summaryrefslogtreecommitdiffstats
path: root/include/clang/AST/Expr.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/clang/AST/Expr.h')
-rw-r--r--include/clang/AST/Expr.h4941
1 files changed, 0 insertions, 4941 deletions
diff --git a/include/clang/AST/Expr.h b/include/clang/AST/Expr.h
deleted file mode 100644
index 095dd6a..0000000
--- a/include/clang/AST/Expr.h
+++ /dev/null
@@ -1,4941 +0,0 @@
-//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the Expr interface and subclasses.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CLANG_AST_EXPR_H
-#define LLVM_CLANG_AST_EXPR_H
-
-#include "clang/AST/APValue.h"
-#include "clang/AST/ASTVector.h"
-#include "clang/AST/Decl.h"
-#include "clang/AST/DeclAccessPair.h"
-#include "clang/AST/OperationKinds.h"
-#include "clang/AST/Stmt.h"
-#include "clang/AST/TemplateBase.h"
-#include "clang/AST/Type.h"
-#include "clang/Basic/CharInfo.h"
-#include "clang/Basic/LangOptions.h"
-#include "clang/Basic/TypeTraits.h"
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/APSInt.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/Support/Compiler.h"
-
-namespace clang {
- class APValue;
- class ASTContext;
- class BlockDecl;
- class CXXBaseSpecifier;
- class CXXMemberCallExpr;
- class CXXOperatorCallExpr;
- class CastExpr;
- class Decl;
- class IdentifierInfo;
- class MaterializeTemporaryExpr;
- class NamedDecl;
- class ObjCPropertyRefExpr;
- class OpaqueValueExpr;
- class ParmVarDecl;
- class StringLiteral;
- class TargetInfo;
- class ValueDecl;
-
-/// \brief A simple array of base specifiers.
-typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
-
-/// \brief An adjustment to be made to the temporary created when emitting a
-/// reference binding, which accesses a particular subobject of that temporary.
-struct SubobjectAdjustment {
- enum {
- DerivedToBaseAdjustment,
- FieldAdjustment,
- MemberPointerAdjustment
- } Kind;
-
- struct DTB {
- const CastExpr *BasePath;
- const CXXRecordDecl *DerivedClass;
- };
-
- struct P {
- const MemberPointerType *MPT;
- Expr *RHS;
- };
-
- union {
- struct DTB DerivedToBase;
- FieldDecl *Field;
- struct P Ptr;
- };
-
- SubobjectAdjustment(const CastExpr *BasePath,
- const CXXRecordDecl *DerivedClass)
- : Kind(DerivedToBaseAdjustment) {
- DerivedToBase.BasePath = BasePath;
- DerivedToBase.DerivedClass = DerivedClass;
- }
-
- SubobjectAdjustment(FieldDecl *Field)
- : Kind(FieldAdjustment) {
- this->Field = Field;
- }
-
- SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
- : Kind(MemberPointerAdjustment) {
- this->Ptr.MPT = MPT;
- this->Ptr.RHS = RHS;
- }
-};
-
-/// Expr - This represents one expression. Note that Expr's are subclasses of
-/// Stmt. This allows an expression to be transparently used any place a Stmt
-/// is required.
-///
-class Expr : public Stmt {
- QualType TR;
-
-protected:
- Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
- bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
- : Stmt(SC)
- {
- ExprBits.TypeDependent = TD;
- ExprBits.ValueDependent = VD;
- ExprBits.InstantiationDependent = ID;
- ExprBits.ValueKind = VK;
- ExprBits.ObjectKind = OK;
- ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
- setType(T);
- }
-
- /// \brief Construct an empty expression.
- explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
-
-public:
- QualType getType() const { return TR; }
- void setType(QualType t) {
- // In C++, the type of an expression is always adjusted so that it
- // will not have reference type (C++ [expr]p6). Use
- // QualType::getNonReferenceType() to retrieve the non-reference
- // type. Additionally, inspect Expr::isLvalue to determine whether
- // an expression that is adjusted in this manner should be
- // considered an lvalue.
- assert((t.isNull() || !t->isReferenceType()) &&
- "Expressions can't have reference type");
-
- TR = t;
- }
-
- /// isValueDependent - Determines whether this expression is
- /// value-dependent (C++ [temp.dep.constexpr]). For example, the
- /// array bound of "Chars" in the following example is
- /// value-dependent.
- /// @code
- /// template<int Size, char (&Chars)[Size]> struct meta_string;
- /// @endcode
- bool isValueDependent() const { return ExprBits.ValueDependent; }
-
- /// \brief Set whether this expression is value-dependent or not.
- void setValueDependent(bool VD) {
- ExprBits.ValueDependent = VD;
- }
-
- /// isTypeDependent - Determines whether this expression is
- /// type-dependent (C++ [temp.dep.expr]), which means that its type
- /// could change from one template instantiation to the next. For
- /// example, the expressions "x" and "x + y" are type-dependent in
- /// the following code, but "y" is not type-dependent:
- /// @code
- /// template<typename T>
- /// void add(T x, int y) {
- /// x + y;
- /// }
- /// @endcode
- bool isTypeDependent() const { return ExprBits.TypeDependent; }
-
- /// \brief Set whether this expression is type-dependent or not.
- void setTypeDependent(bool TD) {
- ExprBits.TypeDependent = TD;
- }
-
- /// \brief Whether this expression is instantiation-dependent, meaning that
- /// it depends in some way on a template parameter, even if neither its type
- /// nor (constant) value can change due to the template instantiation.
- ///
- /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
- /// instantiation-dependent (since it involves a template parameter \c T), but
- /// is neither type- nor value-dependent, since the type of the inner
- /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
- /// \c sizeof is known.
- ///
- /// \code
- /// template<typename T>
- /// void f(T x, T y) {
- /// sizeof(sizeof(T() + T());
- /// }
- /// \endcode
- ///
- bool isInstantiationDependent() const {
- return ExprBits.InstantiationDependent;
- }
-
- /// \brief Set whether this expression is instantiation-dependent or not.
- void setInstantiationDependent(bool ID) {
- ExprBits.InstantiationDependent = ID;
- }
-
- /// \brief Whether this expression contains an unexpanded parameter
- /// pack (for C++11 variadic templates).
- ///
- /// Given the following function template:
- ///
- /// \code
- /// template<typename F, typename ...Types>
- /// void forward(const F &f, Types &&...args) {
- /// f(static_cast<Types&&>(args)...);
- /// }
- /// \endcode
- ///
- /// The expressions \c args and \c static_cast<Types&&>(args) both
- /// contain parameter packs.
- bool containsUnexpandedParameterPack() const {
- return ExprBits.ContainsUnexpandedParameterPack;
- }
-
- /// \brief Set the bit that describes whether this expression
- /// contains an unexpanded parameter pack.
- void setContainsUnexpandedParameterPack(bool PP = true) {
- ExprBits.ContainsUnexpandedParameterPack = PP;
- }
-
- /// getExprLoc - Return the preferred location for the arrow when diagnosing
- /// a problem with a generic expression.
- SourceLocation getExprLoc() const LLVM_READONLY;
-
- /// isUnusedResultAWarning - Return true if this immediate expression should
- /// be warned about if the result is unused. If so, fill in expr, location,
- /// and ranges with expr to warn on and source locations/ranges appropriate
- /// for a warning.
- bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
- SourceRange &R1, SourceRange &R2,
- ASTContext &Ctx) const;
-
- /// isLValue - True if this expression is an "l-value" according to
- /// the rules of the current language. C and C++ give somewhat
- /// different rules for this concept, but in general, the result of
- /// an l-value expression identifies a specific object whereas the
- /// result of an r-value expression is a value detached from any
- /// specific storage.
- ///
- /// C++11 divides the concept of "r-value" into pure r-values
- /// ("pr-values") and so-called expiring values ("x-values"), which
- /// identify specific objects that can be safely cannibalized for
- /// their resources. This is an unfortunate abuse of terminology on
- /// the part of the C++ committee. In Clang, when we say "r-value",
- /// we generally mean a pr-value.
- bool isLValue() const { return getValueKind() == VK_LValue; }
- bool isRValue() const { return getValueKind() == VK_RValue; }
- bool isXValue() const { return getValueKind() == VK_XValue; }
- bool isGLValue() const { return getValueKind() != VK_RValue; }
-
- enum LValueClassification {
- LV_Valid,
- LV_NotObjectType,
- LV_IncompleteVoidType,
- LV_DuplicateVectorComponents,
- LV_InvalidExpression,
- LV_InvalidMessageExpression,
- LV_MemberFunction,
- LV_SubObjCPropertySetting,
- LV_ClassTemporary,
- LV_ArrayTemporary
- };
- /// Reasons why an expression might not be an l-value.
- LValueClassification ClassifyLValue(ASTContext &Ctx) const;
-
- enum isModifiableLvalueResult {
- MLV_Valid,
- MLV_NotObjectType,
- MLV_IncompleteVoidType,
- MLV_DuplicateVectorComponents,
- MLV_InvalidExpression,
- MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
- MLV_IncompleteType,
- MLV_ConstQualified,
- MLV_ConstAddrSpace,
- MLV_ArrayType,
- MLV_NoSetterProperty,
- MLV_MemberFunction,
- MLV_SubObjCPropertySetting,
- MLV_InvalidMessageExpression,
- MLV_ClassTemporary,
- MLV_ArrayTemporary
- };
- /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
- /// does not have an incomplete type, does not have a const-qualified type,
- /// and if it is a structure or union, does not have any member (including,
- /// recursively, any member or element of all contained aggregates or unions)
- /// with a const-qualified type.
- ///
- /// \param Loc [in,out] - A source location which *may* be filled
- /// in with the location of the expression making this a
- /// non-modifiable lvalue, if specified.
- isModifiableLvalueResult
- isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
-
- /// \brief The return type of classify(). Represents the C++11 expression
- /// taxonomy.
- class Classification {
- public:
- /// \brief The various classification results. Most of these mean prvalue.
- enum Kinds {
- CL_LValue,
- CL_XValue,
- CL_Function, // Functions cannot be lvalues in C.
- CL_Void, // Void cannot be an lvalue in C.
- CL_AddressableVoid, // Void expression whose address can be taken in C.
- CL_DuplicateVectorComponents, // A vector shuffle with dupes.
- CL_MemberFunction, // An expression referring to a member function
- CL_SubObjCPropertySetting,
- CL_ClassTemporary, // A temporary of class type, or subobject thereof.
- CL_ArrayTemporary, // A temporary of array type.
- CL_ObjCMessageRValue, // ObjC message is an rvalue
- CL_PRValue // A prvalue for any other reason, of any other type
- };
- /// \brief The results of modification testing.
- enum ModifiableType {
- CM_Untested, // testModifiable was false.
- CM_Modifiable,
- CM_RValue, // Not modifiable because it's an rvalue
- CM_Function, // Not modifiable because it's a function; C++ only
- CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
- CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
- CM_ConstQualified,
- CM_ConstAddrSpace,
- CM_ArrayType,
- CM_IncompleteType
- };
-
- private:
- friend class Expr;
-
- unsigned short Kind;
- unsigned short Modifiable;
-
- explicit Classification(Kinds k, ModifiableType m)
- : Kind(k), Modifiable(m)
- {}
-
- public:
- Classification() {}
-
- Kinds getKind() const { return static_cast<Kinds>(Kind); }
- ModifiableType getModifiable() const {
- assert(Modifiable != CM_Untested && "Did not test for modifiability.");
- return static_cast<ModifiableType>(Modifiable);
- }
- bool isLValue() const { return Kind == CL_LValue; }
- bool isXValue() const { return Kind == CL_XValue; }
- bool isGLValue() const { return Kind <= CL_XValue; }
- bool isPRValue() const { return Kind >= CL_Function; }
- bool isRValue() const { return Kind >= CL_XValue; }
- bool isModifiable() const { return getModifiable() == CM_Modifiable; }
-
- /// \brief Create a simple, modifiably lvalue
- static Classification makeSimpleLValue() {
- return Classification(CL_LValue, CM_Modifiable);
- }
-
- };
- /// \brief Classify - Classify this expression according to the C++11
- /// expression taxonomy.
- ///
- /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
- /// old lvalue vs rvalue. This function determines the type of expression this
- /// is. There are three expression types:
- /// - lvalues are classical lvalues as in C++03.
- /// - prvalues are equivalent to rvalues in C++03.
- /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
- /// function returning an rvalue reference.
- /// lvalues and xvalues are collectively referred to as glvalues, while
- /// prvalues and xvalues together form rvalues.
- Classification Classify(ASTContext &Ctx) const {
- return ClassifyImpl(Ctx, nullptr);
- }
-
- /// \brief ClassifyModifiable - Classify this expression according to the
- /// C++11 expression taxonomy, and see if it is valid on the left side
- /// of an assignment.
- ///
- /// This function extends classify in that it also tests whether the
- /// expression is modifiable (C99 6.3.2.1p1).
- /// \param Loc A source location that might be filled with a relevant location
- /// if the expression is not modifiable.
- Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
- return ClassifyImpl(Ctx, &Loc);
- }
-
- /// getValueKindForType - Given a formal return or parameter type,
- /// give its value kind.
- static ExprValueKind getValueKindForType(QualType T) {
- if (const ReferenceType *RT = T->getAs<ReferenceType>())
- return (isa<LValueReferenceType>(RT)
- ? VK_LValue
- : (RT->getPointeeType()->isFunctionType()
- ? VK_LValue : VK_XValue));
- return VK_RValue;
- }
-
- /// getValueKind - The value kind that this expression produces.
- ExprValueKind getValueKind() const {
- return static_cast<ExprValueKind>(ExprBits.ValueKind);
- }
-
- /// getObjectKind - The object kind that this expression produces.
- /// Object kinds are meaningful only for expressions that yield an
- /// l-value or x-value.
- ExprObjectKind getObjectKind() const {
- return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
- }
-
- bool isOrdinaryOrBitFieldObject() const {
- ExprObjectKind OK = getObjectKind();
- return (OK == OK_Ordinary || OK == OK_BitField);
- }
-
- /// setValueKind - Set the value kind produced by this expression.
- void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
-
- /// setObjectKind - Set the object kind produced by this expression.
- void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
-
-private:
- Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
-
-public:
-
- /// \brief Returns true if this expression is a gl-value that
- /// potentially refers to a bit-field.
- ///
- /// In C++, whether a gl-value refers to a bitfield is essentially
- /// an aspect of the value-kind type system.
- bool refersToBitField() const { return getObjectKind() == OK_BitField; }
-
- /// \brief If this expression refers to a bit-field, retrieve the
- /// declaration of that bit-field.
- ///
- /// Note that this returns a non-null pointer in subtly different
- /// places than refersToBitField returns true. In particular, this can
- /// return a non-null pointer even for r-values loaded from
- /// bit-fields, but it will return null for a conditional bit-field.
- FieldDecl *getSourceBitField();
-
- const FieldDecl *getSourceBitField() const {
- return const_cast<Expr*>(this)->getSourceBitField();
- }
-
- /// \brief If this expression is an l-value for an Objective C
- /// property, find the underlying property reference expression.
- const ObjCPropertyRefExpr *getObjCProperty() const;
-
- /// \brief Check if this expression is the ObjC 'self' implicit parameter.
- bool isObjCSelfExpr() const;
-
- /// \brief Returns whether this expression refers to a vector element.
- bool refersToVectorElement() const;
-
- /// \brief Returns whether this expression refers to a global register
- /// variable.
- bool refersToGlobalRegisterVar() const;
-
- /// \brief Returns whether this expression has a placeholder type.
- bool hasPlaceholderType() const {
- return getType()->isPlaceholderType();
- }
-
- /// \brief Returns whether this expression has a specific placeholder type.
- bool hasPlaceholderType(BuiltinType::Kind K) const {
- assert(BuiltinType::isPlaceholderTypeKind(K));
- if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
- return BT->getKind() == K;
- return false;
- }
-
- /// isKnownToHaveBooleanValue - Return true if this is an integer expression
- /// that is known to return 0 or 1. This happens for _Bool/bool expressions
- /// but also int expressions which are produced by things like comparisons in
- /// C.
- bool isKnownToHaveBooleanValue() const;
-
- /// isIntegerConstantExpr - Return true if this expression is a valid integer
- /// constant expression, and, if so, return its value in Result. If not a
- /// valid i-c-e, return false and fill in Loc (if specified) with the location
- /// of the invalid expression.
- ///
- /// Note: This does not perform the implicit conversions required by C++11
- /// [expr.const]p5.
- bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
- SourceLocation *Loc = nullptr,
- bool isEvaluated = true) const;
- bool isIntegerConstantExpr(const ASTContext &Ctx,
- SourceLocation *Loc = nullptr) const;
-
- /// isCXX98IntegralConstantExpr - Return true if this expression is an
- /// integral constant expression in C++98. Can only be used in C++.
- bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
-
- /// isCXX11ConstantExpr - Return true if this expression is a constant
- /// expression in C++11. Can only be used in C++.
- ///
- /// Note: This does not perform the implicit conversions required by C++11
- /// [expr.const]p5.
- bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
- SourceLocation *Loc = nullptr) const;
-
- /// isPotentialConstantExpr - Return true if this function's definition
- /// might be usable in a constant expression in C++11, if it were marked
- /// constexpr. Return false if the function can never produce a constant
- /// expression, along with diagnostics describing why not.
- static bool isPotentialConstantExpr(const FunctionDecl *FD,
- SmallVectorImpl<
- PartialDiagnosticAt> &Diags);
-
- /// isPotentialConstantExprUnevaluted - Return true if this expression might
- /// be usable in a constant expression in C++11 in an unevaluated context, if
- /// it were in function FD marked constexpr. Return false if the function can
- /// never produce a constant expression, along with diagnostics describing
- /// why not.
- static bool isPotentialConstantExprUnevaluated(Expr *E,
- const FunctionDecl *FD,
- SmallVectorImpl<
- PartialDiagnosticAt> &Diags);
-
- /// isConstantInitializer - Returns true if this expression can be emitted to
- /// IR as a constant, and thus can be used as a constant initializer in C.
- /// If this expression is not constant and Culprit is non-null,
- /// it is used to store the address of first non constant expr.
- bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
- const Expr **Culprit = nullptr) const;
-
- /// EvalStatus is a struct with detailed info about an evaluation in progress.
- struct EvalStatus {
- /// \brief Whether the evaluated expression has side effects.
- /// For example, (f() && 0) can be folded, but it still has side effects.
- bool HasSideEffects;
-
- /// \brief Whether the evaluation hit undefined behavior.
- /// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
- /// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
- bool HasUndefinedBehavior;
-
- /// Diag - If this is non-null, it will be filled in with a stack of notes
- /// indicating why evaluation failed (or why it failed to produce a constant
- /// expression).
- /// If the expression is unfoldable, the notes will indicate why it's not
- /// foldable. If the expression is foldable, but not a constant expression,
- /// the notes will describes why it isn't a constant expression. If the
- /// expression *is* a constant expression, no notes will be produced.
- SmallVectorImpl<PartialDiagnosticAt> *Diag;
-
- EvalStatus()
- : HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}
-
- // hasSideEffects - Return true if the evaluated expression has
- // side effects.
- bool hasSideEffects() const {
- return HasSideEffects;
- }
- };
-
- /// EvalResult is a struct with detailed info about an evaluated expression.
- struct EvalResult : EvalStatus {
- /// Val - This is the value the expression can be folded to.
- APValue Val;
-
- // isGlobalLValue - Return true if the evaluated lvalue expression
- // is global.
- bool isGlobalLValue() const;
- };
-
- /// EvaluateAsRValue - Return true if this is a constant which we can fold to
- /// an rvalue using any crazy technique (that has nothing to do with language
- /// standards) that we want to, even if the expression has side-effects. If
- /// this function returns true, it returns the folded constant in Result. If
- /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
- /// applied.
- bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
-
- /// EvaluateAsBooleanCondition - Return true if this is a constant
- /// which we we can fold and convert to a boolean condition using
- /// any crazy technique that we want to, even if the expression has
- /// side-effects.
- bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
-
- enum SideEffectsKind {
- SE_NoSideEffects, ///< Strictly evaluate the expression.
- SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
- ///< arbitrary unmodeled side effects.
- SE_AllowSideEffects ///< Allow any unmodeled side effect.
- };
-
- /// EvaluateAsInt - Return true if this is a constant which we can fold and
- /// convert to an integer, using any crazy technique that we want to.
- bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
- SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
-
- /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
- /// constant folded without side-effects, but discard the result.
- bool isEvaluatable(const ASTContext &Ctx,
- SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
-
- /// HasSideEffects - This routine returns true for all those expressions
- /// which have any effect other than producing a value. Example is a function
- /// call, volatile variable read, or throwing an exception. If
- /// IncludePossibleEffects is false, this call treats certain expressions with
- /// potential side effects (such as function call-like expressions,
- /// instantiation-dependent expressions, or invocations from a macro) as not
- /// having side effects.
- bool HasSideEffects(const ASTContext &Ctx,
- bool IncludePossibleEffects = true) const;
-
- /// \brief Determine whether this expression involves a call to any function
- /// that is not trivial.
- bool hasNonTrivialCall(const ASTContext &Ctx) const;
-
- /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
- /// integer. This must be called on an expression that constant folds to an
- /// integer.
- llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
- SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
-
- void EvaluateForOverflow(const ASTContext &Ctx) const;
-
- /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
- /// lvalue with link time known address, with no side-effects.
- bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
-
- /// EvaluateAsInitializer - Evaluate an expression as if it were the
- /// initializer of the given declaration. Returns true if the initializer
- /// can be folded to a constant, and produces any relevant notes. In C++11,
- /// notes will be produced if the expression is not a constant expression.
- bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
- const VarDecl *VD,
- SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
-
- /// EvaluateWithSubstitution - Evaluate an expression as if from the context
- /// of a call to the given function with the given arguments, inside an
- /// unevaluated context. Returns true if the expression could be folded to a
- /// constant.
- bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
- const FunctionDecl *Callee,
- ArrayRef<const Expr*> Args) const;
-
- /// \brief If the current Expr is a pointer, this will try to statically
- /// determine the number of bytes available where the pointer is pointing.
- /// Returns true if all of the above holds and we were able to figure out the
- /// size, false otherwise.
- ///
- /// \param Type - How to evaluate the size of the Expr, as defined by the
- /// "type" parameter of __builtin_object_size
- bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
- unsigned Type) const;
-
- /// \brief Enumeration used to describe the kind of Null pointer constant
- /// returned from \c isNullPointerConstant().
- enum NullPointerConstantKind {
- /// \brief Expression is not a Null pointer constant.
- NPCK_NotNull = 0,
-
- /// \brief Expression is a Null pointer constant built from a zero integer
- /// expression that is not a simple, possibly parenthesized, zero literal.
- /// C++ Core Issue 903 will classify these expressions as "not pointers"
- /// once it is adopted.
- /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
- NPCK_ZeroExpression,
-
- /// \brief Expression is a Null pointer constant built from a literal zero.
- NPCK_ZeroLiteral,
-
- /// \brief Expression is a C++11 nullptr.
- NPCK_CXX11_nullptr,
-
- /// \brief Expression is a GNU-style __null constant.
- NPCK_GNUNull
- };
-
- /// \brief Enumeration used to describe how \c isNullPointerConstant()
- /// should cope with value-dependent expressions.
- enum NullPointerConstantValueDependence {
- /// \brief Specifies that the expression should never be value-dependent.
- NPC_NeverValueDependent = 0,
-
- /// \brief Specifies that a value-dependent expression of integral or
- /// dependent type should be considered a null pointer constant.
- NPC_ValueDependentIsNull,
-
- /// \brief Specifies that a value-dependent expression should be considered
- /// to never be a null pointer constant.
- NPC_ValueDependentIsNotNull
- };
-
- /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
- /// a Null pointer constant. The return value can further distinguish the
- /// kind of NULL pointer constant that was detected.
- NullPointerConstantKind isNullPointerConstant(
- ASTContext &Ctx,
- NullPointerConstantValueDependence NPC) const;
-
- /// isOBJCGCCandidate - Return true if this expression may be used in a read/
- /// write barrier.
- bool isOBJCGCCandidate(ASTContext &Ctx) const;
-
- /// \brief Returns true if this expression is a bound member function.
- bool isBoundMemberFunction(ASTContext &Ctx) const;
-
- /// \brief Given an expression of bound-member type, find the type
- /// of the member. Returns null if this is an *overloaded* bound
- /// member expression.
- static QualType findBoundMemberType(const Expr *expr);
-
- /// IgnoreImpCasts - Skip past any implicit casts which might
- /// surround this expression. Only skips ImplicitCastExprs.
- Expr *IgnoreImpCasts() LLVM_READONLY;
-
- /// IgnoreImplicit - Skip past any implicit AST nodes which might
- /// surround this expression.
- Expr *IgnoreImplicit() LLVM_READONLY {
- return cast<Expr>(Stmt::IgnoreImplicit());
- }
-
- const Expr *IgnoreImplicit() const LLVM_READONLY {
- return const_cast<Expr*>(this)->IgnoreImplicit();
- }
-
- /// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return
- /// its subexpression. If that subexpression is also a ParenExpr,
- /// then this method recursively returns its subexpression, and so forth.
- /// Otherwise, the method returns the current Expr.
- Expr *IgnoreParens() LLVM_READONLY;
-
- /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
- /// or CastExprs, returning their operand.
- Expr *IgnoreParenCasts() LLVM_READONLY;
-
- /// Ignore casts. Strip off any CastExprs, returning their operand.
- Expr *IgnoreCasts() LLVM_READONLY;
-
- /// IgnoreParenImpCasts - Ignore parentheses and implicit casts. Strip off
- /// any ParenExpr or ImplicitCastExprs, returning their operand.
- Expr *IgnoreParenImpCasts() LLVM_READONLY;
-
- /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
- /// call to a conversion operator, return the argument.
- Expr *IgnoreConversionOperator() LLVM_READONLY;
-
- const Expr *IgnoreConversionOperator() const LLVM_READONLY {
- return const_cast<Expr*>(this)->IgnoreConversionOperator();
- }
-
- const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
- return const_cast<Expr*>(this)->IgnoreParenImpCasts();
- }
-
- /// Ignore parentheses and lvalue casts. Strip off any ParenExpr and
- /// CastExprs that represent lvalue casts, returning their operand.
- Expr *IgnoreParenLValueCasts() LLVM_READONLY;
-
- const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
- return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
- }
-
- /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
- /// value (including ptr->int casts of the same size). Strip off any
- /// ParenExpr or CastExprs, returning their operand.
- Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
-
- /// Ignore parentheses and derived-to-base casts.
- Expr *ignoreParenBaseCasts() LLVM_READONLY;
-
- const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
- return const_cast<Expr*>(this)->ignoreParenBaseCasts();
- }
-
- /// \brief Determine whether this expression is a default function argument.
- ///
- /// Default arguments are implicitly generated in the abstract syntax tree
- /// by semantic analysis for function calls, object constructions, etc. in
- /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
- /// this routine also looks through any implicit casts to determine whether
- /// the expression is a default argument.
- bool isDefaultArgument() const;
-
- /// \brief Determine whether the result of this expression is a
- /// temporary object of the given class type.
- bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
-
- /// \brief Whether this expression is an implicit reference to 'this' in C++.
- bool isImplicitCXXThis() const;
-
- const Expr *IgnoreImpCasts() const LLVM_READONLY {
- return const_cast<Expr*>(this)->IgnoreImpCasts();
- }
- const Expr *IgnoreParens() const LLVM_READONLY {
- return const_cast<Expr*>(this)->IgnoreParens();
- }
- const Expr *IgnoreParenCasts() const LLVM_READONLY {
- return const_cast<Expr*>(this)->IgnoreParenCasts();
- }
- /// Strip off casts, but keep parentheses.
- const Expr *IgnoreCasts() const LLVM_READONLY {
- return const_cast<Expr*>(this)->IgnoreCasts();
- }
-
- const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
- return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
- }
-
- static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
-
- /// \brief For an expression of class type or pointer to class type,
- /// return the most derived class decl the expression is known to refer to.
- ///
- /// If this expression is a cast, this method looks through it to find the
- /// most derived decl that can be inferred from the expression.
- /// This is valid because derived-to-base conversions have undefined
- /// behavior if the object isn't dynamically of the derived type.
- const CXXRecordDecl *getBestDynamicClassType() const;
-
- /// Walk outwards from an expression we want to bind a reference to and
- /// find the expression whose lifetime needs to be extended. Record
- /// the LHSs of comma expressions and adjustments needed along the path.
- const Expr *skipRValueSubobjectAdjustments(
- SmallVectorImpl<const Expr *> &CommaLHS,
- SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() >= firstExprConstant &&
- T->getStmtClass() <= lastExprConstant;
- }
-};
-
-//===----------------------------------------------------------------------===//
-// Primary Expressions.
-//===----------------------------------------------------------------------===//
-
-/// OpaqueValueExpr - An expression referring to an opaque object of a
-/// fixed type and value class. These don't correspond to concrete
-/// syntax; instead they're used to express operations (usually copy
-/// operations) on values whose source is generally obvious from
-/// context.
-class OpaqueValueExpr : public Expr {
- friend class ASTStmtReader;
- Expr *SourceExpr;
- SourceLocation Loc;
-
-public:
- OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
- ExprObjectKind OK = OK_Ordinary,
- Expr *SourceExpr = nullptr)
- : Expr(OpaqueValueExprClass, T, VK, OK,
- T->isDependentType(),
- T->isDependentType() ||
- (SourceExpr && SourceExpr->isValueDependent()),
- T->isInstantiationDependentType(),
- false),
- SourceExpr(SourceExpr), Loc(Loc) {
- }
-
- /// Given an expression which invokes a copy constructor --- i.e. a
- /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
- /// find the OpaqueValueExpr that's the source of the construction.
- static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
-
- explicit OpaqueValueExpr(EmptyShell Empty)
- : Expr(OpaqueValueExprClass, Empty) { }
-
- /// \brief Retrieve the location of this expression.
- SourceLocation getLocation() const { return Loc; }
-
- SourceLocation getLocStart() const LLVM_READONLY {
- return SourceExpr ? SourceExpr->getLocStart() : Loc;
- }
- SourceLocation getLocEnd() const LLVM_READONLY {
- return SourceExpr ? SourceExpr->getLocEnd() : Loc;
- }
- SourceLocation getExprLoc() const LLVM_READONLY {
- if (SourceExpr) return SourceExpr->getExprLoc();
- return Loc;
- }
-
- child_range children() {
- return child_range(child_iterator(), child_iterator());
- }
-
- /// The source expression of an opaque value expression is the
- /// expression which originally generated the value. This is
- /// provided as a convenience for analyses that don't wish to
- /// precisely model the execution behavior of the program.
- ///
- /// The source expression is typically set when building the
- /// expression which binds the opaque value expression in the first
- /// place.
- Expr *getSourceExpr() const { return SourceExpr; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == OpaqueValueExprClass;
- }
-};
-
-/// \brief A reference to a declared variable, function, enum, etc.
-/// [C99 6.5.1p2]
-///
-/// This encodes all the information about how a declaration is referenced
-/// within an expression.
-///
-/// There are several optional constructs attached to DeclRefExprs only when
-/// they apply in order to conserve memory. These are laid out past the end of
-/// the object, and flags in the DeclRefExprBitfield track whether they exist:
-///
-/// DeclRefExprBits.HasQualifier:
-/// Specifies when this declaration reference expression has a C++
-/// nested-name-specifier.
-/// DeclRefExprBits.HasFoundDecl:
-/// Specifies when this declaration reference expression has a record of
-/// a NamedDecl (different from the referenced ValueDecl) which was found
-/// during name lookup and/or overload resolution.
-/// DeclRefExprBits.HasTemplateKWAndArgsInfo:
-/// Specifies when this declaration reference expression has an explicit
-/// C++ template keyword and/or template argument list.
-/// DeclRefExprBits.RefersToEnclosingVariableOrCapture
-/// Specifies when this declaration reference expression (validly)
-/// refers to an enclosed local or a captured variable.
-class DeclRefExpr final
- : public Expr,
- private llvm::TrailingObjects<DeclRefExpr, NestedNameSpecifierLoc,
- NamedDecl *, ASTTemplateKWAndArgsInfo,
- TemplateArgumentLoc> {
- /// \brief The declaration that we are referencing.
- ValueDecl *D;
-
- /// \brief The location of the declaration name itself.
- SourceLocation Loc;
-
- /// \brief Provides source/type location info for the declaration name
- /// embedded in D.
- DeclarationNameLoc DNLoc;
-
- size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
- return hasQualifier() ? 1 : 0;
- }
-
- size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
- return hasFoundDecl() ? 1 : 0;
- }
-
- size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
- return hasTemplateKWAndArgsInfo() ? 1 : 0;
- }
-
- /// \brief Test whether there is a distinct FoundDecl attached to the end of
- /// this DRE.
- bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
-
- DeclRefExpr(const ASTContext &Ctx,
- NestedNameSpecifierLoc QualifierLoc,
- SourceLocation TemplateKWLoc,
- ValueDecl *D, bool RefersToEnlosingVariableOrCapture,
- const DeclarationNameInfo &NameInfo,
- NamedDecl *FoundD,
- const TemplateArgumentListInfo *TemplateArgs,
- QualType T, ExprValueKind VK);
-
- /// \brief Construct an empty declaration reference expression.
- explicit DeclRefExpr(EmptyShell Empty)
- : Expr(DeclRefExprClass, Empty) { }
-
- /// \brief Computes the type- and value-dependence flags for this
- /// declaration reference expression.
- void computeDependence(const ASTContext &C);
-
-public:
- DeclRefExpr(ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T,
- ExprValueKind VK, SourceLocation L,
- const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
- : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
- D(D), Loc(L), DNLoc(LocInfo) {
- DeclRefExprBits.HasQualifier = 0;
- DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
- DeclRefExprBits.HasFoundDecl = 0;
- DeclRefExprBits.HadMultipleCandidates = 0;
- DeclRefExprBits.RefersToEnclosingVariableOrCapture =
- RefersToEnclosingVariableOrCapture;
- computeDependence(D->getASTContext());
- }
-
- static DeclRefExpr *
- Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
- SourceLocation TemplateKWLoc, ValueDecl *D,
- bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
- QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
- const TemplateArgumentListInfo *TemplateArgs = nullptr);
-
- static DeclRefExpr *
- Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
- SourceLocation TemplateKWLoc, ValueDecl *D,
- bool RefersToEnclosingVariableOrCapture,
- const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
- NamedDecl *FoundD = nullptr,
- const TemplateArgumentListInfo *TemplateArgs = nullptr);
-
- /// \brief Construct an empty declaration reference expression.
- static DeclRefExpr *CreateEmpty(const ASTContext &Context,
- bool HasQualifier,
- bool HasFoundDecl,
- bool HasTemplateKWAndArgsInfo,
- unsigned NumTemplateArgs);
-
- ValueDecl *getDecl() { return D; }
- const ValueDecl *getDecl() const { return D; }
- void setDecl(ValueDecl *NewD) { D = NewD; }
-
- DeclarationNameInfo getNameInfo() const {
- return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
- }
-
- SourceLocation getLocation() const { return Loc; }
- void setLocation(SourceLocation L) { Loc = L; }
- SourceLocation getLocStart() const LLVM_READONLY;
- SourceLocation getLocEnd() const LLVM_READONLY;
-
- /// \brief Determine whether this declaration reference was preceded by a
- /// C++ nested-name-specifier, e.g., \c N::foo.
- bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
-
- /// \brief If the name was qualified, retrieves the nested-name-specifier
- /// that precedes the name, with source-location information.
- NestedNameSpecifierLoc getQualifierLoc() const {
- if (!hasQualifier())
- return NestedNameSpecifierLoc();
- return *getTrailingObjects<NestedNameSpecifierLoc>();
- }
-
- /// \brief If the name was qualified, retrieves the nested-name-specifier
- /// that precedes the name. Otherwise, returns NULL.
- NestedNameSpecifier *getQualifier() const {
- return getQualifierLoc().getNestedNameSpecifier();
- }
-
- /// \brief Get the NamedDecl through which this reference occurred.
- ///
- /// This Decl may be different from the ValueDecl actually referred to in the
- /// presence of using declarations, etc. It always returns non-NULL, and may
- /// simple return the ValueDecl when appropriate.
-
- NamedDecl *getFoundDecl() {
- return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
- }
-
- /// \brief Get the NamedDecl through which this reference occurred.
- /// See non-const variant.
- const NamedDecl *getFoundDecl() const {
- return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
- }
-
- bool hasTemplateKWAndArgsInfo() const {
- return DeclRefExprBits.HasTemplateKWAndArgsInfo;
- }
-
- /// \brief Retrieve the location of the template keyword preceding
- /// this name, if any.
- SourceLocation getTemplateKeywordLoc() const {
- if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
- return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
- }
-
- /// \brief Retrieve the location of the left angle bracket starting the
- /// explicit template argument list following the name, if any.
- SourceLocation getLAngleLoc() const {
- if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
- return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
- }
-
- /// \brief Retrieve the location of the right angle bracket ending the
- /// explicit template argument list following the name, if any.
- SourceLocation getRAngleLoc() const {
- if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
- return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
- }
-
- /// \brief Determines whether the name in this declaration reference
- /// was preceded by the template keyword.
- bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
-
- /// \brief Determines whether this declaration reference was followed by an
- /// explicit template argument list.
- bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
-
- /// \brief Copies the template arguments (if present) into the given
- /// structure.
- void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
- if (hasExplicitTemplateArgs())
- getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
- getTrailingObjects<TemplateArgumentLoc>(), List);
- }
-
- /// \brief Retrieve the template arguments provided as part of this
- /// template-id.
- const TemplateArgumentLoc *getTemplateArgs() const {
- if (!hasExplicitTemplateArgs())
- return nullptr;
-
- return getTrailingObjects<TemplateArgumentLoc>();
- }
-
- /// \brief Retrieve the number of template arguments provided as part of this
- /// template-id.
- unsigned getNumTemplateArgs() const {
- if (!hasExplicitTemplateArgs())
- return 0;
-
- return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
- }
-
- /// \brief Returns true if this expression refers to a function that
- /// was resolved from an overloaded set having size greater than 1.
- bool hadMultipleCandidates() const {
- return DeclRefExprBits.HadMultipleCandidates;
- }
- /// \brief Sets the flag telling whether this expression refers to
- /// a function that was resolved from an overloaded set having size
- /// greater than 1.
- void setHadMultipleCandidates(bool V = true) {
- DeclRefExprBits.HadMultipleCandidates = V;
- }
-
- /// \brief Does this DeclRefExpr refer to an enclosing local or a captured
- /// variable?
- bool refersToEnclosingVariableOrCapture() const {
- return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
- }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == DeclRefExprClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(child_iterator(), child_iterator());
- }
-
- friend TrailingObjects;
- friend class ASTStmtReader;
- friend class ASTStmtWriter;
-};
-
-/// \brief [C99 6.4.2.2] - A predefined identifier such as __func__.
-class PredefinedExpr : public Expr {
-public:
- enum IdentType {
- Func,
- Function,
- LFunction, // Same as Function, but as wide string.
- FuncDName,
- FuncSig,
- PrettyFunction,
- /// \brief The same as PrettyFunction, except that the
- /// 'virtual' keyword is omitted for virtual member functions.
- PrettyFunctionNoVirtual
- };
-
-private:
- SourceLocation Loc;
- IdentType Type;
- Stmt *FnName;
-
-public:
- PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
- StringLiteral *SL);
-
- /// \brief Construct an empty predefined expression.
- explicit PredefinedExpr(EmptyShell Empty)
- : Expr(PredefinedExprClass, Empty), Loc(), Type(Func), FnName(nullptr) {}
-
- IdentType getIdentType() const { return Type; }
-
- SourceLocation getLocation() const { return Loc; }
- void setLocation(SourceLocation L) { Loc = L; }
-
- StringLiteral *getFunctionName();
- const StringLiteral *getFunctionName() const {
- return const_cast<PredefinedExpr *>(this)->getFunctionName();
- }
-
- static StringRef getIdentTypeName(IdentType IT);
- static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
-
- SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == PredefinedExprClass;
- }
-
- // Iterators
- child_range children() { return child_range(&FnName, &FnName + 1); }
-
- friend class ASTStmtReader;
-};
-
-/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
-/// leaking memory.
-///
-/// For large floats/integers, APFloat/APInt will allocate memory from the heap
-/// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator
-/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
-/// the APFloat/APInt values will never get freed. APNumericStorage uses
-/// ASTContext's allocator for memory allocation.
-class APNumericStorage {
- union {
- uint64_t VAL; ///< Used to store the <= 64 bits integer value.
- uint64_t *pVal; ///< Used to store the >64 bits integer value.
- };
- unsigned BitWidth;
-
- bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
-
- APNumericStorage(const APNumericStorage &) = delete;
- void operator=(const APNumericStorage &) = delete;
-
-protected:
- APNumericStorage() : VAL(0), BitWidth(0) { }
-
- llvm::APInt getIntValue() const {
- unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
- if (NumWords > 1)
- return llvm::APInt(BitWidth, NumWords, pVal);
- else
- return llvm::APInt(BitWidth, VAL);
- }
- void setIntValue(const ASTContext &C, const llvm::APInt &Val);
-};
-
-class APIntStorage : private APNumericStorage {
-public:
- llvm::APInt getValue() const { return getIntValue(); }
- void setValue(const ASTContext &C, const llvm::APInt &Val) {
- setIntValue(C, Val);
- }
-};
-
-class APFloatStorage : private APNumericStorage {
-public:
- llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
- return llvm::APFloat(Semantics, getIntValue());
- }
- void setValue(const ASTContext &C, const llvm::APFloat &Val) {
- setIntValue(C, Val.bitcastToAPInt());
- }
-};
-
-class IntegerLiteral : public Expr, public APIntStorage {
- SourceLocation Loc;
-
- /// \brief Construct an empty integer literal.
- explicit IntegerLiteral(EmptyShell Empty)
- : Expr(IntegerLiteralClass, Empty) { }
-
-public:
- // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
- // or UnsignedLongLongTy
- IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
- SourceLocation l);
-
- /// \brief Returns a new integer literal with value 'V' and type 'type'.
- /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
- /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
- /// \param V - the value that the returned integer literal contains.
- static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
- QualType type, SourceLocation l);
- /// \brief Returns a new empty integer literal.
- static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
-
- SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
-
- /// \brief Retrieve the location of the literal.
- SourceLocation getLocation() const { return Loc; }
-
- void setLocation(SourceLocation Location) { Loc = Location; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == IntegerLiteralClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(child_iterator(), child_iterator());
- }
-};
-
-class CharacterLiteral : public Expr {
-public:
- enum CharacterKind {
- Ascii,
- Wide,
- UTF16,
- UTF32
- };
-
-private:
- unsigned Value;
- SourceLocation Loc;
-public:
- // type should be IntTy
- CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
- SourceLocation l)
- : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
- false, false),
- Value(value), Loc(l) {
- CharacterLiteralBits.Kind = kind;
- }
-
- /// \brief Construct an empty character literal.
- CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
-
- SourceLocation getLocation() const { return Loc; }
- CharacterKind getKind() const {
- return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
- }
-
- SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
-
- unsigned getValue() const { return Value; }
-
- void setLocation(SourceLocation Location) { Loc = Location; }
- void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
- void setValue(unsigned Val) { Value = Val; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == CharacterLiteralClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(child_iterator(), child_iterator());
- }
-};
-
-class FloatingLiteral : public Expr, private APFloatStorage {
- SourceLocation Loc;
-
- FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
- QualType Type, SourceLocation L);
-
- /// \brief Construct an empty floating-point literal.
- explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
-
-public:
- static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
- bool isexact, QualType Type, SourceLocation L);
- static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
-
- llvm::APFloat getValue() const {
- return APFloatStorage::getValue(getSemantics());
- }
- void setValue(const ASTContext &C, const llvm::APFloat &Val) {
- assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
- APFloatStorage::setValue(C, Val);
- }
-
- /// Get a raw enumeration value representing the floating-point semantics of
- /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
- APFloatSemantics getRawSemantics() const {
- return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
- }
-
- /// Set the raw enumeration value representing the floating-point semantics of
- /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
- void setRawSemantics(APFloatSemantics Sem) {
- FloatingLiteralBits.Semantics = Sem;
- }
-
- /// Return the APFloat semantics this literal uses.
- const llvm::fltSemantics &getSemantics() const;
-
- /// Set the APFloat semantics this literal uses.
- void setSemantics(const llvm::fltSemantics &Sem);
-
- bool isExact() const { return FloatingLiteralBits.IsExact; }
- void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
-
- /// getValueAsApproximateDouble - This returns the value as an inaccurate
- /// double. Note that this may cause loss of precision, but is useful for
- /// debugging dumps, etc.
- double getValueAsApproximateDouble() const;
-
- SourceLocation getLocation() const { return Loc; }
- void setLocation(SourceLocation L) { Loc = L; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == FloatingLiteralClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(child_iterator(), child_iterator());
- }
-};
-
-/// ImaginaryLiteral - We support imaginary integer and floating point literals,
-/// like "1.0i". We represent these as a wrapper around FloatingLiteral and
-/// IntegerLiteral classes. Instances of this class always have a Complex type
-/// whose element type matches the subexpression.
-///
-class ImaginaryLiteral : public Expr {
- Stmt *Val;
-public:
- ImaginaryLiteral(Expr *val, QualType Ty)
- : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
- false, false),
- Val(val) {}
-
- /// \brief Build an empty imaginary literal.
- explicit ImaginaryLiteral(EmptyShell Empty)
- : Expr(ImaginaryLiteralClass, Empty) { }
-
- const Expr *getSubExpr() const { return cast<Expr>(Val); }
- Expr *getSubExpr() { return cast<Expr>(Val); }
- void setSubExpr(Expr *E) { Val = E; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
- SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == ImaginaryLiteralClass;
- }
-
- // Iterators
- child_range children() { return child_range(&Val, &Val+1); }
-};
-
-/// StringLiteral - This represents a string literal expression, e.g. "foo"
-/// or L"bar" (wide strings). The actual string is returned by getBytes()
-/// is NOT null-terminated, and the length of the string is determined by
-/// calling getByteLength(). The C type for a string is always a
-/// ConstantArrayType. In C++, the char type is const qualified, in C it is
-/// not.
-///
-/// Note that strings in C can be formed by concatenation of multiple string
-/// literal pptokens in translation phase #6. This keeps track of the locations
-/// of each of these pieces.
-///
-/// Strings in C can also be truncated and extended by assigning into arrays,
-/// e.g. with constructs like:
-/// char X[2] = "foobar";
-/// In this case, getByteLength() will return 6, but the string literal will
-/// have type "char[2]".
-class StringLiteral : public Expr {
-public:
- enum StringKind {
- Ascii,
- Wide,
- UTF8,
- UTF16,
- UTF32
- };
-
-private:
- friend class ASTStmtReader;
-
- union {
- const char *asChar;
- const uint16_t *asUInt16;
- const uint32_t *asUInt32;
- } StrData;
- unsigned Length;
- unsigned CharByteWidth : 4;
- unsigned Kind : 3;
- unsigned IsPascal : 1;
- unsigned NumConcatenated;
- SourceLocation TokLocs[1];
-
- StringLiteral(QualType Ty) :
- Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
- false) {}
-
- static int mapCharByteWidth(TargetInfo const &target,StringKind k);
-
-public:
- /// This is the "fully general" constructor that allows representation of
- /// strings formed from multiple concatenated tokens.
- static StringLiteral *Create(const ASTContext &C, StringRef Str,
- StringKind Kind, bool Pascal, QualType Ty,
- const SourceLocation *Loc, unsigned NumStrs);
-
- /// Simple constructor for string literals made from one token.
- static StringLiteral *Create(const ASTContext &C, StringRef Str,
- StringKind Kind, bool Pascal, QualType Ty,
- SourceLocation Loc) {
- return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
- }
-
- /// \brief Construct an empty string literal.
- static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
-
- StringRef getString() const {
- assert(CharByteWidth==1
- && "This function is used in places that assume strings use char");
- return StringRef(StrData.asChar, getByteLength());
- }
-
- /// Allow access to clients that need the byte representation, such as
- /// ASTWriterStmt::VisitStringLiteral().
- StringRef getBytes() const {
- // FIXME: StringRef may not be the right type to use as a result for this.
- if (CharByteWidth == 1)
- return StringRef(StrData.asChar, getByteLength());
- if (CharByteWidth == 4)
- return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
- getByteLength());
- assert(CharByteWidth == 2 && "unsupported CharByteWidth");
- return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
- getByteLength());
- }
-
- void outputString(raw_ostream &OS) const;
-
- uint32_t getCodeUnit(size_t i) const {
- assert(i < Length && "out of bounds access");
- if (CharByteWidth == 1)
- return static_cast<unsigned char>(StrData.asChar[i]);
- if (CharByteWidth == 4)
- return StrData.asUInt32[i];
- assert(CharByteWidth == 2 && "unsupported CharByteWidth");
- return StrData.asUInt16[i];
- }
-
- unsigned getByteLength() const { return CharByteWidth*Length; }
- unsigned getLength() const { return Length; }
- unsigned getCharByteWidth() const { return CharByteWidth; }
-
- /// \brief Sets the string data to the given string data.
- void setString(const ASTContext &C, StringRef Str,
- StringKind Kind, bool IsPascal);
-
- StringKind getKind() const { return static_cast<StringKind>(Kind); }
-
-
- bool isAscii() const { return Kind == Ascii; }
- bool isWide() const { return Kind == Wide; }
- bool isUTF8() const { return Kind == UTF8; }
- bool isUTF16() const { return Kind == UTF16; }
- bool isUTF32() const { return Kind == UTF32; }
- bool isPascal() const { return IsPascal; }
-
- bool containsNonAsciiOrNull() const {
- StringRef Str = getString();
- for (unsigned i = 0, e = Str.size(); i != e; ++i)
- if (!isASCII(Str[i]) || !Str[i])
- return true;
- return false;
- }
-
- /// getNumConcatenated - Get the number of string literal tokens that were
- /// concatenated in translation phase #6 to form this string literal.
- unsigned getNumConcatenated() const { return NumConcatenated; }
-
- SourceLocation getStrTokenLoc(unsigned TokNum) const {
- assert(TokNum < NumConcatenated && "Invalid tok number");
- return TokLocs[TokNum];
- }
- void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
- assert(TokNum < NumConcatenated && "Invalid tok number");
- TokLocs[TokNum] = L;
- }
-
- /// getLocationOfByte - Return a source location that points to the specified
- /// byte of this string literal.
- ///
- /// Strings are amazingly complex. They can be formed from multiple tokens
- /// and can have escape sequences in them in addition to the usual trigraph
- /// and escaped newline business. This routine handles this complexity.
- ///
- SourceLocation
- getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
- const LangOptions &Features, const TargetInfo &Target,
- unsigned *StartToken = nullptr,
- unsigned *StartTokenByteOffset = nullptr) const;
-
- typedef const SourceLocation *tokloc_iterator;
- tokloc_iterator tokloc_begin() const { return TokLocs; }
- tokloc_iterator tokloc_end() const { return TokLocs + NumConcatenated; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
- SourceLocation getLocEnd() const LLVM_READONLY {
- return TokLocs[NumConcatenated - 1];
- }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == StringLiteralClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(child_iterator(), child_iterator());
- }
-};
-
-/// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
-/// AST node is only formed if full location information is requested.
-class ParenExpr : public Expr {
- SourceLocation L, R;
- Stmt *Val;
-public:
- ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
- : Expr(ParenExprClass, val->getType(),
- val->getValueKind(), val->getObjectKind(),
- val->isTypeDependent(), val->isValueDependent(),
- val->isInstantiationDependent(),
- val->containsUnexpandedParameterPack()),
- L(l), R(r), Val(val) {}
-
- /// \brief Construct an empty parenthesized expression.
- explicit ParenExpr(EmptyShell Empty)
- : Expr(ParenExprClass, Empty) { }
-
- const Expr *getSubExpr() const { return cast<Expr>(Val); }
- Expr *getSubExpr() { return cast<Expr>(Val); }
- void setSubExpr(Expr *E) { Val = E; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return L; }
- SourceLocation getLocEnd() const LLVM_READONLY { return R; }
-
- /// \brief Get the location of the left parentheses '('.
- SourceLocation getLParen() const { return L; }
- void setLParen(SourceLocation Loc) { L = Loc; }
-
- /// \brief Get the location of the right parentheses ')'.
- SourceLocation getRParen() const { return R; }
- void setRParen(SourceLocation Loc) { R = Loc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == ParenExprClass;
- }
-
- // Iterators
- child_range children() { return child_range(&Val, &Val+1); }
-};
-
-/// UnaryOperator - This represents the unary-expression's (except sizeof and
-/// alignof), the postinc/postdec operators from postfix-expression, and various
-/// extensions.
-///
-/// Notes on various nodes:
-///
-/// Real/Imag - These return the real/imag part of a complex operand. If
-/// applied to a non-complex value, the former returns its operand and the
-/// later returns zero in the type of the operand.
-///
-class UnaryOperator : public Expr {
-public:
- typedef UnaryOperatorKind Opcode;
-
-private:
- unsigned Opc : 5;
- SourceLocation Loc;
- Stmt *Val;
-public:
-
- UnaryOperator(Expr *input, Opcode opc, QualType type,
- ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
- : Expr(UnaryOperatorClass, type, VK, OK,
- input->isTypeDependent() || type->isDependentType(),
- input->isValueDependent(),
- (input->isInstantiationDependent() ||
- type->isInstantiationDependentType()),
- input->containsUnexpandedParameterPack()),
- Opc(opc), Loc(l), Val(input) {}
-
- /// \brief Build an empty unary operator.
- explicit UnaryOperator(EmptyShell Empty)
- : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
-
- Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
- void setOpcode(Opcode O) { Opc = O; }
-
- Expr *getSubExpr() const { return cast<Expr>(Val); }
- void setSubExpr(Expr *E) { Val = E; }
-
- /// getOperatorLoc - Return the location of the operator.
- SourceLocation getOperatorLoc() const { return Loc; }
- void setOperatorLoc(SourceLocation L) { Loc = L; }
-
- /// isPostfix - Return true if this is a postfix operation, like x++.
- static bool isPostfix(Opcode Op) {
- return Op == UO_PostInc || Op == UO_PostDec;
- }
-
- /// isPrefix - Return true if this is a prefix operation, like --x.
- static bool isPrefix(Opcode Op) {
- return Op == UO_PreInc || Op == UO_PreDec;
- }
-
- bool isPrefix() const { return isPrefix(getOpcode()); }
- bool isPostfix() const { return isPostfix(getOpcode()); }
-
- static bool isIncrementOp(Opcode Op) {
- return Op == UO_PreInc || Op == UO_PostInc;
- }
- bool isIncrementOp() const {
- return isIncrementOp(getOpcode());
- }
-
- static bool isDecrementOp(Opcode Op) {
- return Op == UO_PreDec || Op == UO_PostDec;
- }
- bool isDecrementOp() const {
- return isDecrementOp(getOpcode());
- }
-
- static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
- bool isIncrementDecrementOp() const {
- return isIncrementDecrementOp(getOpcode());
- }
-
- static bool isArithmeticOp(Opcode Op) {
- return Op >= UO_Plus && Op <= UO_LNot;
- }
- bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
-
- /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
- /// corresponds to, e.g. "sizeof" or "[pre]++"
- static StringRef getOpcodeStr(Opcode Op);
-
- /// \brief Retrieve the unary opcode that corresponds to the given
- /// overloaded operator.
- static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
-
- /// \brief Retrieve the overloaded operator kind that corresponds to
- /// the given unary opcode.
- static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
-
- SourceLocation getLocStart() const LLVM_READONLY {
- return isPostfix() ? Val->getLocStart() : Loc;
- }
- SourceLocation getLocEnd() const LLVM_READONLY {
- return isPostfix() ? Loc : Val->getLocEnd();
- }
- SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == UnaryOperatorClass;
- }
-
- // Iterators
- child_range children() { return child_range(&Val, &Val+1); }
-};
-
-/// Helper class for OffsetOfExpr.
-
-// __builtin_offsetof(type, identifier(.identifier|[expr])*)
-class OffsetOfNode {
-public:
- /// \brief The kind of offsetof node we have.
- enum Kind {
- /// \brief An index into an array.
- Array = 0x00,
- /// \brief A field.
- Field = 0x01,
- /// \brief A field in a dependent type, known only by its name.
- Identifier = 0x02,
- /// \brief An implicit indirection through a C++ base class, when the
- /// field found is in a base class.
- Base = 0x03
- };
-
-private:
- enum { MaskBits = 2, Mask = 0x03 };
-
- /// \brief The source range that covers this part of the designator.
- SourceRange Range;
-
- /// \brief The data describing the designator, which comes in three
- /// different forms, depending on the lower two bits.
- /// - An unsigned index into the array of Expr*'s stored after this node
- /// in memory, for [constant-expression] designators.
- /// - A FieldDecl*, for references to a known field.
- /// - An IdentifierInfo*, for references to a field with a given name
- /// when the class type is dependent.
- /// - A CXXBaseSpecifier*, for references that look at a field in a
- /// base class.
- uintptr_t Data;
-
-public:
- /// \brief Create an offsetof node that refers to an array element.
- OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
- SourceLocation RBracketLoc)
- : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) {}
-
- /// \brief Create an offsetof node that refers to a field.
- OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field, SourceLocation NameLoc)
- : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
- Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) {}
-
- /// \brief Create an offsetof node that refers to an identifier.
- OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
- SourceLocation NameLoc)
- : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
- Data(reinterpret_cast<uintptr_t>(Name) | Identifier) {}
-
- /// \brief Create an offsetof node that refers into a C++ base class.
- explicit OffsetOfNode(const CXXBaseSpecifier *Base)
- : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
-
- /// \brief Determine what kind of offsetof node this is.
- Kind getKind() const { return static_cast<Kind>(Data & Mask); }
-
- /// \brief For an array element node, returns the index into the array
- /// of expressions.
- unsigned getArrayExprIndex() const {
- assert(getKind() == Array);
- return Data >> 2;
- }
-
- /// \brief For a field offsetof node, returns the field.
- FieldDecl *getField() const {
- assert(getKind() == Field);
- return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
- }
-
- /// \brief For a field or identifier offsetof node, returns the name of
- /// the field.
- IdentifierInfo *getFieldName() const;
-
- /// \brief For a base class node, returns the base specifier.
- CXXBaseSpecifier *getBase() const {
- assert(getKind() == Base);
- return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
- }
-
- /// \brief Retrieve the source range that covers this offsetof node.
- ///
- /// For an array element node, the source range contains the locations of
- /// the square brackets. For a field or identifier node, the source range
- /// contains the location of the period (if there is one) and the
- /// identifier.
- SourceRange getSourceRange() const LLVM_READONLY { return Range; }
- SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
- SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
-};
-
-/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
-/// offsetof(record-type, member-designator). For example, given:
-/// @code
-/// struct S {
-/// float f;
-/// double d;
-/// };
-/// struct T {
-/// int i;
-/// struct S s[10];
-/// };
-/// @endcode
-/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
-
-class OffsetOfExpr final
- : public Expr,
- private llvm::TrailingObjects<OffsetOfExpr, OffsetOfNode, Expr *> {
- SourceLocation OperatorLoc, RParenLoc;
- // Base type;
- TypeSourceInfo *TSInfo;
- // Number of sub-components (i.e. instances of OffsetOfNode).
- unsigned NumComps;
- // Number of sub-expressions (i.e. array subscript expressions).
- unsigned NumExprs;
-
- size_t numTrailingObjects(OverloadToken<OffsetOfNode>) const {
- return NumComps;
- }
-
- OffsetOfExpr(const ASTContext &C, QualType type,
- SourceLocation OperatorLoc, TypeSourceInfo *tsi,
- ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
- SourceLocation RParenLoc);
-
- explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
- : Expr(OffsetOfExprClass, EmptyShell()),
- TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
-
-public:
-
- static OffsetOfExpr *Create(const ASTContext &C, QualType type,
- SourceLocation OperatorLoc, TypeSourceInfo *tsi,
- ArrayRef<OffsetOfNode> comps,
- ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
-
- static OffsetOfExpr *CreateEmpty(const ASTContext &C,
- unsigned NumComps, unsigned NumExprs);
-
- /// getOperatorLoc - Return the location of the operator.
- SourceLocation getOperatorLoc() const { return OperatorLoc; }
- void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
-
- /// \brief Return the location of the right parentheses.
- SourceLocation getRParenLoc() const { return RParenLoc; }
- void setRParenLoc(SourceLocation R) { RParenLoc = R; }
-
- TypeSourceInfo *getTypeSourceInfo() const {
- return TSInfo;
- }
- void setTypeSourceInfo(TypeSourceInfo *tsi) {
- TSInfo = tsi;
- }
-
- const OffsetOfNode &getComponent(unsigned Idx) const {
- assert(Idx < NumComps && "Subscript out of range");
- return getTrailingObjects<OffsetOfNode>()[Idx];
- }
-
- void setComponent(unsigned Idx, OffsetOfNode ON) {
- assert(Idx < NumComps && "Subscript out of range");
- getTrailingObjects<OffsetOfNode>()[Idx] = ON;
- }
-
- unsigned getNumComponents() const {
- return NumComps;
- }
-
- Expr* getIndexExpr(unsigned Idx) {
- assert(Idx < NumExprs && "Subscript out of range");
- return getTrailingObjects<Expr *>()[Idx];
- }
-
- const Expr *getIndexExpr(unsigned Idx) const {
- assert(Idx < NumExprs && "Subscript out of range");
- return getTrailingObjects<Expr *>()[Idx];
- }
-
- void setIndexExpr(unsigned Idx, Expr* E) {
- assert(Idx < NumComps && "Subscript out of range");
- getTrailingObjects<Expr *>()[Idx] = E;
- }
-
- unsigned getNumExpressions() const {
- return NumExprs;
- }
-
- SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == OffsetOfExprClass;
- }
-
- // Iterators
- child_range children() {
- Stmt **begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
- return child_range(begin, begin + NumExprs);
- }
- friend TrailingObjects;
-};
-
-/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
-/// expression operand. Used for sizeof/alignof (C99 6.5.3.4) and
-/// vec_step (OpenCL 1.1 6.11.12).
-class UnaryExprOrTypeTraitExpr : public Expr {
- union {
- TypeSourceInfo *Ty;
- Stmt *Ex;
- } Argument;
- SourceLocation OpLoc, RParenLoc;
-
-public:
- UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
- QualType resultType, SourceLocation op,
- SourceLocation rp) :
- Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
- false, // Never type-dependent (C++ [temp.dep.expr]p3).
- // Value-dependent if the argument is type-dependent.
- TInfo->getType()->isDependentType(),
- TInfo->getType()->isInstantiationDependentType(),
- TInfo->getType()->containsUnexpandedParameterPack()),
- OpLoc(op), RParenLoc(rp) {
- UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
- UnaryExprOrTypeTraitExprBits.IsType = true;
- Argument.Ty = TInfo;
- }
-
- UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
- QualType resultType, SourceLocation op,
- SourceLocation rp);
-
- /// \brief Construct an empty sizeof/alignof expression.
- explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
- : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
-
- UnaryExprOrTypeTrait getKind() const {
- return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
- }
- void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
-
- bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
- QualType getArgumentType() const {
- return getArgumentTypeInfo()->getType();
- }
- TypeSourceInfo *getArgumentTypeInfo() const {
- assert(isArgumentType() && "calling getArgumentType() when arg is expr");
- return Argument.Ty;
- }
- Expr *getArgumentExpr() {
- assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
- return static_cast<Expr*>(Argument.Ex);
- }
- const Expr *getArgumentExpr() const {
- return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
- }
-
- void setArgument(Expr *E) {
- Argument.Ex = E;
- UnaryExprOrTypeTraitExprBits.IsType = false;
- }
- void setArgument(TypeSourceInfo *TInfo) {
- Argument.Ty = TInfo;
- UnaryExprOrTypeTraitExprBits.IsType = true;
- }
-
- /// Gets the argument type, or the type of the argument expression, whichever
- /// is appropriate.
- QualType getTypeOfArgument() const {
- return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
- }
-
- SourceLocation getOperatorLoc() const { return OpLoc; }
- void setOperatorLoc(SourceLocation L) { OpLoc = L; }
-
- SourceLocation getRParenLoc() const { return RParenLoc; }
- void setRParenLoc(SourceLocation L) { RParenLoc = L; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
- }
-
- // Iterators
- child_range children();
-};
-
-//===----------------------------------------------------------------------===//
-// Postfix Operators.
-//===----------------------------------------------------------------------===//
-
-/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
-class ArraySubscriptExpr : public Expr {
- enum { LHS, RHS, END_EXPR=2 };
- Stmt* SubExprs[END_EXPR];
- SourceLocation RBracketLoc;
-public:
- ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
- ExprValueKind VK, ExprObjectKind OK,
- SourceLocation rbracketloc)
- : Expr(ArraySubscriptExprClass, t, VK, OK,
- lhs->isTypeDependent() || rhs->isTypeDependent(),
- lhs->isValueDependent() || rhs->isValueDependent(),
- (lhs->isInstantiationDependent() ||
- rhs->isInstantiationDependent()),
- (lhs->containsUnexpandedParameterPack() ||
- rhs->containsUnexpandedParameterPack())),
- RBracketLoc(rbracketloc) {
- SubExprs[LHS] = lhs;
- SubExprs[RHS] = rhs;
- }
-
- /// \brief Create an empty array subscript expression.
- explicit ArraySubscriptExpr(EmptyShell Shell)
- : Expr(ArraySubscriptExprClass, Shell) { }
-
- /// An array access can be written A[4] or 4[A] (both are equivalent).
- /// - getBase() and getIdx() always present the normalized view: A[4].
- /// In this case getBase() returns "A" and getIdx() returns "4".
- /// - getLHS() and getRHS() present the syntactic view. e.g. for
- /// 4[A] getLHS() returns "4".
- /// Note: Because vector element access is also written A[4] we must
- /// predicate the format conversion in getBase and getIdx only on the
- /// the type of the RHS, as it is possible for the LHS to be a vector of
- /// integer type
- Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
- const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
- void setLHS(Expr *E) { SubExprs[LHS] = E; }
-
- Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
- const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
- void setRHS(Expr *E) { SubExprs[RHS] = E; }
-
- Expr *getBase() {
- return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
- }
-
- const Expr *getBase() const {
- return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
- }
-
- Expr *getIdx() {
- return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
- }
-
- const Expr *getIdx() const {
- return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
- }
-
- SourceLocation getLocStart() const LLVM_READONLY {
- return getLHS()->getLocStart();
- }
- SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
-
- SourceLocation getRBracketLoc() const { return RBracketLoc; }
- void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
-
- SourceLocation getExprLoc() const LLVM_READONLY {
- return getBase()->getExprLoc();
- }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == ArraySubscriptExprClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
- }
-};
-
-/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
-/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
-/// while its subclasses may represent alternative syntax that (semantically)
-/// results in a function call. For example, CXXOperatorCallExpr is
-/// a subclass for overloaded operator calls that use operator syntax, e.g.,
-/// "str1 + str2" to resolve to a function call.
-class CallExpr : public Expr {
- enum { FN=0, PREARGS_START=1 };
- Stmt **SubExprs;
- unsigned NumArgs;
- SourceLocation RParenLoc;
-
-protected:
- // These versions of the constructor are for derived classes.
- CallExpr(const ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
- ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
- SourceLocation rparenloc);
- CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
- EmptyShell Empty);
-
- Stmt *getPreArg(unsigned i) {
- assert(i < getNumPreArgs() && "Prearg access out of range!");
- return SubExprs[PREARGS_START+i];
- }
- const Stmt *getPreArg(unsigned i) const {
- assert(i < getNumPreArgs() && "Prearg access out of range!");
- return SubExprs[PREARGS_START+i];
- }
- void setPreArg(unsigned i, Stmt *PreArg) {
- assert(i < getNumPreArgs() && "Prearg access out of range!");
- SubExprs[PREARGS_START+i] = PreArg;
- }
-
- unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
-
-public:
- CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
- ExprValueKind VK, SourceLocation rparenloc);
-
- /// \brief Build an empty call expression.
- CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
-
- const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
- Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
- void setCallee(Expr *F) { SubExprs[FN] = F; }
-
- Decl *getCalleeDecl();
- const Decl *getCalleeDecl() const {
- return const_cast<CallExpr*>(this)->getCalleeDecl();
- }
-
- /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
- FunctionDecl *getDirectCallee();
- const FunctionDecl *getDirectCallee() const {
- return const_cast<CallExpr*>(this)->getDirectCallee();
- }
-
- /// getNumArgs - Return the number of actual arguments to this call.
- ///
- unsigned getNumArgs() const { return NumArgs; }
-
- /// \brief Retrieve the call arguments.
- Expr **getArgs() {
- return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
- }
- const Expr *const *getArgs() const {
- return reinterpret_cast<Expr **>(SubExprs + getNumPreArgs() +
- PREARGS_START);
- }
-
- /// getArg - Return the specified argument.
- Expr *getArg(unsigned Arg) {
- assert(Arg < NumArgs && "Arg access out of range!");
- return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
- }
- const Expr *getArg(unsigned Arg) const {
- assert(Arg < NumArgs && "Arg access out of range!");
- return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
- }
-
- /// setArg - Set the specified argument.
- void setArg(unsigned Arg, Expr *ArgExpr) {
- assert(Arg < NumArgs && "Arg access out of range!");
- SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
- }
-
- /// setNumArgs - This changes the number of arguments present in this call.
- /// Any orphaned expressions are deleted by this, and any new operands are set
- /// to null.
- void setNumArgs(const ASTContext& C, unsigned NumArgs);
-
- typedef ExprIterator arg_iterator;
- typedef ConstExprIterator const_arg_iterator;
- typedef llvm::iterator_range<arg_iterator> arg_range;
- typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
-
- arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
- arg_const_range arguments() const {
- return arg_const_range(arg_begin(), arg_end());
- }
-
- arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
- arg_iterator arg_end() {
- return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
- }
- const_arg_iterator arg_begin() const {
- return SubExprs+PREARGS_START+getNumPreArgs();
- }
- const_arg_iterator arg_end() const {
- return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
- }
-
- /// This method provides fast access to all the subexpressions of
- /// a CallExpr without going through the slower virtual child_iterator
- /// interface. This provides efficient reverse iteration of the
- /// subexpressions. This is currently used for CFG construction.
- ArrayRef<Stmt*> getRawSubExprs() {
- return llvm::makeArrayRef(SubExprs,
- getNumPreArgs() + PREARGS_START + getNumArgs());
- }
-
- /// getNumCommas - Return the number of commas that must have been present in
- /// this function call.
- unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
-
- /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
- /// of the callee. If not, return 0.
- unsigned getBuiltinCallee() const;
-
- /// \brief Returns \c true if this is a call to a builtin which does not
- /// evaluate side-effects within its arguments.
- bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
-
- /// getCallReturnType - Get the return type of the call expr. This is not
- /// always the type of the expr itself, if the return type is a reference
- /// type.
- QualType getCallReturnType(const ASTContext &Ctx) const;
-
- SourceLocation getRParenLoc() const { return RParenLoc; }
- void setRParenLoc(SourceLocation L) { RParenLoc = L; }
-
- SourceLocation getLocStart() const LLVM_READONLY;
- SourceLocation getLocEnd() const LLVM_READONLY;
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() >= firstCallExprConstant &&
- T->getStmtClass() <= lastCallExprConstant;
- }
-
- // Iterators
- child_range children() {
- return child_range(&SubExprs[0],
- &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
- }
-};
-
-/// Extra data stored in some MemberExpr objects.
-struct MemberExprNameQualifier {
- /// \brief The nested-name-specifier that qualifies the name, including
- /// source-location information.
- NestedNameSpecifierLoc QualifierLoc;
-
- /// \brief The DeclAccessPair through which the MemberDecl was found due to
- /// name qualifiers.
- DeclAccessPair FoundDecl;
-};
-
-/// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
-///
-class MemberExpr final
- : public Expr,
- private llvm::TrailingObjects<MemberExpr, MemberExprNameQualifier,
- ASTTemplateKWAndArgsInfo,
- TemplateArgumentLoc> {
- /// Base - the expression for the base pointer or structure references. In
- /// X.F, this is "X".
- Stmt *Base;
-
- /// MemberDecl - This is the decl being referenced by the field/member name.
- /// In X.F, this is the decl referenced by F.
- ValueDecl *MemberDecl;
-
- /// MemberDNLoc - Provides source/type location info for the
- /// declaration name embedded in MemberDecl.
- DeclarationNameLoc MemberDNLoc;
-
- /// MemberLoc - This is the location of the member name.
- SourceLocation MemberLoc;
-
- /// This is the location of the -> or . in the expression.
- SourceLocation OperatorLoc;
-
- /// IsArrow - True if this is "X->F", false if this is "X.F".
- bool IsArrow : 1;
-
- /// \brief True if this member expression used a nested-name-specifier to
- /// refer to the member, e.g., "x->Base::f", or found its member via a using
- /// declaration. When true, a MemberExprNameQualifier
- /// structure is allocated immediately after the MemberExpr.
- bool HasQualifierOrFoundDecl : 1;
-
- /// \brief True if this member expression specified a template keyword
- /// and/or a template argument list explicitly, e.g., x->f<int>,
- /// x->template f, x->template f<int>.
- /// When true, an ASTTemplateKWAndArgsInfo structure and its
- /// TemplateArguments (if any) are present.
- bool HasTemplateKWAndArgsInfo : 1;
-
- /// \brief True if this member expression refers to a method that
- /// was resolved from an overloaded set having size greater than 1.
- bool HadMultipleCandidates : 1;
-
- size_t numTrailingObjects(OverloadToken<MemberExprNameQualifier>) const {
- return HasQualifierOrFoundDecl ? 1 : 0;
- }
-
- size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
- return HasTemplateKWAndArgsInfo ? 1 : 0;
- }
-
-public:
- MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
- ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
- QualType ty, ExprValueKind VK, ExprObjectKind OK)
- : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
- base->isValueDependent(), base->isInstantiationDependent(),
- base->containsUnexpandedParameterPack()),
- Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
- MemberLoc(NameInfo.getLoc()), OperatorLoc(operatorloc),
- IsArrow(isarrow), HasQualifierOrFoundDecl(false),
- HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {
- assert(memberdecl->getDeclName() == NameInfo.getName());
- }
-
- // NOTE: this constructor should be used only when it is known that
- // the member name can not provide additional syntactic info
- // (i.e., source locations for C++ operator names or type source info
- // for constructors, destructors and conversion operators).
- MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
- ValueDecl *memberdecl, SourceLocation l, QualType ty,
- ExprValueKind VK, ExprObjectKind OK)
- : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
- base->isValueDependent(), base->isInstantiationDependent(),
- base->containsUnexpandedParameterPack()),
- Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
- OperatorLoc(operatorloc), IsArrow(isarrow),
- HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
- HadMultipleCandidates(false) {}
-
- static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
- SourceLocation OperatorLoc,
- NestedNameSpecifierLoc QualifierLoc,
- SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
- DeclAccessPair founddecl,
- DeclarationNameInfo MemberNameInfo,
- const TemplateArgumentListInfo *targs, QualType ty,
- ExprValueKind VK, ExprObjectKind OK);
-
- void setBase(Expr *E) { Base = E; }
- Expr *getBase() const { return cast<Expr>(Base); }
-
- /// \brief Retrieve the member declaration to which this expression refers.
- ///
- /// The returned declaration will either be a FieldDecl or (in C++)
- /// a CXXMethodDecl.
- ValueDecl *getMemberDecl() const { return MemberDecl; }
- void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
-
- /// \brief Retrieves the declaration found by lookup.
- DeclAccessPair getFoundDecl() const {
- if (!HasQualifierOrFoundDecl)
- return DeclAccessPair::make(getMemberDecl(),
- getMemberDecl()->getAccess());
- return getTrailingObjects<MemberExprNameQualifier>()->FoundDecl;
- }
-
- /// \brief Determines whether this member expression actually had
- /// a C++ nested-name-specifier prior to the name of the member, e.g.,
- /// x->Base::foo.
- bool hasQualifier() const { return getQualifier() != nullptr; }
-
- /// \brief If the member name was qualified, retrieves the
- /// nested-name-specifier that precedes the member name, with source-location
- /// information.
- NestedNameSpecifierLoc getQualifierLoc() const {
- if (!HasQualifierOrFoundDecl)
- return NestedNameSpecifierLoc();
-
- return getTrailingObjects<MemberExprNameQualifier>()->QualifierLoc;
- }
-
- /// \brief If the member name was qualified, retrieves the
- /// nested-name-specifier that precedes the member name. Otherwise, returns
- /// NULL.
- NestedNameSpecifier *getQualifier() const {
- return getQualifierLoc().getNestedNameSpecifier();
- }
-
- /// \brief Retrieve the location of the template keyword preceding
- /// the member name, if any.
- SourceLocation getTemplateKeywordLoc() const {
- if (!HasTemplateKWAndArgsInfo) return SourceLocation();
- return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
- }
-
- /// \brief Retrieve the location of the left angle bracket starting the
- /// explicit template argument list following the member name, if any.
- SourceLocation getLAngleLoc() const {
- if (!HasTemplateKWAndArgsInfo) return SourceLocation();
- return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
- }
-
- /// \brief Retrieve the location of the right angle bracket ending the
- /// explicit template argument list following the member name, if any.
- SourceLocation getRAngleLoc() const {
- if (!HasTemplateKWAndArgsInfo) return SourceLocation();
- return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
- }
-
- /// Determines whether the member name was preceded by the template keyword.
- bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
-
- /// \brief Determines whether the member name was followed by an
- /// explicit template argument list.
- bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
-
- /// \brief Copies the template arguments (if present) into the given
- /// structure.
- void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
- if (hasExplicitTemplateArgs())
- getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
- getTrailingObjects<TemplateArgumentLoc>(), List);
- }
-
- /// \brief Retrieve the template arguments provided as part of this
- /// template-id.
- const TemplateArgumentLoc *getTemplateArgs() const {
- if (!hasExplicitTemplateArgs())
- return nullptr;
-
- return getTrailingObjects<TemplateArgumentLoc>();
- }
-
- /// \brief Retrieve the number of template arguments provided as part of this
- /// template-id.
- unsigned getNumTemplateArgs() const {
- if (!hasExplicitTemplateArgs())
- return 0;
-
- return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
- }
-
- /// \brief Retrieve the member declaration name info.
- DeclarationNameInfo getMemberNameInfo() const {
- return DeclarationNameInfo(MemberDecl->getDeclName(),
- MemberLoc, MemberDNLoc);
- }
-
- SourceLocation getOperatorLoc() const LLVM_READONLY { return OperatorLoc; }
-
- bool isArrow() const { return IsArrow; }
- void setArrow(bool A) { IsArrow = A; }
-
- /// getMemberLoc - Return the location of the "member", in X->F, it is the
- /// location of 'F'.
- SourceLocation getMemberLoc() const { return MemberLoc; }
- void setMemberLoc(SourceLocation L) { MemberLoc = L; }
-
- SourceLocation getLocStart() const LLVM_READONLY;
- SourceLocation getLocEnd() const LLVM_READONLY;
-
- SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
-
- /// \brief Determine whether the base of this explicit is implicit.
- bool isImplicitAccess() const {
- return getBase() && getBase()->isImplicitCXXThis();
- }
-
- /// \brief Returns true if this member expression refers to a method that
- /// was resolved from an overloaded set having size greater than 1.
- bool hadMultipleCandidates() const {
- return HadMultipleCandidates;
- }
- /// \brief Sets the flag telling whether this expression refers to
- /// a method that was resolved from an overloaded set having size
- /// greater than 1.
- void setHadMultipleCandidates(bool V = true) {
- HadMultipleCandidates = V;
- }
-
- /// \brief Returns true if virtual dispatch is performed.
- /// If the member access is fully qualified, (i.e. X::f()), virtual
- /// dispatching is not performed. In -fapple-kext mode qualified
- /// calls to virtual method will still go through the vtable.
- bool performsVirtualDispatch(const LangOptions &LO) const {
- return LO.AppleKext || !hasQualifier();
- }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == MemberExprClass;
- }
-
- // Iterators
- child_range children() { return child_range(&Base, &Base+1); }
-
- friend TrailingObjects;
- friend class ASTReader;
- friend class ASTStmtWriter;
-};
-
-/// CompoundLiteralExpr - [C99 6.5.2.5]
-///
-class CompoundLiteralExpr : public Expr {
- /// LParenLoc - If non-null, this is the location of the left paren in a
- /// compound literal like "(int){4}". This can be null if this is a
- /// synthesized compound expression.
- SourceLocation LParenLoc;
-
- /// The type as written. This can be an incomplete array type, in
- /// which case the actual expression type will be different.
- /// The int part of the pair stores whether this expr is file scope.
- llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
- Stmt *Init;
-public:
- CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
- QualType T, ExprValueKind VK, Expr *init, bool fileScope)
- : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
- tinfo->getType()->isDependentType(),
- init->isValueDependent(),
- (init->isInstantiationDependent() ||
- tinfo->getType()->isInstantiationDependentType()),
- init->containsUnexpandedParameterPack()),
- LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
-
- /// \brief Construct an empty compound literal.
- explicit CompoundLiteralExpr(EmptyShell Empty)
- : Expr(CompoundLiteralExprClass, Empty) { }
-
- const Expr *getInitializer() const { return cast<Expr>(Init); }
- Expr *getInitializer() { return cast<Expr>(Init); }
- void setInitializer(Expr *E) { Init = E; }
-
- bool isFileScope() const { return TInfoAndScope.getInt(); }
- void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
-
- SourceLocation getLParenLoc() const { return LParenLoc; }
- void setLParenLoc(SourceLocation L) { LParenLoc = L; }
-
- TypeSourceInfo *getTypeSourceInfo() const {
- return TInfoAndScope.getPointer();
- }
- void setTypeSourceInfo(TypeSourceInfo *tinfo) {
- TInfoAndScope.setPointer(tinfo);
- }
-
- SourceLocation getLocStart() const LLVM_READONLY {
- // FIXME: Init should never be null.
- if (!Init)
- return SourceLocation();
- if (LParenLoc.isInvalid())
- return Init->getLocStart();
- return LParenLoc;
- }
- SourceLocation getLocEnd() const LLVM_READONLY {
- // FIXME: Init should never be null.
- if (!Init)
- return SourceLocation();
- return Init->getLocEnd();
- }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == CompoundLiteralExprClass;
- }
-
- // Iterators
- child_range children() { return child_range(&Init, &Init+1); }
-};
-
-/// CastExpr - Base class for type casts, including both implicit
-/// casts (ImplicitCastExpr) and explicit casts that have some
-/// representation in the source code (ExplicitCastExpr's derived
-/// classes).
-class CastExpr : public Expr {
-private:
- Stmt *Op;
-
- bool CastConsistency() const;
-
- const CXXBaseSpecifier * const *path_buffer() const {
- return const_cast<CastExpr*>(this)->path_buffer();
- }
- CXXBaseSpecifier **path_buffer();
-
- void setBasePathSize(unsigned basePathSize) {
- CastExprBits.BasePathSize = basePathSize;
- assert(CastExprBits.BasePathSize == basePathSize &&
- "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
- }
-
-protected:
- CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind,
- Expr *op, unsigned BasePathSize)
- : Expr(SC, ty, VK, OK_Ordinary,
- // Cast expressions are type-dependent if the type is
- // dependent (C++ [temp.dep.expr]p3).
- ty->isDependentType(),
- // Cast expressions are value-dependent if the type is
- // dependent or if the subexpression is value-dependent.
- ty->isDependentType() || (op && op->isValueDependent()),
- (ty->isInstantiationDependentType() ||
- (op && op->isInstantiationDependent())),
- // An implicit cast expression doesn't (lexically) contain an
- // unexpanded pack, even if its target type does.
- ((SC != ImplicitCastExprClass &&
- ty->containsUnexpandedParameterPack()) ||
- (op && op->containsUnexpandedParameterPack()))),
- Op(op) {
- assert(kind != CK_Invalid && "creating cast with invalid cast kind");
- CastExprBits.Kind = kind;
- setBasePathSize(BasePathSize);
- assert(CastConsistency());
- }
-
- /// \brief Construct an empty cast.
- CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
- : Expr(SC, Empty) {
- setBasePathSize(BasePathSize);
- }
-
-public:
- CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
- void setCastKind(CastKind K) { CastExprBits.Kind = K; }
- const char *getCastKindName() const;
-
- Expr *getSubExpr() { return cast<Expr>(Op); }
- const Expr *getSubExpr() const { return cast<Expr>(Op); }
- void setSubExpr(Expr *E) { Op = E; }
-
- /// \brief Retrieve the cast subexpression as it was written in the source
- /// code, looking through any implicit casts or other intermediate nodes
- /// introduced by semantic analysis.
- Expr *getSubExprAsWritten();
- const Expr *getSubExprAsWritten() const {
- return const_cast<CastExpr *>(this)->getSubExprAsWritten();
- }
-
- typedef CXXBaseSpecifier **path_iterator;
- typedef const CXXBaseSpecifier * const *path_const_iterator;
- bool path_empty() const { return CastExprBits.BasePathSize == 0; }
- unsigned path_size() const { return CastExprBits.BasePathSize; }
- path_iterator path_begin() { return path_buffer(); }
- path_iterator path_end() { return path_buffer() + path_size(); }
- path_const_iterator path_begin() const { return path_buffer(); }
- path_const_iterator path_end() const { return path_buffer() + path_size(); }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() >= firstCastExprConstant &&
- T->getStmtClass() <= lastCastExprConstant;
- }
-
- // Iterators
- child_range children() { return child_range(&Op, &Op+1); }
-};
-
-/// ImplicitCastExpr - Allows us to explicitly represent implicit type
-/// conversions, which have no direct representation in the original
-/// source code. For example: converting T[]->T*, void f()->void
-/// (*f)(), float->double, short->int, etc.
-///
-/// In C, implicit casts always produce rvalues. However, in C++, an
-/// implicit cast whose result is being bound to a reference will be
-/// an lvalue or xvalue. For example:
-///
-/// @code
-/// class Base { };
-/// class Derived : public Base { };
-/// Derived &&ref();
-/// void f(Derived d) {
-/// Base& b = d; // initializer is an ImplicitCastExpr
-/// // to an lvalue of type Base
-/// Base&& r = ref(); // initializer is an ImplicitCastExpr
-/// // to an xvalue of type Base
-/// }
-/// @endcode
-class ImplicitCastExpr final
- : public CastExpr,
- private llvm::TrailingObjects<ImplicitCastExpr, CXXBaseSpecifier *> {
-private:
- ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
- unsigned BasePathLength, ExprValueKind VK)
- : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
- }
-
- /// \brief Construct an empty implicit cast.
- explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
- : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
-
-public:
- enum OnStack_t { OnStack };
- ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
- ExprValueKind VK)
- : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
- }
-
- static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
- CastKind Kind, Expr *Operand,
- const CXXCastPath *BasePath,
- ExprValueKind Cat);
-
- static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
- unsigned PathSize);
-
- SourceLocation getLocStart() const LLVM_READONLY {
- return getSubExpr()->getLocStart();
- }
- SourceLocation getLocEnd() const LLVM_READONLY {
- return getSubExpr()->getLocEnd();
- }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == ImplicitCastExprClass;
- }
-
- friend TrailingObjects;
- friend class CastExpr;
-};
-
-inline Expr *Expr::IgnoreImpCasts() {
- Expr *e = this;
- while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
- e = ice->getSubExpr();
- return e;
-}
-
-/// ExplicitCastExpr - An explicit cast written in the source
-/// code.
-///
-/// This class is effectively an abstract class, because it provides
-/// the basic representation of an explicitly-written cast without
-/// specifying which kind of cast (C cast, functional cast, static
-/// cast, etc.) was written; specific derived classes represent the
-/// particular style of cast and its location information.
-///
-/// Unlike implicit casts, explicit cast nodes have two different
-/// types: the type that was written into the source code, and the
-/// actual type of the expression as determined by semantic
-/// analysis. These types may differ slightly. For example, in C++ one
-/// can cast to a reference type, which indicates that the resulting
-/// expression will be an lvalue or xvalue. The reference type, however,
-/// will not be used as the type of the expression.
-class ExplicitCastExpr : public CastExpr {
- /// TInfo - Source type info for the (written) type
- /// this expression is casting to.
- TypeSourceInfo *TInfo;
-
-protected:
- ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
- CastKind kind, Expr *op, unsigned PathSize,
- TypeSourceInfo *writtenTy)
- : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
-
- /// \brief Construct an empty explicit cast.
- ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
- : CastExpr(SC, Shell, PathSize) { }
-
-public:
- /// getTypeInfoAsWritten - Returns the type source info for the type
- /// that this expression is casting to.
- TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
- void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
-
- /// getTypeAsWritten - Returns the type that this expression is
- /// casting to, as written in the source code.
- QualType getTypeAsWritten() const { return TInfo->getType(); }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() >= firstExplicitCastExprConstant &&
- T->getStmtClass() <= lastExplicitCastExprConstant;
- }
-};
-
-/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
-/// cast in C++ (C++ [expr.cast]), which uses the syntax
-/// (Type)expr. For example: @c (int)f.
-class CStyleCastExpr final
- : public ExplicitCastExpr,
- private llvm::TrailingObjects<CStyleCastExpr, CXXBaseSpecifier *> {
- SourceLocation LPLoc; // the location of the left paren
- SourceLocation RPLoc; // the location of the right paren
-
- CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
- unsigned PathSize, TypeSourceInfo *writtenTy,
- SourceLocation l, SourceLocation r)
- : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
- writtenTy), LPLoc(l), RPLoc(r) {}
-
- /// \brief Construct an empty C-style explicit cast.
- explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
- : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
-
-public:
- static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
- ExprValueKind VK, CastKind K,
- Expr *Op, const CXXCastPath *BasePath,
- TypeSourceInfo *WrittenTy, SourceLocation L,
- SourceLocation R);
-
- static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
- unsigned PathSize);
-
- SourceLocation getLParenLoc() const { return LPLoc; }
- void setLParenLoc(SourceLocation L) { LPLoc = L; }
-
- SourceLocation getRParenLoc() const { return RPLoc; }
- void setRParenLoc(SourceLocation L) { RPLoc = L; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY {
- return getSubExpr()->getLocEnd();
- }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == CStyleCastExprClass;
- }
-
- friend TrailingObjects;
- friend class CastExpr;
-};
-
-/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
-///
-/// This expression node kind describes a builtin binary operation,
-/// such as "x + y" for integer values "x" and "y". The operands will
-/// already have been converted to appropriate types (e.g., by
-/// performing promotions or conversions).
-///
-/// In C++, where operators may be overloaded, a different kind of
-/// expression node (CXXOperatorCallExpr) is used to express the
-/// invocation of an overloaded operator with operator syntax. Within
-/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
-/// used to store an expression "x + y" depends on the subexpressions
-/// for x and y. If neither x or y is type-dependent, and the "+"
-/// operator resolves to a built-in operation, BinaryOperator will be
-/// used to express the computation (x and y may still be
-/// value-dependent). If either x or y is type-dependent, or if the
-/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
-/// be used to express the computation.
-class BinaryOperator : public Expr {
-public:
- typedef BinaryOperatorKind Opcode;
-
-private:
- unsigned Opc : 6;
-
- // Records the FP_CONTRACT pragma status at the point that this binary
- // operator was parsed. This bit is only meaningful for operations on
- // floating point types. For all other types it should default to
- // false.
- unsigned FPContractable : 1;
- SourceLocation OpLoc;
-
- enum { LHS, RHS, END_EXPR };
- Stmt* SubExprs[END_EXPR];
-public:
-
- BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
- ExprValueKind VK, ExprObjectKind OK,
- SourceLocation opLoc, bool fpContractable)
- : Expr(BinaryOperatorClass, ResTy, VK, OK,
- lhs->isTypeDependent() || rhs->isTypeDependent(),
- lhs->isValueDependent() || rhs->isValueDependent(),
- (lhs->isInstantiationDependent() ||
- rhs->isInstantiationDependent()),
- (lhs->containsUnexpandedParameterPack() ||
- rhs->containsUnexpandedParameterPack())),
- Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
- SubExprs[LHS] = lhs;
- SubExprs[RHS] = rhs;
- assert(!isCompoundAssignmentOp() &&
- "Use CompoundAssignOperator for compound assignments");
- }
-
- /// \brief Construct an empty binary operator.
- explicit BinaryOperator(EmptyShell Empty)
- : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
-
- SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
- SourceLocation getOperatorLoc() const { return OpLoc; }
- void setOperatorLoc(SourceLocation L) { OpLoc = L; }
-
- Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
- void setOpcode(Opcode O) { Opc = O; }
-
- Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
- void setLHS(Expr *E) { SubExprs[LHS] = E; }
- Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
- void setRHS(Expr *E) { SubExprs[RHS] = E; }
-
- SourceLocation getLocStart() const LLVM_READONLY {
- return getLHS()->getLocStart();
- }
- SourceLocation getLocEnd() const LLVM_READONLY {
- return getRHS()->getLocEnd();
- }
-
- /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
- /// corresponds to, e.g. "<<=".
- static StringRef getOpcodeStr(Opcode Op);
-
- StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
-
- /// \brief Retrieve the binary opcode that corresponds to the given
- /// overloaded operator.
- static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
-
- /// \brief Retrieve the overloaded operator kind that corresponds to
- /// the given binary opcode.
- static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
-
- /// predicates to categorize the respective opcodes.
- bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
- static bool isMultiplicativeOp(Opcode Opc) {
- return Opc >= BO_Mul && Opc <= BO_Rem;
- }
- bool isMultiplicativeOp() const { return isMultiplicativeOp(getOpcode()); }
- static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
- bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
- static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
- bool isShiftOp() const { return isShiftOp(getOpcode()); }
-
- static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
- bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
-
- static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
- bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
-
- static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
- bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
-
- static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
- bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
-
- static Opcode negateComparisonOp(Opcode Opc) {
- switch (Opc) {
- default:
- llvm_unreachable("Not a comparsion operator.");
- case BO_LT: return BO_GE;
- case BO_GT: return BO_LE;
- case BO_LE: return BO_GT;
- case BO_GE: return BO_LT;
- case BO_EQ: return BO_NE;
- case BO_NE: return BO_EQ;
- }
- }
-
- static Opcode reverseComparisonOp(Opcode Opc) {
- switch (Opc) {
- default:
- llvm_unreachable("Not a comparsion operator.");
- case BO_LT: return BO_GT;
- case BO_GT: return BO_LT;
- case BO_LE: return BO_GE;
- case BO_GE: return BO_LE;
- case BO_EQ:
- case BO_NE:
- return Opc;
- }
- }
-
- static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
- bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
-
- static bool isAssignmentOp(Opcode Opc) {
- return Opc >= BO_Assign && Opc <= BO_OrAssign;
- }
- bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
-
- static bool isCompoundAssignmentOp(Opcode Opc) {
- return Opc > BO_Assign && Opc <= BO_OrAssign;
- }
- bool isCompoundAssignmentOp() const {
- return isCompoundAssignmentOp(getOpcode());
- }
- static Opcode getOpForCompoundAssignment(Opcode Opc) {
- assert(isCompoundAssignmentOp(Opc));
- if (Opc >= BO_AndAssign)
- return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
- else
- return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
- }
-
- static bool isShiftAssignOp(Opcode Opc) {
- return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
- }
- bool isShiftAssignOp() const {
- return isShiftAssignOp(getOpcode());
- }
-
- static bool classof(const Stmt *S) {
- return S->getStmtClass() >= firstBinaryOperatorConstant &&
- S->getStmtClass() <= lastBinaryOperatorConstant;
- }
-
- // Iterators
- child_range children() {
- return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
- }
-
- // Set the FP contractability status of this operator. Only meaningful for
- // operations on floating point types.
- void setFPContractable(bool FPC) { FPContractable = FPC; }
-
- // Get the FP contractability status of this operator. Only meaningful for
- // operations on floating point types.
- bool isFPContractable() const { return FPContractable; }
-
-protected:
- BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
- ExprValueKind VK, ExprObjectKind OK,
- SourceLocation opLoc, bool fpContractable, bool dead2)
- : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
- lhs->isTypeDependent() || rhs->isTypeDependent(),
- lhs->isValueDependent() || rhs->isValueDependent(),
- (lhs->isInstantiationDependent() ||
- rhs->isInstantiationDependent()),
- (lhs->containsUnexpandedParameterPack() ||
- rhs->containsUnexpandedParameterPack())),
- Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
- SubExprs[LHS] = lhs;
- SubExprs[RHS] = rhs;
- }
-
- BinaryOperator(StmtClass SC, EmptyShell Empty)
- : Expr(SC, Empty), Opc(BO_MulAssign) { }
-};
-
-/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
-/// track of the type the operation is performed in. Due to the semantics of
-/// these operators, the operands are promoted, the arithmetic performed, an
-/// implicit conversion back to the result type done, then the assignment takes
-/// place. This captures the intermediate type which the computation is done
-/// in.
-class CompoundAssignOperator : public BinaryOperator {
- QualType ComputationLHSType;
- QualType ComputationResultType;
-public:
- CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
- ExprValueKind VK, ExprObjectKind OK,
- QualType CompLHSType, QualType CompResultType,
- SourceLocation OpLoc, bool fpContractable)
- : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, fpContractable,
- true),
- ComputationLHSType(CompLHSType),
- ComputationResultType(CompResultType) {
- assert(isCompoundAssignmentOp() &&
- "Only should be used for compound assignments");
- }
-
- /// \brief Build an empty compound assignment operator expression.
- explicit CompoundAssignOperator(EmptyShell Empty)
- : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
-
- // The two computation types are the type the LHS is converted
- // to for the computation and the type of the result; the two are
- // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
- QualType getComputationLHSType() const { return ComputationLHSType; }
- void setComputationLHSType(QualType T) { ComputationLHSType = T; }
-
- QualType getComputationResultType() const { return ComputationResultType; }
- void setComputationResultType(QualType T) { ComputationResultType = T; }
-
- static bool classof(const Stmt *S) {
- return S->getStmtClass() == CompoundAssignOperatorClass;
- }
-};
-
-/// AbstractConditionalOperator - An abstract base class for
-/// ConditionalOperator and BinaryConditionalOperator.
-class AbstractConditionalOperator : public Expr {
- SourceLocation QuestionLoc, ColonLoc;
- friend class ASTStmtReader;
-
-protected:
- AbstractConditionalOperator(StmtClass SC, QualType T,
- ExprValueKind VK, ExprObjectKind OK,
- bool TD, bool VD, bool ID,
- bool ContainsUnexpandedParameterPack,
- SourceLocation qloc,
- SourceLocation cloc)
- : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
- QuestionLoc(qloc), ColonLoc(cloc) {}
-
- AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
- : Expr(SC, Empty) { }
-
-public:
- // getCond - Return the expression representing the condition for
- // the ?: operator.
- Expr *getCond() const;
-
- // getTrueExpr - Return the subexpression representing the value of
- // the expression if the condition evaluates to true.
- Expr *getTrueExpr() const;
-
- // getFalseExpr - Return the subexpression representing the value of
- // the expression if the condition evaluates to false. This is
- // the same as getRHS.
- Expr *getFalseExpr() const;
-
- SourceLocation getQuestionLoc() const { return QuestionLoc; }
- SourceLocation getColonLoc() const { return ColonLoc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == ConditionalOperatorClass ||
- T->getStmtClass() == BinaryConditionalOperatorClass;
- }
-};
-
-/// ConditionalOperator - The ?: ternary operator. The GNU "missing
-/// middle" extension is a BinaryConditionalOperator.
-class ConditionalOperator : public AbstractConditionalOperator {
- enum { COND, LHS, RHS, END_EXPR };
- Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
-
- friend class ASTStmtReader;
-public:
- ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
- SourceLocation CLoc, Expr *rhs,
- QualType t, ExprValueKind VK, ExprObjectKind OK)
- : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
- // FIXME: the type of the conditional operator doesn't
- // depend on the type of the conditional, but the standard
- // seems to imply that it could. File a bug!
- (lhs->isTypeDependent() || rhs->isTypeDependent()),
- (cond->isValueDependent() || lhs->isValueDependent() ||
- rhs->isValueDependent()),
- (cond->isInstantiationDependent() ||
- lhs->isInstantiationDependent() ||
- rhs->isInstantiationDependent()),
- (cond->containsUnexpandedParameterPack() ||
- lhs->containsUnexpandedParameterPack() ||
- rhs->containsUnexpandedParameterPack()),
- QLoc, CLoc) {
- SubExprs[COND] = cond;
- SubExprs[LHS] = lhs;
- SubExprs[RHS] = rhs;
- }
-
- /// \brief Build an empty conditional operator.
- explicit ConditionalOperator(EmptyShell Empty)
- : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
-
- // getCond - Return the expression representing the condition for
- // the ?: operator.
- Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
-
- // getTrueExpr - Return the subexpression representing the value of
- // the expression if the condition evaluates to true.
- Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
-
- // getFalseExpr - Return the subexpression representing the value of
- // the expression if the condition evaluates to false. This is
- // the same as getRHS.
- Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
-
- Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
- Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
-
- SourceLocation getLocStart() const LLVM_READONLY {
- return getCond()->getLocStart();
- }
- SourceLocation getLocEnd() const LLVM_READONLY {
- return getRHS()->getLocEnd();
- }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == ConditionalOperatorClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
- }
-};
-
-/// BinaryConditionalOperator - The GNU extension to the conditional
-/// operator which allows the middle operand to be omitted.
-///
-/// This is a different expression kind on the assumption that almost
-/// every client ends up needing to know that these are different.
-class BinaryConditionalOperator : public AbstractConditionalOperator {
- enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
-
- /// - the common condition/left-hand-side expression, which will be
- /// evaluated as the opaque value
- /// - the condition, expressed in terms of the opaque value
- /// - the left-hand-side, expressed in terms of the opaque value
- /// - the right-hand-side
- Stmt *SubExprs[NUM_SUBEXPRS];
- OpaqueValueExpr *OpaqueValue;
-
- friend class ASTStmtReader;
-public:
- BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
- Expr *cond, Expr *lhs, Expr *rhs,
- SourceLocation qloc, SourceLocation cloc,
- QualType t, ExprValueKind VK, ExprObjectKind OK)
- : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
- (common->isTypeDependent() || rhs->isTypeDependent()),
- (common->isValueDependent() || rhs->isValueDependent()),
- (common->isInstantiationDependent() ||
- rhs->isInstantiationDependent()),
- (common->containsUnexpandedParameterPack() ||
- rhs->containsUnexpandedParameterPack()),
- qloc, cloc),
- OpaqueValue(opaqueValue) {
- SubExprs[COMMON] = common;
- SubExprs[COND] = cond;
- SubExprs[LHS] = lhs;
- SubExprs[RHS] = rhs;
- assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
- }
-
- /// \brief Build an empty conditional operator.
- explicit BinaryConditionalOperator(EmptyShell Empty)
- : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
-
- /// \brief getCommon - Return the common expression, written to the
- /// left of the condition. The opaque value will be bound to the
- /// result of this expression.
- Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
-
- /// \brief getOpaqueValue - Return the opaque value placeholder.
- OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
-
- /// \brief getCond - Return the condition expression; this is defined
- /// in terms of the opaque value.
- Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
-
- /// \brief getTrueExpr - Return the subexpression which will be
- /// evaluated if the condition evaluates to true; this is defined
- /// in terms of the opaque value.
- Expr *getTrueExpr() const {
- return cast<Expr>(SubExprs[LHS]);
- }
-
- /// \brief getFalseExpr - Return the subexpression which will be
- /// evaluated if the condnition evaluates to false; this is
- /// defined in terms of the opaque value.
- Expr *getFalseExpr() const {
- return cast<Expr>(SubExprs[RHS]);
- }
-
- SourceLocation getLocStart() const LLVM_READONLY {
- return getCommon()->getLocStart();
- }
- SourceLocation getLocEnd() const LLVM_READONLY {
- return getFalseExpr()->getLocEnd();
- }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == BinaryConditionalOperatorClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
- }
-};
-
-inline Expr *AbstractConditionalOperator::getCond() const {
- if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
- return co->getCond();
- return cast<BinaryConditionalOperator>(this)->getCond();
-}
-
-inline Expr *AbstractConditionalOperator::getTrueExpr() const {
- if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
- return co->getTrueExpr();
- return cast<BinaryConditionalOperator>(this)->getTrueExpr();
-}
-
-inline Expr *AbstractConditionalOperator::getFalseExpr() const {
- if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
- return co->getFalseExpr();
- return cast<BinaryConditionalOperator>(this)->getFalseExpr();
-}
-
-/// AddrLabelExpr - The GNU address of label extension, representing &&label.
-class AddrLabelExpr : public Expr {
- SourceLocation AmpAmpLoc, LabelLoc;
- LabelDecl *Label;
-public:
- AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
- QualType t)
- : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
- false),
- AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
-
- /// \brief Build an empty address of a label expression.
- explicit AddrLabelExpr(EmptyShell Empty)
- : Expr(AddrLabelExprClass, Empty) { }
-
- SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
- void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
- SourceLocation getLabelLoc() const { return LabelLoc; }
- void setLabelLoc(SourceLocation L) { LabelLoc = L; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
-
- LabelDecl *getLabel() const { return Label; }
- void setLabel(LabelDecl *L) { Label = L; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == AddrLabelExprClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(child_iterator(), child_iterator());
- }
-};
-
-/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
-/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
-/// takes the value of the last subexpression.
-///
-/// A StmtExpr is always an r-value; values "returned" out of a
-/// StmtExpr will be copied.
-class StmtExpr : public Expr {
- Stmt *SubStmt;
- SourceLocation LParenLoc, RParenLoc;
-public:
- // FIXME: Does type-dependence need to be computed differently?
- // FIXME: Do we need to compute instantiation instantiation-dependence for
- // statements? (ugh!)
- StmtExpr(CompoundStmt *substmt, QualType T,
- SourceLocation lp, SourceLocation rp) :
- Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
- T->isDependentType(), false, false, false),
- SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
-
- /// \brief Build an empty statement expression.
- explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
-
- CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
- const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
- void setSubStmt(CompoundStmt *S) { SubStmt = S; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
-
- SourceLocation getLParenLoc() const { return LParenLoc; }
- void setLParenLoc(SourceLocation L) { LParenLoc = L; }
- SourceLocation getRParenLoc() const { return RParenLoc; }
- void setRParenLoc(SourceLocation L) { RParenLoc = L; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == StmtExprClass;
- }
-
- // Iterators
- child_range children() { return child_range(&SubStmt, &SubStmt+1); }
-};
-
-/// ShuffleVectorExpr - clang-specific builtin-in function
-/// __builtin_shufflevector.
-/// This AST node represents a operator that does a constant
-/// shuffle, similar to LLVM's shufflevector instruction. It takes
-/// two vectors and a variable number of constant indices,
-/// and returns the appropriately shuffled vector.
-class ShuffleVectorExpr : public Expr {
- SourceLocation BuiltinLoc, RParenLoc;
-
- // SubExprs - the list of values passed to the __builtin_shufflevector
- // function. The first two are vectors, and the rest are constant
- // indices. The number of values in this list is always
- // 2+the number of indices in the vector type.
- Stmt **SubExprs;
- unsigned NumExprs;
-
-public:
- ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
- SourceLocation BLoc, SourceLocation RP);
-
- /// \brief Build an empty vector-shuffle expression.
- explicit ShuffleVectorExpr(EmptyShell Empty)
- : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
-
- SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
- void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
-
- SourceLocation getRParenLoc() const { return RParenLoc; }
- void setRParenLoc(SourceLocation L) { RParenLoc = L; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == ShuffleVectorExprClass;
- }
-
- /// getNumSubExprs - Return the size of the SubExprs array. This includes the
- /// constant expression, the actual arguments passed in, and the function
- /// pointers.
- unsigned getNumSubExprs() const { return NumExprs; }
-
- /// \brief Retrieve the array of expressions.
- Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
-
- /// getExpr - Return the Expr at the specified index.
- Expr *getExpr(unsigned Index) {
- assert((Index < NumExprs) && "Arg access out of range!");
- return cast<Expr>(SubExprs[Index]);
- }
- const Expr *getExpr(unsigned Index) const {
- assert((Index < NumExprs) && "Arg access out of range!");
- return cast<Expr>(SubExprs[Index]);
- }
-
- void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
-
- llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
- assert((N < NumExprs - 2) && "Shuffle idx out of range!");
- return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
- }
-
- // Iterators
- child_range children() {
- return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
- }
-};
-
-/// ConvertVectorExpr - Clang builtin function __builtin_convertvector
-/// This AST node provides support for converting a vector type to another
-/// vector type of the same arity.
-class ConvertVectorExpr : public Expr {
-private:
- Stmt *SrcExpr;
- TypeSourceInfo *TInfo;
- SourceLocation BuiltinLoc, RParenLoc;
-
- friend class ASTReader;
- friend class ASTStmtReader;
- explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
-
-public:
- ConvertVectorExpr(Expr* SrcExpr, TypeSourceInfo *TI, QualType DstType,
- ExprValueKind VK, ExprObjectKind OK,
- SourceLocation BuiltinLoc, SourceLocation RParenLoc)
- : Expr(ConvertVectorExprClass, DstType, VK, OK,
- DstType->isDependentType(),
- DstType->isDependentType() || SrcExpr->isValueDependent(),
- (DstType->isInstantiationDependentType() ||
- SrcExpr->isInstantiationDependent()),
- (DstType->containsUnexpandedParameterPack() ||
- SrcExpr->containsUnexpandedParameterPack())),
- SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
-
- /// getSrcExpr - Return the Expr to be converted.
- Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
-
- /// getTypeSourceInfo - Return the destination type.
- TypeSourceInfo *getTypeSourceInfo() const {
- return TInfo;
- }
- void setTypeSourceInfo(TypeSourceInfo *ti) {
- TInfo = ti;
- }
-
- /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
- SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
-
- /// getRParenLoc - Return the location of final right parenthesis.
- SourceLocation getRParenLoc() const { return RParenLoc; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == ConvertVectorExprClass;
- }
-
- // Iterators
- child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
-};
-
-/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
-/// This AST node is similar to the conditional operator (?:) in C, with
-/// the following exceptions:
-/// - the test expression must be a integer constant expression.
-/// - the expression returned acts like the chosen subexpression in every
-/// visible way: the type is the same as that of the chosen subexpression,
-/// and all predicates (whether it's an l-value, whether it's an integer
-/// constant expression, etc.) return the same result as for the chosen
-/// sub-expression.
-class ChooseExpr : public Expr {
- enum { COND, LHS, RHS, END_EXPR };
- Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
- SourceLocation BuiltinLoc, RParenLoc;
- bool CondIsTrue;
-public:
- ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
- QualType t, ExprValueKind VK, ExprObjectKind OK,
- SourceLocation RP, bool condIsTrue,
- bool TypeDependent, bool ValueDependent)
- : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
- (cond->isInstantiationDependent() ||
- lhs->isInstantiationDependent() ||
- rhs->isInstantiationDependent()),
- (cond->containsUnexpandedParameterPack() ||
- lhs->containsUnexpandedParameterPack() ||
- rhs->containsUnexpandedParameterPack())),
- BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
- SubExprs[COND] = cond;
- SubExprs[LHS] = lhs;
- SubExprs[RHS] = rhs;
- }
-
- /// \brief Build an empty __builtin_choose_expr.
- explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
-
- /// isConditionTrue - Return whether the condition is true (i.e. not
- /// equal to zero).
- bool isConditionTrue() const {
- assert(!isConditionDependent() &&
- "Dependent condition isn't true or false");
- return CondIsTrue;
- }
- void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
-
- bool isConditionDependent() const {
- return getCond()->isTypeDependent() || getCond()->isValueDependent();
- }
-
- /// getChosenSubExpr - Return the subexpression chosen according to the
- /// condition.
- Expr *getChosenSubExpr() const {
- return isConditionTrue() ? getLHS() : getRHS();
- }
-
- Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
- void setCond(Expr *E) { SubExprs[COND] = E; }
- Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
- void setLHS(Expr *E) { SubExprs[LHS] = E; }
- Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
- void setRHS(Expr *E) { SubExprs[RHS] = E; }
-
- SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
- void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
-
- SourceLocation getRParenLoc() const { return RParenLoc; }
- void setRParenLoc(SourceLocation L) { RParenLoc = L; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == ChooseExprClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
- }
-};
-
-/// GNUNullExpr - Implements the GNU __null extension, which is a name
-/// for a null pointer constant that has integral type (e.g., int or
-/// long) and is the same size and alignment as a pointer. The __null
-/// extension is typically only used by system headers, which define
-/// NULL as __null in C++ rather than using 0 (which is an integer
-/// that may not match the size of a pointer).
-class GNUNullExpr : public Expr {
- /// TokenLoc - The location of the __null keyword.
- SourceLocation TokenLoc;
-
-public:
- GNUNullExpr(QualType Ty, SourceLocation Loc)
- : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
- false),
- TokenLoc(Loc) { }
-
- /// \brief Build an empty GNU __null expression.
- explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
-
- /// getTokenLocation - The location of the __null token.
- SourceLocation getTokenLocation() const { return TokenLoc; }
- void setTokenLocation(SourceLocation L) { TokenLoc = L; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == GNUNullExprClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(child_iterator(), child_iterator());
- }
-};
-
-/// Represents a call to the builtin function \c __builtin_va_arg.
-class VAArgExpr : public Expr {
- Stmt *Val;
- llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
- SourceLocation BuiltinLoc, RParenLoc;
-public:
- VAArgExpr(SourceLocation BLoc, Expr *e, TypeSourceInfo *TInfo,
- SourceLocation RPLoc, QualType t, bool IsMS)
- : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary, t->isDependentType(),
- false, (TInfo->getType()->isInstantiationDependentType() ||
- e->isInstantiationDependent()),
- (TInfo->getType()->containsUnexpandedParameterPack() ||
- e->containsUnexpandedParameterPack())),
- Val(e), TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {}
-
- /// Create an empty __builtin_va_arg expression.
- explicit VAArgExpr(EmptyShell Empty)
- : Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}
-
- const Expr *getSubExpr() const { return cast<Expr>(Val); }
- Expr *getSubExpr() { return cast<Expr>(Val); }
- void setSubExpr(Expr *E) { Val = E; }
-
- /// Returns whether this is really a Win64 ABI va_arg expression.
- bool isMicrosoftABI() const { return TInfo.getInt(); }
- void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }
-
- TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
- void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }
-
- SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
- void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
-
- SourceLocation getRParenLoc() const { return RParenLoc; }
- void setRParenLoc(SourceLocation L) { RParenLoc = L; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == VAArgExprClass;
- }
-
- // Iterators
- child_range children() { return child_range(&Val, &Val+1); }
-};
-
-/// @brief Describes an C or C++ initializer list.
-///
-/// InitListExpr describes an initializer list, which can be used to
-/// initialize objects of different types, including
-/// struct/class/union types, arrays, and vectors. For example:
-///
-/// @code
-/// struct foo x = { 1, { 2, 3 } };
-/// @endcode
-///
-/// Prior to semantic analysis, an initializer list will represent the
-/// initializer list as written by the user, but will have the
-/// placeholder type "void". This initializer list is called the
-/// syntactic form of the initializer, and may contain C99 designated
-/// initializers (represented as DesignatedInitExprs), initializations
-/// of subobject members without explicit braces, and so on. Clients
-/// interested in the original syntax of the initializer list should
-/// use the syntactic form of the initializer list.
-///
-/// After semantic analysis, the initializer list will represent the
-/// semantic form of the initializer, where the initializations of all
-/// subobjects are made explicit with nested InitListExpr nodes and
-/// C99 designators have been eliminated by placing the designated
-/// initializations into the subobject they initialize. Additionally,
-/// any "holes" in the initialization, where no initializer has been
-/// specified for a particular subobject, will be replaced with
-/// implicitly-generated ImplicitValueInitExpr expressions that
-/// value-initialize the subobjects. Note, however, that the
-/// initializer lists may still have fewer initializers than there are
-/// elements to initialize within the object.
-///
-/// After semantic analysis has completed, given an initializer list,
-/// method isSemanticForm() returns true if and only if this is the
-/// semantic form of the initializer list (note: the same AST node
-/// may at the same time be the syntactic form).
-/// Given the semantic form of the initializer list, one can retrieve
-/// the syntactic form of that initializer list (when different)
-/// using method getSyntacticForm(); the method returns null if applied
-/// to a initializer list which is already in syntactic form.
-/// Similarly, given the syntactic form (i.e., an initializer list such
-/// that isSemanticForm() returns false), one can retrieve the semantic
-/// form using method getSemanticForm().
-/// Since many initializer lists have the same syntactic and semantic forms,
-/// getSyntacticForm() may return NULL, indicating that the current
-/// semantic initializer list also serves as its syntactic form.
-class InitListExpr : public Expr {
- // FIXME: Eliminate this vector in favor of ASTContext allocation
- typedef ASTVector<Stmt *> InitExprsTy;
- InitExprsTy InitExprs;
- SourceLocation LBraceLoc, RBraceLoc;
-
- /// The alternative form of the initializer list (if it exists).
- /// The int part of the pair stores whether this initializer list is
- /// in semantic form. If not null, the pointer points to:
- /// - the syntactic form, if this is in semantic form;
- /// - the semantic form, if this is in syntactic form.
- llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
-
- /// \brief Either:
- /// If this initializer list initializes an array with more elements than
- /// there are initializers in the list, specifies an expression to be used
- /// for value initialization of the rest of the elements.
- /// Or
- /// If this initializer list initializes a union, specifies which
- /// field within the union will be initialized.
- llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
-
-public:
- InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
- ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
-
- /// \brief Build an empty initializer list.
- explicit InitListExpr(EmptyShell Empty)
- : Expr(InitListExprClass, Empty) { }
-
- unsigned getNumInits() const { return InitExprs.size(); }
-
- /// \brief Retrieve the set of initializers.
- Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
-
- ArrayRef<Expr *> inits() {
- return llvm::makeArrayRef(getInits(), getNumInits());
- }
-
- const Expr *getInit(unsigned Init) const {
- assert(Init < getNumInits() && "Initializer access out of range!");
- return cast_or_null<Expr>(InitExprs[Init]);
- }
-
- Expr *getInit(unsigned Init) {
- assert(Init < getNumInits() && "Initializer access out of range!");
- return cast_or_null<Expr>(InitExprs[Init]);
- }
-
- void setInit(unsigned Init, Expr *expr) {
- assert(Init < getNumInits() && "Initializer access out of range!");
- InitExprs[Init] = expr;
-
- if (expr) {
- ExprBits.TypeDependent |= expr->isTypeDependent();
- ExprBits.ValueDependent |= expr->isValueDependent();
- ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
- ExprBits.ContainsUnexpandedParameterPack |=
- expr->containsUnexpandedParameterPack();
- }
- }
-
- /// \brief Reserve space for some number of initializers.
- void reserveInits(const ASTContext &C, unsigned NumInits);
-
- /// @brief Specify the number of initializers
- ///
- /// If there are more than @p NumInits initializers, the remaining
- /// initializers will be destroyed. If there are fewer than @p
- /// NumInits initializers, NULL expressions will be added for the
- /// unknown initializers.
- void resizeInits(const ASTContext &Context, unsigned NumInits);
-
- /// @brief Updates the initializer at index @p Init with the new
- /// expression @p expr, and returns the old expression at that
- /// location.
- ///
- /// When @p Init is out of range for this initializer list, the
- /// initializer list will be extended with NULL expressions to
- /// accommodate the new entry.
- Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
-
- /// \brief If this initializer list initializes an array with more elements
- /// than there are initializers in the list, specifies an expression to be
- /// used for value initialization of the rest of the elements.
- Expr *getArrayFiller() {
- return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
- }
- const Expr *getArrayFiller() const {
- return const_cast<InitListExpr *>(this)->getArrayFiller();
- }
- void setArrayFiller(Expr *filler);
-
- /// \brief Return true if this is an array initializer and its array "filler"
- /// has been set.
- bool hasArrayFiller() const { return getArrayFiller(); }
-
- /// \brief If this initializes a union, specifies which field in the
- /// union to initialize.
- ///
- /// Typically, this field is the first named field within the
- /// union. However, a designated initializer can specify the
- /// initialization of a different field within the union.
- FieldDecl *getInitializedFieldInUnion() {
- return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
- }
- const FieldDecl *getInitializedFieldInUnion() const {
- return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
- }
- void setInitializedFieldInUnion(FieldDecl *FD) {
- assert((FD == nullptr
- || getInitializedFieldInUnion() == nullptr
- || getInitializedFieldInUnion() == FD)
- && "Only one field of a union may be initialized at a time!");
- ArrayFillerOrUnionFieldInit = FD;
- }
-
- // Explicit InitListExpr's originate from source code (and have valid source
- // locations). Implicit InitListExpr's are created by the semantic analyzer.
- bool isExplicit() {
- return LBraceLoc.isValid() && RBraceLoc.isValid();
- }
-
- // Is this an initializer for an array of characters, initialized by a string
- // literal or an @encode?
- bool isStringLiteralInit() const;
-
- SourceLocation getLBraceLoc() const { return LBraceLoc; }
- void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
- SourceLocation getRBraceLoc() const { return RBraceLoc; }
- void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
-
- bool isSemanticForm() const { return AltForm.getInt(); }
- InitListExpr *getSemanticForm() const {
- return isSemanticForm() ? nullptr : AltForm.getPointer();
- }
- InitListExpr *getSyntacticForm() const {
- return isSemanticForm() ? AltForm.getPointer() : nullptr;
- }
-
- void setSyntacticForm(InitListExpr *Init) {
- AltForm.setPointer(Init);
- AltForm.setInt(true);
- Init->AltForm.setPointer(this);
- Init->AltForm.setInt(false);
- }
-
- bool hadArrayRangeDesignator() const {
- return InitListExprBits.HadArrayRangeDesignator != 0;
- }
- void sawArrayRangeDesignator(bool ARD = true) {
- InitListExprBits.HadArrayRangeDesignator = ARD;
- }
-
- SourceLocation getLocStart() const LLVM_READONLY;
- SourceLocation getLocEnd() const LLVM_READONLY;
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == InitListExprClass;
- }
-
- // Iterators
- child_range children() {
- // FIXME: This does not include the array filler expression.
- if (InitExprs.empty())
- return child_range(child_iterator(), child_iterator());
- return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
- }
-
- typedef InitExprsTy::iterator iterator;
- typedef InitExprsTy::const_iterator const_iterator;
- typedef InitExprsTy::reverse_iterator reverse_iterator;
- typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
-
- iterator begin() { return InitExprs.begin(); }
- const_iterator begin() const { return InitExprs.begin(); }
- iterator end() { return InitExprs.end(); }
- const_iterator end() const { return InitExprs.end(); }
- reverse_iterator rbegin() { return InitExprs.rbegin(); }
- const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
- reverse_iterator rend() { return InitExprs.rend(); }
- const_reverse_iterator rend() const { return InitExprs.rend(); }
-
- friend class ASTStmtReader;
- friend class ASTStmtWriter;
-};
-
-/// @brief Represents a C99 designated initializer expression.
-///
-/// A designated initializer expression (C99 6.7.8) contains one or
-/// more designators (which can be field designators, array
-/// designators, or GNU array-range designators) followed by an
-/// expression that initializes the field or element(s) that the
-/// designators refer to. For example, given:
-///
-/// @code
-/// struct point {
-/// double x;
-/// double y;
-/// };
-/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
-/// @endcode
-///
-/// The InitListExpr contains three DesignatedInitExprs, the first of
-/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
-/// designators, one array designator for @c [2] followed by one field
-/// designator for @c .y. The initialization expression will be 1.0.
-class DesignatedInitExpr final
- : public Expr,
- private llvm::TrailingObjects<DesignatedInitExpr, Stmt *> {
-public:
- /// \brief Forward declaration of the Designator class.
- class Designator;
-
-private:
- /// The location of the '=' or ':' prior to the actual initializer
- /// expression.
- SourceLocation EqualOrColonLoc;
-
- /// Whether this designated initializer used the GNU deprecated
- /// syntax rather than the C99 '=' syntax.
- bool GNUSyntax : 1;
-
- /// The number of designators in this initializer expression.
- unsigned NumDesignators : 15;
-
- /// The number of subexpressions of this initializer expression,
- /// which contains both the initializer and any additional
- /// expressions used by array and array-range designators.
- unsigned NumSubExprs : 16;
-
- /// \brief The designators in this designated initialization
- /// expression.
- Designator *Designators;
-
-
- DesignatedInitExpr(const ASTContext &C, QualType Ty, unsigned NumDesignators,
- const Designator *Designators,
- SourceLocation EqualOrColonLoc, bool GNUSyntax,
- ArrayRef<Expr*> IndexExprs, Expr *Init);
-
- explicit DesignatedInitExpr(unsigned NumSubExprs)
- : Expr(DesignatedInitExprClass, EmptyShell()),
- NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
-
-public:
- /// A field designator, e.g., ".x".
- struct FieldDesignator {
- /// Refers to the field that is being initialized. The low bit
- /// of this field determines whether this is actually a pointer
- /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
- /// initially constructed, a field designator will store an
- /// IdentifierInfo*. After semantic analysis has resolved that
- /// name, the field designator will instead store a FieldDecl*.
- uintptr_t NameOrField;
-
- /// The location of the '.' in the designated initializer.
- unsigned DotLoc;
-
- /// The location of the field name in the designated initializer.
- unsigned FieldLoc;
- };
-
- /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
- struct ArrayOrRangeDesignator {
- /// Location of the first index expression within the designated
- /// initializer expression's list of subexpressions.
- unsigned Index;
- /// The location of the '[' starting the array range designator.
- unsigned LBracketLoc;
- /// The location of the ellipsis separating the start and end
- /// indices. Only valid for GNU array-range designators.
- unsigned EllipsisLoc;
- /// The location of the ']' terminating the array range designator.
- unsigned RBracketLoc;
- };
-
- /// @brief Represents a single C99 designator.
- ///
- /// @todo This class is infuriatingly similar to clang::Designator,
- /// but minor differences (storing indices vs. storing pointers)
- /// keep us from reusing it. Try harder, later, to rectify these
- /// differences.
- class Designator {
- /// @brief The kind of designator this describes.
- enum {
- FieldDesignator,
- ArrayDesignator,
- ArrayRangeDesignator
- } Kind;
-
- union {
- /// A field designator, e.g., ".x".
- struct FieldDesignator Field;
- /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
- struct ArrayOrRangeDesignator ArrayOrRange;
- };
- friend class DesignatedInitExpr;
-
- public:
- Designator() {}
-
- /// @brief Initializes a field designator.
- Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
- SourceLocation FieldLoc)
- : Kind(FieldDesignator) {
- Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
- Field.DotLoc = DotLoc.getRawEncoding();
- Field.FieldLoc = FieldLoc.getRawEncoding();
- }
-
- /// @brief Initializes an array designator.
- Designator(unsigned Index, SourceLocation LBracketLoc,
- SourceLocation RBracketLoc)
- : Kind(ArrayDesignator) {
- ArrayOrRange.Index = Index;
- ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
- ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
- ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
- }
-
- /// @brief Initializes a GNU array-range designator.
- Designator(unsigned Index, SourceLocation LBracketLoc,
- SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
- : Kind(ArrayRangeDesignator) {
- ArrayOrRange.Index = Index;
- ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
- ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
- ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
- }
-
- bool isFieldDesignator() const { return Kind == FieldDesignator; }
- bool isArrayDesignator() const { return Kind == ArrayDesignator; }
- bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
-
- IdentifierInfo *getFieldName() const;
-
- FieldDecl *getField() const {
- assert(Kind == FieldDesignator && "Only valid on a field designator");
- if (Field.NameOrField & 0x01)
- return nullptr;
- else
- return reinterpret_cast<FieldDecl *>(Field.NameOrField);
- }
-
- void setField(FieldDecl *FD) {
- assert(Kind == FieldDesignator && "Only valid on a field designator");
- Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
- }
-
- SourceLocation getDotLoc() const {
- assert(Kind == FieldDesignator && "Only valid on a field designator");
- return SourceLocation::getFromRawEncoding(Field.DotLoc);
- }
-
- SourceLocation getFieldLoc() const {
- assert(Kind == FieldDesignator && "Only valid on a field designator");
- return SourceLocation::getFromRawEncoding(Field.FieldLoc);
- }
-
- SourceLocation getLBracketLoc() const {
- assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
- "Only valid on an array or array-range designator");
- return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
- }
-
- SourceLocation getRBracketLoc() const {
- assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
- "Only valid on an array or array-range designator");
- return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
- }
-
- SourceLocation getEllipsisLoc() const {
- assert(Kind == ArrayRangeDesignator &&
- "Only valid on an array-range designator");
- return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
- }
-
- unsigned getFirstExprIndex() const {
- assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
- "Only valid on an array or array-range designator");
- return ArrayOrRange.Index;
- }
-
- SourceLocation getLocStart() const LLVM_READONLY {
- if (Kind == FieldDesignator)
- return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
- else
- return getLBracketLoc();
- }
- SourceLocation getLocEnd() const LLVM_READONLY {
- return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
- }
- SourceRange getSourceRange() const LLVM_READONLY {
- return SourceRange(getLocStart(), getLocEnd());
- }
- };
-
- static DesignatedInitExpr *Create(const ASTContext &C,
- Designator *Designators,
- unsigned NumDesignators,
- ArrayRef<Expr*> IndexExprs,
- SourceLocation EqualOrColonLoc,
- bool GNUSyntax, Expr *Init);
-
- static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
- unsigned NumIndexExprs);
-
- /// @brief Returns the number of designators in this initializer.
- unsigned size() const { return NumDesignators; }
-
- // Iterator access to the designators.
- typedef Designator *designators_iterator;
- designators_iterator designators_begin() { return Designators; }
- designators_iterator designators_end() {
- return Designators + NumDesignators;
- }
-
- typedef const Designator *const_designators_iterator;
- const_designators_iterator designators_begin() const { return Designators; }
- const_designators_iterator designators_end() const {
- return Designators + NumDesignators;
- }
-
- typedef llvm::iterator_range<designators_iterator> designators_range;
- designators_range designators() {
- return designators_range(designators_begin(), designators_end());
- }
-
- typedef llvm::iterator_range<const_designators_iterator>
- designators_const_range;
- designators_const_range designators() const {
- return designators_const_range(designators_begin(), designators_end());
- }
-
- typedef std::reverse_iterator<designators_iterator>
- reverse_designators_iterator;
- reverse_designators_iterator designators_rbegin() {
- return reverse_designators_iterator(designators_end());
- }
- reverse_designators_iterator designators_rend() {
- return reverse_designators_iterator(designators_begin());
- }
-
- typedef std::reverse_iterator<const_designators_iterator>
- const_reverse_designators_iterator;
- const_reverse_designators_iterator designators_rbegin() const {
- return const_reverse_designators_iterator(designators_end());
- }
- const_reverse_designators_iterator designators_rend() const {
- return const_reverse_designators_iterator(designators_begin());
- }
-
- Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
-
- void setDesignators(const ASTContext &C, const Designator *Desigs,
- unsigned NumDesigs);
-
- Expr *getArrayIndex(const Designator &D) const;
- Expr *getArrayRangeStart(const Designator &D) const;
- Expr *getArrayRangeEnd(const Designator &D) const;
-
- /// @brief Retrieve the location of the '=' that precedes the
- /// initializer value itself, if present.
- SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
- void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
-
- /// @brief Determines whether this designated initializer used the
- /// deprecated GNU syntax for designated initializers.
- bool usesGNUSyntax() const { return GNUSyntax; }
- void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
-
- /// @brief Retrieve the initializer value.
- Expr *getInit() const {
- return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
- }
-
- void setInit(Expr *init) {
- *child_begin() = init;
- }
-
- /// \brief Retrieve the total number of subexpressions in this
- /// designated initializer expression, including the actual
- /// initialized value and any expressions that occur within array
- /// and array-range designators.
- unsigned getNumSubExprs() const { return NumSubExprs; }
-
- Expr *getSubExpr(unsigned Idx) const {
- assert(Idx < NumSubExprs && "Subscript out of range");
- return cast<Expr>(getTrailingObjects<Stmt *>()[Idx]);
- }
-
- void setSubExpr(unsigned Idx, Expr *E) {
- assert(Idx < NumSubExprs && "Subscript out of range");
- getTrailingObjects<Stmt *>()[Idx] = E;
- }
-
- /// \brief Replaces the designator at index @p Idx with the series
- /// of designators in [First, Last).
- void ExpandDesignator(const ASTContext &C, unsigned Idx,
- const Designator *First, const Designator *Last);
-
- SourceRange getDesignatorsSourceRange() const;
-
- SourceLocation getLocStart() const LLVM_READONLY;
- SourceLocation getLocEnd() const LLVM_READONLY;
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == DesignatedInitExprClass;
- }
-
- // Iterators
- child_range children() {
- Stmt **begin = getTrailingObjects<Stmt *>();
- return child_range(begin, begin + NumSubExprs);
- }
-
- friend TrailingObjects;
-};
-
-/// \brief Represents a place-holder for an object not to be initialized by
-/// anything.
-///
-/// This only makes sense when it appears as part of an updater of a
-/// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
-/// initializes a big object, and the NoInitExpr's mark the spots within the
-/// big object not to be overwritten by the updater.
-///
-/// \see DesignatedInitUpdateExpr
-class NoInitExpr : public Expr {
-public:
- explicit NoInitExpr(QualType ty)
- : Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
- false, false, ty->isInstantiationDependentType(), false) { }
-
- explicit NoInitExpr(EmptyShell Empty)
- : Expr(NoInitExprClass, Empty) { }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == NoInitExprClass;
- }
-
- SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
- SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
-
- // Iterators
- child_range children() {
- return child_range(child_iterator(), child_iterator());
- }
-};
-
-// In cases like:
-// struct Q { int a, b, c; };
-// Q *getQ();
-// void foo() {
-// struct A { Q q; } a = { *getQ(), .q.b = 3 };
-// }
-//
-// We will have an InitListExpr for a, with type A, and then a
-// DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
-// is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
-//
-class DesignatedInitUpdateExpr : public Expr {
- // BaseAndUpdaterExprs[0] is the base expression;
- // BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
- Stmt *BaseAndUpdaterExprs[2];
-
-public:
- DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc,
- Expr *baseExprs, SourceLocation rBraceLoc);
-
- explicit DesignatedInitUpdateExpr(EmptyShell Empty)
- : Expr(DesignatedInitUpdateExprClass, Empty) { }
-
- SourceLocation getLocStart() const LLVM_READONLY;
- SourceLocation getLocEnd() const LLVM_READONLY;
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == DesignatedInitUpdateExprClass;
- }
-
- Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
- void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
-
- InitListExpr *getUpdater() const {
- return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
- }
- void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
-
- // Iterators
- // children = the base and the updater
- child_range children() {
- return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
- }
-};
-
-/// \brief Represents an implicitly-generated value initialization of
-/// an object of a given type.
-///
-/// Implicit value initializations occur within semantic initializer
-/// list expressions (InitListExpr) as placeholders for subobject
-/// initializations not explicitly specified by the user.
-///
-/// \see InitListExpr
-class ImplicitValueInitExpr : public Expr {
-public:
- explicit ImplicitValueInitExpr(QualType ty)
- : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
- false, false, ty->isInstantiationDependentType(), false) { }
-
- /// \brief Construct an empty implicit value initialization.
- explicit ImplicitValueInitExpr(EmptyShell Empty)
- : Expr(ImplicitValueInitExprClass, Empty) { }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == ImplicitValueInitExprClass;
- }
-
- SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
- SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
-
- // Iterators
- child_range children() {
- return child_range(child_iterator(), child_iterator());
- }
-};
-
-class ParenListExpr : public Expr {
- Stmt **Exprs;
- unsigned NumExprs;
- SourceLocation LParenLoc, RParenLoc;
-
-public:
- ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
- ArrayRef<Expr*> exprs, SourceLocation rparenloc);
-
- /// \brief Build an empty paren list.
- explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
-
- unsigned getNumExprs() const { return NumExprs; }
-
- const Expr* getExpr(unsigned Init) const {
- assert(Init < getNumExprs() && "Initializer access out of range!");
- return cast_or_null<Expr>(Exprs[Init]);
- }
-
- Expr* getExpr(unsigned Init) {
- assert(Init < getNumExprs() && "Initializer access out of range!");
- return cast_or_null<Expr>(Exprs[Init]);
- }
-
- Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
-
- ArrayRef<Expr *> exprs() {
- return llvm::makeArrayRef(getExprs(), getNumExprs());
- }
-
- SourceLocation getLParenLoc() const { return LParenLoc; }
- SourceLocation getRParenLoc() const { return RParenLoc; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == ParenListExprClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(&Exprs[0], &Exprs[0]+NumExprs);
- }
-
- friend class ASTStmtReader;
- friend class ASTStmtWriter;
-};
-
-/// \brief Represents a C11 generic selection.
-///
-/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
-/// expression, followed by one or more generic associations. Each generic
-/// association specifies a type name and an expression, or "default" and an
-/// expression (in which case it is known as a default generic association).
-/// The type and value of the generic selection are identical to those of its
-/// result expression, which is defined as the expression in the generic
-/// association with a type name that is compatible with the type of the
-/// controlling expression, or the expression in the default generic association
-/// if no types are compatible. For example:
-///
-/// @code
-/// _Generic(X, double: 1, float: 2, default: 3)
-/// @endcode
-///
-/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
-/// or 3 if "hello".
-///
-/// As an extension, generic selections are allowed in C++, where the following
-/// additional semantics apply:
-///
-/// Any generic selection whose controlling expression is type-dependent or
-/// which names a dependent type in its association list is result-dependent,
-/// which means that the choice of result expression is dependent.
-/// Result-dependent generic associations are both type- and value-dependent.
-class GenericSelectionExpr : public Expr {
- enum { CONTROLLING, END_EXPR };
- TypeSourceInfo **AssocTypes;
- Stmt **SubExprs;
- unsigned NumAssocs, ResultIndex;
- SourceLocation GenericLoc, DefaultLoc, RParenLoc;
-
-public:
- GenericSelectionExpr(const ASTContext &Context,
- SourceLocation GenericLoc, Expr *ControllingExpr,
- ArrayRef<TypeSourceInfo*> AssocTypes,
- ArrayRef<Expr*> AssocExprs,
- SourceLocation DefaultLoc, SourceLocation RParenLoc,
- bool ContainsUnexpandedParameterPack,
- unsigned ResultIndex);
-
- /// This constructor is used in the result-dependent case.
- GenericSelectionExpr(const ASTContext &Context,
- SourceLocation GenericLoc, Expr *ControllingExpr,
- ArrayRef<TypeSourceInfo*> AssocTypes,
- ArrayRef<Expr*> AssocExprs,
- SourceLocation DefaultLoc, SourceLocation RParenLoc,
- bool ContainsUnexpandedParameterPack);
-
- explicit GenericSelectionExpr(EmptyShell Empty)
- : Expr(GenericSelectionExprClass, Empty) { }
-
- unsigned getNumAssocs() const { return NumAssocs; }
-
- SourceLocation getGenericLoc() const { return GenericLoc; }
- SourceLocation getDefaultLoc() const { return DefaultLoc; }
- SourceLocation getRParenLoc() const { return RParenLoc; }
-
- const Expr *getAssocExpr(unsigned i) const {
- return cast<Expr>(SubExprs[END_EXPR+i]);
- }
- Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
-
- const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
- return AssocTypes[i];
- }
- TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
-
- QualType getAssocType(unsigned i) const {
- if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
- return TS->getType();
- else
- return QualType();
- }
-
- const Expr *getControllingExpr() const {
- return cast<Expr>(SubExprs[CONTROLLING]);
- }
- Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
-
- /// Whether this generic selection is result-dependent.
- bool isResultDependent() const { return ResultIndex == -1U; }
-
- /// The zero-based index of the result expression's generic association in
- /// the generic selection's association list. Defined only if the
- /// generic selection is not result-dependent.
- unsigned getResultIndex() const {
- assert(!isResultDependent() && "Generic selection is result-dependent");
- return ResultIndex;
- }
-
- /// The generic selection's result expression. Defined only if the
- /// generic selection is not result-dependent.
- const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
- Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
-
- SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == GenericSelectionExprClass;
- }
-
- child_range children() {
- return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
- }
-
- friend class ASTStmtReader;
-};
-
-//===----------------------------------------------------------------------===//
-// Clang Extensions
-//===----------------------------------------------------------------------===//
-
-/// ExtVectorElementExpr - This represents access to specific elements of a
-/// vector, and may occur on the left hand side or right hand side. For example
-/// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
-///
-/// Note that the base may have either vector or pointer to vector type, just
-/// like a struct field reference.
-///
-class ExtVectorElementExpr : public Expr {
- Stmt *Base;
- IdentifierInfo *Accessor;
- SourceLocation AccessorLoc;
-public:
- ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
- IdentifierInfo &accessor, SourceLocation loc)
- : Expr(ExtVectorElementExprClass, ty, VK,
- (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
- base->isTypeDependent(), base->isValueDependent(),
- base->isInstantiationDependent(),
- base->containsUnexpandedParameterPack()),
- Base(base), Accessor(&accessor), AccessorLoc(loc) {}
-
- /// \brief Build an empty vector element expression.
- explicit ExtVectorElementExpr(EmptyShell Empty)
- : Expr(ExtVectorElementExprClass, Empty) { }
-
- const Expr *getBase() const { return cast<Expr>(Base); }
- Expr *getBase() { return cast<Expr>(Base); }
- void setBase(Expr *E) { Base = E; }
-
- IdentifierInfo &getAccessor() const { return *Accessor; }
- void setAccessor(IdentifierInfo *II) { Accessor = II; }
-
- SourceLocation getAccessorLoc() const { return AccessorLoc; }
- void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
-
- /// getNumElements - Get the number of components being selected.
- unsigned getNumElements() const;
-
- /// containsDuplicateElements - Return true if any element access is
- /// repeated.
- bool containsDuplicateElements() const;
-
- /// getEncodedElementAccess - Encode the elements accessed into an llvm
- /// aggregate Constant of ConstantInt(s).
- void getEncodedElementAccess(SmallVectorImpl<uint32_t> &Elts) const;
-
- SourceLocation getLocStart() const LLVM_READONLY {
- return getBase()->getLocStart();
- }
- SourceLocation getLocEnd() const LLVM_READONLY { return AccessorLoc; }
-
- /// isArrow - Return true if the base expression is a pointer to vector,
- /// return false if the base expression is a vector.
- bool isArrow() const;
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == ExtVectorElementExprClass;
- }
-
- // Iterators
- child_range children() { return child_range(&Base, &Base+1); }
-};
-
-/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
-/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
-class BlockExpr : public Expr {
-protected:
- BlockDecl *TheBlock;
-public:
- BlockExpr(BlockDecl *BD, QualType ty)
- : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
- ty->isDependentType(), ty->isDependentType(),
- ty->isInstantiationDependentType() || BD->isDependentContext(),
- false),
- TheBlock(BD) {}
-
- /// \brief Build an empty block expression.
- explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
-
- const BlockDecl *getBlockDecl() const { return TheBlock; }
- BlockDecl *getBlockDecl() { return TheBlock; }
- void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
-
- // Convenience functions for probing the underlying BlockDecl.
- SourceLocation getCaretLocation() const;
- const Stmt *getBody() const;
- Stmt *getBody();
-
- SourceLocation getLocStart() const LLVM_READONLY { return getCaretLocation(); }
- SourceLocation getLocEnd() const LLVM_READONLY { return getBody()->getLocEnd(); }
-
- /// getFunctionType - Return the underlying function type for this block.
- const FunctionProtoType *getFunctionType() const;
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == BlockExprClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(child_iterator(), child_iterator());
- }
-};
-
-/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
-/// This AST node provides support for reinterpreting a type to another
-/// type of the same size.
-class AsTypeExpr : public Expr {
-private:
- Stmt *SrcExpr;
- SourceLocation BuiltinLoc, RParenLoc;
-
- friend class ASTReader;
- friend class ASTStmtReader;
- explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
-
-public:
- AsTypeExpr(Expr* SrcExpr, QualType DstType,
- ExprValueKind VK, ExprObjectKind OK,
- SourceLocation BuiltinLoc, SourceLocation RParenLoc)
- : Expr(AsTypeExprClass, DstType, VK, OK,
- DstType->isDependentType(),
- DstType->isDependentType() || SrcExpr->isValueDependent(),
- (DstType->isInstantiationDependentType() ||
- SrcExpr->isInstantiationDependent()),
- (DstType->containsUnexpandedParameterPack() ||
- SrcExpr->containsUnexpandedParameterPack())),
- SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
-
- /// getSrcExpr - Return the Expr to be converted.
- Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
-
- /// getBuiltinLoc - Return the location of the __builtin_astype token.
- SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
-
- /// getRParenLoc - Return the location of final right parenthesis.
- SourceLocation getRParenLoc() const { return RParenLoc; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == AsTypeExprClass;
- }
-
- // Iterators
- child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
-};
-
-/// PseudoObjectExpr - An expression which accesses a pseudo-object
-/// l-value. A pseudo-object is an abstract object, accesses to which
-/// are translated to calls. The pseudo-object expression has a
-/// syntactic form, which shows how the expression was actually
-/// written in the source code, and a semantic form, which is a series
-/// of expressions to be executed in order which detail how the
-/// operation is actually evaluated. Optionally, one of the semantic
-/// forms may also provide a result value for the expression.
-///
-/// If any of the semantic-form expressions is an OpaqueValueExpr,
-/// that OVE is required to have a source expression, and it is bound
-/// to the result of that source expression. Such OVEs may appear
-/// only in subsequent semantic-form expressions and as
-/// sub-expressions of the syntactic form.
-///
-/// PseudoObjectExpr should be used only when an operation can be
-/// usefully described in terms of fairly simple rewrite rules on
-/// objects and functions that are meant to be used by end-developers.
-/// For example, under the Itanium ABI, dynamic casts are implemented
-/// as a call to a runtime function called __dynamic_cast; using this
-/// class to describe that would be inappropriate because that call is
-/// not really part of the user-visible semantics, and instead the
-/// cast is properly reflected in the AST and IR-generation has been
-/// taught to generate the call as necessary. In contrast, an
-/// Objective-C property access is semantically defined to be
-/// equivalent to a particular message send, and this is very much
-/// part of the user model. The name of this class encourages this
-/// modelling design.
-class PseudoObjectExpr final
- : public Expr,
- private llvm::TrailingObjects<PseudoObjectExpr, Expr *> {
- // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
- // Always at least two, because the first sub-expression is the
- // syntactic form.
-
- // PseudoObjectExprBits.ResultIndex - The index of the
- // sub-expression holding the result. 0 means the result is void,
- // which is unambiguous because it's the index of the syntactic
- // form. Note that this is therefore 1 higher than the value passed
- // in to Create, which is an index within the semantic forms.
- // Note also that ASTStmtWriter assumes this encoding.
-
- Expr **getSubExprsBuffer() { return getTrailingObjects<Expr *>(); }
- const Expr * const *getSubExprsBuffer() const {
- return getTrailingObjects<Expr *>();
- }
-
- PseudoObjectExpr(QualType type, ExprValueKind VK,
- Expr *syntactic, ArrayRef<Expr*> semantic,
- unsigned resultIndex);
-
- PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
-
- unsigned getNumSubExprs() const {
- return PseudoObjectExprBits.NumSubExprs;
- }
-
-public:
- /// NoResult - A value for the result index indicating that there is
- /// no semantic result.
- enum : unsigned { NoResult = ~0U };
-
- static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
- ArrayRef<Expr*> semantic,
- unsigned resultIndex);
-
- static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
- unsigned numSemanticExprs);
-
- /// Return the syntactic form of this expression, i.e. the
- /// expression it actually looks like. Likely to be expressed in
- /// terms of OpaqueValueExprs bound in the semantic form.
- Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
- const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
-
- /// Return the index of the result-bearing expression into the semantics
- /// expressions, or PseudoObjectExpr::NoResult if there is none.
- unsigned getResultExprIndex() const {
- if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
- return PseudoObjectExprBits.ResultIndex - 1;
- }
-
- /// Return the result-bearing expression, or null if there is none.
- Expr *getResultExpr() {
- if (PseudoObjectExprBits.ResultIndex == 0)
- return nullptr;
- return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
- }
- const Expr *getResultExpr() const {
- return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
- }
-
- unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
-
- typedef Expr * const *semantics_iterator;
- typedef const Expr * const *const_semantics_iterator;
- semantics_iterator semantics_begin() {
- return getSubExprsBuffer() + 1;
- }
- const_semantics_iterator semantics_begin() const {
- return getSubExprsBuffer() + 1;
- }
- semantics_iterator semantics_end() {
- return getSubExprsBuffer() + getNumSubExprs();
- }
- const_semantics_iterator semantics_end() const {
- return getSubExprsBuffer() + getNumSubExprs();
- }
-
- llvm::iterator_range<semantics_iterator> semantics() {
- return llvm::make_range(semantics_begin(), semantics_end());
- }
- llvm::iterator_range<const_semantics_iterator> semantics() const {
- return llvm::make_range(semantics_begin(), semantics_end());
- }
-
- Expr *getSemanticExpr(unsigned index) {
- assert(index + 1 < getNumSubExprs());
- return getSubExprsBuffer()[index + 1];
- }
- const Expr *getSemanticExpr(unsigned index) const {
- return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
- }
-
- SourceLocation getExprLoc() const LLVM_READONLY {
- return getSyntacticForm()->getExprLoc();
- }
-
- SourceLocation getLocStart() const LLVM_READONLY {
- return getSyntacticForm()->getLocStart();
- }
- SourceLocation getLocEnd() const LLVM_READONLY {
- return getSyntacticForm()->getLocEnd();
- }
-
- child_range children() {
- Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
- return child_range(cs, cs + getNumSubExprs());
- }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == PseudoObjectExprClass;
- }
-
- friend TrailingObjects;
- friend class ASTStmtReader;
-};
-
-/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
-/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
-/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
-/// All of these instructions take one primary pointer and at least one memory
-/// order.
-class AtomicExpr : public Expr {
-public:
- enum AtomicOp {
-#define BUILTIN(ID, TYPE, ATTRS)
-#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
-#include "clang/Basic/Builtins.def"
- // Avoid trailing comma
- BI_First = 0
- };
-
- // The ABI values for various atomic memory orderings.
- enum AtomicOrderingKind {
- AO_ABI_memory_order_relaxed = 0,
- AO_ABI_memory_order_consume = 1,
- AO_ABI_memory_order_acquire = 2,
- AO_ABI_memory_order_release = 3,
- AO_ABI_memory_order_acq_rel = 4,
- AO_ABI_memory_order_seq_cst = 5
- };
-
-private:
- enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
- Stmt* SubExprs[END_EXPR];
- unsigned NumSubExprs;
- SourceLocation BuiltinLoc, RParenLoc;
- AtomicOp Op;
-
- friend class ASTStmtReader;
-
-public:
- AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
- AtomicOp op, SourceLocation RP);
-
- /// \brief Determine the number of arguments the specified atomic builtin
- /// should have.
- static unsigned getNumSubExprs(AtomicOp Op);
-
- /// \brief Build an empty AtomicExpr.
- explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
-
- Expr *getPtr() const {
- return cast<Expr>(SubExprs[PTR]);
- }
- Expr *getOrder() const {
- return cast<Expr>(SubExprs[ORDER]);
- }
- Expr *getVal1() const {
- if (Op == AO__c11_atomic_init)
- return cast<Expr>(SubExprs[ORDER]);
- assert(NumSubExprs > VAL1);
- return cast<Expr>(SubExprs[VAL1]);
- }
- Expr *getOrderFail() const {
- assert(NumSubExprs > ORDER_FAIL);
- return cast<Expr>(SubExprs[ORDER_FAIL]);
- }
- Expr *getVal2() const {
- if (Op == AO__atomic_exchange)
- return cast<Expr>(SubExprs[ORDER_FAIL]);
- assert(NumSubExprs > VAL2);
- return cast<Expr>(SubExprs[VAL2]);
- }
- Expr *getWeak() const {
- assert(NumSubExprs > WEAK);
- return cast<Expr>(SubExprs[WEAK]);
- }
-
- AtomicOp getOp() const { return Op; }
- unsigned getNumSubExprs() { return NumSubExprs; }
-
- Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
-
- bool isVolatile() const {
- return getPtr()->getType()->getPointeeType().isVolatileQualified();
- }
-
- bool isCmpXChg() const {
- return getOp() == AO__c11_atomic_compare_exchange_strong ||
- getOp() == AO__c11_atomic_compare_exchange_weak ||
- getOp() == AO__atomic_compare_exchange ||
- getOp() == AO__atomic_compare_exchange_n;
- }
-
- SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
- SourceLocation getRParenLoc() const { return RParenLoc; }
-
- SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
- SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == AtomicExprClass;
- }
-
- // Iterators
- child_range children() {
- return child_range(SubExprs, SubExprs+NumSubExprs);
- }
-};
-
-/// TypoExpr - Internal placeholder for expressions where typo correction
-/// still needs to be performed and/or an error diagnostic emitted.
-class TypoExpr : public Expr {
-public:
- TypoExpr(QualType T)
- : Expr(TypoExprClass, T, VK_LValue, OK_Ordinary,
- /*isTypeDependent*/ true,
- /*isValueDependent*/ true,
- /*isInstantiationDependent*/ true,
- /*containsUnexpandedParameterPack*/ false) {
- assert(T->isDependentType() && "TypoExpr given a non-dependent type");
- }
-
- child_range children() {
- return child_range(child_iterator(), child_iterator());
- }
- SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
- SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
-
- static bool classof(const Stmt *T) {
- return T->getStmtClass() == TypoExprClass;
- }
-
-};
-} // end namespace clang
-
-#endif // LLVM_CLANG_AST_EXPR_H
OpenPOWER on IntegriCloud