summaryrefslogtreecommitdiffstats
path: root/include/clang/AST/Expr.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/clang/AST/Expr.h')
-rw-r--r--include/clang/AST/Expr.h2500
1 files changed, 2500 insertions, 0 deletions
diff --git a/include/clang/AST/Expr.h b/include/clang/AST/Expr.h
new file mode 100644
index 0000000..98de5f9
--- /dev/null
+++ b/include/clang/AST/Expr.h
@@ -0,0 +1,2500 @@
+//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the Expr interface and subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_AST_EXPR_H
+#define LLVM_CLANG_AST_EXPR_H
+
+#include "clang/AST/APValue.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/Type.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/SmallVector.h"
+#include <vector>
+
+namespace clang {
+ class ASTContext;
+ class APValue;
+ class Decl;
+ class IdentifierInfo;
+ class ParmVarDecl;
+ class NamedDecl;
+ class ValueDecl;
+ class BlockDecl;
+ class CXXOperatorCallExpr;
+ class CXXMemberCallExpr;
+
+/// Expr - This represents one expression. Note that Expr's are subclasses of
+/// Stmt. This allows an expression to be transparently used any place a Stmt
+/// is required.
+///
+class Expr : public Stmt {
+ QualType TR;
+
+protected:
+ /// TypeDependent - Whether this expression is type-dependent
+ /// (C++ [temp.dep.expr]).
+ bool TypeDependent : 1;
+
+ /// ValueDependent - Whether this expression is value-dependent
+ /// (C++ [temp.dep.constexpr]).
+ bool ValueDependent : 1;
+
+ // FIXME: Eventually, this constructor should go away and we should
+ // require every subclass to provide type/value-dependence
+ // information.
+ Expr(StmtClass SC, QualType T)
+ : Stmt(SC), TypeDependent(false), ValueDependent(false) {
+ setType(T);
+ }
+
+ Expr(StmtClass SC, QualType T, bool TD, bool VD)
+ : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
+ setType(T);
+ }
+
+ /// \brief Construct an empty expression.
+ explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
+
+public:
+ QualType getType() const { return TR; }
+ void setType(QualType t) {
+ // In C++, the type of an expression is always adjusted so that it
+ // will not have reference type an expression will never have
+ // reference type (C++ [expr]p6). Use
+ // QualType::getNonReferenceType() to retrieve the non-reference
+ // type. Additionally, inspect Expr::isLvalue to determine whether
+ // an expression that is adjusted in this manner should be
+ // considered an lvalue.
+ assert((TR.isNull() || !TR->isReferenceType()) &&
+ "Expressions can't have reference type");
+
+ TR = t;
+ }
+
+ /// isValueDependent - Determines whether this expression is
+ /// value-dependent (C++ [temp.dep.constexpr]). For example, the
+ /// array bound of "Chars" in the following example is
+ /// value-dependent.
+ /// @code
+ /// template<int Size, char (&Chars)[Size]> struct meta_string;
+ /// @endcode
+ bool isValueDependent() const { return ValueDependent; }
+
+ /// \brief Set whether this expression is value-dependent or not.
+ void setValueDependent(bool VD) { ValueDependent = VD; }
+
+ /// isTypeDependent - Determines whether this expression is
+ /// type-dependent (C++ [temp.dep.expr]), which means that its type
+ /// could change from one template instantiation to the next. For
+ /// example, the expressions "x" and "x + y" are type-dependent in
+ /// the following code, but "y" is not type-dependent:
+ /// @code
+ /// template<typename T>
+ /// void add(T x, int y) {
+ /// x + y;
+ /// }
+ /// @endcode
+ bool isTypeDependent() const { return TypeDependent; }
+
+ /// \brief Set whether this expression is type-dependent or not.
+ void setTypeDependent(bool TD) { TypeDependent = TD; }
+
+ /// SourceLocation tokens are not useful in isolation - they are low level
+ /// value objects created/interpreted by SourceManager. We assume AST
+ /// clients will have a pointer to the respective SourceManager.
+ virtual SourceRange getSourceRange() const = 0;
+
+ /// getExprLoc - Return the preferred location for the arrow when diagnosing
+ /// a problem with a generic expression.
+ virtual SourceLocation getExprLoc() const { return getLocStart(); }
+
+ /// isUnusedResultAWarning - Return true if this immediate expression should
+ /// be warned about if the result is unused. If so, fill in Loc and Ranges
+ /// with location to warn on and the source range[s] to report with the
+ /// warning.
+ bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
+ SourceRange &R2) const;
+
+ /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
+ /// incomplete type other than void. Nonarray expressions that can be lvalues:
+ /// - name, where name must be a variable
+ /// - e[i]
+ /// - (e), where e must be an lvalue
+ /// - e.name, where e must be an lvalue
+ /// - e->name
+ /// - *e, the type of e cannot be a function type
+ /// - string-constant
+ /// - reference type [C++ [expr]]
+ /// - b ? x : y, where x and y are lvalues of suitable types [C++]
+ ///
+ enum isLvalueResult {
+ LV_Valid,
+ LV_NotObjectType,
+ LV_IncompleteVoidType,
+ LV_DuplicateVectorComponents,
+ LV_InvalidExpression,
+ LV_MemberFunction
+ };
+ isLvalueResult isLvalue(ASTContext &Ctx) const;
+
+ // Same as above, but excluding checks for non-object and void types in C
+ isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
+
+ /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
+ /// does not have an incomplete type, does not have a const-qualified type,
+ /// and if it is a structure or union, does not have any member (including,
+ /// recursively, any member or element of all contained aggregates or unions)
+ /// with a const-qualified type.
+ ///
+ /// \param Loc [in] [out] - A source location which *may* be filled
+ /// in with the location of the expression making this a
+ /// non-modifiable lvalue, if specified.
+ enum isModifiableLvalueResult {
+ MLV_Valid,
+ MLV_NotObjectType,
+ MLV_IncompleteVoidType,
+ MLV_DuplicateVectorComponents,
+ MLV_InvalidExpression,
+ MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
+ MLV_IncompleteType,
+ MLV_ConstQualified,
+ MLV_ArrayType,
+ MLV_NotBlockQualified,
+ MLV_ReadonlyProperty,
+ MLV_NoSetterProperty,
+ MLV_MemberFunction
+ };
+ isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
+ SourceLocation *Loc = 0) const;
+
+ /// \brief If this expression refers to a bit-field, retrieve the
+ /// declaration of that bit-field.
+ FieldDecl *getBitField();
+
+ const FieldDecl *getBitField() const {
+ return const_cast<Expr*>(this)->getBitField();
+ }
+
+ /// isIntegerConstantExpr - Return true if this expression is a valid integer
+ /// constant expression, and, if so, return its value in Result. If not a
+ /// valid i-c-e, return false and fill in Loc (if specified) with the location
+ /// of the invalid expression.
+ bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
+ SourceLocation *Loc = 0,
+ bool isEvaluated = true) const;
+ bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
+ llvm::APSInt X;
+ return isIntegerConstantExpr(X, Ctx, Loc);
+ }
+ /// isConstantInitializer - Returns true if this expression is a constant
+ /// initializer, which can be emitted at compile-time.
+ bool isConstantInitializer(ASTContext &Ctx) const;
+
+ /// EvalResult is a struct with detailed info about an evaluated expression.
+ struct EvalResult {
+ /// Val - This is the value the expression can be folded to.
+ APValue Val;
+
+ /// HasSideEffects - Whether the evaluated expression has side effects.
+ /// For example, (f() && 0) can be folded, but it still has side effects.
+ bool HasSideEffects;
+
+ /// Diag - If the expression is unfoldable, then Diag contains a note
+ /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
+ /// position for the error, and DiagExpr is the expression that caused
+ /// the error.
+ /// If the expression is foldable, but not an integer constant expression,
+ /// Diag contains a note diagnostic that describes why it isn't an integer
+ /// constant expression. If the expression *is* an integer constant
+ /// expression, then Diag will be zero.
+ unsigned Diag;
+ const Expr *DiagExpr;
+ SourceLocation DiagLoc;
+
+ EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
+ };
+
+ /// Evaluate - Return true if this is a constant which we can fold using
+ /// any crazy technique (that has nothing to do with language standards) that
+ /// we want to. If this function returns true, it returns the folded constant
+ /// in Result.
+ bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
+
+ /// isEvaluatable - Call Evaluate to see if this expression can be constant
+ /// folded, but discard the result.
+ bool isEvaluatable(ASTContext &Ctx) const;
+
+ /// EvaluateAsInt - Call Evaluate and return the folded integer. This
+ /// must be called on an expression that constant folds to an integer.
+ llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
+
+ /// EvaluateAsLValue - Evaluate an expression to see if it's a valid LValue.
+ bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
+
+ /// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an
+ /// integer constant expression with the value zero, or if this is one that is
+ /// cast to void*.
+ bool isNullPointerConstant(ASTContext &Ctx) const;
+
+ /// hasGlobalStorage - Return true if this expression has static storage
+ /// duration. This means that the address of this expression is a link-time
+ /// constant.
+ bool hasGlobalStorage() const;
+
+ /// isOBJCGCCandidate - Return true if this expression may be used in a read/
+ /// write barrier.
+ bool isOBJCGCCandidate(ASTContext &Ctx) const;
+
+ /// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return
+ /// its subexpression. If that subexpression is also a ParenExpr,
+ /// then this method recursively returns its subexpression, and so forth.
+ /// Otherwise, the method returns the current Expr.
+ Expr* IgnoreParens();
+
+ /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
+ /// or CastExprs, returning their operand.
+ Expr *IgnoreParenCasts();
+
+ /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
+ /// value (including ptr->int casts of the same size). Strip off any
+ /// ParenExpr or CastExprs, returning their operand.
+ Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
+
+ const Expr* IgnoreParens() const {
+ return const_cast<Expr*>(this)->IgnoreParens();
+ }
+ const Expr *IgnoreParenCasts() const {
+ return const_cast<Expr*>(this)->IgnoreParenCasts();
+ }
+ const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
+ return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
+ }
+
+ static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
+ static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() >= firstExprConstant &&
+ T->getStmtClass() <= lastExprConstant;
+ }
+ static bool classof(const Expr *) { return true; }
+};
+
+
+//===----------------------------------------------------------------------===//
+// Primary Expressions.
+//===----------------------------------------------------------------------===//
+
+/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
+/// enum, etc.
+class DeclRefExpr : public Expr {
+ NamedDecl *D;
+ SourceLocation Loc;
+
+protected:
+ // FIXME: Eventually, this constructor will go away and all subclasses
+ // will have to provide the type- and value-dependent flags.
+ DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
+ Expr(SC, t), D(d), Loc(l) {}
+
+ DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
+ bool VD) :
+ Expr(SC, t, TD, VD), D(d), Loc(l) {}
+
+public:
+ // FIXME: Eventually, this constructor will go away and all clients
+ // will have to provide the type- and value-dependent flags.
+ DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
+ Expr(DeclRefExprClass, t), D(d), Loc(l) {}
+
+ DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
+ Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
+
+ /// \brief Construct an empty declaration reference expression.
+ explicit DeclRefExpr(EmptyShell Empty)
+ : Expr(DeclRefExprClass, Empty) { }
+
+ NamedDecl *getDecl() { return D; }
+ const NamedDecl *getDecl() const { return D; }
+ void setDecl(NamedDecl *NewD) { D = NewD; }
+
+ SourceLocation getLocation() const { return Loc; }
+ void setLocation(SourceLocation L) { Loc = L; }
+ virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == DeclRefExprClass ||
+ T->getStmtClass() == CXXConditionDeclExprClass ||
+ T->getStmtClass() == QualifiedDeclRefExprClass;
+ }
+ static bool classof(const DeclRefExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
+class PredefinedExpr : public Expr {
+public:
+ enum IdentType {
+ Func,
+ Function,
+ PrettyFunction
+ };
+
+private:
+ SourceLocation Loc;
+ IdentType Type;
+public:
+ PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
+ : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
+
+ /// \brief Construct an empty predefined expression.
+ explicit PredefinedExpr(EmptyShell Empty)
+ : Expr(PredefinedExprClass, Empty) { }
+
+ PredefinedExpr* Clone(ASTContext &C) const;
+
+ IdentType getIdentType() const { return Type; }
+ void setIdentType(IdentType IT) { Type = IT; }
+
+ SourceLocation getLocation() const { return Loc; }
+ void setLocation(SourceLocation L) { Loc = L; }
+
+ // FIXME: The logic for computing the value of a predefined expr should go
+ // into a method here that takes the inner-most code decl (a block, function
+ // or objc method) that the expr lives in. This would allow sema and codegen
+ // to be consistent for things like sizeof(__func__) etc.
+
+ virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == PredefinedExprClass;
+ }
+ static bool classof(const PredefinedExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+class IntegerLiteral : public Expr {
+ llvm::APInt Value;
+ SourceLocation Loc;
+public:
+ // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
+ // or UnsignedLongLongTy
+ IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
+ : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
+ assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
+ }
+
+ /// \brief Construct an empty integer literal.
+ explicit IntegerLiteral(EmptyShell Empty)
+ : Expr(IntegerLiteralClass, Empty) { }
+
+ IntegerLiteral* Clone(ASTContext &C) const;
+
+ const llvm::APInt &getValue() const { return Value; }
+ virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
+
+ /// \brief Retrieve the location of the literal.
+ SourceLocation getLocation() const { return Loc; }
+
+ void setValue(const llvm::APInt &Val) { Value = Val; }
+ void setLocation(SourceLocation Location) { Loc = Location; }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == IntegerLiteralClass;
+ }
+ static bool classof(const IntegerLiteral *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+class CharacterLiteral : public Expr {
+ unsigned Value;
+ SourceLocation Loc;
+ bool IsWide;
+public:
+ // type should be IntTy
+ CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
+ : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
+ }
+
+ /// \brief Construct an empty character literal.
+ CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
+
+ CharacterLiteral* Clone(ASTContext &C) const;
+
+ SourceLocation getLoc() const { return Loc; }
+ bool isWide() const { return IsWide; }
+
+ virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
+
+ unsigned getValue() const { return Value; }
+
+ void setLocation(SourceLocation Location) { Loc = Location; }
+ void setWide(bool W) { IsWide = W; }
+ void setValue(unsigned Val) { Value = Val; }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == CharacterLiteralClass;
+ }
+ static bool classof(const CharacterLiteral *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+class FloatingLiteral : public Expr {
+ llvm::APFloat Value;
+ bool IsExact : 1;
+ SourceLocation Loc;
+public:
+ FloatingLiteral(const llvm::APFloat &V, bool* isexact,
+ QualType Type, SourceLocation L)
+ : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
+
+ /// \brief Construct an empty floating-point literal.
+ explicit FloatingLiteral(EmptyShell Empty)
+ : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
+
+ FloatingLiteral* Clone(ASTContext &C) const;
+
+ const llvm::APFloat &getValue() const { return Value; }
+ void setValue(const llvm::APFloat &Val) { Value = Val; }
+
+ bool isExact() const { return IsExact; }
+ void setExact(bool E) { IsExact = E; }
+
+ /// getValueAsApproximateDouble - This returns the value as an inaccurate
+ /// double. Note that this may cause loss of precision, but is useful for
+ /// debugging dumps, etc.
+ double getValueAsApproximateDouble() const;
+
+ SourceLocation getLocation() const { return Loc; }
+ void setLocation(SourceLocation L) { Loc = L; }
+
+ // FIXME: The logic for computing the value of a predefined expr should go
+ // into a method here that takes the inner-most code decl (a block, function
+ // or objc method) that the expr lives in. This would allow sema and codegen
+ // to be consistent for things like sizeof(__func__) etc.
+
+ virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == FloatingLiteralClass;
+ }
+ static bool classof(const FloatingLiteral *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// ImaginaryLiteral - We support imaginary integer and floating point literals,
+/// like "1.0i". We represent these as a wrapper around FloatingLiteral and
+/// IntegerLiteral classes. Instances of this class always have a Complex type
+/// whose element type matches the subexpression.
+///
+class ImaginaryLiteral : public Expr {
+ Stmt *Val;
+public:
+ ImaginaryLiteral(Expr *val, QualType Ty)
+ : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
+
+ /// \brief Build an empty imaginary literal.
+ explicit ImaginaryLiteral(EmptyShell Empty)
+ : Expr(ImaginaryLiteralClass, Empty) { }
+
+ const Expr *getSubExpr() const { return cast<Expr>(Val); }
+ Expr *getSubExpr() { return cast<Expr>(Val); }
+ void setSubExpr(Expr *E) { Val = E; }
+
+ ImaginaryLiteral* Clone(ASTContext &C) const;
+
+ virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == ImaginaryLiteralClass;
+ }
+ static bool classof(const ImaginaryLiteral *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// StringLiteral - This represents a string literal expression, e.g. "foo"
+/// or L"bar" (wide strings). The actual string is returned by getStrData()
+/// is NOT null-terminated, and the length of the string is determined by
+/// calling getByteLength(). The C type for a string is always a
+/// ConstantArrayType. In C++, the char type is const qualified, in C it is
+/// not.
+///
+/// Note that strings in C can be formed by concatenation of multiple string
+/// literal pptokens in translation phase #6. This keeps track of the locations
+/// of each of these pieces.
+///
+/// Strings in C can also be truncated and extended by assigning into arrays,
+/// e.g. with constructs like:
+/// char X[2] = "foobar";
+/// In this case, getByteLength() will return 6, but the string literal will
+/// have type "char[2]".
+class StringLiteral : public Expr {
+ const char *StrData;
+ unsigned ByteLength;
+ bool IsWide;
+ unsigned NumConcatenated;
+ SourceLocation TokLocs[1];
+
+ StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
+public:
+ /// This is the "fully general" constructor that allows representation of
+ /// strings formed from multiple concatenated tokens.
+ static StringLiteral *Create(ASTContext &C, const char *StrData,
+ unsigned ByteLength, bool Wide, QualType Ty,
+ const SourceLocation *Loc, unsigned NumStrs);
+
+ /// Simple constructor for string literals made from one token.
+ static StringLiteral *Create(ASTContext &C, const char *StrData,
+ unsigned ByteLength,
+ bool Wide, QualType Ty, SourceLocation Loc) {
+ return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
+ }
+
+ /// \brief Construct an empty string literal.
+ static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
+
+ StringLiteral* Clone(ASTContext &C) const;
+ void Destroy(ASTContext &C);
+
+ const char *getStrData() const { return StrData; }
+ unsigned getByteLength() const { return ByteLength; }
+
+ /// \brief Sets the string data to the given string data.
+ void setStrData(ASTContext &C, const char *Str, unsigned Len);
+
+ bool isWide() const { return IsWide; }
+ void setWide(bool W) { IsWide = W; }
+
+ bool containsNonAsciiOrNull() const {
+ for (unsigned i = 0; i < getByteLength(); ++i)
+ if (!isascii(getStrData()[i]) || !getStrData()[i])
+ return true;
+ return false;
+ }
+ /// getNumConcatenated - Get the number of string literal tokens that were
+ /// concatenated in translation phase #6 to form this string literal.
+ unsigned getNumConcatenated() const { return NumConcatenated; }
+
+ SourceLocation getStrTokenLoc(unsigned TokNum) const {
+ assert(TokNum < NumConcatenated && "Invalid tok number");
+ return TokLocs[TokNum];
+ }
+ void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
+ assert(TokNum < NumConcatenated && "Invalid tok number");
+ TokLocs[TokNum] = L;
+ }
+
+ typedef const SourceLocation *tokloc_iterator;
+ tokloc_iterator tokloc_begin() const { return TokLocs; }
+ tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
+ }
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == StringLiteralClass;
+ }
+ static bool classof(const StringLiteral *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
+/// AST node is only formed if full location information is requested.
+class ParenExpr : public Expr {
+ SourceLocation L, R;
+ Stmt *Val;
+public:
+ ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
+ : Expr(ParenExprClass, val->getType(),
+ val->isTypeDependent(), val->isValueDependent()),
+ L(l), R(r), Val(val) {}
+
+ /// \brief Construct an empty parenthesized expression.
+ explicit ParenExpr(EmptyShell Empty)
+ : Expr(ParenExprClass, Empty) { }
+
+ const Expr *getSubExpr() const { return cast<Expr>(Val); }
+ Expr *getSubExpr() { return cast<Expr>(Val); }
+ void setSubExpr(Expr *E) { Val = E; }
+
+ virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
+
+ /// \brief Get the location of the left parentheses '('.
+ SourceLocation getLParen() const { return L; }
+ void setLParen(SourceLocation Loc) { L = Loc; }
+
+ /// \brief Get the location of the right parentheses ')'.
+ SourceLocation getRParen() const { return R; }
+ void setRParen(SourceLocation Loc) { R = Loc; }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == ParenExprClass;
+ }
+ static bool classof(const ParenExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+
+/// UnaryOperator - This represents the unary-expression's (except sizeof and
+/// alignof), the postinc/postdec operators from postfix-expression, and various
+/// extensions.
+///
+/// Notes on various nodes:
+///
+/// Real/Imag - These return the real/imag part of a complex operand. If
+/// applied to a non-complex value, the former returns its operand and the
+/// later returns zero in the type of the operand.
+///
+/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
+/// subexpression is a compound literal with the various MemberExpr and
+/// ArraySubscriptExpr's applied to it.
+///
+class UnaryOperator : public Expr {
+public:
+ // Note that additions to this should also update the StmtVisitor class.
+ enum Opcode {
+ PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
+ PreInc, PreDec, // [C99 6.5.3.1] Prefix increment and decrement operators.
+ AddrOf, Deref, // [C99 6.5.3.2] Address and indirection operators.
+ Plus, Minus, // [C99 6.5.3.3] Unary arithmetic operators.
+ Not, LNot, // [C99 6.5.3.3] Unary arithmetic operators.
+ Real, Imag, // "__real expr"/"__imag expr" Extension.
+ Extension, // __extension__ marker.
+ OffsetOf // __builtin_offsetof
+ };
+private:
+ Stmt *Val;
+ Opcode Opc;
+ SourceLocation Loc;
+public:
+
+ UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
+ : Expr(UnaryOperatorClass, type,
+ input->isTypeDependent() && opc != OffsetOf,
+ input->isValueDependent()),
+ Val(input), Opc(opc), Loc(l) {}
+
+ /// \brief Build an empty unary operator.
+ explicit UnaryOperator(EmptyShell Empty)
+ : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
+
+ Opcode getOpcode() const { return Opc; }
+ void setOpcode(Opcode O) { Opc = O; }
+
+ Expr *getSubExpr() const { return cast<Expr>(Val); }
+ void setSubExpr(Expr *E) { Val = E; }
+
+ /// getOperatorLoc - Return the location of the operator.
+ SourceLocation getOperatorLoc() const { return Loc; }
+ void setOperatorLoc(SourceLocation L) { Loc = L; }
+
+ /// isPostfix - Return true if this is a postfix operation, like x++.
+ static bool isPostfix(Opcode Op) {
+ return Op == PostInc || Op == PostDec;
+ }
+
+ /// isPostfix - Return true if this is a prefix operation, like --x.
+ static bool isPrefix(Opcode Op) {
+ return Op == PreInc || Op == PreDec;
+ }
+
+ bool isPrefix() const { return isPrefix(Opc); }
+ bool isPostfix() const { return isPostfix(Opc); }
+ bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
+ bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
+ bool isOffsetOfOp() const { return Opc == OffsetOf; }
+ static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
+
+ /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+ /// corresponds to, e.g. "sizeof" or "[pre]++"
+ static const char *getOpcodeStr(Opcode Op);
+
+ /// \brief Retrieve the unary opcode that corresponds to the given
+ /// overloaded operator.
+ static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
+
+ /// \brief Retrieve the overloaded operator kind that corresponds to
+ /// the given unary opcode.
+ static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
+
+ virtual SourceRange getSourceRange() const {
+ if (isPostfix())
+ return SourceRange(Val->getLocStart(), Loc);
+ else
+ return SourceRange(Loc, Val->getLocEnd());
+ }
+ virtual SourceLocation getExprLoc() const { return Loc; }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == UnaryOperatorClass;
+ }
+ static bool classof(const UnaryOperator *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
+/// types and expressions.
+class SizeOfAlignOfExpr : public Expr {
+ bool isSizeof : 1; // true if sizeof, false if alignof.
+ bool isType : 1; // true if operand is a type, false if an expression
+ union {
+ void *Ty;
+ Stmt *Ex;
+ } Argument;
+ SourceLocation OpLoc, RParenLoc;
+public:
+ SizeOfAlignOfExpr(bool issizeof, QualType T,
+ QualType resultType, SourceLocation op,
+ SourceLocation rp) :
+ Expr(SizeOfAlignOfExprClass, resultType,
+ false, // Never type-dependent (C++ [temp.dep.expr]p3).
+ // Value-dependent if the argument is type-dependent.
+ T->isDependentType()),
+ isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
+ Argument.Ty = T.getAsOpaquePtr();
+ }
+
+ SizeOfAlignOfExpr(bool issizeof, Expr *E,
+ QualType resultType, SourceLocation op,
+ SourceLocation rp) :
+ Expr(SizeOfAlignOfExprClass, resultType,
+ false, // Never type-dependent (C++ [temp.dep.expr]p3).
+ // Value-dependent if the argument is type-dependent.
+ E->isTypeDependent()),
+ isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
+ Argument.Ex = E;
+ }
+
+ /// \brief Construct an empty sizeof/alignof expression.
+ explicit SizeOfAlignOfExpr(EmptyShell Empty)
+ : Expr(SizeOfAlignOfExprClass, Empty) { }
+
+ virtual void Destroy(ASTContext& C);
+
+ bool isSizeOf() const { return isSizeof; }
+ void setSizeof(bool S) { isSizeof = S; }
+
+ bool isArgumentType() const { return isType; }
+ QualType getArgumentType() const {
+ assert(isArgumentType() && "calling getArgumentType() when arg is expr");
+ return QualType::getFromOpaquePtr(Argument.Ty);
+ }
+ Expr *getArgumentExpr() {
+ assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
+ return static_cast<Expr*>(Argument.Ex);
+ }
+ const Expr *getArgumentExpr() const {
+ return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
+ }
+
+ void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
+ void setArgument(QualType T) {
+ Argument.Ty = T.getAsOpaquePtr();
+ isType = true;
+ }
+
+ /// Gets the argument type, or the type of the argument expression, whichever
+ /// is appropriate.
+ QualType getTypeOfArgument() const {
+ return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
+ }
+
+ SourceLocation getOperatorLoc() const { return OpLoc; }
+ void setOperatorLoc(SourceLocation L) { OpLoc = L; }
+
+ SourceLocation getRParenLoc() const { return RParenLoc; }
+ void setRParenLoc(SourceLocation L) { RParenLoc = L; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(OpLoc, RParenLoc);
+ }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == SizeOfAlignOfExprClass;
+ }
+ static bool classof(const SizeOfAlignOfExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+//===----------------------------------------------------------------------===//
+// Postfix Operators.
+//===----------------------------------------------------------------------===//
+
+/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
+class ArraySubscriptExpr : public Expr {
+ enum { LHS, RHS, END_EXPR=2 };
+ Stmt* SubExprs[END_EXPR];
+ SourceLocation RBracketLoc;
+public:
+ ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
+ SourceLocation rbracketloc)
+ : Expr(ArraySubscriptExprClass, t,
+ lhs->isTypeDependent() || rhs->isTypeDependent(),
+ lhs->isValueDependent() || rhs->isValueDependent()),
+ RBracketLoc(rbracketloc) {
+ SubExprs[LHS] = lhs;
+ SubExprs[RHS] = rhs;
+ }
+
+ /// \brief Create an empty array subscript expression.
+ explicit ArraySubscriptExpr(EmptyShell Shell)
+ : Expr(ArraySubscriptExprClass, Shell) { }
+
+ /// An array access can be written A[4] or 4[A] (both are equivalent).
+ /// - getBase() and getIdx() always present the normalized view: A[4].
+ /// In this case getBase() returns "A" and getIdx() returns "4".
+ /// - getLHS() and getRHS() present the syntactic view. e.g. for
+ /// 4[A] getLHS() returns "4".
+ /// Note: Because vector element access is also written A[4] we must
+ /// predicate the format conversion in getBase and getIdx only on the
+ /// the type of the RHS, as it is possible for the LHS to be a vector of
+ /// integer type
+ Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
+ const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
+ void setLHS(Expr *E) { SubExprs[LHS] = E; }
+
+ Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
+ const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
+ void setRHS(Expr *E) { SubExprs[RHS] = E; }
+
+ Expr *getBase() {
+ return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
+ }
+
+ const Expr *getBase() const {
+ return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
+ }
+
+ Expr *getIdx() {
+ return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
+ }
+
+ const Expr *getIdx() const {
+ return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
+ }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(getLHS()->getLocStart(), RBracketLoc);
+ }
+
+ SourceLocation getRBracketLoc() const { return RBracketLoc; }
+ void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
+
+ virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == ArraySubscriptExprClass;
+ }
+ static bool classof(const ArraySubscriptExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+
+/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
+/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
+/// while its subclasses may represent alternative syntax that (semantically)
+/// results in a function call. For example, CXXOperatorCallExpr is
+/// a subclass for overloaded operator calls that use operator syntax, e.g.,
+/// "str1 + str2" to resolve to a function call.
+class CallExpr : public Expr {
+ enum { FN=0, ARGS_START=1 };
+ Stmt **SubExprs;
+ unsigned NumArgs;
+ SourceLocation RParenLoc;
+
+protected:
+ // This version of the constructor is for derived classes.
+ CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
+ QualType t, SourceLocation rparenloc);
+
+public:
+ CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
+ SourceLocation rparenloc);
+
+ /// \brief Build an empty call expression.
+ CallExpr(ASTContext &C, EmptyShell Empty);
+
+ ~CallExpr() {}
+
+ void Destroy(ASTContext& C);
+
+ const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
+ Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
+ void setCallee(Expr *F) { SubExprs[FN] = F; }
+
+ /// getNumArgs - Return the number of actual arguments to this call.
+ ///
+ unsigned getNumArgs() const { return NumArgs; }
+
+ /// getArg - Return the specified argument.
+ Expr *getArg(unsigned Arg) {
+ assert(Arg < NumArgs && "Arg access out of range!");
+ return cast<Expr>(SubExprs[Arg+ARGS_START]);
+ }
+ const Expr *getArg(unsigned Arg) const {
+ assert(Arg < NumArgs && "Arg access out of range!");
+ return cast<Expr>(SubExprs[Arg+ARGS_START]);
+ }
+
+ /// setArg - Set the specified argument.
+ void setArg(unsigned Arg, Expr *ArgExpr) {
+ assert(Arg < NumArgs && "Arg access out of range!");
+ SubExprs[Arg+ARGS_START] = ArgExpr;
+ }
+
+ /// setNumArgs - This changes the number of arguments present in this call.
+ /// Any orphaned expressions are deleted by this, and any new operands are set
+ /// to null.
+ void setNumArgs(ASTContext& C, unsigned NumArgs);
+
+ typedef ExprIterator arg_iterator;
+ typedef ConstExprIterator const_arg_iterator;
+
+ arg_iterator arg_begin() { return SubExprs+ARGS_START; }
+ arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
+ const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
+ const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
+
+ /// getNumCommas - Return the number of commas that must have been present in
+ /// this function call.
+ unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
+
+ /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
+ /// not, return 0.
+ unsigned isBuiltinCall(ASTContext &Context) const;
+
+ /// getCallReturnType - Get the return type of the call expr. This is not
+ /// always the type of the expr itself, if the return type is a reference
+ /// type.
+ QualType getCallReturnType() const;
+
+ SourceLocation getRParenLoc() const { return RParenLoc; }
+ void setRParenLoc(SourceLocation L) { RParenLoc = L; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(getCallee()->getLocStart(), RParenLoc);
+ }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == CallExprClass ||
+ T->getStmtClass() == CXXOperatorCallExprClass ||
+ T->getStmtClass() == CXXMemberCallExprClass;
+ }
+ static bool classof(const CallExpr *) { return true; }
+ static bool classof(const CXXOperatorCallExpr *) { return true; }
+ static bool classof(const CXXMemberCallExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
+///
+class MemberExpr : public Expr {
+ /// Base - the expression for the base pointer or structure references. In
+ /// X.F, this is "X".
+ Stmt *Base;
+
+ /// MemberDecl - This is the decl being referenced by the field/member name.
+ /// In X.F, this is the decl referenced by F.
+ NamedDecl *MemberDecl;
+
+ /// MemberLoc - This is the location of the member name.
+ SourceLocation MemberLoc;
+
+ /// IsArrow - True if this is "X->F", false if this is "X.F".
+ bool IsArrow;
+public:
+ MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
+ QualType ty)
+ : Expr(MemberExprClass, ty,
+ base->isTypeDependent(), base->isValueDependent()),
+ Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
+
+ /// \brief Build an empty member reference expression.
+ explicit MemberExpr(EmptyShell Empty) : Expr(MemberExprClass, Empty) { }
+
+ void setBase(Expr *E) { Base = E; }
+ Expr *getBase() const { return cast<Expr>(Base); }
+
+ /// \brief Retrieve the member declaration to which this expression refers.
+ ///
+ /// The returned declaration will either be a FieldDecl or (in C++)
+ /// a CXXMethodDecl.
+ NamedDecl *getMemberDecl() const { return MemberDecl; }
+ void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
+
+ bool isArrow() const { return IsArrow; }
+ void setArrow(bool A) { IsArrow = A; }
+
+ /// getMemberLoc - Return the location of the "member", in X->F, it is the
+ /// location of 'F'.
+ SourceLocation getMemberLoc() const { return MemberLoc; }
+ void setMemberLoc(SourceLocation L) { MemberLoc = L; }
+
+ virtual SourceRange getSourceRange() const {
+ // If we have an implicit base (like a C++ implicit this),
+ // make sure not to return its location
+ SourceLocation BaseLoc = getBase()->getLocStart();
+ if (BaseLoc.isInvalid())
+ return SourceRange(MemberLoc, MemberLoc);
+ return SourceRange(BaseLoc, MemberLoc);
+ }
+
+ virtual SourceLocation getExprLoc() const { return MemberLoc; }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == MemberExprClass;
+ }
+ static bool classof(const MemberExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// CompoundLiteralExpr - [C99 6.5.2.5]
+///
+class CompoundLiteralExpr : public Expr {
+ /// LParenLoc - If non-null, this is the location of the left paren in a
+ /// compound literal like "(int){4}". This can be null if this is a
+ /// synthesized compound expression.
+ SourceLocation LParenLoc;
+ Stmt *Init;
+ bool FileScope;
+public:
+ CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
+ bool fileScope)
+ : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
+ FileScope(fileScope) {}
+
+ /// \brief Construct an empty compound literal.
+ explicit CompoundLiteralExpr(EmptyShell Empty)
+ : Expr(CompoundLiteralExprClass, Empty) { }
+
+ const Expr *getInitializer() const { return cast<Expr>(Init); }
+ Expr *getInitializer() { return cast<Expr>(Init); }
+ void setInitializer(Expr *E) { Init = E; }
+
+ bool isFileScope() const { return FileScope; }
+ void setFileScope(bool FS) { FileScope = FS; }
+
+ SourceLocation getLParenLoc() const { return LParenLoc; }
+ void setLParenLoc(SourceLocation L) { LParenLoc = L; }
+
+ virtual SourceRange getSourceRange() const {
+ // FIXME: Init should never be null.
+ if (!Init)
+ return SourceRange();
+ if (LParenLoc.isInvalid())
+ return Init->getSourceRange();
+ return SourceRange(LParenLoc, Init->getLocEnd());
+ }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == CompoundLiteralExprClass;
+ }
+ static bool classof(const CompoundLiteralExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// CastExpr - Base class for type casts, including both implicit
+/// casts (ImplicitCastExpr) and explicit casts that have some
+/// representation in the source code (ExplicitCastExpr's derived
+/// classes).
+class CastExpr : public Expr {
+ Stmt *Op;
+protected:
+ CastExpr(StmtClass SC, QualType ty, Expr *op) :
+ Expr(SC, ty,
+ // Cast expressions are type-dependent if the type is
+ // dependent (C++ [temp.dep.expr]p3).
+ ty->isDependentType(),
+ // Cast expressions are value-dependent if the type is
+ // dependent or if the subexpression is value-dependent.
+ ty->isDependentType() || (op && op->isValueDependent())),
+ Op(op) {}
+
+ /// \brief Construct an empty cast.
+ CastExpr(StmtClass SC, EmptyShell Empty)
+ : Expr(SC, Empty) { }
+
+public:
+ Expr *getSubExpr() { return cast<Expr>(Op); }
+ const Expr *getSubExpr() const { return cast<Expr>(Op); }
+ void setSubExpr(Expr *E) { Op = E; }
+
+ static bool classof(const Stmt *T) {
+ StmtClass SC = T->getStmtClass();
+ if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
+ return true;
+
+ if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
+ return true;
+
+ return false;
+ }
+ static bool classof(const CastExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// ImplicitCastExpr - Allows us to explicitly represent implicit type
+/// conversions, which have no direct representation in the original
+/// source code. For example: converting T[]->T*, void f()->void
+/// (*f)(), float->double, short->int, etc.
+///
+/// In C, implicit casts always produce rvalues. However, in C++, an
+/// implicit cast whose result is being bound to a reference will be
+/// an lvalue. For example:
+///
+/// @code
+/// class Base { };
+/// class Derived : public Base { };
+/// void f(Derived d) {
+/// Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
+/// }
+/// @endcode
+class ImplicitCastExpr : public CastExpr {
+ /// LvalueCast - Whether this cast produces an lvalue.
+ bool LvalueCast;
+
+public:
+ ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
+ CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
+
+ /// \brief Construct an empty implicit cast.
+ explicit ImplicitCastExpr(EmptyShell Shell)
+ : CastExpr(ImplicitCastExprClass, Shell) { }
+
+
+ virtual SourceRange getSourceRange() const {
+ return getSubExpr()->getSourceRange();
+ }
+
+ /// isLvalueCast - Whether this cast produces an lvalue.
+ bool isLvalueCast() const { return LvalueCast; }
+
+ /// setLvalueCast - Set whether this cast produces an lvalue.
+ void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == ImplicitCastExprClass;
+ }
+ static bool classof(const ImplicitCastExpr *) { return true; }
+};
+
+/// ExplicitCastExpr - An explicit cast written in the source
+/// code.
+///
+/// This class is effectively an abstract class, because it provides
+/// the basic representation of an explicitly-written cast without
+/// specifying which kind of cast (C cast, functional cast, static
+/// cast, etc.) was written; specific derived classes represent the
+/// particular style of cast and its location information.
+///
+/// Unlike implicit casts, explicit cast nodes have two different
+/// types: the type that was written into the source code, and the
+/// actual type of the expression as determined by semantic
+/// analysis. These types may differ slightly. For example, in C++ one
+/// can cast to a reference type, which indicates that the resulting
+/// expression will be an lvalue. The reference type, however, will
+/// not be used as the type of the expression.
+class ExplicitCastExpr : public CastExpr {
+ /// TypeAsWritten - The type that this expression is casting to, as
+ /// written in the source code.
+ QualType TypeAsWritten;
+
+protected:
+ ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
+ : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
+
+ /// \brief Construct an empty explicit cast.
+ ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
+ : CastExpr(SC, Shell) { }
+
+public:
+ /// getTypeAsWritten - Returns the type that this expression is
+ /// casting to, as written in the source code.
+ QualType getTypeAsWritten() const { return TypeAsWritten; }
+ void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
+
+ static bool classof(const Stmt *T) {
+ StmtClass SC = T->getStmtClass();
+ if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
+ return true;
+ if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
+ return true;
+
+ return false;
+ }
+ static bool classof(const ExplicitCastExpr *) { return true; }
+};
+
+/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
+/// cast in C++ (C++ [expr.cast]), which uses the syntax
+/// (Type)expr. For example: @c (int)f.
+class CStyleCastExpr : public ExplicitCastExpr {
+ SourceLocation LPLoc; // the location of the left paren
+ SourceLocation RPLoc; // the location of the right paren
+public:
+ CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
+ SourceLocation l, SourceLocation r) :
+ ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
+ LPLoc(l), RPLoc(r) {}
+
+ /// \brief Construct an empty C-style explicit cast.
+ explicit CStyleCastExpr(EmptyShell Shell)
+ : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
+
+ SourceLocation getLParenLoc() const { return LPLoc; }
+ void setLParenLoc(SourceLocation L) { LPLoc = L; }
+
+ SourceLocation getRParenLoc() const { return RPLoc; }
+ void setRParenLoc(SourceLocation L) { RPLoc = L; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
+ }
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == CStyleCastExprClass;
+ }
+ static bool classof(const CStyleCastExpr *) { return true; }
+};
+
+/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
+///
+/// This expression node kind describes a builtin binary operation,
+/// such as "x + y" for integer values "x" and "y". The operands will
+/// already have been converted to appropriate types (e.g., by
+/// performing promotions or conversions).
+///
+/// In C++, where operators may be overloaded, a different kind of
+/// expression node (CXXOperatorCallExpr) is used to express the
+/// invocation of an overloaded operator with operator syntax. Within
+/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
+/// used to store an expression "x + y" depends on the subexpressions
+/// for x and y. If neither x or y is type-dependent, and the "+"
+/// operator resolves to a built-in operation, BinaryOperator will be
+/// used to express the computation (x and y may still be
+/// value-dependent). If either x or y is type-dependent, or if the
+/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
+/// be used to express the computation.
+class BinaryOperator : public Expr {
+public:
+ enum Opcode {
+ // Operators listed in order of precedence.
+ // Note that additions to this should also update the StmtVisitor class.
+ PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
+ Mul, Div, Rem, // [C99 6.5.5] Multiplicative operators.
+ Add, Sub, // [C99 6.5.6] Additive operators.
+ Shl, Shr, // [C99 6.5.7] Bitwise shift operators.
+ LT, GT, LE, GE, // [C99 6.5.8] Relational operators.
+ EQ, NE, // [C99 6.5.9] Equality operators.
+ And, // [C99 6.5.10] Bitwise AND operator.
+ Xor, // [C99 6.5.11] Bitwise XOR operator.
+ Or, // [C99 6.5.12] Bitwise OR operator.
+ LAnd, // [C99 6.5.13] Logical AND operator.
+ LOr, // [C99 6.5.14] Logical OR operator.
+ Assign, MulAssign,// [C99 6.5.16] Assignment operators.
+ DivAssign, RemAssign,
+ AddAssign, SubAssign,
+ ShlAssign, ShrAssign,
+ AndAssign, XorAssign,
+ OrAssign,
+ Comma // [C99 6.5.17] Comma operator.
+ };
+private:
+ enum { LHS, RHS, END_EXPR };
+ Stmt* SubExprs[END_EXPR];
+ Opcode Opc;
+ SourceLocation OpLoc;
+public:
+
+ BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
+ SourceLocation opLoc)
+ : Expr(BinaryOperatorClass, ResTy,
+ lhs->isTypeDependent() || rhs->isTypeDependent(),
+ lhs->isValueDependent() || rhs->isValueDependent()),
+ Opc(opc), OpLoc(opLoc) {
+ SubExprs[LHS] = lhs;
+ SubExprs[RHS] = rhs;
+ assert(!isCompoundAssignmentOp() &&
+ "Use ArithAssignBinaryOperator for compound assignments");
+ }
+
+ /// \brief Construct an empty binary operator.
+ explicit BinaryOperator(EmptyShell Empty)
+ : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
+
+ SourceLocation getOperatorLoc() const { return OpLoc; }
+ void setOperatorLoc(SourceLocation L) { OpLoc = L; }
+
+ Opcode getOpcode() const { return Opc; }
+ void setOpcode(Opcode O) { Opc = O; }
+
+ Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
+ void setLHS(Expr *E) { SubExprs[LHS] = E; }
+ Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
+ void setRHS(Expr *E) { SubExprs[RHS] = E; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
+ }
+
+ /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+ /// corresponds to, e.g. "<<=".
+ static const char *getOpcodeStr(Opcode Op);
+
+ /// \brief Retrieve the binary opcode that corresponds to the given
+ /// overloaded operator.
+ static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
+
+ /// \brief Retrieve the overloaded operator kind that corresponds to
+ /// the given binary opcode.
+ static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
+
+ /// predicates to categorize the respective opcodes.
+ bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
+ bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
+ bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
+ bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
+
+ static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
+ bool isRelationalOp() const { return isRelationalOp(Opc); }
+
+ static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
+ bool isEqualityOp() const { return isEqualityOp(Opc); }
+
+ static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
+ bool isLogicalOp() const { return isLogicalOp(Opc); }
+
+ bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
+ bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
+ bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
+
+ static bool classof(const Stmt *S) {
+ return S->getStmtClass() == BinaryOperatorClass ||
+ S->getStmtClass() == CompoundAssignOperatorClass;
+ }
+ static bool classof(const BinaryOperator *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+
+protected:
+ BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
+ SourceLocation oploc, bool dead)
+ : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
+ SubExprs[LHS] = lhs;
+ SubExprs[RHS] = rhs;
+ }
+
+ BinaryOperator(StmtClass SC, EmptyShell Empty)
+ : Expr(SC, Empty), Opc(MulAssign) { }
+};
+
+/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
+/// track of the type the operation is performed in. Due to the semantics of
+/// these operators, the operands are promoted, the aritmetic performed, an
+/// implicit conversion back to the result type done, then the assignment takes
+/// place. This captures the intermediate type which the computation is done
+/// in.
+class CompoundAssignOperator : public BinaryOperator {
+ QualType ComputationLHSType;
+ QualType ComputationResultType;
+public:
+ CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
+ QualType ResType, QualType CompLHSType,
+ QualType CompResultType,
+ SourceLocation OpLoc)
+ : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
+ ComputationLHSType(CompLHSType),
+ ComputationResultType(CompResultType) {
+ assert(isCompoundAssignmentOp() &&
+ "Only should be used for compound assignments");
+ }
+
+ /// \brief Build an empty compound assignment operator expression.
+ explicit CompoundAssignOperator(EmptyShell Empty)
+ : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
+
+ // The two computation types are the type the LHS is converted
+ // to for the computation and the type of the result; the two are
+ // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
+ QualType getComputationLHSType() const { return ComputationLHSType; }
+ void setComputationLHSType(QualType T) { ComputationLHSType = T; }
+
+ QualType getComputationResultType() const { return ComputationResultType; }
+ void setComputationResultType(QualType T) { ComputationResultType = T; }
+
+ static bool classof(const CompoundAssignOperator *) { return true; }
+ static bool classof(const Stmt *S) {
+ return S->getStmtClass() == CompoundAssignOperatorClass;
+ }
+};
+
+/// ConditionalOperator - The ?: operator. Note that LHS may be null when the
+/// GNU "missing LHS" extension is in use.
+///
+class ConditionalOperator : public Expr {
+ enum { COND, LHS, RHS, END_EXPR };
+ Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
+public:
+ ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
+ : Expr(ConditionalOperatorClass, t,
+ // FIXME: the type of the conditional operator doesn't
+ // depend on the type of the conditional, but the standard
+ // seems to imply that it could. File a bug!
+ ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
+ (cond->isValueDependent() ||
+ (lhs && lhs->isValueDependent()) ||
+ (rhs && rhs->isValueDependent()))) {
+ SubExprs[COND] = cond;
+ SubExprs[LHS] = lhs;
+ SubExprs[RHS] = rhs;
+ }
+
+ /// \brief Build an empty conditional operator.
+ explicit ConditionalOperator(EmptyShell Empty)
+ : Expr(ConditionalOperatorClass, Empty) { }
+
+ // getCond - Return the expression representing the condition for
+ // the ?: operator.
+ Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
+ void setCond(Expr *E) { SubExprs[COND] = E; }
+
+ // getTrueExpr - Return the subexpression representing the value of the ?:
+ // expression if the condition evaluates to true. In most cases this value
+ // will be the same as getLHS() except a GCC extension allows the left
+ // subexpression to be omitted, and instead of the condition be returned.
+ // e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
+ // is only evaluated once.
+ Expr *getTrueExpr() const {
+ return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
+ }
+
+ // getTrueExpr - Return the subexpression representing the value of the ?:
+ // expression if the condition evaluates to false. This is the same as getRHS.
+ Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
+
+ Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
+ void setLHS(Expr *E) { SubExprs[LHS] = E; }
+
+ Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
+ void setRHS(Expr *E) { SubExprs[RHS] = E; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
+ }
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == ConditionalOperatorClass;
+ }
+ static bool classof(const ConditionalOperator *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// AddrLabelExpr - The GNU address of label extension, representing &&label.
+class AddrLabelExpr : public Expr {
+ SourceLocation AmpAmpLoc, LabelLoc;
+ LabelStmt *Label;
+public:
+ AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
+ QualType t)
+ : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
+
+ /// \brief Build an empty address of a label expression.
+ explicit AddrLabelExpr(EmptyShell Empty)
+ : Expr(AddrLabelExprClass, Empty) { }
+
+ SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
+ void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
+ SourceLocation getLabelLoc() const { return LabelLoc; }
+ void setLabelLoc(SourceLocation L) { LabelLoc = L; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(AmpAmpLoc, LabelLoc);
+ }
+
+ LabelStmt *getLabel() const { return Label; }
+ void setLabel(LabelStmt *S) { Label = S; }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == AddrLabelExprClass;
+ }
+ static bool classof(const AddrLabelExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
+/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
+/// takes the value of the last subexpression.
+class StmtExpr : public Expr {
+ Stmt *SubStmt;
+ SourceLocation LParenLoc, RParenLoc;
+public:
+ StmtExpr(CompoundStmt *substmt, QualType T,
+ SourceLocation lp, SourceLocation rp) :
+ Expr(StmtExprClass, T), SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
+
+ /// \brief Build an empty statement expression.
+ explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
+
+ CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
+ const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
+ void setSubStmt(CompoundStmt *S) { SubStmt = S; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(LParenLoc, RParenLoc);
+ }
+
+ SourceLocation getLParenLoc() const { return LParenLoc; }
+ void setLParenLoc(SourceLocation L) { LParenLoc = L; }
+ SourceLocation getRParenLoc() const { return RParenLoc; }
+ void setRParenLoc(SourceLocation L) { RParenLoc = L; }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == StmtExprClass;
+ }
+ static bool classof(const StmtExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
+/// This AST node represents a function that returns 1 if two *types* (not
+/// expressions) are compatible. The result of this built-in function can be
+/// used in integer constant expressions.
+class TypesCompatibleExpr : public Expr {
+ QualType Type1;
+ QualType Type2;
+ SourceLocation BuiltinLoc, RParenLoc;
+public:
+ TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
+ QualType t1, QualType t2, SourceLocation RP) :
+ Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
+ BuiltinLoc(BLoc), RParenLoc(RP) {}
+
+ /// \brief Build an empty __builtin_type_compatible_p expression.
+ explicit TypesCompatibleExpr(EmptyShell Empty)
+ : Expr(TypesCompatibleExprClass, Empty) { }
+
+ QualType getArgType1() const { return Type1; }
+ void setArgType1(QualType T) { Type1 = T; }
+ QualType getArgType2() const { return Type2; }
+ void setArgType2(QualType T) { Type2 = T; }
+
+ SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
+ void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
+
+ SourceLocation getRParenLoc() const { return RParenLoc; }
+ void setRParenLoc(SourceLocation L) { RParenLoc = L; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(BuiltinLoc, RParenLoc);
+ }
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == TypesCompatibleExprClass;
+ }
+ static bool classof(const TypesCompatibleExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// ShuffleVectorExpr - clang-specific builtin-in function
+/// __builtin_shufflevector.
+/// This AST node represents a operator that does a constant
+/// shuffle, similar to LLVM's shufflevector instruction. It takes
+/// two vectors and a variable number of constant indices,
+/// and returns the appropriately shuffled vector.
+class ShuffleVectorExpr : public Expr {
+ SourceLocation BuiltinLoc, RParenLoc;
+
+ // SubExprs - the list of values passed to the __builtin_shufflevector
+ // function. The first two are vectors, and the rest are constant
+ // indices. The number of values in this list is always
+ // 2+the number of indices in the vector type.
+ Stmt **SubExprs;
+ unsigned NumExprs;
+
+public:
+ ShuffleVectorExpr(Expr **args, unsigned nexpr,
+ QualType Type, SourceLocation BLoc,
+ SourceLocation RP) :
+ Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
+ RParenLoc(RP), NumExprs(nexpr) {
+
+ SubExprs = new Stmt*[nexpr];
+ for (unsigned i = 0; i < nexpr; i++)
+ SubExprs[i] = args[i];
+ }
+
+ /// \brief Build an empty vector-shuffle expression.
+ explicit ShuffleVectorExpr(EmptyShell Empty)
+ : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
+
+ SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
+ void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
+
+ SourceLocation getRParenLoc() const { return RParenLoc; }
+ void setRParenLoc(SourceLocation L) { RParenLoc = L; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(BuiltinLoc, RParenLoc);
+ }
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == ShuffleVectorExprClass;
+ }
+ static bool classof(const ShuffleVectorExpr *) { return true; }
+
+ ~ShuffleVectorExpr() {
+ delete [] SubExprs;
+ }
+
+ /// getNumSubExprs - Return the size of the SubExprs array. This includes the
+ /// constant expression, the actual arguments passed in, and the function
+ /// pointers.
+ unsigned getNumSubExprs() const { return NumExprs; }
+
+ /// getExpr - Return the Expr at the specified index.
+ Expr *getExpr(unsigned Index) {
+ assert((Index < NumExprs) && "Arg access out of range!");
+ return cast<Expr>(SubExprs[Index]);
+ }
+ const Expr *getExpr(unsigned Index) const {
+ assert((Index < NumExprs) && "Arg access out of range!");
+ return cast<Expr>(SubExprs[Index]);
+ }
+
+ void setExprs(Expr ** Exprs, unsigned NumExprs);
+
+ unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
+ assert((N < NumExprs - 2) && "Shuffle idx out of range!");
+ return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
+ }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
+/// This AST node is similar to the conditional operator (?:) in C, with
+/// the following exceptions:
+/// - the test expression must be a integer constant expression.
+/// - the expression returned acts like the chosen subexpression in every
+/// visible way: the type is the same as that of the chosen subexpression,
+/// and all predicates (whether it's an l-value, whether it's an integer
+/// constant expression, etc.) return the same result as for the chosen
+/// sub-expression.
+class ChooseExpr : public Expr {
+ enum { COND, LHS, RHS, END_EXPR };
+ Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
+ SourceLocation BuiltinLoc, RParenLoc;
+public:
+ ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
+ SourceLocation RP)
+ : Expr(ChooseExprClass, t),
+ BuiltinLoc(BLoc), RParenLoc(RP) {
+ SubExprs[COND] = cond;
+ SubExprs[LHS] = lhs;
+ SubExprs[RHS] = rhs;
+ }
+
+ /// \brief Build an empty __builtin_choose_expr.
+ explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
+
+ /// isConditionTrue - Return whether the condition is true (i.e. not
+ /// equal to zero).
+ bool isConditionTrue(ASTContext &C) const;
+
+ /// getChosenSubExpr - Return the subexpression chosen according to the
+ /// condition.
+ Expr *getChosenSubExpr(ASTContext &C) const {
+ return isConditionTrue(C) ? getLHS() : getRHS();
+ }
+
+ Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
+ void setCond(Expr *E) { SubExprs[COND] = E; }
+ Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
+ void setLHS(Expr *E) { SubExprs[LHS] = E; }
+ Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
+ void setRHS(Expr *E) { SubExprs[RHS] = E; }
+
+ SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
+ void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
+
+ SourceLocation getRParenLoc() const { return RParenLoc; }
+ void setRParenLoc(SourceLocation L) { RParenLoc = L; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(BuiltinLoc, RParenLoc);
+ }
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == ChooseExprClass;
+ }
+ static bool classof(const ChooseExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// GNUNullExpr - Implements the GNU __null extension, which is a name
+/// for a null pointer constant that has integral type (e.g., int or
+/// long) and is the same size and alignment as a pointer. The __null
+/// extension is typically only used by system headers, which define
+/// NULL as __null in C++ rather than using 0 (which is an integer
+/// that may not match the size of a pointer).
+class GNUNullExpr : public Expr {
+ /// TokenLoc - The location of the __null keyword.
+ SourceLocation TokenLoc;
+
+public:
+ GNUNullExpr(QualType Ty, SourceLocation Loc)
+ : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
+
+ /// \brief Build an empty GNU __null expression.
+ explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
+
+ GNUNullExpr* Clone(ASTContext &C) const;
+
+ /// getTokenLocation - The location of the __null token.
+ SourceLocation getTokenLocation() const { return TokenLoc; }
+ void setTokenLocation(SourceLocation L) { TokenLoc = L; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(TokenLoc);
+ }
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == GNUNullExprClass;
+ }
+ static bool classof(const GNUNullExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// VAArgExpr, used for the builtin function __builtin_va_start.
+class VAArgExpr : public Expr {
+ Stmt *Val;
+ SourceLocation BuiltinLoc, RParenLoc;
+public:
+ VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
+ : Expr(VAArgExprClass, t),
+ Val(e),
+ BuiltinLoc(BLoc),
+ RParenLoc(RPLoc) { }
+
+ /// \brief Create an empty __builtin_va_start expression.
+ explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
+
+ const Expr *getSubExpr() const { return cast<Expr>(Val); }
+ Expr *getSubExpr() { return cast<Expr>(Val); }
+ void setSubExpr(Expr *E) { Val = E; }
+
+ SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
+ void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
+
+ SourceLocation getRParenLoc() const { return RParenLoc; }
+ void setRParenLoc(SourceLocation L) { RParenLoc = L; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(BuiltinLoc, RParenLoc);
+ }
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == VAArgExprClass;
+ }
+ static bool classof(const VAArgExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// @brief Describes an C or C++ initializer list.
+///
+/// InitListExpr describes an initializer list, which can be used to
+/// initialize objects of different types, including
+/// struct/class/union types, arrays, and vectors. For example:
+///
+/// @code
+/// struct foo x = { 1, { 2, 3 } };
+/// @endcode
+///
+/// Prior to semantic analysis, an initializer list will represent the
+/// initializer list as written by the user, but will have the
+/// placeholder type "void". This initializer list is called the
+/// syntactic form of the initializer, and may contain C99 designated
+/// initializers (represented as DesignatedInitExprs), initializations
+/// of subobject members without explicit braces, and so on. Clients
+/// interested in the original syntax of the initializer list should
+/// use the syntactic form of the initializer list.
+///
+/// After semantic analysis, the initializer list will represent the
+/// semantic form of the initializer, where the initializations of all
+/// subobjects are made explicit with nested InitListExpr nodes and
+/// C99 designators have been eliminated by placing the designated
+/// initializations into the subobject they initialize. Additionally,
+/// any "holes" in the initialization, where no initializer has been
+/// specified for a particular subobject, will be replaced with
+/// implicitly-generated ImplicitValueInitExpr expressions that
+/// value-initialize the subobjects. Note, however, that the
+/// initializer lists may still have fewer initializers than there are
+/// elements to initialize within the object.
+///
+/// Given the semantic form of the initializer list, one can retrieve
+/// the original syntactic form of that initializer list (if it
+/// exists) using getSyntacticForm(). Since many initializer lists
+/// have the same syntactic and semantic forms, getSyntacticForm() may
+/// return NULL, indicating that the current initializer list also
+/// serves as its syntactic form.
+class InitListExpr : public Expr {
+ std::vector<Stmt *> InitExprs;
+ SourceLocation LBraceLoc, RBraceLoc;
+
+ /// Contains the initializer list that describes the syntactic form
+ /// written in the source code.
+ InitListExpr *SyntacticForm;
+
+ /// If this initializer list initializes a union, specifies which
+ /// field within the union will be initialized.
+ FieldDecl *UnionFieldInit;
+
+ /// Whether this initializer list originally had a GNU array-range
+ /// designator in it. This is a temporary marker used by CodeGen.
+ bool HadArrayRangeDesignator;
+
+public:
+ InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
+ SourceLocation rbraceloc);
+
+ /// \brief Build an empty initializer list.
+ explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
+
+ unsigned getNumInits() const { return InitExprs.size(); }
+
+ const Expr* getInit(unsigned Init) const {
+ assert(Init < getNumInits() && "Initializer access out of range!");
+ return cast_or_null<Expr>(InitExprs[Init]);
+ }
+
+ Expr* getInit(unsigned Init) {
+ assert(Init < getNumInits() && "Initializer access out of range!");
+ return cast_or_null<Expr>(InitExprs[Init]);
+ }
+
+ void setInit(unsigned Init, Expr *expr) {
+ assert(Init < getNumInits() && "Initializer access out of range!");
+ InitExprs[Init] = expr;
+ }
+
+ /// \brief Reserve space for some number of initializers.
+ void reserveInits(unsigned NumInits);
+
+ /// @brief Specify the number of initializers
+ ///
+ /// If there are more than @p NumInits initializers, the remaining
+ /// initializers will be destroyed. If there are fewer than @p
+ /// NumInits initializers, NULL expressions will be added for the
+ /// unknown initializers.
+ void resizeInits(ASTContext &Context, unsigned NumInits);
+
+ /// @brief Updates the initializer at index @p Init with the new
+ /// expression @p expr, and returns the old expression at that
+ /// location.
+ ///
+ /// When @p Init is out of range for this initializer list, the
+ /// initializer list will be extended with NULL expressions to
+ /// accomodate the new entry.
+ Expr *updateInit(unsigned Init, Expr *expr);
+
+ /// \brief If this initializes a union, specifies which field in the
+ /// union to initialize.
+ ///
+ /// Typically, this field is the first named field within the
+ /// union. However, a designated initializer can specify the
+ /// initialization of a different field within the union.
+ FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
+ void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
+
+ // Explicit InitListExpr's originate from source code (and have valid source
+ // locations). Implicit InitListExpr's are created by the semantic analyzer.
+ bool isExplicit() {
+ return LBraceLoc.isValid() && RBraceLoc.isValid();
+ }
+
+ SourceLocation getLBraceLoc() const { return LBraceLoc; }
+ void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
+ SourceLocation getRBraceLoc() const { return RBraceLoc; }
+ void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
+
+ /// @brief Retrieve the initializer list that describes the
+ /// syntactic form of the initializer.
+ ///
+ ///
+ InitListExpr *getSyntacticForm() const { return SyntacticForm; }
+ void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
+
+ bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
+ void sawArrayRangeDesignator(bool ARD = true) {
+ HadArrayRangeDesignator = ARD;
+ }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(LBraceLoc, RBraceLoc);
+ }
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == InitListExprClass;
+ }
+ static bool classof(const InitListExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+
+ typedef std::vector<Stmt *>::iterator iterator;
+ typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
+
+ iterator begin() { return InitExprs.begin(); }
+ iterator end() { return InitExprs.end(); }
+ reverse_iterator rbegin() { return InitExprs.rbegin(); }
+ reverse_iterator rend() { return InitExprs.rend(); }
+};
+
+/// @brief Represents a C99 designated initializer expression.
+///
+/// A designated initializer expression (C99 6.7.8) contains one or
+/// more designators (which can be field designators, array
+/// designators, or GNU array-range designators) followed by an
+/// expression that initializes the field or element(s) that the
+/// designators refer to. For example, given:
+///
+/// @code
+/// struct point {
+/// double x;
+/// double y;
+/// };
+/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
+/// @endcode
+///
+/// The InitListExpr contains three DesignatedInitExprs, the first of
+/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
+/// designators, one array designator for @c [2] followed by one field
+/// designator for @c .y. The initalization expression will be 1.0.
+class DesignatedInitExpr : public Expr {
+public:
+ /// \brief Forward declaration of the Designator class.
+ class Designator;
+
+private:
+ /// The location of the '=' or ':' prior to the actual initializer
+ /// expression.
+ SourceLocation EqualOrColonLoc;
+
+ /// Whether this designated initializer used the GNU deprecated
+ /// syntax rather than the C99 '=' syntax.
+ bool GNUSyntax : 1;
+
+ /// The number of designators in this initializer expression.
+ unsigned NumDesignators : 15;
+
+ /// \brief The designators in this designated initialization
+ /// expression.
+ Designator *Designators;
+
+ /// The number of subexpressions of this initializer expression,
+ /// which contains both the initializer and any additional
+ /// expressions used by array and array-range designators.
+ unsigned NumSubExprs : 16;
+
+
+ DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
+ const Designator *Designators,
+ SourceLocation EqualOrColonLoc, bool GNUSyntax,
+ Expr **IndexExprs, unsigned NumIndexExprs,
+ Expr *Init);
+
+ explicit DesignatedInitExpr(unsigned NumSubExprs)
+ : Expr(DesignatedInitExprClass, EmptyShell()),
+ NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
+
+public:
+ /// A field designator, e.g., ".x".
+ struct FieldDesignator {
+ /// Refers to the field that is being initialized. The low bit
+ /// of this field determines whether this is actually a pointer
+ /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
+ /// initially constructed, a field designator will store an
+ /// IdentifierInfo*. After semantic analysis has resolved that
+ /// name, the field designator will instead store a FieldDecl*.
+ uintptr_t NameOrField;
+
+ /// The location of the '.' in the designated initializer.
+ unsigned DotLoc;
+
+ /// The location of the field name in the designated initializer.
+ unsigned FieldLoc;
+ };
+
+ /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
+ struct ArrayOrRangeDesignator {
+ /// Location of the first index expression within the designated
+ /// initializer expression's list of subexpressions.
+ unsigned Index;
+ /// The location of the '[' starting the array range designator.
+ unsigned LBracketLoc;
+ /// The location of the ellipsis separating the start and end
+ /// indices. Only valid for GNU array-range designators.
+ unsigned EllipsisLoc;
+ /// The location of the ']' terminating the array range designator.
+ unsigned RBracketLoc;
+ };
+
+ /// @brief Represents a single C99 designator.
+ ///
+ /// @todo This class is infuriatingly similar to clang::Designator,
+ /// but minor differences (storing indices vs. storing pointers)
+ /// keep us from reusing it. Try harder, later, to rectify these
+ /// differences.
+ class Designator {
+ /// @brief The kind of designator this describes.
+ enum {
+ FieldDesignator,
+ ArrayDesignator,
+ ArrayRangeDesignator
+ } Kind;
+
+ union {
+ /// A field designator, e.g., ".x".
+ struct FieldDesignator Field;
+ /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
+ struct ArrayOrRangeDesignator ArrayOrRange;
+ };
+ friend class DesignatedInitExpr;
+
+ public:
+ Designator() {}
+
+ /// @brief Initializes a field designator.
+ Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
+ SourceLocation FieldLoc)
+ : Kind(FieldDesignator) {
+ Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
+ Field.DotLoc = DotLoc.getRawEncoding();
+ Field.FieldLoc = FieldLoc.getRawEncoding();
+ }
+
+ /// @brief Initializes an array designator.
+ Designator(unsigned Index, SourceLocation LBracketLoc,
+ SourceLocation RBracketLoc)
+ : Kind(ArrayDesignator) {
+ ArrayOrRange.Index = Index;
+ ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
+ ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
+ ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
+ }
+
+ /// @brief Initializes a GNU array-range designator.
+ Designator(unsigned Index, SourceLocation LBracketLoc,
+ SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
+ : Kind(ArrayRangeDesignator) {
+ ArrayOrRange.Index = Index;
+ ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
+ ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
+ ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
+ }
+
+ bool isFieldDesignator() const { return Kind == FieldDesignator; }
+ bool isArrayDesignator() const { return Kind == ArrayDesignator; }
+ bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
+
+ IdentifierInfo * getFieldName();
+
+ FieldDecl *getField() {
+ assert(Kind == FieldDesignator && "Only valid on a field designator");
+ if (Field.NameOrField & 0x01)
+ return 0;
+ else
+ return reinterpret_cast<FieldDecl *>(Field.NameOrField);
+ }
+
+ void setField(FieldDecl *FD) {
+ assert(Kind == FieldDesignator && "Only valid on a field designator");
+ Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
+ }
+
+ SourceLocation getDotLoc() const {
+ assert(Kind == FieldDesignator && "Only valid on a field designator");
+ return SourceLocation::getFromRawEncoding(Field.DotLoc);
+ }
+
+ SourceLocation getFieldLoc() const {
+ assert(Kind == FieldDesignator && "Only valid on a field designator");
+ return SourceLocation::getFromRawEncoding(Field.FieldLoc);
+ }
+
+ SourceLocation getLBracketLoc() const {
+ assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
+ "Only valid on an array or array-range designator");
+ return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
+ }
+
+ SourceLocation getRBracketLoc() const {
+ assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
+ "Only valid on an array or array-range designator");
+ return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
+ }
+
+ SourceLocation getEllipsisLoc() const {
+ assert(Kind == ArrayRangeDesignator &&
+ "Only valid on an array-range designator");
+ return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
+ }
+
+ unsigned getFirstExprIndex() const {
+ assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
+ "Only valid on an array or array-range designator");
+ return ArrayOrRange.Index;
+ }
+
+ SourceLocation getStartLocation() const {
+ if (Kind == FieldDesignator)
+ return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
+ else
+ return getLBracketLoc();
+ }
+ };
+
+ static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
+ unsigned NumDesignators,
+ Expr **IndexExprs, unsigned NumIndexExprs,
+ SourceLocation EqualOrColonLoc,
+ bool GNUSyntax, Expr *Init);
+
+ static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
+
+ /// @brief Returns the number of designators in this initializer.
+ unsigned size() const { return NumDesignators; }
+
+ // Iterator access to the designators.
+ typedef Designator* designators_iterator;
+ designators_iterator designators_begin() { return Designators; }
+ designators_iterator designators_end() {
+ return Designators + NumDesignators;
+ }
+
+ Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
+
+ void setDesignators(const Designator *Desigs, unsigned NumDesigs);
+
+ Expr *getArrayIndex(const Designator& D);
+ Expr *getArrayRangeStart(const Designator& D);
+ Expr *getArrayRangeEnd(const Designator& D);
+
+ /// @brief Retrieve the location of the '=' that precedes the
+ /// initializer value itself, if present.
+ SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
+ void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
+
+ /// @brief Determines whether this designated initializer used the
+ /// deprecated GNU syntax for designated initializers.
+ bool usesGNUSyntax() const { return GNUSyntax; }
+ void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
+
+ /// @brief Retrieve the initializer value.
+ Expr *getInit() const {
+ return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
+ }
+
+ void setInit(Expr *init) {
+ *child_begin() = init;
+ }
+
+ /// \brief Retrieve the total number of subexpressions in this
+ /// designated initializer expression, including the actual
+ /// initialized value and any expressions that occur within array
+ /// and array-range designators.
+ unsigned getNumSubExprs() const { return NumSubExprs; }
+
+ Expr *getSubExpr(unsigned Idx) {
+ assert(Idx < NumSubExprs && "Subscript out of range");
+ char* Ptr = static_cast<char*>(static_cast<void *>(this));
+ Ptr += sizeof(DesignatedInitExpr);
+ return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
+ }
+
+ void setSubExpr(unsigned Idx, Expr *E) {
+ assert(Idx < NumSubExprs && "Subscript out of range");
+ char* Ptr = static_cast<char*>(static_cast<void *>(this));
+ Ptr += sizeof(DesignatedInitExpr);
+ reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
+ }
+
+ /// \brief Replaces the designator at index @p Idx with the series
+ /// of designators in [First, Last).
+ void ExpandDesignator(unsigned Idx, const Designator *First,
+ const Designator *Last);
+
+ virtual SourceRange getSourceRange() const;
+
+ virtual void Destroy(ASTContext &C);
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == DesignatedInitExprClass;
+ }
+ static bool classof(const DesignatedInitExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// \brief Represents an implicitly-generated value initialization of
+/// an object of a given type.
+///
+/// Implicit value initializations occur within semantic initializer
+/// list expressions (InitListExpr) as placeholders for subobject
+/// initializations not explicitly specified by the user.
+///
+/// \see InitListExpr
+class ImplicitValueInitExpr : public Expr {
+public:
+ explicit ImplicitValueInitExpr(QualType ty)
+ : Expr(ImplicitValueInitExprClass, ty) { }
+
+ /// \brief Construct an empty implicit value initialization.
+ explicit ImplicitValueInitExpr(EmptyShell Empty)
+ : Expr(ImplicitValueInitExprClass, Empty) { }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == ImplicitValueInitExprClass;
+ }
+ static bool classof(const ImplicitValueInitExpr *) { return true; }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange();
+ }
+
+ ImplicitValueInitExpr *Clone(ASTContext &C) const;
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+//===----------------------------------------------------------------------===//
+// Clang Extensions
+//===----------------------------------------------------------------------===//
+
+
+/// ExtVectorElementExpr - This represents access to specific elements of a
+/// vector, and may occur on the left hand side or right hand side. For example
+/// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
+///
+/// Note that the base may have either vector or pointer to vector type, just
+/// like a struct field reference.
+///
+class ExtVectorElementExpr : public Expr {
+ Stmt *Base;
+ IdentifierInfo *Accessor;
+ SourceLocation AccessorLoc;
+public:
+ ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
+ SourceLocation loc)
+ : Expr(ExtVectorElementExprClass, ty),
+ Base(base), Accessor(&accessor), AccessorLoc(loc) {}
+
+ /// \brief Build an empty vector element expression.
+ explicit ExtVectorElementExpr(EmptyShell Empty)
+ : Expr(ExtVectorElementExprClass, Empty) { }
+
+ const Expr *getBase() const { return cast<Expr>(Base); }
+ Expr *getBase() { return cast<Expr>(Base); }
+ void setBase(Expr *E) { Base = E; }
+
+ IdentifierInfo &getAccessor() const { return *Accessor; }
+ void setAccessor(IdentifierInfo *II) { Accessor = II; }
+
+ SourceLocation getAccessorLoc() const { return AccessorLoc; }
+ void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
+
+ /// getNumElements - Get the number of components being selected.
+ unsigned getNumElements() const;
+
+ /// containsDuplicateElements - Return true if any element access is
+ /// repeated.
+ bool containsDuplicateElements() const;
+
+ /// getEncodedElementAccess - Encode the elements accessed into an llvm
+ /// aggregate Constant of ConstantInt(s).
+ void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(getBase()->getLocStart(), AccessorLoc);
+ }
+
+ /// isArrow - Return true if the base expression is a pointer to vector,
+ /// return false if the base expression is a vector.
+ bool isArrow() const;
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == ExtVectorElementExprClass;
+ }
+ static bool classof(const ExtVectorElementExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+
+/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
+/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
+class BlockExpr : public Expr {
+protected:
+ BlockDecl *TheBlock;
+ bool HasBlockDeclRefExprs;
+public:
+ BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
+ : Expr(BlockExprClass, ty),
+ TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
+
+ /// \brief Build an empty block expression.
+ explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
+
+ const BlockDecl *getBlockDecl() const { return TheBlock; }
+ BlockDecl *getBlockDecl() { return TheBlock; }
+ void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
+
+ // Convenience functions for probing the underlying BlockDecl.
+ SourceLocation getCaretLocation() const;
+ const Stmt *getBody() const;
+ Stmt *getBody();
+
+ const Stmt *getBody(ASTContext &C) const { return getBody(); }
+ Stmt *getBody(ASTContext &C) { return getBody(); }
+
+ virtual SourceRange getSourceRange() const {
+ return SourceRange(getCaretLocation(), getBody()->getLocEnd());
+ }
+
+ /// getFunctionType - Return the underlying function type for this block.
+ const FunctionType *getFunctionType() const;
+
+ /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
+ /// inside of the block that reference values outside the block.
+ bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
+ void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == BlockExprClass;
+ }
+ static bool classof(const BlockExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+/// BlockDeclRefExpr - A reference to a declared variable, function,
+/// enum, etc.
+class BlockDeclRefExpr : public Expr {
+ ValueDecl *D;
+ SourceLocation Loc;
+ bool IsByRef;
+public:
+ BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
+ Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
+
+ // \brief Build an empty reference to a declared variable in a
+ // block.
+ explicit BlockDeclRefExpr(EmptyShell Empty)
+ : Expr(BlockDeclRefExprClass, Empty) { }
+
+ ValueDecl *getDecl() { return D; }
+ const ValueDecl *getDecl() const { return D; }
+ void setDecl(ValueDecl *VD) { D = VD; }
+
+ SourceLocation getLocation() const { return Loc; }
+ void setLocation(SourceLocation L) { Loc = L; }
+
+ virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
+
+ bool isByRef() const { return IsByRef; }
+ void setByRef(bool BR) { IsByRef = BR; }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == BlockDeclRefExprClass;
+ }
+ static bool classof(const BlockDeclRefExpr *) { return true; }
+
+ // Iterators
+ virtual child_iterator child_begin();
+ virtual child_iterator child_end();
+};
+
+} // end namespace clang
+
+#endif
OpenPOWER on IntegriCloud