_DEF
-};
-
-/// Opcode for unary arithmetic operations.
-enum TIL_UnaryOpcode : unsigned char {
- UOP_Minus, // -
- UOP_BitNot, // ~
- UOP_LogicNot // !
-};
-
-/// Opcode for binary arithmetic operations.
-enum TIL_BinaryOpcode : unsigned char {
- BOP_Add, // +
- BOP_Sub, // -
- BOP_Mul, // *
- BOP_Div, // /
- BOP_Rem, // %
- BOP_Shl, // <<
- BOP_Shr, // >>
- BOP_BitAnd, // &
- BOP_BitXor, // ^
- BOP_BitOr, // |
- BOP_Eq, // ==
- BOP_Neq, // !=
- BOP_Lt, // <
- BOP_Leq, // <=
- BOP_LogicAnd, // && (no short-circuit)
- BOP_LogicOr // || (no short-circuit)
-};
-
-/// Opcode for cast operations.
-enum TIL_CastOpcode : unsigned char {
- CAST_none = 0,
- CAST_extendNum, // extend precision of numeric type
- CAST_truncNum, // truncate precision of numeric type
- CAST_toFloat, // convert to floating point type
- CAST_toInt, // convert to integer type
- CAST_objToPtr // convert smart pointer to pointer (C++ only)
-};
-
-const TIL_Opcode COP_Min = COP_Future;
-const TIL_Opcode COP_Max = COP_Branch;
-const TIL_UnaryOpcode UOP_Min = UOP_Minus;
-const TIL_UnaryOpcode UOP_Max = UOP_LogicNot;
-const TIL_BinaryOpcode BOP_Min = BOP_Add;
-const TIL_BinaryOpcode BOP_Max = BOP_LogicOr;
-const TIL_CastOpcode CAST_Min = CAST_none;
-const TIL_CastOpcode CAST_Max = CAST_toInt;
-
-/// Return the name of a unary opcode.
-StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);
-
-/// Return the name of a binary opcode.
-StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);
-
-
-/// ValueTypes are data types that can actually be held in registers.
-/// All variables and expressions must have a value type.
-/// Pointer types are further subdivided into the various heap-allocated
-/// types, such as functions, records, etc.
-/// Structured types that are passed by value (e.g. complex numbers)
-/// require special handling; they use BT_ValueRef, and size ST_0.
-struct ValueType {
- enum BaseType : unsigned char {
- BT_Void = 0,
- BT_Bool,
- BT_Int,
- BT_Float,
- BT_String, // String literals
- BT_Pointer,
- BT_ValueRef
- };
-
- enum SizeType : unsigned char {
- ST_0 = 0,
- ST_1,
- ST_8,
- ST_16,
- ST_32,
- ST_64,
- ST_128
- };
-
- inline static SizeType getSizeType(unsigned nbytes);
-
- template <class T>
- inline static ValueType getValueType();
-
- ValueType(BaseType B, SizeType Sz, bool S, unsigned char VS)
- : Base(B), Size(Sz), Signed(S), VectSize(VS)
- { }
-
- BaseType Base;
- SizeType Size;
- bool Signed;
- unsigned char VectSize; // 0 for scalar, otherwise num elements in vector
-};
-
-
-inline ValueType::SizeType ValueType::getSizeType(unsigned nbytes) {
- switch (nbytes) {
- case 1: return ST_8;
- case 2: return ST_16;
- case 4: return ST_32;
- case 8: return ST_64;
- case 16: return ST_128;
- default: return ST_0;
- }
-}
-
-
-template<>
-inline ValueType ValueType::getValueType<void>() {
- return ValueType(BT_Void, ST_0, false, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<bool>() {
- return ValueType(BT_Bool, ST_1, false, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<int8_t>() {
- return ValueType(BT_Int, ST_8, true, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<uint8_t>() {
- return ValueType(BT_Int, ST_8, false, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<int16_t>() {
- return ValueType(BT_Int, ST_16, true, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<uint16_t>() {
- return ValueType(BT_Int, ST_16, false, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<int32_t>() {
- return ValueType(BT_Int, ST_32, true, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<uint32_t>() {
- return ValueType(BT_Int, ST_32, false, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<int64_t>() {
- return ValueType(BT_Int, ST_64, true, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<uint64_t>() {
- return ValueType(BT_Int, ST_64, false, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<float>() {
- return ValueType(BT_Float, ST_32, true, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<double>() {
- return ValueType(BT_Float, ST_64, true, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<long double>() {
- return ValueType(BT_Float, ST_128, true, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<StringRef>() {
- return ValueType(BT_String, getSizeType(sizeof(StringRef)), false, 0);
-}
-
-template<>
-inline ValueType ValueType::getValueType<void*>() {
- return ValueType(BT_Pointer, getSizeType(sizeof(void*)), false, 0);
-}
-
-
-class BasicBlock;
-
-
-/// Base class for AST nodes in the typed intermediate language.
-class SExpr {
-public:
- TIL_Opcode opcode() const { return static_cast<TIL_Opcode>(Opcode); }
-
- // Subclasses of SExpr must define the following:
- //
- // This(const This& E, ...) {
- // copy constructor: construct copy of E, with some additional arguments.
- // }
- //
- // template <class V>
- // typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- // traverse all subexpressions, following the traversal/rewriter interface.
- // }
- //
- // template <class C> typename C::CType compare(CType* E, C& Cmp) {
- // compare all subexpressions, following the comparator interface
- // }
- void *operator new(size_t S, MemRegionRef &R) {
- return ::operator new(S, R);
- }
-
- /// SExpr objects cannot be deleted.
- // This declaration is public to workaround a gcc bug that breaks building
- // with REQUIRES_EH=1.
- void operator delete(void *) = delete;
-
- /// Returns the instruction ID for this expression.
- /// All basic block instructions have a unique ID (i.e. virtual register).
- unsigned id() const { return SExprID; }
-
- /// Returns the block, if this is an instruction in a basic block,
- /// otherwise returns null.
- BasicBlock* block() const { return Block; }
-
- /// Set the basic block and instruction ID for this expression.
- void setID(BasicBlock *B, unsigned id) { Block = B; SExprID = id; }
-
-protected:
- SExpr(TIL_Opcode Op)
- : Opcode(Op), Reserved(0), Flags(0), SExprID(0), Block(nullptr) {}
- SExpr(const SExpr &E)
- : Opcode(E.Opcode), Reserved(0), Flags(E.Flags), SExprID(0),
- Block(nullptr) {}
-
- const unsigned char Opcode;
- unsigned char Reserved;
- unsigned short Flags;
- unsigned SExprID;
- BasicBlock* Block;
-
-private:
- SExpr() = delete;
-
- /// SExpr objects must be created in an arena.
- void *operator new(size_t) = delete;
-};
-
-
-// Contains various helper functions for SExprs.
-namespace ThreadSafetyTIL {
- inline bool isTrivial(const SExpr *E) {
- unsigned Op = E->opcode();
- return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr;
- }
-}
-
-// Nodes which declare variables
-class Function;
-class SFunction;
-class Let;
-
-
-/// A named variable, e.g. "x".
-///
-/// There are two distinct places in which a Variable can appear in the AST.
-/// A variable declaration introduces a new variable, and can occur in 3 places:
-/// Let-expressions: (Let (x = t) u)
-/// Functions: (Function (x : t) u)
-/// Self-applicable functions (SFunction (x) t)
-///
-/// If a variable occurs in any other location, it is a reference to an existing
-/// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
-/// allocate a separate AST node for variable references; a reference is just a
-/// pointer to the original declaration.
-class Variable : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }
-
- enum VariableKind {
- VK_Let, ///< Let-variable
- VK_Fun, ///< Function parameter
- VK_SFun ///< SFunction (self) parameter
- };
-
- Variable(StringRef s, SExpr *D = nullptr)
- : SExpr(COP_Variable), Name(s), Definition(D), Cvdecl(nullptr) {
- Flags = VK_Let;
- }
- Variable(SExpr *D, const clang::ValueDecl *Cvd = nullptr)
- : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
- Definition(D), Cvdecl(Cvd) {
- Flags = VK_Let;
- }
- Variable(const Variable &Vd, SExpr *D) // rewrite constructor
- : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl) {
- Flags = Vd.kind();
- }
-
- /// Return the kind of variable (let, function param, or self)
- VariableKind kind() const { return static_cast<VariableKind>(Flags); }
-
- /// Return the name of the variable, if any.
- StringRef name() const { return Name; }
-
- /// Return the clang declaration for this variable, if any.
- const clang::ValueDecl *clangDecl() const { return Cvdecl; }
-
- /// Return the definition of the variable.
- /// For let-vars, this is the setting expression.
- /// For function and self parameters, it is the type of the variable.
- SExpr *definition() { return Definition; }
- const SExpr *definition() const { return Definition; }
-
- void setName(StringRef S) { Name = S; }
- void setKind(VariableKind K) { Flags = K; }
- void setDefinition(SExpr *E) { Definition = E; }
- void setClangDecl(const clang::ValueDecl *VD) { Cvdecl = VD; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- // This routine is only called for variable references.
- return Vs.reduceVariableRef(this);
- }
-
- template <class C>
- typename C::CType compare(const Variable* E, C& Cmp) const {
- return Cmp.compareVariableRefs(this, E);
- }
-
-private:
- friend class Function;
- friend class SFunction;
- friend class BasicBlock;
- friend class Let;
-
- StringRef Name; // The name of the variable.
- SExpr* Definition; // The TIL type or definition
- const clang::ValueDecl *Cvdecl; // The clang declaration for this variable.
-};
-
-
-/// Placeholder for an expression that has not yet been created.
-/// Used to implement lazy copy and rewriting strategies.
-class Future : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }
-
- enum FutureStatus {
- FS_pending,
- FS_evaluating,
- FS_done
- };
-
- Future() : SExpr(COP_Future), Status(FS_pending), Result(nullptr) {}
-
-private:
- virtual ~Future() = delete;
-
-public:
- // A lazy rewriting strategy should subclass Future and override this method.
- virtual SExpr *compute() { return nullptr; }
-
- // Return the result of this future if it exists, otherwise return null.
- SExpr *maybeGetResult() const {
- return Result;
- }
-
- // Return the result of this future; forcing it if necessary.
- SExpr *result() {
- switch (Status) {
- case FS_pending:
- return force();
- case FS_evaluating:
- return nullptr; // infinite loop; illegal recursion.
- case FS_done:
- return Result;
- }
- }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- assert(Result && "Cannot traverse Future that has not been forced.");
- return Vs.traverse(Result, Ctx);
- }
-
- template <class C>
- typename C::CType compare(const Future* E, C& Cmp) const {
- if (!Result || !E->Result)
- return Cmp.comparePointers(this, E);
- return Cmp.compare(Result, E->Result);
- }
-
-private:
- SExpr* force();
-
- FutureStatus Status;
- SExpr *Result;
-};
-
-
-/// Placeholder for expressions that cannot be represented in the TIL.
-class Undefined : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }
-
- Undefined(const clang::Stmt *S = nullptr) : SExpr(COP_Undefined), Cstmt(S) {}
- Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {}
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- return Vs.reduceUndefined(*this);
- }
-
- template <class C>
- typename C::CType compare(const Undefined* E, C& Cmp) const {
- return Cmp.trueResult();
- }
-
-private:
- const clang::Stmt *Cstmt;
-};
-
-
-/// Placeholder for a wildcard that matches any other expression.
-class Wildcard : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }
-
- Wildcard() : SExpr(COP_Wildcard) {}
- Wildcard(const Wildcard &W) : SExpr(W) {}
-
- template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- return Vs.reduceWildcard(*this);
- }
-
- template <class C>
- typename C::CType compare(const Wildcard* E, C& Cmp) const {
- return Cmp.trueResult();
- }
-};
-
-
-template <class T> class LiteralT;
-
-// Base class for literal values.
-class Literal : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; }
-
- Literal(const clang::Expr *C)
- : SExpr(COP_Literal), ValType(ValueType::getValueType<void>()), Cexpr(C)
- { }
- Literal(ValueType VT) : SExpr(COP_Literal), ValType(VT), Cexpr(nullptr) {}
- Literal(const Literal &L) : SExpr(L), ValType(L.ValType), Cexpr(L.Cexpr) {}
-
- // The clang expression for this literal.
- const clang::Expr *clangExpr() const { return Cexpr; }
-
- ValueType valueType() const { return ValType; }
-
- template<class T> const LiteralT<T>& as() const {
- return *static_cast<const LiteralT<T>*>(this);
- }
- template<class T> LiteralT<T>& as() {
- return *static_cast<LiteralT<T>*>(this);
- }
-
- template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx);
-
- template <class C>
- typename C::CType compare(const Literal* E, C& Cmp) const {
- // TODO: defer actual comparison to LiteralT
- return Cmp.trueResult();
- }
-
-private:
- const ValueType ValType;
- const clang::Expr *Cexpr;
-};
-
-
-// Derived class for literal values, which stores the actual value.
-template<class T>
-class LiteralT : public Literal {
-public:
- LiteralT(T Dat) : Literal(ValueType::getValueType<T>()), Val(Dat) { }
- LiteralT(const LiteralT<T> &L) : Literal(L), Val(L.Val) { }
-
- T value() const { return Val;}
- T& value() { return Val; }
-
-private:
- T Val;
-};
-
-
-
-template <class V>
-typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) {
- if (Cexpr)
- return Vs.reduceLiteral(*this);
-
- switch (ValType.Base) {
- case ValueType::BT_Void:
- break;
- case ValueType::BT_Bool:
- return Vs.reduceLiteralT(as<bool>());
- case ValueType::BT_Int: {
- switch (ValType.Size) {
- case ValueType::ST_8:
- if (ValType.Signed)
- return Vs.reduceLiteralT(as<int8_t>());
- else
- return Vs.reduceLiteralT(as<uint8_t>());
- case ValueType::ST_16:
- if (ValType.Signed)
- return Vs.reduceLiteralT(as<int16_t>());
- else
- return Vs.reduceLiteralT(as<uint16_t>());
- case ValueType::ST_32:
- if (ValType.Signed)
- return Vs.reduceLiteralT(as<int32_t>());
- else
- return Vs.reduceLiteralT(as<uint32_t>());
- case ValueType::ST_64:
- if (ValType.Signed)
- return Vs.reduceLiteralT(as<int64_t>());
- else
- return Vs.reduceLiteralT(as<uint64_t>());
- default:
- break;
- }
- }
- case ValueType::BT_Float: {
- switch (ValType.Size) {
- case ValueType::ST_32:
- return Vs.reduceLiteralT(as<float>());
- case ValueType::ST_64:
- return Vs.reduceLiteralT(as<double>());
- default:
- break;
- }
- }
- case ValueType::BT_String:
- return Vs.reduceLiteralT(as<StringRef>());
- case ValueType::BT_Pointer:
- return Vs.reduceLiteralT(as<void*>());
- case ValueType::BT_ValueRef:
- break;
- }
- return Vs.reduceLiteral(*this);
-}
-
-
-/// A Literal pointer to an object allocated in memory.
-/// At compile time, pointer literals are represented by symbolic names.
-class LiteralPtr : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }
-
- LiteralPtr(const clang::ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {}
- LiteralPtr(const LiteralPtr &R) : SExpr(R), Cvdecl(R.Cvdecl) {}
-
- // The clang declaration for the value that this pointer points to.
- const clang::ValueDecl *clangDecl() const { return Cvdecl; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- return Vs.reduceLiteralPtr(*this);
- }
-
- template <class C>
- typename C::CType compare(const LiteralPtr* E, C& Cmp) const {
- return Cmp.comparePointers(Cvdecl, E->Cvdecl);
- }
-
-private:
- const clang::ValueDecl *Cvdecl;
-};
-
-
-/// A function -- a.k.a. lambda abstraction.
-/// Functions with multiple arguments are created by currying,
-/// e.g. (Function (x: Int) (Function (y: Int) (Code { return x + y })))
-class Function : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }
-
- Function(Variable *Vd, SExpr *Bd)
- : SExpr(COP_Function), VarDecl(Vd), Body(Bd) {
- Vd->setKind(Variable::VK_Fun);
- }
- Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor
- : SExpr(F), VarDecl(Vd), Body(Bd) {
- Vd->setKind(Variable::VK_Fun);
- }
-
- Variable *variableDecl() { return VarDecl; }
- const Variable *variableDecl() const { return VarDecl; }
-
- SExpr *body() { return Body; }
- const SExpr *body() const { return Body; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- // This is a variable declaration, so traverse the definition.
- auto E0 = Vs.traverse(VarDecl->Definition, Vs.typeCtx(Ctx));
- // Tell the rewriter to enter the scope of the function.
- Variable *Nvd = Vs.enterScope(*VarDecl, E0);
- auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
- Vs.exitScope(*VarDecl);
- return Vs.reduceFunction(*this, Nvd, E1);
- }
-
- template <class C>
- typename C::CType compare(const Function* E, C& Cmp) const {
- typename C::CType Ct =
- Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
- if (Cmp.notTrue(Ct))
- return Ct;
- Cmp.enterScope(variableDecl(), E->variableDecl());
- Ct = Cmp.compare(body(), E->body());
- Cmp.leaveScope();
- return Ct;
- }
-
-private:
- Variable *VarDecl;
- SExpr* Body;
-};
-
-
-/// A self-applicable function.
-/// A self-applicable function can be applied to itself. It's useful for
-/// implementing objects and late binding.
-class SFunction : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }
-
- SFunction(Variable *Vd, SExpr *B)
- : SExpr(COP_SFunction), VarDecl(Vd), Body(B) {
- assert(Vd->Definition == nullptr);
- Vd->setKind(Variable::VK_SFun);
- Vd->Definition = this;
- }
- SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor
- : SExpr(F), VarDecl(Vd), Body(B) {
- assert(Vd->Definition == nullptr);
- Vd->setKind(Variable::VK_SFun);
- Vd->Definition = this;
- }
-
- Variable *variableDecl() { return VarDecl; }
- const Variable *variableDecl() const { return VarDecl; }
-
- SExpr *body() { return Body; }
- const SExpr *body() const { return Body; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- // A self-variable points to the SFunction itself.
- // A rewrite must introduce the variable with a null definition, and update
- // it after 'this' has been rewritten.
- Variable *Nvd = Vs.enterScope(*VarDecl, nullptr);
- auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
- Vs.exitScope(*VarDecl);
- // A rewrite operation will call SFun constructor to set Vvd->Definition.
- return Vs.reduceSFunction(*this, Nvd, E1);
- }
-
- template <class C>
- typename C::CType compare(const SFunction* E, C& Cmp) const {
- Cmp.enterScope(variableDecl(), E->variableDecl());
- typename C::CType Ct = Cmp.compare(body(), E->body());
- Cmp.leaveScope();
- return Ct;
- }
-
-private:
- Variable *VarDecl;
- SExpr* Body;
-};
-
-
-/// A block of code -- e.g. the body of a function.
-class Code : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }
-
- Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) {}
- Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor
- : SExpr(C), ReturnType(T), Body(B) {}
-
- SExpr *returnType() { return ReturnType; }
- const SExpr *returnType() const { return ReturnType; }
-
- SExpr *body() { return Body; }
- const SExpr *body() const { return Body; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Nt = Vs.traverse(ReturnType, Vs.typeCtx(Ctx));
- auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx));
- return Vs.reduceCode(*this, Nt, Nb);
- }
-
- template <class C>
- typename C::CType compare(const Code* E, C& Cmp) const {
- typename C::CType Ct = Cmp.compare(returnType(), E->returnType());
- if (Cmp.notTrue(Ct))
- return Ct;
- return Cmp.compare(body(), E->body());
- }
-
-private:
- SExpr* ReturnType;
- SExpr* Body;
-};
-
-
-/// A typed, writable location in memory
-class Field : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }
-
- Field(SExpr *R, SExpr *B) : SExpr(COP_Field), Range(R), Body(B) {}
- Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor
- : SExpr(C), Range(R), Body(B) {}
-
- SExpr *range() { return Range; }
- const SExpr *range() const { return Range; }
-
- SExpr *body() { return Body; }
- const SExpr *body() const { return Body; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Nr = Vs.traverse(Range, Vs.typeCtx(Ctx));
- auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx));
- return Vs.reduceField(*this, Nr, Nb);
- }
-
- template <class C>
- typename C::CType compare(const Field* E, C& Cmp) const {
- typename C::CType Ct = Cmp.compare(range(), E->range());
- if (Cmp.notTrue(Ct))
- return Ct;
- return Cmp.compare(body(), E->body());
- }
-
-private:
- SExpr* Range;
- SExpr* Body;
-};
-
-
-/// Apply an argument to a function.
-/// Note that this does not actually call the function. Functions are curried,
-/// so this returns a closure in which the first parameter has been applied.
-/// Once all parameters have been applied, Call can be used to invoke the
-/// function.
-class Apply : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }
-
- Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {}
- Apply(const Apply &A, SExpr *F, SExpr *Ar) // rewrite constructor
- : SExpr(A), Fun(F), Arg(Ar)
- {}
-
- SExpr *fun() { return Fun; }
- const SExpr *fun() const { return Fun; }
-
- SExpr *arg() { return Arg; }
- const SExpr *arg() const { return Arg; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Nf = Vs.traverse(Fun, Vs.subExprCtx(Ctx));
- auto Na = Vs.traverse(Arg, Vs.subExprCtx(Ctx));
- return Vs.reduceApply(*this, Nf, Na);
- }
-
- template <class C>
- typename C::CType compare(const Apply* E, C& Cmp) const {
- typename C::CType Ct = Cmp.compare(fun(), E->fun());
- if (Cmp.notTrue(Ct))
- return Ct;
- return Cmp.compare(arg(), E->arg());
- }
-
-private:
- SExpr* Fun;
- SExpr* Arg;
-};
-
-
-/// Apply a self-argument to a self-applicable function.
-class SApply : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }
-
- SApply(SExpr *Sf, SExpr *A = nullptr) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {}
- SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor
- : SExpr(A), Sfun(Sf), Arg(Ar) {}
-
- SExpr *sfun() { return Sfun; }
- const SExpr *sfun() const { return Sfun; }
-
- SExpr *arg() { return Arg ? Arg : Sfun; }
- const SExpr *arg() const { return Arg ? Arg : Sfun; }
-
- bool isDelegation() const { return Arg != nullptr; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));
- typename V::R_SExpr Na = Arg ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
- : nullptr;
- return Vs.reduceSApply(*this, Nf, Na);
- }
-
- template <class C>
- typename C::CType compare(const SApply* E, C& Cmp) const {
- typename C::CType Ct = Cmp.compare(sfun(), E->sfun());
- if (Cmp.notTrue(Ct) || (!arg() && !E->arg()))
- return Ct;
- return Cmp.compare(arg(), E->arg());
- }
-
-private:
- SExpr* Sfun;
- SExpr* Arg;
-};
-
-
-/// Project a named slot from a C++ struct or class.
-class Project : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }
-
- Project(SExpr *R, StringRef SName)
- : SExpr(COP_Project), Rec(R), SlotName(SName), Cvdecl(nullptr)
- { }
- Project(SExpr *R, const clang::ValueDecl *Cvd)
- : SExpr(COP_Project), Rec(R), SlotName(Cvd->getName()), Cvdecl(Cvd)
- { }
- Project(const Project &P, SExpr *R)
- : SExpr(P), Rec(R), SlotName(P.SlotName), Cvdecl(P.Cvdecl)
- { }
-
- SExpr *record() { return Rec; }
- const SExpr *record() const { return Rec; }
-
- const clang::ValueDecl *clangDecl() const { return Cvdecl; }
-
- bool isArrow() const { return (Flags & 0x01) != 0; }
- void setArrow(bool b) {
- if (b) Flags |= 0x01;
- else Flags &= 0xFFFE;
- }
-
- StringRef slotName() const {
- if (Cvdecl)
- return Cvdecl->getName();
- else
- return SlotName;
- }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Nr = Vs.traverse(Rec, Vs.subExprCtx(Ctx));
- return Vs.reduceProject(*this, Nr);
- }
-
- template <class C>
- typename C::CType compare(const Project* E, C& Cmp) const {
- typename C::CType Ct = Cmp.compare(record(), E->record());
- if (Cmp.notTrue(Ct))
- return Ct;
- return Cmp.comparePointers(Cvdecl, E->Cvdecl);
- }
-
-private:
- SExpr* Rec;
- StringRef SlotName;
- const clang::ValueDecl *Cvdecl;
-};
-
-
-/// Call a function (after all arguments have been applied).
-class Call : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
-
- Call(SExpr *T, const clang::CallExpr *Ce = nullptr)
- : SExpr(COP_Call), Target(T), Cexpr(Ce) {}
- Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}
-
- SExpr *target() { return Target; }
- const SExpr *target() const { return Target; }
-
- const clang::CallExpr *clangCallExpr() const { return Cexpr; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Nt = Vs.traverse(Target, Vs.subExprCtx(Ctx));
- return Vs.reduceCall(*this, Nt);
- }
-
- template <class C>
- typename C::CType compare(const Call* E, C& Cmp) const {
- return Cmp.compare(target(), E->target());
- }
-
-private:
- SExpr* Target;
- const clang::CallExpr *Cexpr;
-};
-
-
-/// Allocate memory for a new value on the heap or stack.
-class Alloc : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
-
- enum AllocKind {
- AK_Stack,
- AK_Heap
- };
-
- Alloc(SExpr *D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; }
- Alloc(const Alloc &A, SExpr *Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); }
-
- AllocKind kind() const { return static_cast<AllocKind>(Flags); }
-
- SExpr *dataType() { return Dtype; }
- const SExpr *dataType() const { return Dtype; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Nd = Vs.traverse(Dtype, Vs.declCtx(Ctx));
- return Vs.reduceAlloc(*this, Nd);
- }
-
- template <class C>
- typename C::CType compare(const Alloc* E, C& Cmp) const {
- typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind());
- if (Cmp.notTrue(Ct))
- return Ct;
- return Cmp.compare(dataType(), E->dataType());
- }
-
-private:
- SExpr* Dtype;
-};
-
-
-/// Load a value from memory.
-class Load : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }
-
- Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}
- Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}
-
- SExpr *pointer() { return Ptr; }
- const SExpr *pointer() const { return Ptr; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Np = Vs.traverse(Ptr, Vs.subExprCtx(Ctx));
- return Vs.reduceLoad(*this, Np);
- }
-
- template <class C>
- typename C::CType compare(const Load* E, C& Cmp) const {
- return Cmp.compare(pointer(), E->pointer());
- }
-
-private:
- SExpr* Ptr;
-};
-
-
-/// Store a value to memory.
-/// The destination is a pointer to a field, the source is the value to store.
-class Store : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }
-
- Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}
- Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}
-
- SExpr *destination() { return Dest; } // Address to store to
- const SExpr *destination() const { return Dest; }
-
- SExpr *source() { return Source; } // Value to store
- const SExpr *source() const { return Source; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Np = Vs.traverse(Dest, Vs.subExprCtx(Ctx));
- auto Nv = Vs.traverse(Source, Vs.subExprCtx(Ctx));
- return Vs.reduceStore(*this, Np, Nv);
- }
-
- template <class C>
- typename C::CType compare(const Store* E, C& Cmp) const {
- typename C::CType Ct = Cmp.compare(destination(), E->destination());
- if (Cmp.notTrue(Ct))
- return Ct;
- return Cmp.compare(source(), E->source());
- }
-
-private:
- SExpr* Dest;
- SExpr* Source;
-};
-
-
-/// If p is a reference to an array, then p[i] is a reference to the i'th
-/// element of the array.
-class ArrayIndex : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }
-
- ArrayIndex(SExpr *A, SExpr *N) : SExpr(COP_ArrayIndex), Array(A), Index(N) {}
- ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)
- : SExpr(E), Array(A), Index(N) {}
-
- SExpr *array() { return Array; }
- const SExpr *array() const { return Array; }
-
- SExpr *index() { return Index; }
- const SExpr *index() const { return Index; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
- auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
- return Vs.reduceArrayIndex(*this, Na, Ni);
- }
-
- template <class C>
- typename C::CType compare(const ArrayIndex* E, C& Cmp) const {
- typename C::CType Ct = Cmp.compare(array(), E->array());
- if (Cmp.notTrue(Ct))
- return Ct;
- return Cmp.compare(index(), E->index());
- }
-
-private:
- SExpr* Array;
- SExpr* Index;
-};
-
-
-/// Pointer arithmetic, restricted to arrays only.
-/// If p is a reference to an array, then p + n, where n is an integer, is
-/// a reference to a subarray.
-class ArrayAdd : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }
-
- ArrayAdd(SExpr *A, SExpr *N) : SExpr(COP_ArrayAdd), Array(A), Index(N) {}
- ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)
- : SExpr(E), Array(A), Index(N) {}
-
- SExpr *array() { return Array; }
- const SExpr *array() const { return Array; }
-
- SExpr *index() { return Index; }
- const SExpr *index() const { return Index; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
- auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
- return Vs.reduceArrayAdd(*this, Na, Ni);
- }
-
- template <class C>
- typename C::CType compare(const ArrayAdd* E, C& Cmp) const {
- typename C::CType Ct = Cmp.compare(array(), E->array());
- if (Cmp.notTrue(Ct))
- return Ct;
- return Cmp.compare(index(), E->index());
- }
-
-private:
- SExpr* Array;
- SExpr* Index;
-};
-
-
-/// Simple arithmetic unary operations, e.g. negate and not.
-/// These operations have no side-effects.
-class UnaryOp : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }
-
- UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) {
- Flags = Op;
- }
- UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U), Expr0(E) { Flags = U.Flags; }
-
- TIL_UnaryOpcode unaryOpcode() const {
- return static_cast<TIL_UnaryOpcode>(Flags);
- }
-
- SExpr *expr() { return Expr0; }
- const SExpr *expr() const { return Expr0; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
- return Vs.reduceUnaryOp(*this, Ne);
- }
-
- template <class C>
- typename C::CType compare(const UnaryOp* E, C& Cmp) const {
- typename C::CType Ct =
- Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode());
- if (Cmp.notTrue(Ct))
- return Ct;
- return Cmp.compare(expr(), E->expr());
- }
-
-private:
- SExpr* Expr0;
-};
-
-
-/// Simple arithmetic binary operations, e.g. +, -, etc.
-/// These operations have no side effects.
-class BinaryOp : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }
-
- BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1)
- : SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) {
- Flags = Op;
- }
- BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1)
- : SExpr(B), Expr0(E0), Expr1(E1) {
- Flags = B.Flags;
- }
-
- TIL_BinaryOpcode binaryOpcode() const {
- return static_cast<TIL_BinaryOpcode>(Flags);
- }
-
- SExpr *expr0() { return Expr0; }
- const SExpr *expr0() const { return Expr0; }
-
- SExpr *expr1() { return Expr1; }
- const SExpr *expr1() const { return Expr1; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Ne0 = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
- auto Ne1 = Vs.traverse(Expr1, Vs.subExprCtx(Ctx));
- return Vs.reduceBinaryOp(*this, Ne0, Ne1);
- }
-
- template <class C>
- typename C::CType compare(const BinaryOp* E, C& Cmp) const {
- typename C::CType Ct =
- Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode());
- if (Cmp.notTrue(Ct))
- return Ct;
- Ct = Cmp.compare(expr0(), E->expr0());
- if (Cmp.notTrue(Ct))
- return Ct;
- return Cmp.compare(expr1(), E->expr1());
- }
-
-private:
- SExpr* Expr0;
- SExpr* Expr1;
-};
-
-
-/// Cast expressions.
-/// Cast expressions are essentially unary operations, but we treat them
-/// as a distinct AST node because they only change the type of the result.
-class Cast : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }
-
- Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; }
- Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; }
-
- TIL_CastOpcode castOpcode() const {
- return static_cast<TIL_CastOpcode>(Flags);
- }
-
- SExpr *expr() { return Expr0; }
- const SExpr *expr() const { return Expr0; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
- return Vs.reduceCast(*this, Ne);
- }
-
- template <class C>
- typename C::CType compare(const Cast* E, C& Cmp) const {
- typename C::CType Ct =
- Cmp.compareIntegers(castOpcode(), E->castOpcode());
- if (Cmp.notTrue(Ct))
- return Ct;
- return Cmp.compare(expr(), E->expr());
- }
-
-private:
- SExpr* Expr0;
-};
-
-
-class SCFG;
-
-
-/// Phi Node, for code in SSA form.
-/// Each Phi node has an array of possible values that it can take,
-/// depending on where control flow comes from.
-class Phi : public SExpr {
-public:
- typedef SimpleArray<SExpr *> ValArray;
-
- // In minimal SSA form, all Phi nodes are MultiVal.
- // During conversion to SSA, incomplete Phi nodes may be introduced, which
- // are later determined to be SingleVal, and are thus redundant.
- enum Status {
- PH_MultiVal = 0, // Phi node has multiple distinct values. (Normal)
- PH_SingleVal, // Phi node has one distinct value, and can be eliminated
- PH_Incomplete // Phi node is incomplete
- };
-
- static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
-
- Phi()
- : SExpr(COP_Phi), Cvdecl(nullptr) {}
- Phi(MemRegionRef A, unsigned Nvals)
- : SExpr(COP_Phi), Values(A, Nvals), Cvdecl(nullptr) {}
- Phi(const Phi &P, ValArray &&Vs)
- : SExpr(P), Values(std::move(Vs)), Cvdecl(nullptr) {}
-
- const ValArray &values() const { return Values; }
- ValArray &values() { return Values; }
-
- Status status() const { return static_cast<Status>(Flags); }
- void setStatus(Status s) { Flags = s; }
-
- /// Return the clang declaration of the variable for this Phi node, if any.
- const clang::ValueDecl *clangDecl() const { return Cvdecl; }
-
- /// Set the clang variable associated with this Phi node.
- void setClangDecl(const clang::ValueDecl *Cvd) { Cvdecl = Cvd; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- typename V::template Container<typename V::R_SExpr>
- Nvs(Vs, Values.size());
-
- for (auto *Val : Values) {
- Nvs.push_back( Vs.traverse(Val, Vs.subExprCtx(Ctx)) );
- }
- return Vs.reducePhi(*this, Nvs);
- }
-
- template <class C>
- typename C::CType compare(const Phi *E, C &Cmp) const {
- // TODO: implement CFG comparisons
- return Cmp.comparePointers(this, E);
- }
-
-private:
- ValArray Values;
- const clang::ValueDecl* Cvdecl;
-};
-
-
-/// Base class for basic block terminators: Branch, Goto, and Return.
-class Terminator : public SExpr {
-public:
- static bool classof(const SExpr *E) {
- return E->opcode() >= COP_Goto && E->opcode() <= COP_Return;
- }
-
-protected:
- Terminator(TIL_Opcode Op) : SExpr(Op) {}
- Terminator(const SExpr &E) : SExpr(E) {}
-
-public:
- /// Return the list of basic blocks that this terminator can branch to.
- ArrayRef<BasicBlock*> successors();
-
- ArrayRef<BasicBlock*> successors() const {
- return const_cast<Terminator*>(this)->successors();
- }
-};
-
-
-/// Jump to another basic block.
-/// A goto instruction is essentially a tail-recursive call into another
-/// block. In addition to the block pointer, it specifies an index into the
-/// phi nodes of that block. The index can be used to retrieve the "arguments"
-/// of the call.
-class Goto : public Terminator {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
-
- Goto(BasicBlock *B, unsigned I)
- : Terminator(COP_Goto), TargetBlock(B), Index(I) {}
- Goto(const Goto &G, BasicBlock *B, unsigned I)
- : Terminator(COP_Goto), TargetBlock(B), Index(I) {}
-
- const BasicBlock *targetBlock() const { return TargetBlock; }
- BasicBlock *targetBlock() { return TargetBlock; }
-
- /// Returns the index into the
- unsigned index() const { return Index; }
-
- /// Return the list of basic blocks that this terminator can branch to.
- ArrayRef<BasicBlock*> successors() {
- return TargetBlock;
- }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
- return Vs.reduceGoto(*this, Ntb);
- }
-
- template <class C>
- typename C::CType compare(const Goto *E, C &Cmp) const {
- // TODO: implement CFG comparisons
- return Cmp.comparePointers(this, E);
- }
-
-private:
- BasicBlock *TargetBlock;
- unsigned Index;
-};
-
-
-/// A conditional branch to two other blocks.
-/// Note that unlike Goto, Branch does not have an index. The target blocks
-/// must be child-blocks, and cannot have Phi nodes.
-class Branch : public Terminator {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
-
- Branch(SExpr *C, BasicBlock *T, BasicBlock *E)
- : Terminator(COP_Branch), Condition(C) {
- Branches[0] = T;
- Branches[1] = E;
- }
- Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E)
- : Terminator(Br), Condition(C) {
- Branches[0] = T;
- Branches[1] = E;
- }
-
- const SExpr *condition() const { return Condition; }
- SExpr *condition() { return Condition; }
-
- const BasicBlock *thenBlock() const { return Branches[0]; }
- BasicBlock *thenBlock() { return Branches[0]; }
-
- const BasicBlock *elseBlock() const { return Branches[1]; }
- BasicBlock *elseBlock() { return Branches[1]; }
-
- /// Return the list of basic blocks that this terminator can branch to.
- ArrayRef<BasicBlock*> successors() {
- return llvm::makeArrayRef(Branches);
- }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
- BasicBlock *Ntb = Vs.reduceBasicBlockRef(Branches[0]);
- BasicBlock *Nte = Vs.reduceBasicBlockRef(Branches[1]);
- return Vs.reduceBranch(*this, Nc, Ntb, Nte);
- }
-
- template <class C>
- typename C::CType compare(const Branch *E, C &Cmp) const {
- // TODO: implement CFG comparisons
- return Cmp.comparePointers(this, E);
- }
-
-private:
- SExpr* Condition;
- BasicBlock *Branches[2];
-};
-
-
-/// Return from the enclosing function, passing the return value to the caller.
-/// Only the exit block should end with a return statement.
-class Return : public Terminator {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Return; }
-
- Return(SExpr* Rval) : Terminator(COP_Return), Retval(Rval) {}
- Return(const Return &R, SExpr* Rval) : Terminator(R), Retval(Rval) {}
-
- /// Return an empty list.
- ArrayRef<BasicBlock*> successors() {
- return None;
- }
-
- SExpr *returnValue() { return Retval; }
- const SExpr *returnValue() const { return Retval; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Ne = Vs.traverse(Retval, Vs.subExprCtx(Ctx));
- return Vs.reduceReturn(*this, Ne);
- }
-
- template <class C>
- typename C::CType compare(const Return *E, C &Cmp) const {
- return Cmp.compare(Retval, E->Retval);
- }
-
-private:
- SExpr* Retval;
-};
-
-
-inline ArrayRef<BasicBlock*> Terminator::successors() {
- switch (opcode()) {
- case COP_Goto: return cast<Goto>(this)->successors();
- case COP_Branch: return cast<Branch>(this)->successors();
- case COP_Return: return cast<Return>(this)->successors();
- default:
- return None;
- }
-}
-
-
-/// A basic block is part of an SCFG. It can be treated as a function in
-/// continuation passing style. A block consists of a sequence of phi nodes,
-/// which are "arguments" to the function, followed by a sequence of
-/// instructions. It ends with a Terminator, which is a Branch or Goto to
-/// another basic block in the same SCFG.
-class BasicBlock : public SExpr {
-public:
- typedef SimpleArray<SExpr*> InstrArray;
- typedef SimpleArray<BasicBlock*> BlockArray;
-
- // TopologyNodes are used to overlay tree structures on top of the CFG,
- // such as dominator and postdominator trees. Each block is assigned an
- // ID in the tree according to a depth-first search. Tree traversals are
- // always up, towards the parents.
- struct TopologyNode {
- TopologyNode() : NodeID(0), SizeOfSubTree(0), Parent(nullptr) {}
-
- bool isParentOf(const TopologyNode& OtherNode) {
- return OtherNode.NodeID > NodeID &&
- OtherNode.NodeID < NodeID + SizeOfSubTree;
- }
-
- bool isParentOfOrEqual(const TopologyNode& OtherNode) {
- return OtherNode.NodeID >= NodeID &&
- OtherNode.NodeID < NodeID + SizeOfSubTree;
- }
-
- int NodeID;
- int SizeOfSubTree; // Includes this node, so must be > 1.
- BasicBlock *Parent; // Pointer to parent.
- };
-
- static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }
-
- explicit BasicBlock(MemRegionRef A)
- : SExpr(COP_BasicBlock), Arena(A), CFGPtr(nullptr), BlockID(0),
- Visited(0), TermInstr(nullptr) {}
- BasicBlock(BasicBlock &B, MemRegionRef A, InstrArray &&As, InstrArray &&Is,
- Terminator *T)
- : SExpr(COP_BasicBlock), Arena(A), CFGPtr(nullptr), BlockID(0),Visited(0),
- Args(std::move(As)), Instrs(std::move(Is)), TermInstr(T) {}
-
- /// Returns the block ID. Every block has a unique ID in the CFG.
- int blockID() const { return BlockID; }
-
- /// Returns the number of predecessors.
- size_t numPredecessors() const { return Predecessors.size(); }
- size_t numSuccessors() const { return successors().size(); }
-
- const SCFG* cfg() const { return CFGPtr; }
- SCFG* cfg() { return CFGPtr; }
-
- const BasicBlock *parent() const { return DominatorNode.Parent; }
- BasicBlock *parent() { return DominatorNode.Parent; }
-
- const InstrArray &arguments() const { return Args; }
- InstrArray &arguments() { return Args; }
-
- InstrArray &instructions() { return Instrs; }
- const InstrArray &instructions() const { return Instrs; }
-
- /// Returns a list of predecessors.
- /// The order of predecessors in the list is important; each phi node has
- /// exactly one argument for each precessor, in the same order.
- BlockArray &predecessors() { return Predecessors; }
- const BlockArray &predecessors() const { return Predecessors; }
-
- ArrayRef<BasicBlock*> successors() { return TermInstr->successors(); }
- ArrayRef<BasicBlock*> successors() const { return TermInstr->successors(); }
-
- const Terminator *terminator() const { return TermInstr; }
- Terminator *terminator() { return TermInstr; }
-
- void setTerminator(Terminator *E) { TermInstr = E; }
-
- bool Dominates(const BasicBlock &Other) {
- return DominatorNode.isParentOfOrEqual(Other.DominatorNode);
- }
-
- bool PostDominates(const BasicBlock &Other) {
- return PostDominatorNode.isParentOfOrEqual(Other.PostDominatorNode);
- }
-
- /// Add a new argument.
- void addArgument(Phi *V) {
- Args.reserveCheck(1, Arena);
- Args.push_back(V);
- }
- /// Add a new instruction.
- void addInstruction(SExpr *V) {
- Instrs.reserveCheck(1, Arena);
- Instrs.push_back(V);
- }
- // Add a new predecessor, and return the phi-node index for it.
- // Will add an argument to all phi-nodes, initialized to nullptr.
- unsigned addPredecessor(BasicBlock *Pred);
-
- // Reserve space for Nargs arguments.
- void reserveArguments(unsigned Nargs) { Args.reserve(Nargs, Arena); }
-
- // Reserve space for Nins instructions.
- void reserveInstructions(unsigned Nins) { Instrs.reserve(Nins, Arena); }
-
- // Reserve space for NumPreds predecessors, including space in phi nodes.
- void reservePredecessors(unsigned NumPreds);
-
- /// Return the index of BB, or Predecessors.size if BB is not a predecessor.
- unsigned findPredecessorIndex(const BasicBlock *BB) const {
- auto I = std::find(Predecessors.cbegin(), Predecessors.cend(), BB);
- return std::distance(Predecessors.cbegin(), I);
- }
-
- template <class V>
- typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {
- typename V::template Container<SExpr*> Nas(Vs, Args.size());
- typename V::template Container<SExpr*> Nis(Vs, Instrs.size());
-
- // Entering the basic block should do any scope initialization.
- Vs.enterBasicBlock(*this);
-
- for (auto *E : Args) {
- auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
- Nas.push_back(Ne);
- }
- for (auto *E : Instrs) {
- auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
- Nis.push_back(Ne);
- }
- auto Nt = Vs.traverse(TermInstr, Ctx);
-
- // Exiting the basic block should handle any scope cleanup.
- Vs.exitBasicBlock(*this);
-
- return Vs.reduceBasicBlock(*this, Nas, Nis, Nt);
- }
-
- template <class C>
- typename C::CType compare(const BasicBlock *E, C &Cmp) const {
- // TODO: implement CFG comparisons
- return Cmp.comparePointers(this, E);
- }
-
-private:
- friend class SCFG;
-
- int renumberInstrs(int id); // assign unique ids to all instructions
- int topologicalSort(SimpleArray<BasicBlock*>& Blocks, int ID);
- int topologicalFinalSort(SimpleArray<BasicBlock*>& Blocks, int ID);
- void computeDominator();
- void computePostDominator();
-
-private:
- MemRegionRef Arena; // The arena used to allocate this block.
- SCFG *CFGPtr; // The CFG that contains this block.
- int BlockID : 31; // unique id for this BB in the containing CFG.
- // IDs are in topological order.
- bool Visited : 1; // Bit to determine if a block has been visited
- // during a traversal.
- BlockArray Predecessors; // Predecessor blocks in the CFG.
- InstrArray Args; // Phi nodes. One argument per predecessor.
- InstrArray Instrs; // Instructions.
- Terminator* TermInstr; // Terminating instruction
-
- TopologyNode DominatorNode; // The dominator tree
- TopologyNode PostDominatorNode; // The post-dominator tree
-};
-
-
-/// An SCFG is a control-flow graph. It consists of a set of basic blocks,
-/// each of which terminates in a branch to another basic block. There is one
-/// entry point, and one exit point.
-class SCFG : public SExpr {
-public:
- typedef SimpleArray<BasicBlock *> BlockArray;
- typedef BlockArray::iterator iterator;
- typedef BlockArray::const_iterator const_iterator;
-
- static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; }
-
- SCFG(MemRegionRef A, unsigned Nblocks)
- : SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks),
- Entry(nullptr), Exit(nullptr), NumInstructions(0), Normal(false) {
- Entry = new (A) BasicBlock(A);
- Exit = new (A) BasicBlock(A);
- auto *V = new (A) Phi();
- Exit->addArgument(V);
- Exit->setTerminator(new (A) Return(V));
- add(Entry);
- add(Exit);
- }
- SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba
- : SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)),
- Entry(nullptr), Exit(nullptr), NumInstructions(0), Normal(false) {
- // TODO: set entry and exit!
- }
-
- /// Return true if this CFG is valid.
- bool valid() const { return Entry && Exit && Blocks.size() > 0; }
-
- /// Return true if this CFG has been normalized.
- /// After normalization, blocks are in topological order, and block and
- /// instruction IDs have been assigned.
- bool normal() const { return Normal; }
-
- iterator begin() { return Blocks.begin(); }
- iterator end() { return Blocks.end(); }
-
- const_iterator begin() const { return cbegin(); }
- const_iterator end() const { return cend(); }
-
- const_iterator cbegin() const { return Blocks.cbegin(); }
- const_iterator cend() const { return Blocks.cend(); }
-
- const BasicBlock *entry() const { return Entry; }
- BasicBlock *entry() { return Entry; }
- const BasicBlock *exit() const { return Exit; }
- BasicBlock *exit() { return Exit; }
-
- /// Return the number of blocks in the CFG.
- /// Block::blockID() will return a number less than numBlocks();
- size_t numBlocks() const { return Blocks.size(); }
-
- /// Return the total number of instructions in the CFG.
- /// This is useful for building instruction side-tables;
- /// A call to SExpr::id() will return a number less than numInstructions().
- unsigned numInstructions() { return NumInstructions; }
-
- inline void add(BasicBlock *BB) {
- assert(BB->CFGPtr == nullptr);
- BB->CFGPtr = this;
- Blocks.reserveCheck(1, Arena);
- Blocks.push_back(BB);
- }
-
- void setEntry(BasicBlock *BB) { Entry = BB; }
- void setExit(BasicBlock *BB) { Exit = BB; }
-
- void computeNormalForm();
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- Vs.enterCFG(*this);
- typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());
-
- for (auto *B : Blocks) {
- Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );
- }
- Vs.exitCFG(*this);
- return Vs.reduceSCFG(*this, Bbs);
- }
-
- template <class C>
- typename C::CType compare(const SCFG *E, C &Cmp) const {
- // TODO: implement CFG comparisons
- return Cmp.comparePointers(this, E);
- }
-
-private:
- void renumberInstrs(); // assign unique ids to all instructions
-
-private:
- MemRegionRef Arena;
- BlockArray Blocks;
- BasicBlock *Entry;
- BasicBlock *Exit;
- unsigned NumInstructions;
- bool Normal;
-};
-
-
-
-/// An identifier, e.g. 'foo' or 'x'.
-/// This is a pseduo-term; it will be lowered to a variable or projection.
-class Identifier : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }
-
- Identifier(StringRef Id): SExpr(COP_Identifier), Name(Id) { }
- Identifier(const Identifier& I) : SExpr(I), Name(I.Name) { }
-
- StringRef name() const { return Name; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- return Vs.reduceIdentifier(*this);
- }
-
- template <class C>
- typename C::CType compare(const Identifier* E, C& Cmp) const {
- return Cmp.compareStrings(name(), E->name());
- }
-
-private:
- StringRef Name;
-};
-
-
-/// An if-then-else expression.
-/// This is a pseduo-term; it will be lowered to a branch in a CFG.
-class IfThenElse : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }
-
- IfThenElse(SExpr *C, SExpr *T, SExpr *E)
- : SExpr(COP_IfThenElse), Condition(C), ThenExpr(T), ElseExpr(E)
- { }
- IfThenElse(const IfThenElse &I, SExpr *C, SExpr *T, SExpr *E)
- : SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E)
- { }
-
- SExpr *condition() { return Condition; } // Address to store to
- const SExpr *condition() const { return Condition; }
-
- SExpr *thenExpr() { return ThenExpr; } // Value to store
- const SExpr *thenExpr() const { return ThenExpr; }
-
- SExpr *elseExpr() { return ElseExpr; } // Value to store
- const SExpr *elseExpr() const { return ElseExpr; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
- auto Nt = Vs.traverse(ThenExpr, Vs.subExprCtx(Ctx));
- auto Ne = Vs.traverse(ElseExpr, Vs.subExprCtx(Ctx));
- return Vs.reduceIfThenElse(*this, Nc, Nt, Ne);
- }
-
- template <class C>
- typename C::CType compare(const IfThenElse* E, C& Cmp) const {
- typename C::CType Ct = Cmp.compare(condition(), E->condition());
- if (Cmp.notTrue(Ct))
- return Ct;
- Ct = Cmp.compare(thenExpr(), E->thenExpr());
- if (Cmp.notTrue(Ct))
- return Ct;
- return Cmp.compare(elseExpr(), E->elseExpr());
- }
-
-private:
- SExpr* Condition;
- SExpr* ThenExpr;
- SExpr* ElseExpr;
-};
-
-
-/// A let-expression, e.g. let x=t; u.
-/// This is a pseduo-term; it will be lowered to instructions in a CFG.
-class Let : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }
-
- Let(Variable *Vd, SExpr *Bd) : SExpr(COP_Let), VarDecl(Vd), Body(Bd) {
- Vd->setKind(Variable::VK_Let);
- }
- Let(const Let &L, Variable *Vd, SExpr *Bd) : SExpr(L), VarDecl(Vd), Body(Bd) {
- Vd->setKind(Variable::VK_Let);
- }
-
- Variable *variableDecl() { return VarDecl; }
- const Variable *variableDecl() const { return VarDecl; }
-
- SExpr *body() { return Body; }
- const SExpr *body() const { return Body; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- // This is a variable declaration, so traverse the definition.
- auto E0 = Vs.traverse(VarDecl->Definition, Vs.subExprCtx(Ctx));
- // Tell the rewriter to enter the scope of the let variable.
- Variable *Nvd = Vs.enterScope(*VarDecl, E0);
- auto E1 = Vs.traverse(Body, Ctx);
- Vs.exitScope(*VarDecl);
- return Vs.reduceLet(*this, Nvd, E1);
- }
-
- template <class C>
- typename C::CType compare(const Let* E, C& Cmp) const {
- typename C::CType Ct =
- Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
- if (Cmp.notTrue(Ct))
- return Ct;
- Cmp.enterScope(variableDecl(), E->variableDecl());
- Ct = Cmp.compare(body(), E->body());
- Cmp.leaveScope();
- return Ct;
- }
-
-private:
- Variable *VarDecl;
- SExpr* Body;
-};
-
-
-
-const SExpr *getCanonicalVal(const SExpr *E);
-SExpr* simplifyToCanonicalVal(SExpr *E);
-void simplifyIncompleteArg(til::Phi *Ph);
-
-
-} // end namespace til
-} // end namespace threadSafety
-} // end namespace clang
-
-#endif
OpenPOWER on IntegriCloud