summaryrefslogtreecommitdiffstats
path: root/gnu/usr.bin/cc/doc/tm.texi
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/cc/doc/tm.texi')
-rw-r--r--gnu/usr.bin/cc/doc/tm.texi6337
1 files changed, 0 insertions, 6337 deletions
diff --git a/gnu/usr.bin/cc/doc/tm.texi b/gnu/usr.bin/cc/doc/tm.texi
deleted file mode 100644
index 3824d2f..0000000
--- a/gnu/usr.bin/cc/doc/tm.texi
+++ /dev/null
@@ -1,6337 +0,0 @@
-@c Copyright (C) 1988, 1989, 1992, 1993, 1994 Free Software Foundation, Inc.
-@c This is part of the GCC manual.
-@c For copying conditions, see the file gcc.texi.
-
-@node Target Macros
-@chapter Target Description Macros
-@cindex machine description macros
-@cindex target description macros
-@cindex macros, target description
-@cindex @file{tm.h} macros
-
-In addition to the file @file{@var{machine}.md}, a machine description
-includes a C header file conventionally given the name
-@file{@var{machine}.h}. This header file defines numerous macros
-that convey the information about the target machine that does not fit
-into the scheme of the @file{.md} file. The file @file{tm.h} should be
-a link to @file{@var{machine}.h}. The header file @file{config.h}
-includes @file{tm.h} and most compiler source files include
-@file{config.h}.
-
-@menu
-* Driver:: Controlling how the driver runs the compilation passes.
-* Run-time Target:: Defining @samp{-m} options like @samp{-m68000} and @samp{-m68020}.
-* Storage Layout:: Defining sizes and alignments of data.
-* Type Layout:: Defining sizes and properties of basic user data types.
-* Registers:: Naming and describing the hardware registers.
-* Register Classes:: Defining the classes of hardware registers.
-* Stack and Calling:: Defining which way the stack grows and by how much.
-* Varargs:: Defining the varargs macros.
-* Trampolines:: Code set up at run time to enter a nested function.
-* Library Calls:: Controlling how library routines are implicitly called.
-* Addressing Modes:: Defining addressing modes valid for memory operands.
-* Condition Code:: Defining how insns update the condition code.
-* Costs:: Defining relative costs of different operations.
-* Sections:: Dividing storage into text, data, and other sections.
-* PIC:: Macros for position independent code.
-* Assembler Format:: Defining how to write insns and pseudo-ops to output.
-* Debugging Info:: Defining the format of debugging output.
-* Cross-compilation:: Handling floating point for cross-compilers.
-* Misc:: Everything else.
-@end menu
-
-@node Driver
-@section Controlling the Compilation Driver, @file{gcc}
-@cindex driver
-@cindex controlling the compilation driver
-
-@c prevent bad page break with this line
-You can control the compilation driver.
-
-@table @code
-@findex SWITCH_TAKES_ARG
-@item SWITCH_TAKES_ARG (@var{char})
-A C expression which determines whether the option @samp{-@var{char}}
-takes arguments. The value should be the number of arguments that
-option takes--zero, for many options.
-
-By default, this macro is defined to handle the standard options
-properly. You need not define it unless you wish to add additional
-options which take arguments.
-
-@findex WORD_SWITCH_TAKES_ARG
-@item WORD_SWITCH_TAKES_ARG (@var{name})
-A C expression which determines whether the option @samp{-@var{name}}
-takes arguments. The value should be the number of arguments that
-option takes--zero, for many options. This macro rather than
-@code{SWITCH_TAKES_ARG} is used for multi-character option names.
-
-By default, this macro is defined as
-@code{DEFAULT_WORD_SWITCH_TAKES_ARG}, which handles the standard options
-properly. You need not define @code{WORD_SWITCH_TAKES_ARG} unless you
-wish to add additional options which take arguments. Any redefinition
-should call @code{DEFAULT_WORD_SWITCH_TAKES_ARG} and then check for
-additional options.
-
-@findex SWITCHES_NEED_SPACES
-@item SWITCHES_NEED_SPACES
-A string-valued C expression which is nonempty if the linker needs a
-space between the @samp{-L} or @samp{-o} option and its argument.
-
-If this macro is not defined, the default value is 0.
-
-@findex CPP_SPEC
-@item CPP_SPEC
-A C string constant that tells the GNU CC driver program options to
-pass to CPP. It can also specify how to translate options you
-give to GNU CC into options for GNU CC to pass to the CPP.
-
-Do not define this macro if it does not need to do anything.
-
-@findex NO_BUILTIN_SIZE_TYPE
-@item NO_BUILTIN_SIZE_TYPE
-If this macro is defined, the preprocessor will not define the builtin macro
-@code{__SIZE_TYPE__}. The macro @code{__SIZE_TYPE__} must then be defined
-by @code{CPP_SPEC} instead.
-
-This should be defined if @code{SIZE_TYPE} depends on target dependent flags
-which are not accessible to the preprocessor. Otherwise, it should not
-be defined.
-
-@findex NO_BUILTIN_PTRDIFF_TYPE
-@item NO_BUILTIN_PTRDIFF_TYPE
-If this macro is defined, the preprocessor will not define the builtin macro
-@code{__PTRDIFF_TYPE__}. The macro @code{__PTRDIFF_TYPE__} must then be
-defined by @code{CPP_SPEC} instead.
-
-This should be defined if @code{PTRDIFF_TYPE} depends on target dependent flags
-which are not accessible to the preprocessor. Otherwise, it should not
-be defined.
-
-@findex SIGNED_CHAR_SPEC
-@item SIGNED_CHAR_SPEC
-A C string constant that tells the GNU CC driver program options to
-pass to CPP. By default, this macro is defined to pass the option
-@samp{-D__CHAR_UNSIGNED__} to CPP if @code{char} will be treated as
-@code{unsigned char} by @code{cc1}.
-
-Do not define this macro unless you need to override the default
-definition.
-
-@findex CC1_SPEC
-@item CC1_SPEC
-A C string constant that tells the GNU CC driver program options to
-pass to @code{cc1}. It can also specify how to translate options you
-give to GNU CC into options for GNU CC to pass to the @code{cc1}.
-
-Do not define this macro if it does not need to do anything.
-
-@findex CC1PLUS_SPEC
-@item CC1PLUS_SPEC
-A C string constant that tells the GNU CC driver program options to
-pass to @code{cc1plus}. It can also specify how to translate options you
-give to GNU CC into options for GNU CC to pass to the @code{cc1plus}.
-
-Do not define this macro if it does not need to do anything.
-
-@findex ASM_SPEC
-@item ASM_SPEC
-A C string constant that tells the GNU CC driver program options to
-pass to the assembler. It can also specify how to translate options
-you give to GNU CC into options for GNU CC to pass to the assembler.
-See the file @file{sun3.h} for an example of this.
-
-Do not define this macro if it does not need to do anything.
-
-@findex ASM_FINAL_SPEC
-@item ASM_FINAL_SPEC
-A C string constant that tells the GNU CC driver program how to
-run any programs which cleanup after the normal assembler.
-Normally, this is not needed. See the file @file{mips.h} for
-an example of this.
-
-Do not define this macro if it does not need to do anything.
-
-@findex LINK_SPEC
-@item LINK_SPEC
-A C string constant that tells the GNU CC driver program options to
-pass to the linker. It can also specify how to translate options you
-give to GNU CC into options for GNU CC to pass to the linker.
-
-Do not define this macro if it does not need to do anything.
-
-@findex LIB_SPEC
-@item LIB_SPEC
-Another C string constant used much like @code{LINK_SPEC}. The difference
-between the two is that @code{LIB_SPEC} is used at the end of the
-command given to the linker.
-
-If this macro is not defined, a default is provided that
-loads the standard C library from the usual place. See @file{gcc.c}.
-
-@findex STARTFILE_SPEC
-@item STARTFILE_SPEC
-Another C string constant used much like @code{LINK_SPEC}. The
-difference between the two is that @code{STARTFILE_SPEC} is used at
-the very beginning of the command given to the linker.
-
-If this macro is not defined, a default is provided that loads the
-standard C startup file from the usual place. See @file{gcc.c}.
-
-@findex ENDFILE_SPEC
-@item ENDFILE_SPEC
-Another C string constant used much like @code{LINK_SPEC}. The
-difference between the two is that @code{ENDFILE_SPEC} is used at
-the very end of the command given to the linker.
-
-Do not define this macro if it does not need to do anything.
-
-@findex LINK_LIBGCC_SPECIAL
-@item LINK_LIBGCC_SPECIAL
-Define this macro meaning that @code{gcc} should find the library
-@file{libgcc.a} by hand, rather than passing the argument @samp{-lgcc}
-to tell the linker to do the search; also, @code{gcc} should not
-generate @samp{-L} options to pass to the linker (as it normally does).
-
-@findex LINK_LIBGCC_SPECIAL_1
-@item LINK_LIBGCC_SPECIAL_1
-Define this macro meaning that @code{gcc} should find the
-library @file{libgcc.a} by hand, rather than passing the argument
-@samp{-lgcc} to tell the linker to do the search.
-
-@findex RELATIVE_PREFIX_NOT_LINKDIR
-@item RELATIVE_PREFIX_NOT_LINKDIR
-Define this macro to tell @code{gcc} that it should only translate
-a @samp{-B} prefix into a @samp{-L} linker option if the prefix
-indicates an absolute file name.
-
-@findex STANDARD_EXEC_PREFIX
-@item STANDARD_EXEC_PREFIX
-Define this macro as a C string constant if you wish to override the
-standard choice of @file{/usr/local/lib/gcc-lib/} as the default prefix to
-try when searching for the executable files of the compiler.
-
-@findex MD_EXEC_PREFIX
-@item MD_EXEC_PREFIX
-If defined, this macro is an additional prefix to try after
-@code{STANDARD_EXEC_PREFIX}. @code{MD_EXEC_PREFIX} is not searched
-when the @samp{-b} option is used, or the compiler is built as a cross
-compiler.
-
-@findex STANDARD_STARTFILE_PREFIX
-@item STANDARD_STARTFILE_PREFIX
-Define this macro as a C string constant if you wish to override the
-standard choice of @file{/usr/local/lib/} as the default prefix to
-try when searching for startup files such as @file{crt0.o}.
-
-@findex MD_STARTFILE_PREFIX
-@item MD_STARTFILE_PREFIX
-If defined, this macro supplies an additional prefix to try after the
-standard prefixes. @code{MD_EXEC_PREFIX} is not searched when the
-@samp{-b} option is used, or when the compiler is built as a cross
-compiler.
-
-@findex MD_STARTFILE_PREFIX_1
-@item MD_STARTFILE_PREFIX_1
-If defined, this macro supplies yet another prefix to try after the
-standard prefixes. It is not searched when the @samp{-b} option is
-used, or when the compiler is built as a cross compiler.
-
-@findex LOCAL_INCLUDE_DIR
-@item LOCAL_INCLUDE_DIR
-Define this macro as a C string constant if you wish to override the
-standard choice of @file{/usr/local/include} as the default prefix to
-try when searching for local header files. @code{LOCAL_INCLUDE_DIR}
-comes before @code{SYSTEM_INCLUDE_DIR} in the search order.
-
-Cross compilers do not use this macro and do not search either
-@file{/usr/local/include} or its replacement.
-
-@findex SYSTEM_INCLUDE_DIR
-@item SYSTEM_INCLUDE_DIR
-Define this macro as a C string constant if you wish to specify a
-system-specific directory to search for header files before the standard
-directory. @code{SYSTEM_INCLUDE_DIR} comes before
-@code{STANDARD_INCLUDE_DIR} in the search order.
-
-Cross compilers do not use this macro and do not search the directory
-specified.
-
-@findex STANDARD_INCLUDE_DIR
-@item STANDARD_INCLUDE_DIR
-Define this macro as a C string constant if you wish to override the
-standard choice of @file{/usr/include} as the default prefix to
-try when searching for header files.
-
-Cross compilers do not use this macro and do not search either
-@file{/usr/include} or its replacement.
-
-@findex INCLUDE_DEFAULTS
-@item INCLUDE_DEFAULTS
-Define this macro if you wish to override the entire default search path
-for include files. The default search path includes
-@code{GCC_INCLUDE_DIR}, @code{LOCAL_INCLUDE_DIR},
-@code{SYSTEM_INCLUDE_DIR}, @code{GPLUSPLUS_INCLUDE_DIR}, and
-@code{STANDARD_INCLUDE_DIR}. In addition, @code{GPLUSPLUS_INCLUDE_DIR}
-and @code{GCC_INCLUDE_DIR} are defined automatically by @file{Makefile},
-and specify private search areas for GCC. The directory
-@code{GPLUSPLUS_INCLUDE_DIR} is used only for C++ programs.
-
-The definition should be an initializer for an array of structures.
-Each array element should have two elements: the directory name (a
-string constant) and a flag for C++-only directories. Mark the end of
-the array with a null element. For example, here is the definition used
-for VMS:
-
-@example
-#define INCLUDE_DEFAULTS \
-@{ \
- @{ "GNU_GXX_INCLUDE:", 1@}, \
- @{ "GNU_CC_INCLUDE:", 0@}, \
- @{ "SYS$SYSROOT:[SYSLIB.]", 0@}, \
- @{ ".", 0@}, \
- @{ 0, 0@} \
-@}
-@end example
-@end table
-
-Here is the order of prefixes tried for exec files:
-
-@enumerate
-@item
-Any prefixes specified by the user with @samp{-B}.
-
-@item
-The environment variable @code{GCC_EXEC_PREFIX}, if any.
-
-@item
-The directories specified by the environment variable @code{COMPILER_PATH}.
-
-@item
-The macro @code{STANDARD_EXEC_PREFIX}.
-
-@item
-@file{/usr/lib/gcc/}.
-
-@item
-The macro @code{MD_EXEC_PREFIX}, if any.
-@end enumerate
-
-Here is the order of prefixes tried for startfiles:
-
-@enumerate
-@item
-Any prefixes specified by the user with @samp{-B}.
-
-@item
-The environment variable @code{GCC_EXEC_PREFIX}, if any.
-
-@item
-The directories specified by the environment variable @code{LIBRARY_PATH}.
-
-@item
-The macro @code{STANDARD_EXEC_PREFIX}.
-
-@item
-@file{/usr/lib/gcc/}.
-
-@item
-The macro @code{MD_EXEC_PREFIX}, if any.
-
-@item
-The macro @code{MD_STARTFILE_PREFIX}, if any.
-
-@item
-The macro @code{STANDARD_STARTFILE_PREFIX}.
-
-@item
-@file{/lib/}.
-
-@item
-@file{/usr/lib/}.
-@end enumerate
-
-@node Run-time Target
-@section Run-time Target Specification
-@cindex run-time target specification
-@cindex predefined macros
-@cindex target specifications
-
-@c prevent bad page break with this line
-Here are run-time target specifications.
-
-@table @code
-@findex CPP_PREDEFINES
-@item CPP_PREDEFINES
-Define this to be a string constant containing @samp{-D} options to
-define the predefined macros that identify this machine and system.
-These macros will be predefined unless the @samp{-ansi} option is
-specified.
-
-In addition, a parallel set of macros are predefined, whose names are
-made by appending @samp{__} at the beginning and at the end. These
-@samp{__} macros are permitted by the ANSI standard, so they are
-predefined regardless of whether @samp{-ansi} is specified.
-
-For example, on the Sun, one can use the following value:
-
-@smallexample
-"-Dmc68000 -Dsun -Dunix"
-@end smallexample
-
-The result is to define the macros @code{__mc68000__}, @code{__sun__}
-and @code{__unix__} unconditionally, and the macros @code{mc68000},
-@code{sun} and @code{unix} provided @samp{-ansi} is not specified.
-
-@findex STDC_VALUE
-@item STDC_VALUE
-Define the value to be assigned to the built-in macro @code{__STDC__}.
-The default is the value @samp{1}.
-
-@findex extern int target_flags
-@item extern int target_flags;
-This declaration should be present.
-
-@cindex optional hardware or system features
-@cindex features, optional, in system conventions
-@item TARGET_@dots{}
-This series of macros is to allow compiler command arguments to
-enable or disable the use of optional features of the target machine.
-For example, one machine description serves both the 68000 and
-the 68020; a command argument tells the compiler whether it should
-use 68020-only instructions or not. This command argument works
-by means of a macro @code{TARGET_68020} that tests a bit in
-@code{target_flags}.
-
-Define a macro @code{TARGET_@var{featurename}} for each such option.
-Its definition should test a bit in @code{target_flags}; for example:
-
-@smallexample
-#define TARGET_68020 (target_flags & 1)
-@end smallexample
-
-One place where these macros are used is in the condition-expressions
-of instruction patterns. Note how @code{TARGET_68020} appears
-frequently in the 68000 machine description file, @file{m68k.md}.
-Another place they are used is in the definitions of the other
-macros in the @file{@var{machine}.h} file.
-
-@findex TARGET_SWITCHES
-@item TARGET_SWITCHES
-This macro defines names of command options to set and clear
-bits in @code{target_flags}. Its definition is an initializer
-with a subgrouping for each command option.
-
-Each subgrouping contains a string constant, that defines the option
-name, and a number, which contains the bits to set in
-@code{target_flags}. A negative number says to clear bits instead;
-the negative of the number is which bits to clear. The actual option
-name is made by appending @samp{-m} to the specified name.
-
-One of the subgroupings should have a null string. The number in
-this grouping is the default value for @code{target_flags}. Any
-target options act starting with that value.
-
-Here is an example which defines @samp{-m68000} and @samp{-m68020}
-with opposite meanings, and picks the latter as the default:
-
-@smallexample
-#define TARGET_SWITCHES \
- @{ @{ "68020", 1@}, \
- @{ "68000", -1@}, \
- @{ "", 1@}@}
-@end smallexample
-
-@findex TARGET_OPTIONS
-@item TARGET_OPTIONS
-This macro is similar to @code{TARGET_SWITCHES} but defines names of command
-options that have values. Its definition is an initializer with a
-subgrouping for each command option.
-
-Each subgrouping contains a string constant, that defines the fixed part
-of the option name, and the address of a variable. The variable, type
-@code{char *}, is set to the variable part of the given option if the fixed
-part matches. The actual option name is made by appending @samp{-m} to the
-specified name.
-
-Here is an example which defines @samp{-mshort-data-@var{number}}. If the
-given option is @samp{-mshort-data-512}, the variable @code{m88k_short_data}
-will be set to the string @code{"512"}.
-
-@smallexample
-extern char *m88k_short_data;
-#define TARGET_OPTIONS \
- @{ @{ "short-data-", &m88k_short_data @} @}
-@end smallexample
-
-@findex TARGET_VERSION
-@item TARGET_VERSION
-This macro is a C statement to print on @code{stderr} a string
-describing the particular machine description choice. Every machine
-description should define @code{TARGET_VERSION}. For example:
-
-@smallexample
-#ifdef MOTOROLA
-#define TARGET_VERSION \
- fprintf (stderr, " (68k, Motorola syntax)");
-#else
-#define TARGET_VERSION \
- fprintf (stderr, " (68k, MIT syntax)");
-#endif
-@end smallexample
-
-@findex OVERRIDE_OPTIONS
-@item OVERRIDE_OPTIONS
-Sometimes certain combinations of command options do not make sense on
-a particular target machine. You can define a macro
-@code{OVERRIDE_OPTIONS} to take account of this. This macro, if
-defined, is executed once just after all the command options have been
-parsed.
-
-Don't use this macro to turn on various extra optimizations for
-@samp{-O}. That is what @code{OPTIMIZATION_OPTIONS} is for.
-
-@findex OPTIMIZATION_OPTIONS
-@item OPTIMIZATION_OPTIONS (@var{level})
-Some machines may desire to change what optimizations are performed for
-various optimization levels. This macro, if defined, is executed once
-just after the optimization level is determined and before the remainder
-of the command options have been parsed. Values set in this macro are
-used as the default values for the other command line options.
-
-@var{level} is the optimization level specified; 2 if @samp{-O2} is
-specified, 1 if @samp{-O} is specified, and 0 if neither is specified.
-
-You should not use this macro to change options that are not
-machine-specific. These should uniformly selected by the same
-optimization level on all supported machines. Use this macro to enable
-machbine-specific optimizations.
-
-@strong{Do not examine @code{write_symbols} in
-this macro!} The debugging options are not supposed to alter the
-generated code.
-
-@findex CAN_DEBUG_WITHOUT_FP
-@item CAN_DEBUG_WITHOUT_FP
-Define this macro if debugging can be performed even without a frame
-pointer. If this macro is defined, GNU CC will turn on the
-@samp{-fomit-frame-pointer} option whenever @samp{-O} is specified.
-@end table
-
-@node Storage Layout
-@section Storage Layout
-@cindex storage layout
-
-Note that the definitions of the macros in this table which are sizes or
-alignments measured in bits do not need to be constant. They can be C
-expressions that refer to static variables, such as the @code{target_flags}.
-@xref{Run-time Target}.
-
-@table @code
-@findex BITS_BIG_ENDIAN
-@item BITS_BIG_ENDIAN
-Define this macro to be the value 1 if the most significant bit in a
-byte has the lowest number; otherwise define it to be the value zero.
-This means that bit-field instructions count from the most significant
-bit. If the machine has no bit-field instructions, then this must still
-be defined, but it doesn't matter which value it is defined to.
-
-This macro does not affect the way structure fields are packed into
-bytes or words; that is controlled by @code{BYTES_BIG_ENDIAN}.
-
-@findex BYTES_BIG_ENDIAN
-@item BYTES_BIG_ENDIAN
-Define this macro to be 1 if the most significant byte in a word has the
-lowest number.
-
-@findex WORDS_BIG_ENDIAN
-@item WORDS_BIG_ENDIAN
-Define this macro to be 1 if, in a multiword object, the most
-significant word has the lowest number. This applies to both memory
-locations and registers; GNU CC fundamentally assumes that the order of
-words in memory is the same as the order in registers.
-
-@findex FLOAT_WORDS_BIG_ENDIAN
-@item FLOAT_WORDS_BIG_ENDIAN
-Define this macro to be 1 if @code{DFmode}, @code{XFmode} or
-@code{TFmode} floating point numbers are stored in memory with the word
-containing the sign bit at the lowest address; otherwise define it to be
-0.
-
-You need not define this macro if the ordering is the same as for
-multi-word integers.
-
-@findex BITS_PER_UNIT
-@item BITS_PER_UNIT
-Define this macro to be the number of bits in an addressable storage
-unit (byte); normally 8.
-
-@findex BITS_PER_WORD
-@item BITS_PER_WORD
-Number of bits in a word; normally 32.
-
-@findex MAX_BITS_PER_WORD
-@item MAX_BITS_PER_WORD
-Maximum number of bits in a word. If this is undefined, the default is
-@code{BITS_PER_WORD}. Otherwise, it is the constant value that is the
-largest value that @code{BITS_PER_WORD} can have at run-time.
-
-@findex UNITS_PER_WORD
-@item UNITS_PER_WORD
-Number of storage units in a word; normally 4.
-
-@findex MAX_UNITS_PER_WORD
-@item MAX_UNITS_PER_WORD
-Maximum number of units in a word. If this is undefined, the default is
-@code{UNITS_PER_WORD}. Otherwise, it is the constant value that is the
-largest value that @code{UNITS_PER_WORD} can have at run-time.
-
-@findex POINTER_SIZE
-@item POINTER_SIZE
-Width of a pointer, in bits.
-
-@findex PROMOTE_MODE
-@item PROMOTE_MODE (@var{m}, @var{unsignedp}, @var{type})
-A macro to update @var{m} and @var{unsignedp} when an object whose type
-is @var{type} and which has the specified mode and signedness is to be
-stored in a register. This macro is only called when @var{type} is a
-scalar type.
-
-On most RISC machines, which only have operations that operate on a full
-register, define this macro to set @var{m} to @code{word_mode} if
-@var{m} is an integer mode narrower than @code{BITS_PER_WORD}. In most
-cases, only integer modes should be widened because wider-precision
-floating-point operations are usually more expensive than their narrower
-counterparts.
-
-For most machines, the macro definition does not change @var{unsignedp}.
-However, some machines, have instructions that preferentially handle
-either signed or unsigned quantities of certain modes. For example, on
-the DEC Alpha, 32-bit loads from memory and 32-bit add instructions
-sign-extend the result to 64 bits. On such machines, set
-@var{unsignedp} according to which kind of extension is more efficient.
-
-Do not define this macro if it would never modify @var{m}.
-
-@findex PROMOTE_FUNCTION_ARGS
-@item PROMOTE_FUNCTION_ARGS
-Define this macro if the promotion described by @code{PROMOTE_MODE}
-should also be done for outgoing function arguments.
-
-@findex PROMOTE_FUNCTION_RETURN
-@item PROMOTE_FUNCTION_RETURN
-Define this macro if the promotion described by @code{PROMOTE_MODE}
-should also be done for the return value of functions.
-
-If this macro is defined, @code{FUNCTION_VALUE} must perform the same
-promotions done by @code{PROMOTE_MODE}.
-
-@findex PROMOTE_FOR_CALL_ONLY
-@item PROMOTE_FOR_CALL_ONLY
-Define this macro if the promotion described by @code{PROMOTE_MODE}
-should @emph{only} be performed for outgoing function arguments or
-function return values, as specified by @code{PROMOTE_FUNCTION_ARGS}
-and @code{PROMOTE_FUNCTION_RETURN}, respectively.
-
-@findex PARM_BOUNDARY
-@item PARM_BOUNDARY
-Normal alignment required for function parameters on the stack, in
-bits. All stack parameters receive at least this much alignment
-regardless of data type. On most machines, this is the same as the
-size of an integer.
-
-@findex STACK_BOUNDARY
-@item STACK_BOUNDARY
-Define this macro if you wish to preserve a certain alignment for
-the stack pointer. The definition is a C expression
-for the desired alignment (measured in bits).
-
-@cindex @code{PUSH_ROUNDING}, interaction with @code{STACK_BOUNDARY}
-If @code{PUSH_ROUNDING} is not defined, the stack will always be aligned
-to the specified boundary. If @code{PUSH_ROUNDING} is defined and specifies a
-less strict alignment than @code{STACK_BOUNDARY}, the stack may be
-momentarily unaligned while pushing arguments.
-
-@findex FUNCTION_BOUNDARY
-@item FUNCTION_BOUNDARY
-Alignment required for a function entry point, in bits.
-
-@findex BIGGEST_ALIGNMENT
-@item BIGGEST_ALIGNMENT
-Biggest alignment that any data type can require on this machine, in bits.
-
-@findex BIGGEST_FIELD_ALIGNMENT
-@item BIGGEST_FIELD_ALIGNMENT
-Biggest alignment that any structure field can require on this machine,
-in bits. If defined, this overrides @code{BIGGEST_ALIGNMENT} for
-structure fields only.
-
-@findex MAX_OFILE_ALIGNMENT
-@item MAX_OFILE_ALIGNMENT
-Biggest alignment supported by the object file format of this machine.
-Use this macro to limit the alignment which can be specified using the
-@code{__attribute__ ((aligned (@var{n})))} construct. If not defined,
-the default value is @code{BIGGEST_ALIGNMENT}.
-
-@findex DATA_ALIGNMENT
-@item DATA_ALIGNMENT (@var{type}, @var{basic-align})
-If defined, a C expression to compute the alignment for a static
-variable. @var{type} is the data type, and @var{basic-align} is the
-alignment that the object would ordinarily have. The value of this
-macro is used instead of that alignment to align the object.
-
-If this macro is not defined, then @var{basic-align} is used.
-
-@findex strcpy
-One use of this macro is to increase alignment of medium-size data to
-make it all fit in fewer cache lines. Another is to cause character
-arrays to be word-aligned so that @code{strcpy} calls that copy
-constants to character arrays can be done inline.
-
-@findex CONSTANT_ALIGNMENT
-@item CONSTANT_ALIGNMENT (@var{constant}, @var{basic-align})
-If defined, a C expression to compute the alignment given to a constant
-that is being placed in memory. @var{constant} is the constant and
-@var{basic-align} is the alignment that the object would ordinarily
-have. The value of this macro is used instead of that alignment to
-align the object.
-
-If this macro is not defined, then @var{basic-align} is used.
-
-The typical use of this macro is to increase alignment for string
-constants to be word aligned so that @code{strcpy} calls that copy
-constants can be done inline.
-
-@findex EMPTY_FIELD_BOUNDARY
-@item EMPTY_FIELD_BOUNDARY
-Alignment in bits to be given to a structure bit field that follows an
-empty field such as @code{int : 0;}.
-
-Note that @code{PCC_BITFIELD_TYPE_MATTERS} also affects the alignment
-that results from an empty field.
-
-@findex STRUCTURE_SIZE_BOUNDARY
-@item STRUCTURE_SIZE_BOUNDARY
-Number of bits which any structure or union's size must be a multiple of.
-Each structure or union's size is rounded up to a multiple of this.
-
-If you do not define this macro, the default is the same as
-@code{BITS_PER_UNIT}.
-
-@findex STRICT_ALIGNMENT
-@item STRICT_ALIGNMENT
-Define this macro to be the value 1 if instructions will fail to work
-if given data not on the nominal alignment. If instructions will merely
-go slower in that case, define this macro as 0.
-
-@findex PCC_BITFIELD_TYPE_MATTERS
-@item PCC_BITFIELD_TYPE_MATTERS
-Define this if you wish to imitate the way many other C compilers handle
-alignment of bitfields and the structures that contain them.
-
-The behavior is that the type written for a bitfield (@code{int},
-@code{short}, or other integer type) imposes an alignment for the
-entire structure, as if the structure really did contain an ordinary
-field of that type. In addition, the bitfield is placed within the
-structure so that it would fit within such a field, not crossing a
-boundary for it.
-
-Thus, on most machines, a bitfield whose type is written as @code{int}
-would not cross a four-byte boundary, and would force four-byte
-alignment for the whole structure. (The alignment used may not be four
-bytes; it is controlled by the other alignment parameters.)
-
-If the macro is defined, its definition should be a C expression;
-a nonzero value for the expression enables this behavior.
-
-Note that if this macro is not defined, or its value is zero, some
-bitfields may cross more than one alignment boundary. The compiler can
-support such references if there are @samp{insv}, @samp{extv}, and
-@samp{extzv} insns that can directly reference memory.
-
-The other known way of making bitfields work is to define
-@code{STRUCTURE_SIZE_BOUNDARY} as large as @code{BIGGEST_ALIGNMENT}.
-Then every structure can be accessed with fullwords.
-
-Unless the machine has bitfield instructions or you define
-@code{STRUCTURE_SIZE_BOUNDARY} that way, you must define
-@code{PCC_BITFIELD_TYPE_MATTERS} to have a nonzero value.
-
-If your aim is to make GNU CC use the same conventions for laying out
-bitfields as are used by another compiler, here is how to investigate
-what the other compiler does. Compile and run this program:
-
-@example
-struct foo1
-@{
- char x;
- char :0;
- char y;
-@};
-
-struct foo2
-@{
- char x;
- int :0;
- char y;
-@};
-
-main ()
-@{
- printf ("Size of foo1 is %d\n",
- sizeof (struct foo1));
- printf ("Size of foo2 is %d\n",
- sizeof (struct foo2));
- exit (0);
-@}
-@end example
-
-If this prints 2 and 5, then the compiler's behavior is what you would
-get from @code{PCC_BITFIELD_TYPE_MATTERS}.
-
-@findex BITFIELD_NBYTES_LIMITED
-@item BITFIELD_NBYTES_LIMITED
-Like PCC_BITFIELD_TYPE_MATTERS except that its effect is limited to
-aligning a bitfield within the structure.
-
-@findex ROUND_TYPE_SIZE
-@item ROUND_TYPE_SIZE (@var{struct}, @var{size}, @var{align})
-Define this macro as an expression for the overall size of a structure
-(given by @var{struct} as a tree node) when the size computed from the
-fields is @var{size} and the alignment is @var{align}.
-
-The default is to round @var{size} up to a multiple of @var{align}.
-
-@findex ROUND_TYPE_ALIGN
-@item ROUND_TYPE_ALIGN (@var{struct}, @var{computed}, @var{specified})
-Define this macro as an expression for the alignment of a structure
-(given by @var{struct} as a tree node) if the alignment computed in the
-usual way is @var{computed} and the alignment explicitly specified was
-@var{specified}.
-
-The default is to use @var{specified} if it is larger; otherwise, use
-the smaller of @var{computed} and @code{BIGGEST_ALIGNMENT}
-
-@findex MAX_FIXED_MODE_SIZE
-@item MAX_FIXED_MODE_SIZE
-An integer expression for the size in bits of the largest integer
-machine mode that should actually be used. All integer machine modes of
-this size or smaller can be used for structures and unions with the
-appropriate sizes. If this macro is undefined, @code{GET_MODE_BITSIZE
-(DImode)} is assumed.
-
-@findex CHECK_FLOAT_VALUE
-@item CHECK_FLOAT_VALUE (@var{mode}, @var{value}, @var{overflow})
-A C statement to validate the value @var{value} (of type
-@code{double}) for mode @var{mode}. This means that you check whether
-@var{value} fits within the possible range of values for mode
-@var{mode} on this target machine. The mode @var{mode} is always
-a mode of class @code{MODE_FLOAT}. @var{overflow} is nonzero if
-the value is already known to be out of range.
-
-If @var{value} is not valid or if @var{overflow} is nonzero, you should
-set @var{overflow} to 1 and then assign some valid value to @var{value}.
-Allowing an invalid value to go through the compiler can produce
-incorrect assembler code which may even cause Unix assemblers to crash.
-
-This macro need not be defined if there is no work for it to do.
-
-@findex TARGET_FLOAT_FORMAT
-@item TARGET_FLOAT_FORMAT
-A code distinguishing the floating point format of the target machine.
-There are three defined values:
-
-@table @code
-@findex IEEE_FLOAT_FORMAT
-@item IEEE_FLOAT_FORMAT
-This code indicates IEEE floating point. It is the default; there is no
-need to define this macro when the format is IEEE.
-
-@findex VAX_FLOAT_FORMAT
-@item VAX_FLOAT_FORMAT
-This code indicates the peculiar format used on the Vax.
-
-@findex UNKNOWN_FLOAT_FORMAT
-@item UNKNOWN_FLOAT_FORMAT
-This code indicates any other format.
-@end table
-
-The value of this macro is compared with @code{HOST_FLOAT_FORMAT}
-(@pxref{Config}) to determine whether the target machine has the same
-format as the host machine. If any other formats are actually in use on
-supported machines, new codes should be defined for them.
-
-The ordering of the component words of floating point values stored in
-memory is controlled by @code{FLOAT_WORDS_BIG_ENDIAN} for the target
-machine and @code{HOST_FLOAT_WORDS_BIG_ENDIAN} for the host.
-@end table
-
-@node Type Layout
-@section Layout of Source Language Data Types
-
-These macros define the sizes and other characteristics of the standard
-basic data types used in programs being compiled. Unlike the macros in
-the previous section, these apply to specific features of C and related
-languages, rather than to fundamental aspects of storage layout.
-
-@table @code
-@findex INT_TYPE_SIZE
-@item INT_TYPE_SIZE
-A C expression for the size in bits of the type @code{int} on the
-target machine. If you don't define this, the default is one word.
-
-@findex MAX_INT_TYPE_SIZE
-@item MAX_INT_TYPE_SIZE
-Maximum number for the size in bits of the type @code{int} on the target
-machine. If this is undefined, the default is @code{INT_TYPE_SIZE}.
-Otherwise, it is the constant value that is the largest value that
-@code{INT_TYPE_SIZE} can have at run-time. This is used in @code{cpp}.
-
-@findex SHORT_TYPE_SIZE
-@item SHORT_TYPE_SIZE
-A C expression for the size in bits of the type @code{short} on the
-target machine. If you don't define this, the default is half a word.
-(If this would be less than one storage unit, it is rounded up to one
-unit.)
-
-@findex LONG_TYPE_SIZE
-@item LONG_TYPE_SIZE
-A C expression for the size in bits of the type @code{long} on the
-target machine. If you don't define this, the default is one word.
-
-@findex MAX_LONG_TYPE_SIZE
-@item MAX_LONG_TYPE_SIZE
-Maximum number for the size in bits of the type @code{long} on the
-target machine. If this is undefined, the default is
-@code{LONG_TYPE_SIZE}. Otherwise, it is the constant value that is the
-largest value that @code{LONG_TYPE_SIZE} can have at run-time. This is
-used in @code{cpp}.
-
-@findex LONG_LONG_TYPE_SIZE
-@item LONG_LONG_TYPE_SIZE
-A C expression for the size in bits of the type @code{long long} on the
-target machine. If you don't define this, the default is two
-words.
-
-@findex CHAR_TYPE_SIZE
-@item CHAR_TYPE_SIZE
-A C expression for the size in bits of the type @code{char} on the
-target machine. If you don't define this, the default is one quarter
-of a word. (If this would be less than one storage unit, it is rounded up
-to one unit.)
-
-@findex MAX_CHAR_TYPE_SIZE
-@item MAX_CHAR_TYPE_SIZE
-Maximum number for the size in bits of the type @code{char} on the
-target machine. If this is undefined, the default is
-@code{CHAR_TYPE_SIZE}. Otherwise, it is the constant value that is the
-largest value that @code{CHAR_TYPE_SIZE} can have at run-time. This is
-used in @code{cpp}.
-
-@findex FLOAT_TYPE_SIZE
-@item FLOAT_TYPE_SIZE
-A C expression for the size in bits of the type @code{float} on the
-target machine. If you don't define this, the default is one word.
-
-@findex DOUBLE_TYPE_SIZE
-@item DOUBLE_TYPE_SIZE
-A C expression for the size in bits of the type @code{double} on the
-target machine. If you don't define this, the default is two
-words.
-
-@findex LONG_DOUBLE_TYPE_SIZE
-@item LONG_DOUBLE_TYPE_SIZE
-A C expression for the size in bits of the type @code{long double} on
-the target machine. If you don't define this, the default is two
-words.
-
-@findex DEFAULT_SIGNED_CHAR
-@item DEFAULT_SIGNED_CHAR
-An expression whose value is 1 or 0, according to whether the type
-@code{char} should be signed or unsigned by default. The user can
-always override this default with the options @samp{-fsigned-char}
-and @samp{-funsigned-char}.
-
-@findex DEFAULT_SHORT_ENUMS
-@item DEFAULT_SHORT_ENUMS
-A C expression to determine whether to give an @code{enum} type
-only as many bytes as it takes to represent the range of possible values
-of that type. A nonzero value means to do that; a zero value means all
-@code{enum} types should be allocated like @code{int}.
-
-If you don't define the macro, the default is 0.
-
-@findex SIZE_TYPE
-@item SIZE_TYPE
-A C expression for a string describing the name of the data type to use
-for size values. The typedef name @code{size_t} is defined using the
-contents of the string.
-
-The string can contain more than one keyword. If so, separate them with
-spaces, and write first any length keyword, then @code{unsigned} if
-appropriate, and finally @code{int}. The string must exactly match one
-of the data type names defined in the function
-@code{init_decl_processing} in the file @file{c-decl.c}. You may not
-omit @code{int} or change the order---that would cause the compiler to
-crash on startup.
-
-If you don't define this macro, the default is @code{"long unsigned
-int"}.
-
-@findex PTRDIFF_TYPE
-@item PTRDIFF_TYPE
-A C expression for a string describing the name of the data type to use
-for the result of subtracting two pointers. The typedef name
-@code{ptrdiff_t} is defined using the contents of the string. See
-@code{SIZE_TYPE} above for more information.
-
-If you don't define this macro, the default is @code{"long int"}.
-
-@findex WCHAR_TYPE
-@item WCHAR_TYPE
-A C expression for a string describing the name of the data type to use
-for wide characters. The typedef name @code{wchar_t} is defined using
-the contents of the string. See @code{SIZE_TYPE} above for more
-information.
-
-If you don't define this macro, the default is @code{"int"}.
-
-@findex WCHAR_TYPE_SIZE
-@item WCHAR_TYPE_SIZE
-A C expression for the size in bits of the data type for wide
-characters. This is used in @code{cpp}, which cannot make use of
-@code{WCHAR_TYPE}.
-
-@findex MAX_WCHAR_TYPE_SIZE
-@item MAX_WCHAR_TYPE_SIZE
-Maximum number for the size in bits of the data type for wide
-characters. If this is undefined, the default is
-@code{WCHAR_TYPE_SIZE}. Otherwise, it is the constant value that is the
-largest value that @code{WCHAR_TYPE_SIZE} can have at run-time. This is
-used in @code{cpp}.
-
-@findex OBJC_INT_SELECTORS
-@item OBJC_INT_SELECTORS
-Define this macro if the type of Objective C selectors should be
-@code{int}.
-
-If this macro is not defined, then selectors should have the type
-@code{struct objc_selector *}.
-
-@findex OBJC_SELECTORS_WITHOUT_LABELS
-@item OBJC_SELECTORS_WITHOUT_LABELS
-Define this macro if the compiler can group all the selectors together
-into a vector and use just one label at the beginning of the vector.
-Otherwise, the compiler must give each selector its own assembler
-label.
-
-On certain machines, it is important to have a separate label for each
-selector because this enables the linker to eliminate duplicate selectors.
-
-@findex TARGET_BELL
-@item TARGET_BELL
-A C constant expression for the integer value for escape sequence
-@samp{\a}.
-
-@findex TARGET_TAB
-@findex TARGET_BS
-@findex TARGET_NEWLINE
-@item TARGET_BS
-@itemx TARGET_TAB
-@itemx TARGET_NEWLINE
-C constant expressions for the integer values for escape sequences
-@samp{\b}, @samp{\t} and @samp{\n}.
-
-@findex TARGET_VT
-@findex TARGET_FF
-@findex TARGET_CR
-@item TARGET_VT
-@itemx TARGET_FF
-@itemx TARGET_CR
-C constant expressions for the integer values for escape sequences
-@samp{\v}, @samp{\f} and @samp{\r}.
-@end table
-
-@node Registers
-@section Register Usage
-@cindex register usage
-
-This section explains how to describe what registers the target machine
-has, and how (in general) they can be used.
-
-The description of which registers a specific instruction can use is
-done with register classes; see @ref{Register Classes}. For information
-on using registers to access a stack frame, see @ref{Frame Registers}.
-For passing values in registers, see @ref{Register Arguments}.
-For returning values in registers, see @ref{Scalar Return}.
-
-@menu
-* Register Basics:: Number and kinds of registers.
-* Allocation Order:: Order in which registers are allocated.
-* Values in Registers:: What kinds of values each reg can hold.
-* Leaf Functions:: Renumbering registers for leaf functions.
-* Stack Registers:: Handling a register stack such as 80387.
-* Obsolete Register Macros:: Macros formerly used for the 80387.
-@end menu
-
-@node Register Basics
-@subsection Basic Characteristics of Registers
-
-@c prevent bad page break with this line
-Registers have various characteristics.
-
-@table @code
-@findex FIRST_PSEUDO_REGISTER
-@item FIRST_PSEUDO_REGISTER
-Number of hardware registers known to the compiler. They receive
-numbers 0 through @code{FIRST_PSEUDO_REGISTER-1}; thus, the first
-pseudo register's number really is assigned the number
-@code{FIRST_PSEUDO_REGISTER}.
-
-@item FIXED_REGISTERS
-@findex FIXED_REGISTERS
-@cindex fixed register
-An initializer that says which registers are used for fixed purposes
-all throughout the compiled code and are therefore not available for
-general allocation. These would include the stack pointer, the frame
-pointer (except on machines where that can be used as a general
-register when no frame pointer is needed), the program counter on
-machines where that is considered one of the addressable registers,
-and any other numbered register with a standard use.
-
-This information is expressed as a sequence of numbers, separated by
-commas and surrounded by braces. The @var{n}th number is 1 if
-register @var{n} is fixed, 0 otherwise.
-
-The table initialized from this macro, and the table initialized by
-the following one, may be overridden at run time either automatically,
-by the actions of the macro @code{CONDITIONAL_REGISTER_USAGE}, or by
-the user with the command options @samp{-ffixed-@var{reg}},
-@samp{-fcall-used-@var{reg}} and @samp{-fcall-saved-@var{reg}}.
-
-@findex CALL_USED_REGISTERS
-@item CALL_USED_REGISTERS
-@cindex call-used register
-@cindex call-clobbered register
-@cindex call-saved register
-Like @code{FIXED_REGISTERS} but has 1 for each register that is
-clobbered (in general) by function calls as well as for fixed
-registers. This macro therefore identifies the registers that are not
-available for general allocation of values that must live across
-function calls.
-
-If a register has 0 in @code{CALL_USED_REGISTERS}, the compiler
-automatically saves it on function entry and restores it on function
-exit, if the register is used within the function.
-
-@findex CONDITIONAL_REGISTER_USAGE
-@findex fixed_regs
-@findex call_used_regs
-@item CONDITIONAL_REGISTER_USAGE
-Zero or more C statements that may conditionally modify two variables
-@code{fixed_regs} and @code{call_used_regs} (both of type @code{char
-[]}) after they have been initialized from the two preceding macros.
-
-This is necessary in case the fixed or call-clobbered registers depend
-on target flags.
-
-You need not define this macro if it has no work to do.
-
-@cindex disabling certain registers
-@cindex controlling register usage
-If the usage of an entire class of registers depends on the target
-flags, you may indicate this to GCC by using this macro to modify
-@code{fixed_regs} and @code{call_used_regs} to 1 for each of the
-registers in the classes which should not be used by GCC. Also define
-the macro @code{REG_CLASS_FROM_LETTER} to return @code{NO_REGS} if it
-is called with a letter for a class that shouldn't be used.
-
-(However, if this class is not included in @code{GENERAL_REGS} and all
-of the insn patterns whose constraints permit this class are
-controlled by target switches, then GCC will automatically avoid using
-these registers when the target switches are opposed to them.)
-
-@findex NON_SAVING_SETJMP
-@item NON_SAVING_SETJMP
-If this macro is defined and has a nonzero value, it means that
-@code{setjmp} and related functions fail to save the registers, or that
-@code{longjmp} fails to restore them. To compensate, the compiler
-avoids putting variables in registers in functions that use
-@code{setjmp}.
-
-@findex INCOMING_REGNO
-@item INCOMING_REGNO (@var{out})
-Define this macro if the target machine has register windows. This C
-expression returns the register number as seen by the called function
-corresponding to the register number @var{out} as seen by the calling
-function. Return @var{out} if register number @var{out} is not an
-outbound register.
-
-@findex OUTGOING_REGNO
-@item OUTGOING_REGNO (@var{in})
-Define this macro if the target machine has register windows. This C
-expression returns the register number as seen by the calling function
-corresponding to the register number @var{in} as seen by the called
-function. Return @var{in} if register number @var{in} is not an inbound
-register.
-
-@ignore
-@findex PC_REGNUM
-@item PC_REGNUM
-If the program counter has a register number, define this as that
-register number. Otherwise, do not define it.
-@end ignore
-@end table
-
-@node Allocation Order
-@subsection Order of Allocation of Registers
-@cindex order of register allocation
-@cindex register allocation order
-
-@c prevent bad page break with this line
-Registers are allocated in order.
-
-@table @code
-@findex REG_ALLOC_ORDER
-@item REG_ALLOC_ORDER
-If defined, an initializer for a vector of integers, containing the
-numbers of hard registers in the order in which GNU CC should prefer
-to use them (from most preferred to least).
-
-If this macro is not defined, registers are used lowest numbered first
-(all else being equal).
-
-One use of this macro is on machines where the highest numbered
-registers must always be saved and the save-multiple-registers
-instruction supports only sequences of consecutive registers. On such
-machines, define @code{REG_ALLOC_ORDER} to be an initializer that lists
-the highest numbered allocatable register first.
-
-@findex ORDER_REGS_FOR_LOCAL_ALLOC
-@item ORDER_REGS_FOR_LOCAL_ALLOC
-A C statement (sans semicolon) to choose the order in which to allocate
-hard registers for pseudo-registers local to a basic block.
-
-Store the desired register order in the array @code{reg_alloc_order}.
-Element 0 should be the register to allocate first; element 1, the next
-register; and so on.
-
-The macro body should not assume anything about the contents of
-@code{reg_alloc_order} before execution of the macro.
-
-On most machines, it is not necessary to define this macro.
-@end table
-
-@node Values in Registers
-@subsection How Values Fit in Registers
-
-This section discusses the macros that describe which kinds of values
-(specifically, which machine modes) each register can hold, and how many
-consecutive registers are needed for a given mode.
-
-@table @code
-@findex HARD_REGNO_NREGS
-@item HARD_REGNO_NREGS (@var{regno}, @var{mode})
-A C expression for the number of consecutive hard registers, starting
-at register number @var{regno}, required to hold a value of mode
-@var{mode}.
-
-On a machine where all registers are exactly one word, a suitable
-definition of this macro is
-
-@smallexample
-#define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
- / UNITS_PER_WORD))
-@end smallexample
-
-@findex HARD_REGNO_MODE_OK
-@item HARD_REGNO_MODE_OK (@var{regno}, @var{mode})
-A C expression that is nonzero if it is permissible to store a value
-of mode @var{mode} in hard register number @var{regno} (or in several
-registers starting with that one). For a machine where all registers
-are equivalent, a suitable definition is
-
-@smallexample
-#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
-@end smallexample
-
-It is not necessary for this macro to check for the numbers of fixed
-registers, because the allocation mechanism considers them to be always
-occupied.
-
-@cindex register pairs
-On some machines, double-precision values must be kept in even/odd
-register pairs. The way to implement that is to define this macro
-to reject odd register numbers for such modes.
-
-@ignore
-@c I think this is not true now
-GNU CC assumes that it can always move values between registers and
-(suitably addressed) memory locations. If it is impossible to move a
-value of a certain mode between memory and certain registers, then
-@code{HARD_REGNO_MODE_OK} must not allow this mode in those registers.
-@end ignore
-
-The minimum requirement for a mode to be OK in a register is that the
-@samp{mov@var{mode}} instruction pattern support moves between the
-register and any other hard register for which the mode is OK; and that
-moving a value into the register and back out not alter it.
-
-Since the same instruction used to move @code{SImode} will work for all
-narrower integer modes, it is not necessary on any machine for
-@code{HARD_REGNO_MODE_OK} to distinguish between these modes, provided
-you define patterns @samp{movhi}, etc., to take advantage of this. This
-is useful because of the interaction between @code{HARD_REGNO_MODE_OK}
-and @code{MODES_TIEABLE_P}; it is very desirable for all integer modes
-to be tieable.
-
-Many machines have special registers for floating point arithmetic.
-Often people assume that floating point machine modes are allowed only
-in floating point registers. This is not true. Any registers that
-can hold integers can safely @emph{hold} a floating point machine
-mode, whether or not floating arithmetic can be done on it in those
-registers. Integer move instructions can be used to move the values.
-
-On some machines, though, the converse is true: fixed-point machine
-modes may not go in floating registers. This is true if the floating
-registers normalize any value stored in them, because storing a
-non-floating value there would garble it. In this case,
-@code{HARD_REGNO_MODE_OK} should reject fixed-point machine modes in
-floating registers. But if the floating registers do not automatically
-normalize, if you can store any bit pattern in one and retrieve it
-unchanged without a trap, then any machine mode may go in a floating
-register, so you can define this macro to say so.
-
-The primary significance of special floating registers is rather that
-they are the registers acceptable in floating point arithmetic
-instructions. However, this is of no concern to
-@code{HARD_REGNO_MODE_OK}. You handle it by writing the proper
-constraints for those instructions.
-
-On some machines, the floating registers are especially slow to access,
-so that it is better to store a value in a stack frame than in such a
-register if floating point arithmetic is not being done. As long as the
-floating registers are not in class @code{GENERAL_REGS}, they will not
-be used unless some pattern's constraint asks for one.
-
-@findex MODES_TIEABLE_P
-@item MODES_TIEABLE_P (@var{mode1}, @var{mode2})
-A C expression that is nonzero if it is desirable to choose register
-allocation so as to avoid move instructions between a value of mode
-@var{mode1} and a value of mode @var{mode2}.
-
-If @code{HARD_REGNO_MODE_OK (@var{r}, @var{mode1})} and
-@code{HARD_REGNO_MODE_OK (@var{r}, @var{mode2})} are ever different
-for any @var{r}, then @code{MODES_TIEABLE_P (@var{mode1},
-@var{mode2})} must be zero.
-@end table
-
-@node Leaf Functions
-@subsection Handling Leaf Functions
-
-@cindex leaf functions
-@cindex functions, leaf
-On some machines, a leaf function (i.e., one which makes no calls) can run
-more efficiently if it does not make its own register window. Often this
-means it is required to receive its arguments in the registers where they
-are passed by the caller, instead of the registers where they would
-normally arrive.
-
-The special treatment for leaf functions generally applies only when
-other conditions are met; for example, often they may use only those
-registers for its own variables and temporaries. We use the term ``leaf
-function'' to mean a function that is suitable for this special
-handling, so that functions with no calls are not necessarily ``leaf
-functions''.
-
-GNU CC assigns register numbers before it knows whether the function is
-suitable for leaf function treatment. So it needs to renumber the
-registers in order to output a leaf function. The following macros
-accomplish this.
-
-@table @code
-@findex LEAF_REGISTERS
-@item LEAF_REGISTERS
-A C initializer for a vector, indexed by hard register number, which
-contains 1 for a register that is allowable in a candidate for leaf
-function treatment.
-
-If leaf function treatment involves renumbering the registers, then the
-registers marked here should be the ones before renumbering---those that
-GNU CC would ordinarily allocate. The registers which will actually be
-used in the assembler code, after renumbering, should not be marked with 1
-in this vector.
-
-Define this macro only if the target machine offers a way to optimize
-the treatment of leaf functions.
-
-@findex LEAF_REG_REMAP
-@item LEAF_REG_REMAP (@var{regno})
-A C expression whose value is the register number to which @var{regno}
-should be renumbered, when a function is treated as a leaf function.
-
-If @var{regno} is a register number which should not appear in a leaf
-function before renumbering, then the expression should yield -1, which
-will cause the compiler to abort.
-
-Define this macro only if the target machine offers a way to optimize the
-treatment of leaf functions, and registers need to be renumbered to do
-this.
-@end table
-
-@findex leaf_function
-Normally, @code{FUNCTION_PROLOGUE} and @code{FUNCTION_EPILOGUE} must
-treat leaf functions specially. It can test the C variable
-@code{leaf_function} which is nonzero for leaf functions. (The variable
-@code{leaf_function} is defined only if @code{LEAF_REGISTERS} is
-defined.)
-@c changed this to fix overfull. ALSO: why the "it" at the beginning
-@c of the next paragraph?! --mew 2feb93
-
-@node Stack Registers
-@subsection Registers That Form a Stack
-
-There are special features to handle computers where some of the
-``registers'' form a stack, as in the 80387 coprocessor for the 80386.
-Stack registers are normally written by pushing onto the stack, and are
-numbered relative to the top of the stack.
-
-Currently, GNU CC can only handle one group of stack-like registers, and
-they must be consecutively numbered.
-
-@table @code
-@findex STACK_REGS
-@item STACK_REGS
-Define this if the machine has any stack-like registers.
-
-@findex FIRST_STACK_REG
-@item FIRST_STACK_REG
-The number of the first stack-like register. This one is the top
-of the stack.
-
-@findex LAST_STACK_REG
-@item LAST_STACK_REG
-The number of the last stack-like register. This one is the bottom of
-the stack.
-@end table
-
-@node Obsolete Register Macros
-@subsection Obsolete Macros for Controlling Register Usage
-
-These features do not work very well. They exist because they used to
-be required to generate correct code for the 80387 coprocessor of the
-80386. They are no longer used by that machine description and may be
-removed in a later version of the compiler. Don't use them!
-
-@table @code
-@findex OVERLAPPING_REGNO_P
-@item OVERLAPPING_REGNO_P (@var{regno})
-If defined, this is a C expression whose value is nonzero if hard
-register number @var{regno} is an overlapping register. This means a
-hard register which overlaps a hard register with a different number.
-(Such overlap is undesirable, but occasionally it allows a machine to
-be supported which otherwise could not be.) This macro must return
-nonzero for @emph{all} the registers which overlap each other. GNU CC
-can use an overlapping register only in certain limited ways. It can
-be used for allocation within a basic block, and may be spilled for
-reloading; that is all.
-
-If this macro is not defined, it means that none of the hard registers
-overlap each other. This is the usual situation.
-
-@findex INSN_CLOBBERS_REGNO_P
-@item INSN_CLOBBERS_REGNO_P (@var{insn}, @var{regno})
-If defined, this is a C expression whose value should be nonzero if
-the insn @var{insn} has the effect of mysteriously clobbering the
-contents of hard register number @var{regno}. By ``mysterious'' we
-mean that the insn's RTL expression doesn't describe such an effect.
-
-If this macro is not defined, it means that no insn clobbers registers
-mysteriously. This is the usual situation; all else being equal,
-it is best for the RTL expression to show all the activity.
-
-@cindex death notes
-@findex PRESERVE_DEATH_INFO_REGNO_P
-@item PRESERVE_DEATH_INFO_REGNO_P (@var{regno})
-If defined, this is a C expression whose value is nonzero if accurate
-@code{REG_DEAD} notes are needed for hard register number @var{regno}
-at the time of outputting the assembler code. When this is so, a few
-optimizations that take place after register allocation and could
-invalidate the death notes are not done when this register is
-involved.
-
-You would arrange to preserve death info for a register when some of the
-code in the machine description which is executed to write the assembler
-code looks at the death notes. This is necessary only when the actual
-hardware feature which GNU CC thinks of as a register is not actually a
-register of the usual sort. (It might, for example, be a hardware
-stack.)
-
-If this macro is not defined, it means that no death notes need to be
-preserved. This is the usual situation.
-@end table
-
-@node Register Classes
-@section Register Classes
-@cindex register class definitions
-@cindex class definitions, register
-
-On many machines, the numbered registers are not all equivalent.
-For example, certain registers may not be allowed for indexed addressing;
-certain registers may not be allowed in some instructions. These machine
-restrictions are described to the compiler using @dfn{register classes}.
-
-You define a number of register classes, giving each one a name and saying
-which of the registers belong to it. Then you can specify register classes
-that are allowed as operands to particular instruction patterns.
-
-@findex ALL_REGS
-@findex NO_REGS
-In general, each register will belong to several classes. In fact, one
-class must be named @code{ALL_REGS} and contain all the registers. Another
-class must be named @code{NO_REGS} and contain no registers. Often the
-union of two classes will be another class; however, this is not required.
-
-@findex GENERAL_REGS
-One of the classes must be named @code{GENERAL_REGS}. There is nothing
-terribly special about the name, but the operand constraint letters
-@samp{r} and @samp{g} specify this class. If @code{GENERAL_REGS} is
-the same as @code{ALL_REGS}, just define it as a macro which expands
-to @code{ALL_REGS}.
-
-Order the classes so that if class @var{x} is contained in class @var{y}
-then @var{x} has a lower class number than @var{y}.
-
-The way classes other than @code{GENERAL_REGS} are specified in operand
-constraints is through machine-dependent operand constraint letters.
-You can define such letters to correspond to various classes, then use
-them in operand constraints.
-
-You should define a class for the union of two classes whenever some
-instruction allows both classes. For example, if an instruction allows
-either a floating point (coprocessor) register or a general register for a
-certain operand, you should define a class @code{FLOAT_OR_GENERAL_REGS}
-which includes both of them. Otherwise you will get suboptimal code.
-
-You must also specify certain redundant information about the register
-classes: for each class, which classes contain it and which ones are
-contained in it; for each pair of classes, the largest class contained
-in their union.
-
-When a value occupying several consecutive registers is expected in a
-certain class, all the registers used must belong to that class.
-Therefore, register classes cannot be used to enforce a requirement for
-a register pair to start with an even-numbered register. The way to
-specify this requirement is with @code{HARD_REGNO_MODE_OK}.
-
-Register classes used for input-operands of bitwise-and or shift
-instructions have a special requirement: each such class must have, for
-each fixed-point machine mode, a subclass whose registers can transfer that
-mode to or from memory. For example, on some machines, the operations for
-single-byte values (@code{QImode}) are limited to certain registers. When
-this is so, each register class that is used in a bitwise-and or shift
-instruction must have a subclass consisting of registers from which
-single-byte values can be loaded or stored. This is so that
-@code{PREFERRED_RELOAD_CLASS} can always have a possible value to return.
-
-@table @code
-@findex enum reg_class
-@item enum reg_class
-An enumeral type that must be defined with all the register class names
-as enumeral values. @code{NO_REGS} must be first. @code{ALL_REGS}
-must be the last register class, followed by one more enumeral value,
-@code{LIM_REG_CLASSES}, which is not a register class but rather
-tells how many classes there are.
-
-Each register class has a number, which is the value of casting
-the class name to type @code{int}. The number serves as an index
-in many of the tables described below.
-
-@findex N_REG_CLASSES
-@item N_REG_CLASSES
-The number of distinct register classes, defined as follows:
-
-@example
-#define N_REG_CLASSES (int) LIM_REG_CLASSES
-@end example
-
-@findex REG_CLASS_NAMES
-@item REG_CLASS_NAMES
-An initializer containing the names of the register classes as C string
-constants. These names are used in writing some of the debugging dumps.
-
-@findex REG_CLASS_CONTENTS
-@item REG_CLASS_CONTENTS
-An initializer containing the contents of the register classes, as integers
-which are bit masks. The @var{n}th integer specifies the contents of class
-@var{n}. The way the integer @var{mask} is interpreted is that
-register @var{r} is in the class if @code{@var{mask} & (1 << @var{r})} is 1.
-
-When the machine has more than 32 registers, an integer does not suffice.
-Then the integers are replaced by sub-initializers, braced groupings containing
-several integers. Each sub-initializer must be suitable as an initializer
-for the type @code{HARD_REG_SET} which is defined in @file{hard-reg-set.h}.
-
-@findex REGNO_REG_CLASS
-@item REGNO_REG_CLASS (@var{regno})
-A C expression whose value is a register class containing hard register
-@var{regno}. In general there is more than one such class; choose a class
-which is @dfn{minimal}, meaning that no smaller class also contains the
-register.
-
-@findex BASE_REG_CLASS
-@item BASE_REG_CLASS
-A macro whose definition is the name of the class to which a valid
-base register must belong. A base register is one used in an address
-which is the register value plus a displacement.
-
-@findex INDEX_REG_CLASS
-@item INDEX_REG_CLASS
-A macro whose definition is the name of the class to which a valid
-index register must belong. An index register is one used in an
-address where its value is either multiplied by a scale factor or
-added to another register (as well as added to a displacement).
-
-@findex REG_CLASS_FROM_LETTER
-@item REG_CLASS_FROM_LETTER (@var{char})
-A C expression which defines the machine-dependent operand constraint
-letters for register classes. If @var{char} is such a letter, the
-value should be the register class corresponding to it. Otherwise,
-the value should be @code{NO_REGS}. The register letter @samp{r},
-corresponding to class @code{GENERAL_REGS}, will not be passed
-to this macro; you do not need to handle it.
-
-@findex REGNO_OK_FOR_BASE_P
-@item REGNO_OK_FOR_BASE_P (@var{num})
-A C expression which is nonzero if register number @var{num} is
-suitable for use as a base register in operand addresses. It may be
-either a suitable hard register or a pseudo register that has been
-allocated such a hard register.
-
-@findex REGNO_OK_FOR_INDEX_P
-@item REGNO_OK_FOR_INDEX_P (@var{num})
-A C expression which is nonzero if register number @var{num} is
-suitable for use as an index register in operand addresses. It may be
-either a suitable hard register or a pseudo register that has been
-allocated such a hard register.
-
-The difference between an index register and a base register is that
-the index register may be scaled. If an address involves the sum of
-two registers, neither one of them scaled, then either one may be
-labeled the ``base'' and the other the ``index''; but whichever
-labeling is used must fit the machine's constraints of which registers
-may serve in each capacity. The compiler will try both labelings,
-looking for one that is valid, and will reload one or both registers
-only if neither labeling works.
-
-@findex PREFERRED_RELOAD_CLASS
-@item PREFERRED_RELOAD_CLASS (@var{x}, @var{class})
-A C expression that places additional restrictions on the register class
-to use when it is necessary to copy value @var{x} into a register in class
-@var{class}. The value is a register class; perhaps @var{class}, or perhaps
-another, smaller class. On many machines, the following definition is
-safe:
-
-@example
-#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
-@end example
-
-Sometimes returning a more restrictive class makes better code. For
-example, on the 68000, when @var{x} is an integer constant that is in range
-for a @samp{moveq} instruction, the value of this macro is always
-@code{DATA_REGS} as long as @var{class} includes the data registers.
-Requiring a data register guarantees that a @samp{moveq} will be used.
-
-If @var{x} is a @code{const_double}, by returning @code{NO_REGS}
-you can force @var{x} into a memory constant. This is useful on
-certain machines where immediate floating values cannot be loaded into
-certain kinds of registers.
-
-@findex PREFERRED_OUTPUT_RELOAD_CLASS
-@item PREFERRED_OUTPUT_RELOAD_CLASS (@var{x}, @var{class})
-Like @code{PREFERRED_RELOAD_CLASS}, but for output reloads instead of
-input reloads. If you don't define this macro, the default is to use
-@var{class}, unchanged.
-
-@findex LIMIT_RELOAD_CLASS
-@item LIMIT_RELOAD_CLASS (@var{mode}, @var{class})
-A C expression that places additional restrictions on the register class
-to use when it is necessary to be able to hold a value of mode
-@var{mode} in a reload register for which class @var{class} would
-ordinarily be used.
-
-Unlike @code{PREFERRED_RELOAD_CLASS}, this macro should be used when
-there are certain modes that simply can't go in certain reload classes.
-
-The value is a register class; perhaps @var{class}, or perhaps another,
-smaller class.
-
-Don't define this macro unless the target machine has limitations which
-require the macro to do something nontrivial.
-
-@findex SECONDARY_RELOAD_CLASS
-@findex SECONDARY_INPUT_RELOAD_CLASS
-@findex SECONDARY_OUTPUT_RELOAD_CLASS
-@item SECONDARY_RELOAD_CLASS (@var{class}, @var{mode}, @var{x})
-@itemx SECONDARY_INPUT_RELOAD_CLASS (@var{class}, @var{mode}, @var{x})
-@itemx SECONDARY_OUTPUT_RELOAD_CLASS (@var{class}, @var{mode}, @var{x})
-Many machines have some registers that cannot be copied directly to or
-from memory or even from other types of registers. An example is the
-@samp{MQ} register, which on most machines, can only be copied to or
-from general registers, but not memory. Some machines allow copying all
-registers to and from memory, but require a scratch register for stores
-to some memory locations (e.g., those with symbolic address on the RT,
-and those with certain symbolic address on the Sparc when compiling
-PIC). In some cases, both an intermediate and a scratch register are
-required.
-
-You should define these macros to indicate to the reload phase that it may
-need to allocate at least one register for a reload in addition to the
-register to contain the data. Specifically, if copying @var{x} to a
-register @var{class} in @var{mode} requires an intermediate register,
-you should define @code{SECONDARY_INPUT_RELOAD_CLASS} to return the
-largest register class all of whose registers can be used as
-intermediate registers or scratch registers.
-
-If copying a register @var{class} in @var{mode} to @var{x} requires an
-intermediate or scratch register, @code{SECONDARY_OUTPUT_RELOAD_CLASS}
-should be defined to return the largest register class required. If the
-requirements for input and output reloads are the same, the macro
-@code{SECONDARY_RELOAD_CLASS} should be used instead of defining both
-macros identically.
-
-The values returned by these macros are often @code{GENERAL_REGS}.
-Return @code{NO_REGS} if no spare register is needed; i.e., if @var{x}
-can be directly copied to or from a register of @var{class} in
-@var{mode} without requiring a scratch register. Do not define this
-macro if it would always return @code{NO_REGS}.
-
-If a scratch register is required (either with or without an
-intermediate register), you should define patterns for
-@samp{reload_in@var{m}} or @samp{reload_out@var{m}}, as required
-(@pxref{Standard Names}. These patterns, which will normally be
-implemented with a @code{define_expand}, should be similar to the
-@samp{mov@var{m}} patterns, except that operand 2 is the scratch
-register.
-
-Define constraints for the reload register and scratch register that
-contain a single register class. If the original reload register (whose
-class is @var{class}) can meet the constraint given in the pattern, the
-value returned by these macros is used for the class of the scratch
-register. Otherwise, two additional reload registers are required.
-Their classes are obtained from the constraints in the insn pattern.
-
-@var{x} might be a pseudo-register or a @code{subreg} of a
-pseudo-register, which could either be in a hard register or in memory.
-Use @code{true_regnum} to find out; it will return -1 if the pseudo is
-in memory and the hard register number if it is in a register.
-
-These macros should not be used in the case where a particular class of
-registers can only be copied to memory and not to another class of
-registers. In that case, secondary reload registers are not needed and
-would not be helpful. Instead, a stack location must be used to perform
-the copy and the @code{mov@var{m}} pattern should use memory as a
-intermediate storage. This case often occurs between floating-point and
-general registers.
-
-@findex SECONDARY_MEMORY_NEEDED
-@item SECONDARY_MEMORY_NEEDED (@var{class1}, @var{class2}, @var{m})
-Certain machines have the property that some registers cannot be copied
-to some other registers without using memory. Define this macro on
-those machines to be a C expression that is non-zero if objects of mode
-@var{m} in registers of @var{class1} can only be copied to registers of
-class @var{class2} by storing a register of @var{class1} into memory
-and loading that memory location into a register of @var{class2}.
-
-Do not define this macro if its value would always be zero.
-
-@findex SECONDARY_MEMORY_NEEDED_RTX
-@item SECONDARY_MEMORY_NEEDED_RTX (@var{mode})
-Normally when @code{SECONDARY_MEMORY_NEEDED} is defined, the compiler
-allocates a stack slot for a memory location needed for register copies.
-If this macro is defined, the compiler instead uses the memory location
-defined by this macro.
-
-Do not define this macro if you do not define
-@code{SECONDARY_MEMORY_NEEDED}.
-
-@findex SECONDARY_MEMORY_NEEDED_MODE
-@item SECONDARY_MEMORY_NEEDED_MODE (@var{mode})
-When the compiler needs a secondary memory location to copy between two
-registers of mode @var{mode}, it normally allocates sufficient memory to
-hold a quantity of @code{BITS_PER_WORD} bits and performs the store and
-load operations in a mode that many bits wide and whose class is the
-same as that of @var{mode}.
-
-This is right thing to do on most machines because it ensures that all
-bits of the register are copied and prevents accesses to the registers
-in a narrower mode, which some machines prohibit for floating-point
-registers.
-
-However, this default behavior is not correct on some machines, such as
-the DEC Alpha, that store short integers in floating-point registers
-differently than in integer registers. On those machines, the default
-widening will not work correctly and you must define this macro to
-suppress that widening in some cases. See the file @file{alpha.h} for
-details.
-
-Do not define this macro if you do not define
-@code{SECONDARY_MEMORY_NEEDED} or if widening @var{mode} to a mode that
-is @code{BITS_PER_WORD} bits wide is correct for your machine.
-
-@findex SMALL_REGISTER_CLASSES
-@item SMALL_REGISTER_CLASSES
-Normally the compiler avoids choosing registers that have been
-explicitly mentioned in the rtl as spill registers (these registers are
-normally those used to pass parameters and return values). However,
-some machines have so few registers of certain classes that there
-would not be enough registers to use as spill registers if this were
-done.
-
-Define @code{SMALL_REGISTER_CLASSES} on these machines. When it is
-defined, the compiler allows registers explicitly used in the rtl to be
-used as spill registers but avoids extending the lifetime of these
-registers.
-
-It is always safe to define this macro, but if you unnecessarily define
-it, you will reduce the amount of optimizations that can be performed in
-some cases. If you do not define this macro when it is required, the
-compiler will run out of spill registers and print a fatal error
-message. For most machines, you should not define this macro.
-
-@findex CLASS_LIKELY_SPILLED_P
-@item CLASS_LIKELY_SPILLED_P (@var{class})
-A C expression whose value is nonzero if pseudos that have been assigned
-to registers of class @var{class} would likely be spilled because
-registers of @var{class} are needed for spill registers.
-
-The default value of this macro returns 1 if @var{class} has exactly one
-register and zero otherwise. On most machines, this default should be
-used. Only define this macro to some other expression if pseudo
-allocated by @file{local-alloc.c} end up in memory because their hard
-registers were needed for spill regisers. If this macro returns nonzero
-for those classes, those pseudos will only be allocated by
-@file{global.c}, which knows how to reallocate the pseudo to another
-register. If there would not be another register available for
-reallocation, you should not change the definition of this macro since
-the only effect of such a definition would be to slow down register
-allocation.
-
-@findex CLASS_MAX_NREGS
-@item CLASS_MAX_NREGS (@var{class}, @var{mode})
-A C expression for the maximum number of consecutive registers
-of class @var{class} needed to hold a value of mode @var{mode}.
-
-This is closely related to the macro @code{HARD_REGNO_NREGS}. In fact,
-the value of the macro @code{CLASS_MAX_NREGS (@var{class}, @var{mode})}
-should be the maximum value of @code{HARD_REGNO_NREGS (@var{regno},
-@var{mode})} for all @var{regno} values in the class @var{class}.
-
-This macro helps control the handling of multiple-word values
-in the reload pass.
-
-@item CLASS_CANNOT_CHANGE_SIZE
-If defined, a C expression for a class that contains registers which the
-compiler must always access in a mode that is the same size as the mode
-in which it loaded the register, unless neither mode is integral.
-
-For the example, loading 32-bit integer or floating-point objects into
-floating-point registers on the Alpha extends them to 64-bits.
-Therefore loading a 64-bit object and then storing it as a 32-bit object
-does not store the low-order 32-bits, as would be the case for a normal
-register. Therefore, @file{alpha.h} defines this macro as
-@code{FLOAT_REGS}.
-@end table
-
-Three other special macros describe which operands fit which constraint
-letters.
-
-@table @code
-@findex CONST_OK_FOR_LETTER_P
-@item CONST_OK_FOR_LETTER_P (@var{value}, @var{c})
-A C expression that defines the machine-dependent operand constraint letters
-that specify particular ranges of integer values. If @var{c} is one
-of those letters, the expression should check that @var{value}, an integer,
-is in the appropriate range and return 1 if so, 0 otherwise. If @var{c} is
-not one of those letters, the value should be 0 regardless of @var{value}.
-
-@findex CONST_DOUBLE_OK_FOR_LETTER_P
-@item CONST_DOUBLE_OK_FOR_LETTER_P (@var{value}, @var{c})
-A C expression that defines the machine-dependent operand constraint
-letters that specify particular ranges of @code{const_double} values.
-
-If @var{c} is one of those letters, the expression should check that
-@var{value}, an RTX of code @code{const_double}, is in the appropriate
-range and return 1 if so, 0 otherwise. If @var{c} is not one of those
-letters, the value should be 0 regardless of @var{value}.
-
-@code{const_double} is used for all floating-point constants and for
-@code{DImode} fixed-point constants. A given letter can accept either
-or both kinds of values. It can use @code{GET_MODE} to distinguish
-between these kinds.
-
-@findex EXTRA_CONSTRAINT
-@item EXTRA_CONSTRAINT (@var{value}, @var{c})
-A C expression that defines the optional machine-dependent constraint
-letters that can be used to segregate specific types of operands,
-usually memory references, for the target machine. Normally this macro
-will not be defined. If it is required for a particular target machine,
-it should return 1 if @var{value} corresponds to the operand type
-represented by the constraint letter @var{c}. If @var{c} is not defined
-as an extra constraint, the value returned should be 0 regardless of
-@var{value}.
-
-For example, on the ROMP, load instructions cannot have their output in r0 if
-the memory reference contains a symbolic address. Constraint letter
-@samp{Q} is defined as representing a memory address that does
-@emph{not} contain a symbolic address. An alternative is specified with
-a @samp{Q} constraint on the input and @samp{r} on the output. The next
-alternative specifies @samp{m} on the input and a register class that
-does not include r0 on the output.
-@end table
-
-@node Stack and Calling
-@section Stack Layout and Calling Conventions
-@cindex calling conventions
-
-@c prevent bad page break with this line
-This describes the stack layout and calling conventions.
-
-@menu
-* Frame Layout::
-* Frame Registers::
-* Elimination::
-* Stack Arguments::
-* Register Arguments::
-* Scalar Return::
-* Aggregate Return::
-* Caller Saves::
-* Function Entry::
-* Profiling::
-@end menu
-
-@node Frame Layout
-@subsection Basic Stack Layout
-@cindex stack frame layout
-@cindex frame layout
-
-@c prevent bad page break with this line
-Here is the basic stack layout.
-
-@table @code
-@findex STACK_GROWS_DOWNWARD
-@item STACK_GROWS_DOWNWARD
-Define this macro if pushing a word onto the stack moves the stack
-pointer to a smaller address.
-
-When we say, ``define this macro if @dots{},'' it means that the
-compiler checks this macro only with @code{#ifdef} so the precise
-definition used does not matter.
-
-@findex FRAME_GROWS_DOWNWARD
-@item FRAME_GROWS_DOWNWARD
-Define this macro if the addresses of local variable slots are at negative
-offsets from the frame pointer.
-
-@findex ARGS_GROW_DOWNWARD
-@item ARGS_GROW_DOWNWARD
-Define this macro if successive arguments to a function occupy decreasing
-addresses on the stack.
-
-@findex STARTING_FRAME_OFFSET
-@item STARTING_FRAME_OFFSET
-Offset from the frame pointer to the first local variable slot to be allocated.
-
-If @code{FRAME_GROWS_DOWNWARD}, find the next slot's offset by
-subtracting the first slot's length from @code{STARTING_FRAME_OFFSET}.
-Otherwise, it is found by adding the length of the first slot to the
-value @code{STARTING_FRAME_OFFSET}.
-@c i'm not sure if the above is still correct.. had to change it to get
-@c rid of an overfull. --mew 2feb93
-
-@findex STACK_POINTER_OFFSET
-@item STACK_POINTER_OFFSET
-Offset from the stack pointer register to the first location at which
-outgoing arguments are placed. If not specified, the default value of
-zero is used. This is the proper value for most machines.
-
-If @code{ARGS_GROW_DOWNWARD}, this is the offset to the location above
-the first location at which outgoing arguments are placed.
-
-@findex FIRST_PARM_OFFSET
-@item FIRST_PARM_OFFSET (@var{fundecl})
-Offset from the argument pointer register to the first argument's
-address. On some machines it may depend on the data type of the
-function.
-
-If @code{ARGS_GROW_DOWNWARD}, this is the offset to the location above
-the first argument's address.
-
-@findex STACK_DYNAMIC_OFFSET
-@item STACK_DYNAMIC_OFFSET (@var{fundecl})
-Offset from the stack pointer register to an item dynamically allocated
-on the stack, e.g., by @code{alloca}.
-
-The default value for this macro is @code{STACK_POINTER_OFFSET} plus the
-length of the outgoing arguments. The default is correct for most
-machines. See @file{function.c} for details.
-
-@findex DYNAMIC_CHAIN_ADDRESS
-@item DYNAMIC_CHAIN_ADDRESS (@var{frameaddr})
-A C expression whose value is RTL representing the address in a stack
-frame where the pointer to the caller's frame is stored. Assume that
-@var{frameaddr} is an RTL expression for the address of the stack frame
-itself.
-
-If you don't define this macro, the default is to return the value
-of @var{frameaddr}---that is, the stack frame address is also the
-address of the stack word that points to the previous frame.
-
-@findex SETUP_FRAME_ADDRESSES
-@item SERTUP_FRAME_ADDRESSES ()
-If defined, a C expression that produces the machine-specific code to
-setup the stack so that arbitrary frames can be accessed. For example,
-on the Sparc, we must flush all of the register windows to the stack
-before we can access arbitrary stack frames.
-This macro will seldom need to be defined.
-
-@findex RETURN_ADDR_RTX
-@item RETURN_ADDR_RTX (@var{count}, @var{frameaddr})
-A C expression whose value is RTL representing the value of the return
-address for the frame @var{count} steps up from the current frame.
-@var{frameaddr} is the frame pointer of the @var{count} frame, or
-the frame pointer of the @var{count} @minus{} 1 frame if
-@code{RETURN_ADDR_IN_PREVIOUS_FRAME} is defined.
-
-@findex RETURN_ADDR_IN_PREVIOUS_FRAME
-@item RETURN_ADDR_IN_PREVIOUS_FRAME
-Define this if the return address of a particular stack frame is accessed
-from the frame pointer of the previous stack frame.
-@end table
-
-@need 2000
-@node Frame Registers
-@subsection Registers That Address the Stack Frame
-
-@c prevent bad page break with this line
-This discusses registers that address the stack frame.
-
-@table @code
-@findex STACK_POINTER_REGNUM
-@item STACK_POINTER_REGNUM
-The register number of the stack pointer register, which must also be a
-fixed register according to @code{FIXED_REGISTERS}. On most machines,
-the hardware determines which register this is.
-
-@findex FRAME_POINTER_REGNUM
-@item FRAME_POINTER_REGNUM
-The register number of the frame pointer register, which is used to
-access automatic variables in the stack frame. On some machines, the
-hardware determines which register this is. On other machines, you can
-choose any register you wish for this purpose.
-
-@findex HARD_FRAME_POINTER_REGNUM
-@item HARD_FRAME_POINTER_REGNUM
-On some machines the offset between the frame pointer and starting
-offset of the automatic variables is not known until after register
-allocation has been done (for example, because the saved registers are
-between these two locations). On those machines, define
-@code{FRAME_POINTER_REGNUM} the number of a special, fixed register to
-be used internally until the offset is known, and define
-@code{HARD_FRAME_POINTER_REGNUM} to be actual the hard register number
-used for the frame pointer.
-
-You should define this macro only in the very rare circumstances when it
-is not possible to calculate the offset between the frame pointer and
-the automatic variables until after register allocation has been
-completed. When this macro is defined, you must also indicate in your
-definition of @code{ELIMINABLE_REGS} how to eliminate
-@code{FRAME_POINTER_REGNUM} into either @code{HARD_FRAME_POINTER_REGNUM}
-or @code{STACK_POINTER_REGNUM}.
-
-Do not define this macro if it would be the same as
-@code{FRAME_POINTER_REGNUM}.
-
-@findex ARG_POINTER_REGNUM
-@item ARG_POINTER_REGNUM
-The register number of the arg pointer register, which is used to access
-the function's argument list. On some machines, this is the same as the
-frame pointer register. On some machines, the hardware determines which
-register this is. On other machines, you can choose any register you
-wish for this purpose. If this is not the same register as the frame
-pointer register, then you must mark it as a fixed register according to
-@code{FIXED_REGISTERS}, or arrange to be able to eliminate it
-(@pxref{Elimination}).
-
-@findex STATIC_CHAIN_REGNUM
-@findex STATIC_CHAIN_INCOMING_REGNUM
-@item STATIC_CHAIN_REGNUM
-@itemx STATIC_CHAIN_INCOMING_REGNUM
-Register numbers used for passing a function's static chain pointer. If
-register windows are used, the register number as seen by the called
-function is @code{STATIC_CHAIN_INCOMING_REGNUM}, while the register
-number as seen by the calling function is @code{STATIC_CHAIN_REGNUM}. If
-these registers are the same, @code{STATIC_CHAIN_INCOMING_REGNUM} need
-not be defined.@refill
-
-The static chain register need not be a fixed register.
-
-If the static chain is passed in memory, these macros should not be
-defined; instead, the next two macros should be defined.
-
-@findex STATIC_CHAIN
-@findex STATIC_CHAIN_INCOMING
-@item STATIC_CHAIN
-@itemx STATIC_CHAIN_INCOMING
-If the static chain is passed in memory, these macros provide rtx giving
-@code{mem} expressions that denote where they are stored.
-@code{STATIC_CHAIN} and @code{STATIC_CHAIN_INCOMING} give the locations
-as seen by the calling and called functions, respectively. Often the former
-will be at an offset from the stack pointer and the latter at an offset from
-the frame pointer.@refill
-
-@findex stack_pointer_rtx
-@findex frame_pointer_rtx
-@findex arg_pointer_rtx
-The variables @code{stack_pointer_rtx}, @code{frame_pointer_rtx}, and
-@code{arg_pointer_rtx} will have been initialized prior to the use of these
-macros and should be used to refer to those items.
-
-If the static chain is passed in a register, the two previous macros should
-be defined instead.
-@end table
-
-@node Elimination
-@subsection Eliminating Frame Pointer and Arg Pointer
-
-@c prevent bad page break with this line
-This is about eliminating the frame pointer and arg pointer.
-
-@table @code
-@findex FRAME_POINTER_REQUIRED
-@item FRAME_POINTER_REQUIRED
-A C expression which is nonzero if a function must have and use a frame
-pointer. This expression is evaluated in the reload pass. If its value is
-nonzero the function will have a frame pointer.
-
-The expression can in principle examine the current function and decide
-according to the facts, but on most machines the constant 0 or the
-constant 1 suffices. Use 0 when the machine allows code to be generated
-with no frame pointer, and doing so saves some time or space. Use 1
-when there is no possible advantage to avoiding a frame pointer.
-
-In certain cases, the compiler does not know how to produce valid code
-without a frame pointer. The compiler recognizes those cases and
-automatically gives the function a frame pointer regardless of what
-@code{FRAME_POINTER_REQUIRED} says. You don't need to worry about
-them.@refill
-
-In a function that does not require a frame pointer, the frame pointer
-register can be allocated for ordinary usage, unless you mark it as a
-fixed register. See @code{FIXED_REGISTERS} for more information.
-
-@findex INITIAL_FRAME_POINTER_OFFSET
-@findex get_frame_size
-@item INITIAL_FRAME_POINTER_OFFSET (@var{depth-var})
-A C statement to store in the variable @var{depth-var} the difference
-between the frame pointer and the stack pointer values immediately after
-the function prologue. The value would be computed from information
-such as the result of @code{get_frame_size ()} and the tables of
-registers @code{regs_ever_live} and @code{call_used_regs}.
-
-If @code{ELIMINABLE_REGS} is defined, this macro will be not be used and
-need not be defined. Otherwise, it must be defined even if
-@code{FRAME_POINTER_REQUIRED} is defined to always be true; in that
-case, you may set @var{depth-var} to anything.
-
-@findex ELIMINABLE_REGS
-@item ELIMINABLE_REGS
-If defined, this macro specifies a table of register pairs used to
-eliminate unneeded registers that point into the stack frame. If it is not
-defined, the only elimination attempted by the compiler is to replace
-references to the frame pointer with references to the stack pointer.
-
-The definition of this macro is a list of structure initializations, each
-of which specifies an original and replacement register.
-
-On some machines, the position of the argument pointer is not known until
-the compilation is completed. In such a case, a separate hard register
-must be used for the argument pointer. This register can be eliminated by
-replacing it with either the frame pointer or the argument pointer,
-depending on whether or not the frame pointer has been eliminated.
-
-In this case, you might specify:
-@example
-#define ELIMINABLE_REGS \
-@{@{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM@}, \
- @{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM@}, \
- @{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM@}@}
-@end example
-
-Note that the elimination of the argument pointer with the stack pointer is
-specified first since that is the preferred elimination.
-
-@findex CAN_ELIMINATE
-@item CAN_ELIMINATE (@var{from-reg}, @var{to-reg})
-A C expression that returns non-zero if the compiler is allowed to try
-to replace register number @var{from-reg} with register number
-@var{to-reg}. This macro need only be defined if @code{ELIMINABLE_REGS}
-is defined, and will usually be the constant 1, since most of the cases
-preventing register elimination are things that the compiler already
-knows about.
-
-@findex INITIAL_ELIMINATION_OFFSET
-@item INITIAL_ELIMINATION_OFFSET (@var{from-reg}, @var{to-reg}, @var{offset-var})
-This macro is similar to @code{INITIAL_FRAME_POINTER_OFFSET}. It
-specifies the initial difference between the specified pair of
-registers. This macro must be defined if @code{ELIMINABLE_REGS} is
-defined.
-
-@findex LONGJMP_RESTORE_FROM_STACK
-@item LONGJMP_RESTORE_FROM_STACK
-Define this macro if the @code{longjmp} function restores registers from
-the stack frames, rather than from those saved specifically by
-@code{setjmp}. Certain quantities must not be kept in registers across
-a call to @code{setjmp} on such machines.
-@end table
-
-@node Stack Arguments
-@subsection Passing Function Arguments on the Stack
-@cindex arguments on stack
-@cindex stack arguments
-
-The macros in this section control how arguments are passed
-on the stack. See the following section for other macros that
-control passing certain arguments in registers.
-
-@table @code
-@findex PROMOTE_PROTOTYPES
-@item PROMOTE_PROTOTYPES
-Define this macro if an argument declared in a prototype as an
-integral type smaller than @code{int} should actually be passed as an
-@code{int}. In addition to avoiding errors in certain cases of
-mismatch, it also makes for better code on certain machines.
-
-@findex PUSH_ROUNDING
-@item PUSH_ROUNDING (@var{npushed})
-A C expression that is the number of bytes actually pushed onto the
-stack when an instruction attempts to push @var{npushed} bytes.
-
-If the target machine does not have a push instruction, do not define
-this macro. That directs GNU CC to use an alternate strategy: to
-allocate the entire argument block and then store the arguments into
-it.
-
-On some machines, the definition
-
-@example
-#define PUSH_ROUNDING(BYTES) (BYTES)
-@end example
-
-@noindent
-will suffice. But on other machines, instructions that appear
-to push one byte actually push two bytes in an attempt to maintain
-alignment. Then the definition should be
-
-@example
-#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
-@end example
-
-@findex ACCUMULATE_OUTGOING_ARGS
-@findex current_function_outgoing_args_size
-@item ACCUMULATE_OUTGOING_ARGS
-If defined, the maximum amount of space required for outgoing arguments
-will be computed and placed into the variable
-@code{current_function_outgoing_args_size}. No space will be pushed
-onto the stack for each call; instead, the function prologue should
-increase the stack frame size by this amount.
-
-Defining both @code{PUSH_ROUNDING} and @code{ACCUMULATE_OUTGOING_ARGS}
-is not proper.
-
-@findex REG_PARM_STACK_SPACE
-@item REG_PARM_STACK_SPACE (@var{fndecl})
-Define this macro if functions should assume that stack space has been
-allocated for arguments even when their values are passed in
-registers.
-
-The value of this macro is the size, in bytes, of the area reserved for
-arguments passed in registers for the function represented by @var{fndecl}.
-
-This space can be allocated by the caller, or be a part of the
-machine-dependent stack frame: @code{OUTGOING_REG_PARM_STACK_SPACE} says
-which.
-@c above is overfull. not sure what to do. --mew 5feb93 did
-@c something, not sure if it looks good. --mew 10feb93
-
-@findex MAYBE_REG_PARM_STACK_SPACE
-@findex FINAL_REG_PARM_STACK_SPACE
-@item MAYBE_REG_PARM_STACK_SPACE
-@itemx FINAL_REG_PARM_STACK_SPACE (@var{const_size}, @var{var_size})
-Define these macros in addition to the one above if functions might
-allocate stack space for arguments even when their values are passed
-in registers. These should be used when the stack space allocated
-for arguments in registers is not a simple constant independent of the
-function declaration.
-
-The value of the first macro is the size, in bytes, of the area that
-we should initially assume would be reserved for arguments passed in registers.
-
-The value of the second macro is the actual size, in bytes, of the area
-that will be reserved for arguments passed in registers. This takes two
-arguments: an integer representing the number of bytes of fixed sized
-arguments on the stack, and a tree representing the number of bytes of
-variable sized arguments on the stack.
-
-When these macros are defined, @code{REG_PARM_STACK_SPACE} will only be
-called for libcall functions, the current function, or for a function
-being called when it is known that such stack space must be allocated.
-In each case this value can be easily computed.
-
-When deciding whether a called function needs such stack space, and how
-much space to reserve, GNU CC uses these two macros instead of
-@code{REG_PARM_STACK_SPACE}.
-
-@findex OUTGOING_REG_PARM_STACK_SPACE
-@item OUTGOING_REG_PARM_STACK_SPACE
-Define this if it is the responsibility of the caller to allocate the area
-reserved for arguments passed in registers.
-
-If @code{ACCUMULATE_OUTGOING_ARGS} is defined, this macro controls
-whether the space for these arguments counts in the value of
-@code{current_function_outgoing_args_size}.
-
-@findex STACK_PARMS_IN_REG_PARM_AREA
-@item STACK_PARMS_IN_REG_PARM_AREA
-Define this macro if @code{REG_PARM_STACK_SPACE} is defined, but the
-stack parameters don't skip the area specified by it.
-@c i changed this, makes more sens and it should have taken care of the
-@c overfull.. not as specific, tho. --mew 5feb93
-
-Normally, when a parameter is not passed in registers, it is placed on the
-stack beyond the @code{REG_PARM_STACK_SPACE} area. Defining this macro
-suppresses this behavior and causes the parameter to be passed on the
-stack in its natural location.
-
-@findex RETURN_POPS_ARGS
-@item RETURN_POPS_ARGS (@var{funtype}, @var{stack-size})
-A C expression that should indicate the number of bytes of its own
-arguments that a function pops on returning, or 0 if the
-function pops no arguments and the caller must therefore pop them all
-after the function returns.
-
-@var{funtype} is a C variable whose value is a tree node that
-describes the function in question. Normally it is a node of type
-@code{FUNCTION_TYPE} that describes the data type of the function.
-From this it is possible to obtain the data types of the value and
-arguments (if known).
-
-When a call to a library function is being considered, @var{funtype}
-will contain an identifier node for the library function. Thus, if
-you need to distinguish among various library functions, you can do so
-by their names. Note that ``library function'' in this context means
-a function used to perform arithmetic, whose name is known specially
-in the compiler and was not mentioned in the C code being compiled.
-
-@var{stack-size} is the number of bytes of arguments passed on the
-stack. If a variable number of bytes is passed, it is zero, and
-argument popping will always be the responsibility of the calling function.
-
-On the Vax, all functions always pop their arguments, so the definition
-of this macro is @var{stack-size}. On the 68000, using the standard
-calling convention, no functions pop their arguments, so the value of
-the macro is always 0 in this case. But an alternative calling
-convention is available in which functions that take a fixed number of
-arguments pop them but other functions (such as @code{printf}) pop
-nothing (the caller pops all). When this convention is in use,
-@var{funtype} is examined to determine whether a function takes a fixed
-number of arguments.
-@end table
-
-@node Register Arguments
-@subsection Passing Arguments in Registers
-@cindex arguments in registers
-@cindex registers arguments
-
-This section describes the macros which let you control how various
-types of arguments are passed in registers or how they are arranged in
-the stack.
-
-@table @code
-@findex FUNCTION_ARG
-@item FUNCTION_ARG (@var{cum}, @var{mode}, @var{type}, @var{named})
-A C expression that controls whether a function argument is passed
-in a register, and which register.
-
-The arguments are @var{cum}, which summarizes all the previous
-arguments; @var{mode}, the machine mode of the argument; @var{type},
-the data type of the argument as a tree node or 0 if that is not known
-(which happens for C support library functions); and @var{named},
-which is 1 for an ordinary argument and 0 for nameless arguments that
-correspond to @samp{@dots{}} in the called function's prototype.
-
-The value of the expression should either be a @code{reg} RTX for the
-hard register in which to pass the argument, or zero to pass the
-argument on the stack.
-
-For machines like the Vax and 68000, where normally all arguments are
-pushed, zero suffices as a definition.
-
-@cindex @file{stdarg.h} and register arguments
-The usual way to make the ANSI library @file{stdarg.h} work on a machine
-where some arguments are usually passed in registers, is to cause
-nameless arguments to be passed on the stack instead. This is done
-by making @code{FUNCTION_ARG} return 0 whenever @var{named} is 0.
-
-@cindex @code{MUST_PASS_IN_STACK}, and @code{FUNCTION_ARG}
-@cindex @code{REG_PARM_STACK_SPACE}, and @code{FUNCTION_ARG}
-You may use the macro @code{MUST_PASS_IN_STACK (@var{mode}, @var{type})}
-in the definition of this macro to determine if this argument is of a
-type that must be passed in the stack. If @code{REG_PARM_STACK_SPACE}
-is not defined and @code{FUNCTION_ARG} returns non-zero for such an
-argument, the compiler will abort. If @code{REG_PARM_STACK_SPACE} is
-defined, the argument will be computed in the stack and then loaded into
-a register.
-
-@findex FUNCTION_INCOMING_ARG
-@item FUNCTION_INCOMING_ARG (@var{cum}, @var{mode}, @var{type}, @var{named})
-Define this macro if the target machine has ``register windows'', so
-that the register in which a function sees an arguments is not
-necessarily the same as the one in which the caller passed the
-argument.
-
-For such machines, @code{FUNCTION_ARG} computes the register in which
-the caller passes the value, and @code{FUNCTION_INCOMING_ARG} should
-be defined in a similar fashion to tell the function being called
-where the arguments will arrive.
-
-If @code{FUNCTION_INCOMING_ARG} is not defined, @code{FUNCTION_ARG}
-serves both purposes.@refill
-
-@findex FUNCTION_ARG_PARTIAL_NREGS
-@item FUNCTION_ARG_PARTIAL_NREGS (@var{cum}, @var{mode}, @var{type}, @var{named})
-A C expression for the number of words, at the beginning of an
-argument, must be put in registers. The value must be zero for
-arguments that are passed entirely in registers or that are entirely
-pushed on the stack.
-
-On some machines, certain arguments must be passed partially in
-registers and partially in memory. On these machines, typically the
-first @var{n} words of arguments are passed in registers, and the rest
-on the stack. If a multi-word argument (a @code{double} or a
-structure) crosses that boundary, its first few words must be passed
-in registers and the rest must be pushed. This macro tells the
-compiler when this occurs, and how many of the words should go in
-registers.
-
-@code{FUNCTION_ARG} for these arguments should return the first
-register to be used by the caller for this argument; likewise
-@code{FUNCTION_INCOMING_ARG}, for the called function.
-
-@findex FUNCTION_ARG_PASS_BY_REFERENCE
-@item FUNCTION_ARG_PASS_BY_REFERENCE (@var{cum}, @var{mode}, @var{type}, @var{named})
-A C expression that indicates when an argument must be passed by reference.
-If nonzero for an argument, a copy of that argument is made in memory and a
-pointer to the argument is passed instead of the argument itself.
-The pointer is passed in whatever way is appropriate for passing a pointer
-to that type.
-
-On machines where @code{REG_PARM_STACK_SPACE} is not defined, a suitable
-definition of this macro might be
-@smallexample
-#define FUNCTION_ARG_PASS_BY_REFERENCE\
-(CUM, MODE, TYPE, NAMED) \
- MUST_PASS_IN_STACK (MODE, TYPE)
-@end smallexample
-@c this is *still* too long. --mew 5feb93
-
-@findex FUNCTION_ARG_CALLEE_COPIES
-@item FUNCTION_ARG_CALLEE_COPIES (@var{cum}, @var{mode}, @var{type}, @var{named})
-If defined, a C expression that indicates when it is the called function's
-responsibility to make a copy of arguments passed by invisible reference.
-Normally, the caller makes a copy and passes the address of the copy to the
-routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is
-nonzero, the caller does not make a copy. Instead, it passes a pointer to the
-``live'' value. The called function must not modify this value. If it can be
-determined that the value won't be modified, it need not make a copy;
-otherwise a copy must be made.
-
-@findex CUMULATIVE_ARGS
-@item CUMULATIVE_ARGS
-A C type for declaring a variable that is used as the first argument of
-@code{FUNCTION_ARG} and other related values. For some target machines,
-the type @code{int} suffices and can hold the number of bytes of
-argument so far.
-
-There is no need to record in @code{CUMULATIVE_ARGS} anything about the
-arguments that have been passed on the stack. The compiler has other
-variables to keep track of that. For target machines on which all
-arguments are passed on the stack, there is no need to store anything in
-@code{CUMULATIVE_ARGS}; however, the data structure must exist and
-should not be empty, so use @code{int}.
-
-@findex INIT_CUMULATIVE_ARGS
-@item INIT_CUMULATIVE_ARGS (@var{cum}, @var{fntype}, @var{libname})
-A C statement (sans semicolon) for initializing the variable @var{cum}
-for the state at the beginning of the argument list. The variable has
-type @code{CUMULATIVE_ARGS}. The value of @var{fntype} is the tree node
-for the data type of the function which will receive the args, or 0
-if the args are to a compiler support library function.
-
-When processing a call to a compiler support library function,
-@var{libname} identifies which one. It is a @code{symbol_ref} rtx which
-contains the name of the function, as a string. @var{libname} is 0 when
-an ordinary C function call is being processed. Thus, each time this
-macro is called, either @var{libname} or @var{fntype} is nonzero, but
-never both of them at once.
-
-@findex INIT_CUMULATIVE_INCOMING_ARGS
-@item INIT_CUMULATIVE_INCOMING_ARGS (@var{cum}, @var{fntype}, @var{libname})
-Like @code{INIT_CUMULATIVE_ARGS} but overrides it for the purposes of
-finding the arguments for the function being compiled. If this macro is
-undefined, @code{INIT_CUMULATIVE_ARGS} is used instead.
-
-The value passed for @var{libname} is always 0, since library routines
-with special calling conventions are never compiled with GNU CC. The
-argument @var{libname} exists for symmetry with
-@code{INIT_CUMULATIVE_ARGS}.
-@c could use "this macro" in place of @code{INIT_CUMULATIVE_ARGS}, maybe.
-@c --mew 5feb93 i switched the order of the sentences. --mew 10feb93
-
-@findex FUNCTION_ARG_ADVANCE
-@item FUNCTION_ARG_ADVANCE (@var{cum}, @var{mode}, @var{type}, @var{named})
-A C statement (sans semicolon) to update the summarizer variable
-@var{cum} to advance past an argument in the argument list. The
-values @var{mode}, @var{type} and @var{named} describe that argument.
-Once this is done, the variable @var{cum} is suitable for analyzing
-the @emph{following} argument with @code{FUNCTION_ARG}, etc.@refill
-
-This macro need not do anything if the argument in question was passed
-on the stack. The compiler knows how to track the amount of stack space
-used for arguments without any special help.
-
-@findex FUNCTION_ARG_PADDING
-@item FUNCTION_ARG_PADDING (@var{mode}, @var{type})
-If defined, a C expression which determines whether, and in which direction,
-to pad out an argument with extra space. The value should be of type
-@code{enum direction}: either @code{upward} to pad above the argument,
-@code{downward} to pad below, or @code{none} to inhibit padding.
-
-The @emph{amount} of padding is always just enough to reach the next
-multiple of @code{FUNCTION_ARG_BOUNDARY}; this macro does not control
-it.
-
-This macro has a default definition which is right for most systems.
-For little-endian machines, the default is to pad upward. For
-big-endian machines, the default is to pad downward for an argument of
-constant size shorter than an @code{int}, and upward otherwise.
-
-@findex FUNCTION_ARG_BOUNDARY
-@item FUNCTION_ARG_BOUNDARY (@var{mode}, @var{type})
-If defined, a C expression that gives the alignment boundary, in bits,
-of an argument with the specified mode and type. If it is not defined,
-@code{PARM_BOUNDARY} is used for all arguments.
-
-@findex FUNCTION_ARG_REGNO_P
-@item FUNCTION_ARG_REGNO_P (@var{regno})
-A C expression that is nonzero if @var{regno} is the number of a hard
-register in which function arguments are sometimes passed. This does
-@emph{not} include implicit arguments such as the static chain and
-the structure-value address. On many machines, no registers can be
-used for this purpose since all function arguments are pushed on the
-stack.
-@end table
-
-@node Scalar Return
-@subsection How Scalar Function Values Are Returned
-@cindex return values in registers
-@cindex values, returned by functions
-@cindex scalars, returned as values
-
-This section discusses the macros that control returning scalars as
-values---values that can fit in registers.
-
-@table @code
-@findex TRADITIONAL_RETURN_FLOAT
-@item TRADITIONAL_RETURN_FLOAT
-Define this macro if @samp{-traditional} should not cause functions
-declared to return @code{float} to convert the value to @code{double}.
-
-@findex FUNCTION_VALUE
-@item FUNCTION_VALUE (@var{valtype}, @var{func})
-A C expression to create an RTX representing the place where a
-function returns a value of data type @var{valtype}. @var{valtype} is
-a tree node representing a data type. Write @code{TYPE_MODE
-(@var{valtype})} to get the machine mode used to represent that type.
-On many machines, only the mode is relevant. (Actually, on most
-machines, scalar values are returned in the same place regardless of
-mode).@refill
-
-If @code{PROMOTE_FUNCTION_RETURN} is defined, you must apply the same
-promotion rules specified in @code{PROMOTE_MODE} if @var{valtype} is a
-scalar type.
-
-If the precise function being called is known, @var{func} is a tree
-node (@code{FUNCTION_DECL}) for it; otherwise, @var{func} is a null
-pointer. This makes it possible to use a different value-returning
-convention for specific functions when all their calls are
-known.@refill
-
-@code{FUNCTION_VALUE} is not used for return vales with aggregate data
-types, because these are returned in another way. See
-@code{STRUCT_VALUE_REGNUM} and related macros, below.
-
-@findex FUNCTION_OUTGOING_VALUE
-@item FUNCTION_OUTGOING_VALUE (@var{valtype}, @var{func})
-Define this macro if the target machine has ``register windows''
-so that the register in which a function returns its value is not
-the same as the one in which the caller sees the value.
-
-For such machines, @code{FUNCTION_VALUE} computes the register in which
-the caller will see the value. @code{FUNCTION_OUTGOING_VALUE} should be
-defined in a similar fashion to tell the function where to put the
-value.@refill
-
-If @code{FUNCTION_OUTGOING_VALUE} is not defined,
-@code{FUNCTION_VALUE} serves both purposes.@refill
-
-@code{FUNCTION_OUTGOING_VALUE} is not used for return vales with
-aggregate data types, because these are returned in another way. See
-@code{STRUCT_VALUE_REGNUM} and related macros, below.
-
-@findex LIBCALL_VALUE
-@item LIBCALL_VALUE (@var{mode})
-A C expression to create an RTX representing the place where a library
-function returns a value of mode @var{mode}. If the precise function
-being called is known, @var{func} is a tree node
-(@code{FUNCTION_DECL}) for it; otherwise, @var{func} is a null
-pointer. This makes it possible to use a different value-returning
-convention for specific functions when all their calls are
-known.@refill
-
-Note that ``library function'' in this context means a compiler
-support routine, used to perform arithmetic, whose name is known
-specially by the compiler and was not mentioned in the C code being
-compiled.
-
-The definition of @code{LIBRARY_VALUE} need not be concerned aggregate
-data types, because none of the library functions returns such types.
-
-@findex FUNCTION_VALUE_REGNO_P
-@item FUNCTION_VALUE_REGNO_P (@var{regno})
-A C expression that is nonzero if @var{regno} is the number of a hard
-register in which the values of called function may come back.
-
-A register whose use for returning values is limited to serving as the
-second of a pair (for a value of type @code{double}, say) need not be
-recognized by this macro. So for most machines, this definition
-suffices:
-
-@example
-#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
-@end example
-
-If the machine has register windows, so that the caller and the called
-function use different registers for the return value, this macro
-should recognize only the caller's register numbers.
-
-@findex APPLY_RESULT_SIZE
-@item APPLY_RESULT_SIZE
-Define this macro if @samp{untyped_call} and @samp{untyped_return}
-need more space than is implied by @code{FUNCTION_VALUE_REGNO_P} for
-saving and restoring an arbitrary return value.
-@end table
-
-@node Aggregate Return
-@subsection How Large Values Are Returned
-@cindex aggregates as return values
-@cindex large return values
-@cindex returning aggregate values
-@cindex structure value address
-
-When a function value's mode is @code{BLKmode} (and in some other
-cases), the value is not returned according to @code{FUNCTION_VALUE}
-(@pxref{Scalar Return}). Instead, the caller passes the address of a
-block of memory in which the value should be stored. This address
-is called the @dfn{structure value address}.
-
-This section describes how to control returning structure values in
-memory.
-
-@table @code
-@findex RETURN_IN_MEMORY
-@item RETURN_IN_MEMORY (@var{type})
-A C expression which can inhibit the returning of certain function
-values in registers, based on the type of value. A nonzero value says
-to return the function value in memory, just as large structures are
-always returned. Here @var{type} will be a C expression of type
-@code{tree}, representing the data type of the value.
-
-Note that values of mode @code{BLKmode} must be explicitly handled
-by this macro. Also, the option @samp{-fpcc-struct-return}
-takes effect regardless of this macro. On most systems, it is
-possible to leave the macro undefined; this causes a default
-definition to be used, whose value is the constant 1 for @code{BLKmode}
-values, and 0 otherwise.
-
-Do not use this macro to indicate that structures and unions should always
-be returned in memory. You should instead use @code{DEFAULT_PCC_STRUCT_RETURN}
-to indicate this.
-
-@findex DEFAULT_PCC_STRUCT_RETURN
-@item DEFAULT_PCC_STRUCT_RETURN
-Define this macro to be 1 if all structure and union return values must be
-in memory. Since this results in slower code, this should be defined
-only if needed for compatibility with other compilers or with an ABI.
-If you define this macro to be 0, then the conventions used for structure
-and union return values are decided by the @code{RETURN_IN_MEMORY} macro.
-
-If not defined, this defaults to the value 1.
-
-@findex STRUCT_VALUE_REGNUM
-@item STRUCT_VALUE_REGNUM
-If the structure value address is passed in a register, then
-@code{STRUCT_VALUE_REGNUM} should be the number of that register.
-
-@findex STRUCT_VALUE
-@item STRUCT_VALUE
-If the structure value address is not passed in a register, define
-@code{STRUCT_VALUE} as an expression returning an RTX for the place
-where the address is passed. If it returns 0, the address is passed as
-an ``invisible'' first argument.
-
-@findex STRUCT_VALUE_INCOMING_REGNUM
-@item STRUCT_VALUE_INCOMING_REGNUM
-On some architectures the place where the structure value address
-is found by the called function is not the same place that the
-caller put it. This can be due to register windows, or it could
-be because the function prologue moves it to a different place.
-
-If the incoming location of the structure value address is in a
-register, define this macro as the register number.
-
-@findex STRUCT_VALUE_INCOMING
-@item STRUCT_VALUE_INCOMING
-If the incoming location is not a register, then you should define
-@code{STRUCT_VALUE_INCOMING} as an expression for an RTX for where the
-called function should find the value. If it should find the value on
-the stack, define this to create a @code{mem} which refers to the frame
-pointer. A definition of 0 means that the address is passed as an
-``invisible'' first argument.
-
-@findex PCC_STATIC_STRUCT_RETURN
-@item PCC_STATIC_STRUCT_RETURN
-Define this macro if the usual system convention on the target machine
-for returning structures and unions is for the called function to return
-the address of a static variable containing the value.
-
-Do not define this if the usual system convention is for the caller to
-pass an address to the subroutine.
-
-This macro has effect in @samp{-fpcc-struct-return} mode, but it does
-nothing when you use @samp{-freg-struct-return} mode.
-@end table
-
-@node Caller Saves
-@subsection Caller-Saves Register Allocation
-
-If you enable it, GNU CC can save registers around function calls. This
-makes it possible to use call-clobbered registers to hold variables that
-must live across calls.
-
-@table @code
-@findex DEFAULT_CALLER_SAVES
-@item DEFAULT_CALLER_SAVES
-Define this macro if function calls on the target machine do not preserve
-any registers; in other words, if @code{CALL_USED_REGISTERS} has 1
-for all registers. This macro enables @samp{-fcaller-saves} by default.
-Eventually that option will be enabled by default on all machines and both
-the option and this macro will be eliminated.
-
-@findex CALLER_SAVE_PROFITABLE
-@item CALLER_SAVE_PROFITABLE (@var{refs}, @var{calls})
-A C expression to determine whether it is worthwhile to consider placing
-a pseudo-register in a call-clobbered hard register and saving and
-restoring it around each function call. The expression should be 1 when
-this is worth doing, and 0 otherwise.
-
-If you don't define this macro, a default is used which is good on most
-machines: @code{4 * @var{calls} < @var{refs}}.
-@end table
-
-@node Function Entry
-@subsection Function Entry and Exit
-@cindex function entry and exit
-@cindex prologue
-@cindex epilogue
-
-This section describes the macros that output function entry
-(@dfn{prologue}) and exit (@dfn{epilogue}) code.
-
-@table @code
-@findex FUNCTION_PROLOGUE
-@item FUNCTION_PROLOGUE (@var{file}, @var{size})
-A C compound statement that outputs the assembler code for entry to a
-function. The prologue is responsible for setting up the stack frame,
-initializing the frame pointer register, saving registers that must be
-saved, and allocating @var{size} additional bytes of storage for the
-local variables. @var{size} is an integer. @var{file} is a stdio
-stream to which the assembler code should be output.
-
-The label for the beginning of the function need not be output by this
-macro. That has already been done when the macro is run.
-
-@findex regs_ever_live
-To determine which registers to save, the macro can refer to the array
-@code{regs_ever_live}: element @var{r} is nonzero if hard register
-@var{r} is used anywhere within the function. This implies the function
-prologue should save register @var{r}, provided it is not one of the
-call-used registers. (@code{FUNCTION_EPILOGUE} must likewise use
-@code{regs_ever_live}.)
-
-On machines that have ``register windows'', the function entry code does
-not save on the stack the registers that are in the windows, even if
-they are supposed to be preserved by function calls; instead it takes
-appropriate steps to ``push'' the register stack, if any non-call-used
-registers are used in the function.
-
-@findex frame_pointer_needed
-On machines where functions may or may not have frame-pointers, the
-function entry code must vary accordingly; it must set up the frame
-pointer if one is wanted, and not otherwise. To determine whether a
-frame pointer is in wanted, the macro can refer to the variable
-@code{frame_pointer_needed}. The variable's value will be 1 at run
-time in a function that needs a frame pointer. @xref{Elimination}.
-
-The function entry code is responsible for allocating any stack space
-required for the function. This stack space consists of the regions
-listed below. In most cases, these regions are allocated in the
-order listed, with the last listed region closest to the top of the
-stack (the lowest address if @code{STACK_GROWS_DOWNWARD} is defined, and
-the highest address if it is not defined). You can use a different order
-for a machine if doing so is more convenient or required for
-compatibility reasons. Except in cases where required by standard
-or by a debugger, there is no reason why the stack layout used by GCC
-need agree with that used by other compilers for a machine.
-
-@itemize @bullet
-@item
-@findex current_function_pretend_args_size
-A region of @code{current_function_pretend_args_size} bytes of
-uninitialized space just underneath the first argument arriving on the
-stack. (This may not be at the very start of the allocated stack region
-if the calling sequence has pushed anything else since pushing the stack
-arguments. But usually, on such machines, nothing else has been pushed
-yet, because the function prologue itself does all the pushing.) This
-region is used on machines where an argument may be passed partly in
-registers and partly in memory, and, in some cases to support the
-features in @file{varargs.h} and @file{stdargs.h}.
-
-@item
-An area of memory used to save certain registers used by the function.
-The size of this area, which may also include space for such things as
-the return address and pointers to previous stack frames, is
-machine-specific and usually depends on which registers have been used
-in the function. Machines with register windows often do not require
-a save area.
-
-@item
-A region of at least @var{size} bytes, possibly rounded up to an allocation
-boundary, to contain the local variables of the function. On some machines,
-this region and the save area may occur in the opposite order, with the
-save area closer to the top of the stack.
-
-@item
-@cindex @code{ACCUMULATE_OUTGOING_ARGS} and stack frames
-Optionally, when @code{ACCUMULATE_OUTGOING_ARGS} is defined, a region of
-@code{current_function_outgoing_args_size} bytes to be used for outgoing
-argument lists of the function. @xref{Stack Arguments}.
-@end itemize
-
-Normally, it is necessary for the macros @code{FUNCTION_PROLOGUE} and
-@code{FUNCTION_EPILOGUE} to treat leaf functions specially. The C
-variable @code{leaf_function} is nonzero for such a function.
-
-@findex EXIT_IGNORE_STACK
-@item EXIT_IGNORE_STACK
-Define this macro as a C expression that is nonzero if the return
-instruction or the function epilogue ignores the value of the stack
-pointer; in other words, if it is safe to delete an instruction to
-adjust the stack pointer before a return from the function.
-
-Note that this macro's value is relevant only for functions for which
-frame pointers are maintained. It is never safe to delete a final
-stack adjustment in a function that has no frame pointer, and the
-compiler knows this regardless of @code{EXIT_IGNORE_STACK}.
-
-@findex FUNCTION_EPILOGUE
-@item FUNCTION_EPILOGUE (@var{file}, @var{size})
-A C compound statement that outputs the assembler code for exit from a
-function. The epilogue is responsible for restoring the saved
-registers and stack pointer to their values when the function was
-called, and returning control to the caller. This macro takes the
-same arguments as the macro @code{FUNCTION_PROLOGUE}, and the
-registers to restore are determined from @code{regs_ever_live} and
-@code{CALL_USED_REGISTERS} in the same way.
-
-On some machines, there is a single instruction that does all the work
-of returning from the function. On these machines, give that
-instruction the name @samp{return} and do not define the macro
-@code{FUNCTION_EPILOGUE} at all.
-
-Do not define a pattern named @samp{return} if you want the
-@code{FUNCTION_EPILOGUE} to be used. If you want the target switches
-to control whether return instructions or epilogues are used, define a
-@samp{return} pattern with a validity condition that tests the target
-switches appropriately. If the @samp{return} pattern's validity
-condition is false, epilogues will be used.
-
-On machines where functions may or may not have frame-pointers, the
-function exit code must vary accordingly. Sometimes the code for these
-two cases is completely different. To determine whether a frame pointer
-is wanted, the macro can refer to the variable
-@code{frame_pointer_needed}. The variable's value will be 1 when compiling
-a function that needs a frame pointer.
-
-Normally, @code{FUNCTION_PROLOGUE} and @code{FUNCTION_EPILOGUE} must
-treat leaf functions specially. The C variable @code{leaf_function} is
-nonzero for such a function. @xref{Leaf Functions}.
-
-On some machines, some functions pop their arguments on exit while
-others leave that for the caller to do. For example, the 68020 when
-given @samp{-mrtd} pops arguments in functions that take a fixed
-number of arguments.
-
-@findex current_function_pops_args
-Your definition of the macro @code{RETURN_POPS_ARGS} decides which
-functions pop their own arguments. @code{FUNCTION_EPILOGUE} needs to
-know what was decided. The variable that is called
-@code{current_function_pops_args} is the number of bytes of its
-arguments that a function should pop. @xref{Scalar Return}.
-@c what is the "its arguments" in the above sentence referring to, pray
-@c tell? --mew 5feb93
-
-@findex DELAY_SLOTS_FOR_EPILOGUE
-@item DELAY_SLOTS_FOR_EPILOGUE
-Define this macro if the function epilogue contains delay slots to which
-instructions from the rest of the function can be ``moved''. The
-definition should be a C expression whose value is an integer
-representing the number of delay slots there.
-
-@findex ELIGIBLE_FOR_EPILOGUE_DELAY
-@item ELIGIBLE_FOR_EPILOGUE_DELAY (@var{insn}, @var{n})
-A C expression that returns 1 if @var{insn} can be placed in delay
-slot number @var{n} of the epilogue.
-
-The argument @var{n} is an integer which identifies the delay slot now
-being considered (since different slots may have different rules of
-eligibility). It is never negative and is always less than the number
-of epilogue delay slots (what @code{DELAY_SLOTS_FOR_EPILOGUE} returns).
-If you reject a particular insn for a given delay slot, in principle, it
-may be reconsidered for a subsequent delay slot. Also, other insns may
-(at least in principle) be considered for the so far unfilled delay
-slot.
-
-@findex current_function_epilogue_delay_list
-@findex final_scan_insn
-The insns accepted to fill the epilogue delay slots are put in an RTL
-list made with @code{insn_list} objects, stored in the variable
-@code{current_function_epilogue_delay_list}. The insn for the first
-delay slot comes first in the list. Your definition of the macro
-@code{FUNCTION_EPILOGUE} should fill the delay slots by outputting the
-insns in this list, usually by calling @code{final_scan_insn}.
-
-You need not define this macro if you did not define
-@code{DELAY_SLOTS_FOR_EPILOGUE}.
-@end table
-
-@node Profiling
-@subsection Generating Code for Profiling
-@cindex profiling, code generation
-
-These macros will help you generate code for profiling.
-
-@table @code
-@findex FUNCTION_PROFILER
-@item FUNCTION_PROFILER (@var{file}, @var{labelno})
-A C statement or compound statement to output to @var{file} some
-assembler code to call the profiling subroutine @code{mcount}.
-Before calling, the assembler code must load the address of a
-counter variable into a register where @code{mcount} expects to
-find the address. The name of this variable is @samp{LP} followed
-by the number @var{labelno}, so you would generate the name using
-@samp{LP%d} in a @code{fprintf}.
-
-@findex mcount
-The details of how the address should be passed to @code{mcount} are
-determined by your operating system environment, not by GNU CC. To
-figure them out, compile a small program for profiling using the
-system's installed C compiler and look at the assembler code that
-results.
-
-@findex PROFILE_BEFORE_PROLOGUE
-@item PROFILE_BEFORE_PROLOGUE
-Define this macro if the code for function profiling should come before
-the function prologue. Normally, the profiling code comes after.
-
-@findex FUNCTION_BLOCK_PROFILER
-@findex __bb_init_func
-@item FUNCTION_BLOCK_PROFILER (@var{file}, @var{labelno})
-A C statement or compound statement to output to @var{file} some
-assembler code to initialize basic-block profiling for the current
-object module. This code should call the subroutine
-@code{__bb_init_func} once per object module, passing it as its sole
-argument the address of a block allocated in the object module.
-
-The name of the block is a local symbol made with this statement:
-
-@example
-ASM_GENERATE_INTERNAL_LABEL (@var{buffer}, "LPBX", 0);
-@end example
-
-Of course, since you are writing the definition of
-@code{ASM_GENERATE_INTERNAL_LABEL} as well as that of this macro, you
-can take a short cut in the definition of this macro and use the name
-that you know will result.
-
-The first word of this block is a flag which will be nonzero if the
-object module has already been initialized. So test this word first,
-and do not call @code{__bb_init_func} if the flag is nonzero.
-
-@findex BLOCK_PROFILER
-@item BLOCK_PROFILER (@var{file}, @var{blockno})
-A C statement or compound statement to increment the count associated
-with the basic block number @var{blockno}. Basic blocks are numbered
-separately from zero within each compilation. The count associated
-with block number @var{blockno} is at index @var{blockno} in a vector
-of words; the name of this array is a local symbol made with this
-statement:
-
-@example
-ASM_GENERATE_INTERNAL_LABEL (@var{buffer}, "LPBX", 2);
-@end example
-
-@c This paragraph is the same as one a few paragraphs up.
-@c That is not an error.
-Of course, since you are writing the definition of
-@code{ASM_GENERATE_INTERNAL_LABEL} as well as that of this macro, you
-can take a short cut in the definition of this macro and use the name
-that you know will result.
-
-@findex BLOCK_PROFILER_CODE
-@item BLOCK_PROFILER_CODE
-A C function or functions which are needed in the library to
-support block profiling.
-@end table
-
-@node Varargs
-@section Implementing the Varargs Macros
-@cindex varargs implementation
-
-GNU CC comes with an implementation of @file{varargs.h} and
-@file{stdarg.h} that work without change on machines that pass arguments
-on the stack. Other machines require their own implementations of
-varargs, and the two machine independent header files must have
-conditionals to include it.
-
-ANSI @file{stdarg.h} differs from traditional @file{varargs.h} mainly in
-the calling convention for @code{va_start}. The traditional
-implementation takes just one argument, which is the variable in which
-to store the argument pointer. The ANSI implementation of
-@code{va_start} takes an additional second argument. The user is
-supposed to write the last named argument of the function here.
-
-However, @code{va_start} should not use this argument. The way to find
-the end of the named arguments is with the built-in functions described
-below.
-
-@table @code
-@findex __builtin_saveregs
-@item __builtin_saveregs ()
-Use this built-in function to save the argument registers in memory so
-that the varargs mechanism can access them. Both ANSI and traditional
-versions of @code{va_start} must use @code{__builtin_saveregs}, unless
-you use @code{SETUP_INCOMING_VARARGS} (see below) instead.
-
-On some machines, @code{__builtin_saveregs} is open-coded under the
-control of the macro @code{EXPAND_BUILTIN_SAVEREGS}. On other machines,
-it calls a routine written in assembler language, found in
-@file{libgcc2.c}.
-
-Code generated for the call to @code{__builtin_saveregs} appears at the
-beginning of the function, as opposed to where the call to
-@code{__builtin_saveregs} is written, regardless of what the code is.
-This is because the registers must be saved before the function starts
-to use them for its own purposes.
-@c i rewrote the first sentence above to fix an overfull hbox. --mew
-@c 10feb93
-
-@findex __builtin_args_info
-@item __builtin_args_info (@var{category})
-Use this built-in function to find the first anonymous arguments in
-registers.
-
-In general, a machine may have several categories of registers used for
-arguments, each for a particular category of data types. (For example,
-on some machines, floating-point registers are used for floating-point
-arguments while other arguments are passed in the general registers.)
-To make non-varargs functions use the proper calling convention, you
-have defined the @code{CUMULATIVE_ARGS} data type to record how many
-registers in each category have been used so far
-
-@code{__builtin_args_info} accesses the same data structure of type
-@code{CUMULATIVE_ARGS} after the ordinary argument layout is finished
-with it, with @var{category} specifying which word to access. Thus, the
-value indicates the first unused register in a given category.
-
-Normally, you would use @code{__builtin_args_info} in the implementation
-of @code{va_start}, accessing each category just once and storing the
-value in the @code{va_list} object. This is because @code{va_list} will
-have to update the values, and there is no way to alter the
-values accessed by @code{__builtin_args_info}.
-
-@findex __builtin_next_arg
-@item __builtin_next_arg (@var{lastarg})
-This is the equivalent of @code{__builtin_args_info}, for stack
-arguments. It returns the address of the first anonymous stack
-argument, as type @code{void *}. If @code{ARGS_GROW_DOWNWARD}, it
-returns the address of the location above the first anonymous stack
-argument. Use it in @code{va_start} to initialize the pointer for
-fetching arguments from the stack. Also use it in @code{va_start} to
-verify that the second parameter @var{lastarg} is the last named argument
-of the current function.
-
-@findex __builtin_classify_type
-@item __builtin_classify_type (@var{object})
-Since each machine has its own conventions for which data types are
-passed in which kind of register, your implementation of @code{va_arg}
-has to embody these conventions. The easiest way to categorize the
-specified data type is to use @code{__builtin_classify_type} together
-with @code{sizeof} and @code{__alignof__}.
-
-@code{__builtin_classify_type} ignores the value of @var{object},
-considering only its data type. It returns an integer describing what
-kind of type that is---integer, floating, pointer, structure, and so on.
-
-The file @file{typeclass.h} defines an enumeration that you can use to
-interpret the values of @code{__builtin_classify_type}.
-@end table
-
-These machine description macros help implement varargs:
-
-@table @code
-@findex EXPAND_BUILTIN_SAVEREGS
-@item EXPAND_BUILTIN_SAVEREGS (@var{args})
-If defined, is a C expression that produces the machine-specific code
-for a call to @code{__builtin_saveregs}. This code will be moved to the
-very beginning of the function, before any parameter access are made.
-The return value of this function should be an RTX that contains the
-value to use as the return of @code{__builtin_saveregs}.
-
-The argument @var{args} is a @code{tree_list} containing the arguments
-that were passed to @code{__builtin_saveregs}.
-
-If this macro is not defined, the compiler will output an ordinary
-call to the library function @samp{__builtin_saveregs}.
-
-@c !!! a bug in texinfo; how to make the entry on the @item line allow
-@c more than one line of text... help... --mew 10feb93
-@findex SETUP_INCOMING_VARARGS
-@item SETUP_INCOMING_VARARGS (@var{args_so_far}, @var{mode}, @var{type},
-@var{pretend_args_size}, @var{second_time})
-This macro offers an alternative to using @code{__builtin_saveregs} and
-defining the macro @code{EXPAND_BUILTIN_SAVEREGS}. Use it to store the
-anonymous register arguments into the stack so that all the arguments
-appear to have been passed consecutively on the stack. Once this is
-done, you can use the standard implementation of varargs that works for
-machines that pass all their arguments on the stack.
-
-The argument @var{args_so_far} is the @code{CUMULATIVE_ARGS} data
-structure, containing the values that obtain after processing of the
-named arguments. The arguments @var{mode} and @var{type} describe the
-last named argument---its machine mode and its data type as a tree node.
-
-The macro implementation should do two things: first, push onto the
-stack all the argument registers @emph{not} used for the named
-arguments, and second, store the size of the data thus pushed into the
-@code{int}-valued variable whose name is supplied as the argument
-@var{pretend_args_size}. The value that you store here will serve as
-additional offset for setting up the stack frame.
-
-Because you must generate code to push the anonymous arguments at
-compile time without knowing their data types,
-@code{SETUP_INCOMING_VARARGS} is only useful on machines that have just
-a single category of argument register and use it uniformly for all data
-types.
-
-If the argument @var{second_time} is nonzero, it means that the
-arguments of the function are being analyzed for the second time. This
-happens for an inline function, which is not actually compiled until the
-end of the source file. The macro @code{SETUP_INCOMING_VARARGS} should
-not generate any instructions in this case.
-@end table
-
-@node Trampolines
-@section Trampolines for Nested Functions
-@cindex trampolines for nested functions
-@cindex nested functions, trampolines for
-
-A @dfn{trampoline} is a small piece of code that is created at run time
-when the address of a nested function is taken. It normally resides on
-the stack, in the stack frame of the containing function. These macros
-tell GNU CC how to generate code to allocate and initialize a
-trampoline.
-
-The instructions in the trampoline must do two things: load a constant
-address into the static chain register, and jump to the real address of
-the nested function. On CISC machines such as the m68k, this requires
-two instructions, a move immediate and a jump. Then the two addresses
-exist in the trampoline as word-long immediate operands. On RISC
-machines, it is often necessary to load each address into a register in
-two parts. Then pieces of each address form separate immediate
-operands.
-
-The code generated to initialize the trampoline must store the variable
-parts---the static chain value and the function address---into the
-immediate operands of the instructions. On a CISC machine, this is
-simply a matter of copying each address to a memory reference at the
-proper offset from the start of the trampoline. On a RISC machine, it
-may be necessary to take out pieces of the address and store them
-separately.
-
-@table @code
-@findex TRAMPOLINE_TEMPLATE
-@item TRAMPOLINE_TEMPLATE (@var{file})
-A C statement to output, on the stream @var{file}, assembler code for a
-block of data that contains the constant parts of a trampoline. This
-code should not include a label---the label is taken care of
-automatically.
-
-@findex TRAMPOLINE_SECTION
-@item TRAMPOLINE_SECTION
-The name of a subroutine to switch to the section in which the
-trampoline template is to be placed (@pxref{Sections}). The default is
-a value of @samp{readonly_data_section}, which places the trampoline in
-the section containing read-only data.
-
-@findex TRAMPOLINE_SIZE
-@item TRAMPOLINE_SIZE
-A C expression for the size in bytes of the trampoline, as an integer.
-
-@findex TRAMPOLINE_ALIGNMENT
-@item TRAMPOLINE_ALIGNMENT
-Alignment required for trampolines, in bits.
-
-If you don't define this macro, the value of @code{BIGGEST_ALIGNMENT}
-is used for aligning trampolines.
-
-@findex INITIALIZE_TRAMPOLINE
-@item INITIALIZE_TRAMPOLINE (@var{addr}, @var{fnaddr}, @var{static_chain})
-A C statement to initialize the variable parts of a trampoline.
-@var{addr} is an RTX for the address of the trampoline; @var{fnaddr} is
-an RTX for the address of the nested function; @var{static_chain} is an
-RTX for the static chain value that should be passed to the function
-when it is called.
-
-@findex ALLOCATE_TRAMPOLINE
-@item ALLOCATE_TRAMPOLINE (@var{fp})
-A C expression to allocate run-time space for a trampoline. The
-expression value should be an RTX representing a memory reference to the
-space for the trampoline.
-
-@cindex @code{FUNCTION_EPILOGUE} and trampolines
-@cindex @code{FUNCTION_PROLOGUE} and trampolines
-If this macro is not defined, by default the trampoline is allocated as
-a stack slot. This default is right for most machines. The exceptions
-are machines where it is impossible to execute instructions in the stack
-area. On such machines, you may have to implement a separate stack,
-using this macro in conjunction with @code{FUNCTION_PROLOGUE} and
-@code{FUNCTION_EPILOGUE}.
-
-@var{fp} points to a data structure, a @code{struct function}, which
-describes the compilation status of the immediate containing function of
-the function which the trampoline is for. Normally (when
-@code{ALLOCATE_TRAMPOLINE} is not defined), the stack slot for the
-trampoline is in the stack frame of this containing function. Other
-allocation strategies probably must do something analogous with this
-information.
-@end table
-
-Implementing trampolines is difficult on many machines because they have
-separate instruction and data caches. Writing into a stack location
-fails to clear the memory in the instruction cache, so when the program
-jumps to that location, it executes the old contents.
-
-Here are two possible solutions. One is to clear the relevant parts of
-the instruction cache whenever a trampoline is set up. The other is to
-make all trampolines identical, by having them jump to a standard
-subroutine. The former technique makes trampoline execution faster; the
-latter makes initialization faster.
-
-To clear the instruction cache when a trampoline is initialized, define
-the following macros which describe the shape of the cache.
-
-@table @code
-@findex INSN_CACHE_SIZE
-@item INSN_CACHE_SIZE
-The total size in bytes of the cache.
-
-@findex INSN_CACHE_LINE_WIDTH
-@item INSN_CACHE_LINE_WIDTH
-The length in bytes of each cache line. The cache is divided into cache
-lines which are disjoint slots, each holding a contiguous chunk of data
-fetched from memory. Each time data is brought into the cache, an
-entire line is read at once. The data loaded into a cache line is
-always aligned on a boundary equal to the line size.
-
-@findex INSN_CACHE_DEPTH
-@item INSN_CACHE_DEPTH
-The number of alternative cache lines that can hold any particular memory
-location.
-@end table
-
-Alternatively, if the machine has system calls or instructions to clear
-the instruction cache directly, you can define the following macro.
-
-@table @code
-@findex CLEAR_INSN_CACHE
-@item CLEAR_INSN_CACHE (@var{BEG}, @var{END})
-If defined, expands to a C expression clearing the @emph{instruction
-cache} in the specified interval. If it is not defined, and the macro
-INSN_CACHE_SIZE is defined, some generic code is generated to clear the
-cache. The definition of this macro would typically be a series of
-@code{asm} statements. Both @var{BEG} and @var{END} are both pointer
-expressions.
-@end table
-
-To use a standard subroutine, define the following macro. In addition,
-you must make sure that the instructions in a trampoline fill an entire
-cache line with identical instructions, or else ensure that the
-beginning of the trampoline code is always aligned at the same point in
-its cache line. Look in @file{m68k.h} as a guide.
-
-@table @code
-@findex TRANSFER_FROM_TRAMPOLINE
-@item TRANSFER_FROM_TRAMPOLINE
-Define this macro if trampolines need a special subroutine to do their
-work. The macro should expand to a series of @code{asm} statements
-which will be compiled with GNU CC. They go in a library function named
-@code{__transfer_from_trampoline}.
-
-If you need to avoid executing the ordinary prologue code of a compiled
-C function when you jump to the subroutine, you can do so by placing a
-special label of your own in the assembler code. Use one @code{asm}
-statement to generate an assembler label, and another to make the label
-global. Then trampolines can use that label to jump directly to your
-special assembler code.
-@end table
-
-@node Library Calls
-@section Implicit Calls to Library Routines
-@cindex library subroutine names
-@cindex @file{libgcc.a}
-
-@c prevent bad page break with this line
-Here is an explanation of implicit calls to library routines.
-
-@table @code
-@findex MULSI3_LIBCALL
-@item MULSI3_LIBCALL
-A C string constant giving the name of the function to call for
-multiplication of one signed full-word by another. If you do not
-define this macro, the default name is used, which is @code{__mulsi3},
-a function defined in @file{libgcc.a}.
-
-@findex DIVSI3_LIBCALL
-@item DIVSI3_LIBCALL
-A C string constant giving the name of the function to call for
-division of one signed full-word by another. If you do not define
-this macro, the default name is used, which is @code{__divsi3}, a
-function defined in @file{libgcc.a}.
-
-@findex UDIVSI3_LIBCALL
-@item UDIVSI3_LIBCALL
-A C string constant giving the name of the function to call for
-division of one unsigned full-word by another. If you do not define
-this macro, the default name is used, which is @code{__udivsi3}, a
-function defined in @file{libgcc.a}.
-
-@findex MODSI3_LIBCALL
-@item MODSI3_LIBCALL
-A C string constant giving the name of the function to call for the
-remainder in division of one signed full-word by another. If you do
-not define this macro, the default name is used, which is
-@code{__modsi3}, a function defined in @file{libgcc.a}.
-
-@findex UMODSI3_LIBCALL
-@item UMODSI3_LIBCALL
-A C string constant giving the name of the function to call for the
-remainder in division of one unsigned full-word by another. If you do
-not define this macro, the default name is used, which is
-@code{__umodsi3}, a function defined in @file{libgcc.a}.
-
-@findex MULDI3_LIBCALL
-@item MULDI3_LIBCALL
-A C string constant giving the name of the function to call for
-multiplication of one signed double-word by another. If you do not
-define this macro, the default name is used, which is @code{__muldi3},
-a function defined in @file{libgcc.a}.
-
-@findex DIVDI3_LIBCALL
-@item DIVDI3_LIBCALL
-A C string constant giving the name of the function to call for
-division of one signed double-word by another. If you do not define
-this macro, the default name is used, which is @code{__divdi3}, a
-function defined in @file{libgcc.a}.
-
-@findex UDIVDI3_LIBCALL
-@item UDIVDI3_LIBCALL
-A C string constant giving the name of the function to call for
-division of one unsigned full-word by another. If you do not define
-this macro, the default name is used, which is @code{__udivdi3}, a
-function defined in @file{libgcc.a}.
-
-@findex MODDI3_LIBCALL
-@item MODDI3_LIBCALL
-A C string constant giving the name of the function to call for the
-remainder in division of one signed double-word by another. If you do
-not define this macro, the default name is used, which is
-@code{__moddi3}, a function defined in @file{libgcc.a}.
-
-@findex UMODDI3_LIBCALL
-@item UMODDI3_LIBCALL
-A C string constant giving the name of the function to call for the
-remainder in division of one unsigned full-word by another. If you do
-not define this macro, the default name is used, which is
-@code{__umoddi3}, a function defined in @file{libgcc.a}.
-
-@findex INIT_TARGET_OPTABS
-@item INIT_TARGET_OPTABS
-Define this macro as a C statement that declares additional library
-routines renames existing ones. @code{init_optabs} calls this macro after
-initializing all the normal library routines.
-
-@findex TARGET_EDOM
-@cindex @code{EDOM}, implicit usage
-@item TARGET_EDOM
-The value of @code{EDOM} on the target machine, as a C integer constant
-expression. If you don't define this macro, GNU CC does not attempt to
-deposit the value of @code{EDOM} into @code{errno} directly. Look in
-@file{/usr/include/errno.h} to find the value of @code{EDOM} on your
-system.
-
-If you do not define @code{TARGET_EDOM}, then compiled code reports
-domain errors by calling the library function and letting it report the
-error. If mathematical functions on your system use @code{matherr} when
-there is an error, then you should leave @code{TARGET_EDOM} undefined so
-that @code{matherr} is used normally.
-
-@findex GEN_ERRNO_RTX
-@cindex @code{errno}, implicit usage
-@item GEN_ERRNO_RTX
-Define this macro as a C expression to create an rtl expression that
-refers to the global ``variable'' @code{errno}. (On certain systems,
-@code{errno} may not actually be a variable.) If you don't define this
-macro, a reasonable default is used.
-
-@findex TARGET_MEM_FUNCTIONS
-@cindex @code{bcopy}, implicit usage
-@cindex @code{memcpy}, implicit usage
-@cindex @code{bzero}, implicit usage
-@cindex @code{memset}, implicit usage
-@item TARGET_MEM_FUNCTIONS
-Define this macro if GNU CC should generate calls to the System V
-(and ANSI C) library functions @code{memcpy} and @code{memset}
-rather than the BSD functions @code{bcopy} and @code{bzero}.
-
-@findex LIBGCC_NEEDS_DOUBLE
-@item LIBGCC_NEEDS_DOUBLE
-Define this macro if only @code{float} arguments cannot be passed to
-library routines (so they must be converted to @code{double}). This
-macro affects both how library calls are generated and how the library
-routines in @file{libgcc1.c} accept their arguments. It is useful on
-machines where floating and fixed point arguments are passed
-differently, such as the i860.
-
-@findex FLOAT_ARG_TYPE
-@item FLOAT_ARG_TYPE
-Define this macro to override the type used by the library routines to
-pick up arguments of type @code{float}. (By default, they use a union
-of @code{float} and @code{int}.)
-
-The obvious choice would be @code{float}---but that won't work with
-traditional C compilers that expect all arguments declared as @code{float}
-to arrive as @code{double}. To avoid this conversion, the library routines
-ask for the value as some other type and then treat it as a @code{float}.
-
-On some systems, no other type will work for this. For these systems,
-you must use @code{LIBGCC_NEEDS_DOUBLE} instead, to force conversion of
-the values @code{double} before they are passed.
-
-@findex FLOATIFY
-@item FLOATIFY (@var{passed-value})
-Define this macro to override the way library routines redesignate a
-@code{float} argument as a @code{float} instead of the type it was
-passed as. The default is an expression which takes the @code{float}
-field of the union.
-
-@findex FLOAT_VALUE_TYPE
-@item FLOAT_VALUE_TYPE
-Define this macro to override the type used by the library routines to
-return values that ought to have type @code{float}. (By default, they
-use @code{int}.)
-
-The obvious choice would be @code{float}---but that won't work with
-traditional C compilers gratuitously convert values declared as
-@code{float} into @code{double}.
-
-@findex INTIFY
-@item INTIFY (@var{float-value})
-Define this macro to override the way the value of a
-@code{float}-returning library routine should be packaged in order to
-return it. These functions are actually declared to return type
-@code{FLOAT_VALUE_TYPE} (normally @code{int}).
-
-These values can't be returned as type @code{float} because traditional
-C compilers would gratuitously convert the value to a @code{double}.
-
-A local variable named @code{intify} is always available when the macro
-@code{INTIFY} is used. It is a union of a @code{float} field named
-@code{f} and a field named @code{i} whose type is
-@code{FLOAT_VALUE_TYPE} or @code{int}.
-
-If you don't define this macro, the default definition works by copying
-the value through that union.
-
-@findex nongcc_SI_type
-@item nongcc_SI_type
-Define this macro as the name of the data type corresponding to
-@code{SImode} in the system's own C compiler.
-
-You need not define this macro if that type is @code{long int}, as it usually
-is.
-
-@findex nongcc_word_type
-@item nongcc_word_type
-Define this macro as the name of the data type corresponding to the
-word_mode in the system's own C compiler.
-
-You need not define this macro if that type is @code{long int}, as it usually
-is.
-
-@findex perform_@dots{}
-@item perform_@dots{}
-Define these macros to supply explicit C statements to carry out various
-arithmetic operations on types @code{float} and @code{double} in the
-library routines in @file{libgcc1.c}. See that file for a full list
-of these macros and their arguments.
-
-On most machines, you don't need to define any of these macros, because
-the C compiler that comes with the system takes care of doing them.
-
-@findex NEXT_OBJC_RUNTIME
-@item NEXT_OBJC_RUNTIME
-Define this macro to generate code for Objective C message sending using
-the calling convention of the NeXT system. This calling convention
-involves passing the object, the selector and the method arguments all
-at once to the method-lookup library function.
-
-The default calling convention passes just the object and the selector
-to the lookup function, which returns a pointer to the method.
-@end table
-
-@node Addressing Modes
-@section Addressing Modes
-@cindex addressing modes
-
-@c prevent bad page break with this line
-This is about addressing modes.
-
-@table @code
-@findex HAVE_POST_INCREMENT
-@item HAVE_POST_INCREMENT
-Define this macro if the machine supports post-increment addressing.
-
-@findex HAVE_PRE_INCREMENT
-@findex HAVE_POST_DECREMENT
-@findex HAVE_PRE_DECREMENT
-@item HAVE_PRE_INCREMENT
-@itemx HAVE_POST_DECREMENT
-@itemx HAVE_PRE_DECREMENT
-Similar for other kinds of addressing.
-
-@findex CONSTANT_ADDRESS_P
-@item CONSTANT_ADDRESS_P (@var{x})
-A C expression that is 1 if the RTX @var{x} is a constant which
-is a valid address. On most machines, this can be defined as
-@code{CONSTANT_P (@var{x})}, but a few machines are more restrictive
-in which constant addresses are supported.
-
-@findex CONSTANT_P
-@code{CONSTANT_P} accepts integer-values expressions whose values are
-not explicitly known, such as @code{symbol_ref}, @code{label_ref}, and
-@code{high} expressions and @code{const} arithmetic expressions, in
-addition to @code{const_int} and @code{const_double} expressions.
-
-@findex MAX_REGS_PER_ADDRESS
-@item MAX_REGS_PER_ADDRESS
-A number, the maximum number of registers that can appear in a valid
-memory address. Note that it is up to you to specify a value equal to
-the maximum number that @code{GO_IF_LEGITIMATE_ADDRESS} would ever
-accept.
-
-@findex GO_IF_LEGITIMATE_ADDRESS
-@item GO_IF_LEGITIMATE_ADDRESS (@var{mode}, @var{x}, @var{label})
-A C compound statement with a conditional @code{goto @var{label};}
-executed if @var{x} (an RTX) is a legitimate memory address on the
-target machine for a memory operand of mode @var{mode}.
-
-It usually pays to define several simpler macros to serve as
-subroutines for this one. Otherwise it may be too complicated to
-understand.
-
-This macro must exist in two variants: a strict variant and a
-non-strict one. The strict variant is used in the reload pass. It
-must be defined so that any pseudo-register that has not been
-allocated a hard register is considered a memory reference. In
-contexts where some kind of register is required, a pseudo-register
-with no hard register must be rejected.
-
-The non-strict variant is used in other passes. It must be defined to
-accept all pseudo-registers in every context where some kind of
-register is required.
-
-@findex REG_OK_STRICT
-Compiler source files that want to use the strict variant of this
-macro define the macro @code{REG_OK_STRICT}. You should use an
-@code{#ifdef REG_OK_STRICT} conditional to define the strict variant
-in that case and the non-strict variant otherwise.
-
-Subroutines to check for acceptable registers for various purposes (one
-for base registers, one for index registers, and so on) are typically
-among the subroutines used to define @code{GO_IF_LEGITIMATE_ADDRESS}.
-Then only these subroutine macros need have two variants; the higher
-levels of macros may be the same whether strict or not.@refill
-
-Normally, constant addresses which are the sum of a @code{symbol_ref}
-and an integer are stored inside a @code{const} RTX to mark them as
-constant. Therefore, there is no need to recognize such sums
-specifically as legitimate addresses. Normally you would simply
-recognize any @code{const} as legitimate.
-
-Usually @code{PRINT_OPERAND_ADDRESS} is not prepared to handle constant
-sums that are not marked with @code{const}. It assumes that a naked
-@code{plus} indicates indexing. If so, then you @emph{must} reject such
-naked constant sums as illegitimate addresses, so that none of them will
-be given to @code{PRINT_OPERAND_ADDRESS}.
-
-@cindex @code{ENCODE_SECTION_INFO} and address validation
-On some machines, whether a symbolic address is legitimate depends on
-the section that the address refers to. On these machines, define the
-macro @code{ENCODE_SECTION_INFO} to store the information into the
-@code{symbol_ref}, and then check for it here. When you see a
-@code{const}, you will have to look inside it to find the
-@code{symbol_ref} in order to determine the section. @xref{Assembler
-Format}.
-
-@findex saveable_obstack
-The best way to modify the name string is by adding text to the
-beginning, with suitable punctuation to prevent any ambiguity. Allocate
-the new name in @code{saveable_obstack}. You will have to modify
-@code{ASM_OUTPUT_LABELREF} to remove and decode the added text and
-output the name accordingly, and define @code{STRIP_NAME_ENCODING} to
-access the original name string.
-
-You can check the information stored here into the @code{symbol_ref} in
-the definitions of the macros @code{GO_IF_LEGITIMATE_ADDRESS} and
-@code{PRINT_OPERAND_ADDRESS}.
-
-@findex REG_OK_FOR_BASE_P
-@item REG_OK_FOR_BASE_P (@var{x})
-A C expression that is nonzero if @var{x} (assumed to be a @code{reg}
-RTX) is valid for use as a base register. For hard registers, it
-should always accept those which the hardware permits and reject the
-others. Whether the macro accepts or rejects pseudo registers must be
-controlled by @code{REG_OK_STRICT} as described above. This usually
-requires two variant definitions, of which @code{REG_OK_STRICT}
-controls the one actually used.
-
-@findex REG_OK_FOR_INDEX_P
-@item REG_OK_FOR_INDEX_P (@var{x})
-A C expression that is nonzero if @var{x} (assumed to be a @code{reg}
-RTX) is valid for use as an index register.
-
-The difference between an index register and a base register is that
-the index register may be scaled. If an address involves the sum of
-two registers, neither one of them scaled, then either one may be
-labeled the ``base'' and the other the ``index''; but whichever
-labeling is used must fit the machine's constraints of which registers
-may serve in each capacity. The compiler will try both labelings,
-looking for one that is valid, and will reload one or both registers
-only if neither labeling works.
-
-@findex LEGITIMIZE_ADDRESS
-@item LEGITIMIZE_ADDRESS (@var{x}, @var{oldx}, @var{mode}, @var{win})
-A C compound statement that attempts to replace @var{x} with a valid
-memory address for an operand of mode @var{mode}. @var{win} will be a
-C statement label elsewhere in the code; the macro definition may use
-
-@example
-GO_IF_LEGITIMATE_ADDRESS (@var{mode}, @var{x}, @var{win});
-@end example
-
-@noindent
-to avoid further processing if the address has become legitimate.
-
-@findex break_out_memory_refs
-@var{x} will always be the result of a call to @code{break_out_memory_refs},
-and @var{oldx} will be the operand that was given to that function to produce
-@var{x}.
-
-The code generated by this macro should not alter the substructure of
-@var{x}. If it transforms @var{x} into a more legitimate form, it
-should assign @var{x} (which will always be a C variable) a new value.
-
-It is not necessary for this macro to come up with a legitimate
-address. The compiler has standard ways of doing so in all cases. In
-fact, it is safe for this macro to do nothing. But often a
-machine-dependent strategy can generate better code.
-
-@findex GO_IF_MODE_DEPENDENT_ADDRESS
-@item GO_IF_MODE_DEPENDENT_ADDRESS (@var{addr}, @var{label})
-A C statement or compound statement with a conditional @code{goto
-@var{label};} executed if memory address @var{x} (an RTX) can have
-different meanings depending on the machine mode of the memory
-reference it is used for or if the address is valid for some modes
-but not others.
-
-Autoincrement and autodecrement addresses typically have mode-dependent
-effects because the amount of the increment or decrement is the size
-of the operand being addressed. Some machines have other mode-dependent
-addresses. Many RISC machines have no mode-dependent addresses.
-
-You may assume that @var{addr} is a valid address for the machine.
-
-@findex LEGITIMATE_CONSTANT_P
-@item LEGITIMATE_CONSTANT_P (@var{x})
-A C expression that is nonzero if @var{x} is a legitimate constant for
-an immediate operand on the target machine. You can assume that
-@var{x} satisfies @code{CONSTANT_P}, so you need not check this. In fact,
-@samp{1} is a suitable definition for this macro on machines where
-anything @code{CONSTANT_P} is valid.@refill
-@end table
-
-@node Condition Code
-@section Condition Code Status
-@cindex condition code status
-
-@c prevent bad page break with this line
-This describes the condition code status.
-
-@findex cc_status
-The file @file{conditions.h} defines a variable @code{cc_status} to
-describe how the condition code was computed (in case the interpretation of
-the condition code depends on the instruction that it was set by). This
-variable contains the RTL expressions on which the condition code is
-currently based, and several standard flags.
-
-Sometimes additional machine-specific flags must be defined in the machine
-description header file. It can also add additional machine-specific
-information by defining @code{CC_STATUS_MDEP}.
-
-@table @code
-@findex CC_STATUS_MDEP
-@item CC_STATUS_MDEP
-C code for a data type which is used for declaring the @code{mdep}
-component of @code{cc_status}. It defaults to @code{int}.
-
-This macro is not used on machines that do not use @code{cc0}.
-
-@findex CC_STATUS_MDEP_INIT
-@item CC_STATUS_MDEP_INIT
-A C expression to initialize the @code{mdep} field to ``empty''.
-The default definition does nothing, since most machines don't use
-the field anyway. If you want to use the field, you should probably
-define this macro to initialize it.
-
-This macro is not used on machines that do not use @code{cc0}.
-
-@findex NOTICE_UPDATE_CC
-@item NOTICE_UPDATE_CC (@var{exp}, @var{insn})
-A C compound statement to set the components of @code{cc_status}
-appropriately for an insn @var{insn} whose body is @var{exp}. It is
-this macro's responsibility to recognize insns that set the condition
-code as a byproduct of other activity as well as those that explicitly
-set @code{(cc0)}.
-
-This macro is not used on machines that do not use @code{cc0}.
-
-If there are insns that do not set the condition code but do alter
-other machine registers, this macro must check to see whether they
-invalidate the expressions that the condition code is recorded as
-reflecting. For example, on the 68000, insns that store in address
-registers do not set the condition code, which means that usually
-@code{NOTICE_UPDATE_CC} can leave @code{cc_status} unaltered for such
-insns. But suppose that the previous insn set the condition code
-based on location @samp{a4@@(102)} and the current insn stores a new
-value in @samp{a4}. Although the condition code is not changed by
-this, it will no longer be true that it reflects the contents of
-@samp{a4@@(102)}. Therefore, @code{NOTICE_UPDATE_CC} must alter
-@code{cc_status} in this case to say that nothing is known about the
-condition code value.
-
-The definition of @code{NOTICE_UPDATE_CC} must be prepared to deal
-with the results of peephole optimization: insns whose patterns are
-@code{parallel} RTXs containing various @code{reg}, @code{mem} or
-constants which are just the operands. The RTL structure of these
-insns is not sufficient to indicate what the insns actually do. What
-@code{NOTICE_UPDATE_CC} should do when it sees one is just to run
-@code{CC_STATUS_INIT}.
-
-A possible definition of @code{NOTICE_UPDATE_CC} is to call a function
-that looks at an attribute (@pxref{Insn Attributes}) named, for example,
-@samp{cc}. This avoids having detailed information about patterns in
-two places, the @file{md} file and in @code{NOTICE_UPDATE_CC}.
-
-@findex EXTRA_CC_MODES
-@item EXTRA_CC_MODES
-A list of names to be used for additional modes for condition code
-values in registers (@pxref{Jump Patterns}). These names are added
-to @code{enum machine_mode} and all have class @code{MODE_CC}. By
-convention, they should start with @samp{CC} and end with @samp{mode}.
-
-You should only define this macro if your machine does not use @code{cc0}
-and only if additional modes are required.
-
-@findex EXTRA_CC_NAMES
-@item EXTRA_CC_NAMES
-A list of C strings giving the names for the modes listed in
-@code{EXTRA_CC_MODES}. For example, the Sparc defines this macro and
-@code{EXTRA_CC_MODES} as
-
-@smallexample
-#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
-#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
-@end smallexample
-
-This macro is not required if @code{EXTRA_CC_MODES} is not defined.
-
-@findex SELECT_CC_MODE
-@item SELECT_CC_MODE (@var{op}, @var{x}, @var{y})
-Returns a mode from class @code{MODE_CC} to be used when comparison
-operation code @var{op} is applied to rtx @var{x} and @var{y}. For
-example, on the Sparc, @code{SELECT_CC_MODE} is defined as (see
-@pxref{Jump Patterns} for a description of the reason for this
-definition)
-
-@smallexample
-#define SELECT_CC_MODE(OP,X,Y) \
- (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
- ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
- : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
- || GET_CODE (X) == NEG) \
- ? CC_NOOVmode : CCmode))
-@end smallexample
-
-You need not define this macro if @code{EXTRA_CC_MODES} is not defined.
-
-@findex CANONICALIZE_COMPARISON
-@item CANONICALIZE_COMPARISON (@var{code}, @var{op0}, @var{op1})
-One some machines not all possible comparisons are defined, but you can
-convert an invalid comparison into a valid one. For example, the Alpha
-does not have a @code{GT} comparison, but you can use an @code{LT}
-comparison instead and swap the order of the operands.
-
-On such machines, define this macro to be a C statement to do any
-required conversions. @var{code} is the initial comparison code
-and @var{op0} and @var{op1} are the left and right operands of the
-comparison, respectively. You should modify @var{code}, @var{op0}, and
-@var{op1} as required.
-
-GNU CC will not assume that the comparison resulting from this macro is
-valid but will see if the resulting insn matches a pattern in the
-@file{md} file.
-
-You need not define this macro if it would never change the comparison
-code or operands.
-
-@findex REVERSIBLE_CC_MODE
-@item REVERSIBLE_CC_MODE (@var{mode})
-A C expression whose value is one if it is always safe to reverse a
-comparison whose mode is @var{mode}. If @code{SELECT_CC_MODE}
-can ever return @var{mode} for a floating-point inequality comparison,
-then @code{REVERSIBLE_CC_MODE (@var{mode})} must be zero.
-
-You need not define this macro if it would always returns zero or if the
-floating-point format is anything other than @code{IEEE_FLOAT_FORMAT}.
-For example, here is the definition used on the Sparc, where floating-point
-inequality comparisons are always given @code{CCFPEmode}:
-
-@smallexample
-#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
-@end smallexample
-
-@end table
-
-@node Costs
-@section Describing Relative Costs of Operations
-@cindex costs of instructions
-@cindex relative costs
-@cindex speed of instructions
-
-These macros let you describe the relative speed of various operations
-on the target machine.
-
-@table @code
-@findex CONST_COSTS
-@item CONST_COSTS (@var{x}, @var{code}, @var{outer_code})
-A part of a C @code{switch} statement that describes the relative costs
-of constant RTL expressions. It must contain @code{case} labels for
-expression codes @code{const_int}, @code{const}, @code{symbol_ref},
-@code{label_ref} and @code{const_double}. Each case must ultimately
-reach a @code{return} statement to return the relative cost of the use
-of that kind of constant value in an expression. The cost may depend on
-the precise value of the constant, which is available for examination in
-@var{x}, and the rtx code of the expression in which it is contained,
-found in @var{outer_code}.
-
-@var{code} is the expression code---redundant, since it can be
-obtained with @code{GET_CODE (@var{x})}.
-
-@findex RTX_COSTS
-@findex COSTS_N_INSNS
-@item RTX_COSTS (@var{x}, @var{code}, @var{outer_code})
-Like @code{CONST_COSTS} but applies to nonconstant RTL expressions.
-This can be used, for example, to indicate how costly a multiply
-instruction is. In writing this macro, you can use the construct
-@code{COSTS_N_INSNS (@var{n})} to specify a cost equal to @var{n} fast
-instructions. @var{outer_code} is the code of the expression in which
-@var{x} is contained.
-
-This macro is optional; do not define it if the default cost assumptions
-are adequate for the target machine.
-
-@findex ADDRESS_COST
-@item ADDRESS_COST (@var{address})
-An expression giving the cost of an addressing mode that contains
-@var{address}. If not defined, the cost is computed from
-the @var{address} expression and the @code{CONST_COSTS} values.
-
-For most CISC machines, the default cost is a good approximation of the
-true cost of the addressing mode. However, on RISC machines, all
-instructions normally have the same length and execution time. Hence
-all addresses will have equal costs.
-
-In cases where more than one form of an address is known, the form with
-the lowest cost will be used. If multiple forms have the same, lowest,
-cost, the one that is the most complex will be used.
-
-For example, suppose an address that is equal to the sum of a register
-and a constant is used twice in the same basic block. When this macro
-is not defined, the address will be computed in a register and memory
-references will be indirect through that register. On machines where
-the cost of the addressing mode containing the sum is no higher than
-that of a simple indirect reference, this will produce an additional
-instruction and possibly require an additional register. Proper
-specification of this macro eliminates this overhead for such machines.
-
-Similar use of this macro is made in strength reduction of loops.
-
-@var{address} need not be valid as an address. In such a case, the cost
-is not relevant and can be any value; invalid addresses need not be
-assigned a different cost.
-
-On machines where an address involving more than one register is as
-cheap as an address computation involving only one register, defining
-@code{ADDRESS_COST} to reflect this can cause two registers to be live
-over a region of code where only one would have been if
-@code{ADDRESS_COST} were not defined in that manner. This effect should
-be considered in the definition of this macro. Equivalent costs should
-probably only be given to addresses with different numbers of registers
-on machines with lots of registers.
-
-This macro will normally either not be defined or be defined as a
-constant.
-
-@findex REGISTER_MOVE_COST
-@item REGISTER_MOVE_COST (@var{from}, @var{to})
-A C expression for the cost of moving data from a register in class
-@var{from} to one in class @var{to}. The classes are expressed using
-the enumeration values such as @code{GENERAL_REGS}. A value of 4 is the
-default; other values are interpreted relative to that.
-
-It is not required that the cost always equal 2 when @var{from} is the
-same as @var{to}; on some machines it is expensive to move between
-registers if they are not general registers.
-
-If reload sees an insn consisting of a single @code{set} between two
-hard registers, and if @code{REGISTER_MOVE_COST} applied to their
-classes returns a value of 2, reload does not check to ensure that the
-constraints of the insn are met. Setting a cost of other than 2 will
-allow reload to verify that the constraints are met. You should do this
-if the @samp{mov@var{m}} pattern's constraints do not allow such copying.
-
-@findex MEMORY_MOVE_COST
-@item MEMORY_MOVE_COST (@var{m})
-A C expression for the cost of moving data of mode @var{m} between a
-register and memory. A value of 2 is the default; this cost is relative
-to those in @code{REGISTER_MOVE_COST}.
-
-If moving between registers and memory is more expensive than between
-two registers, you should define this macro to express the relative cost.
-
-@findex BRANCH_COST
-@item BRANCH_COST
-A C expression for the cost of a branch instruction. A value of 1 is
-the default; other values are interpreted relative to that.
-@end table
-
-Here are additional macros which do not specify precise relative costs,
-but only that certain actions are more expensive than GNU CC would
-ordinarily expect.
-
-@table @code
-@findex SLOW_BYTE_ACCESS
-@item SLOW_BYTE_ACCESS
-Define this macro as a C expression which is nonzero if accessing less
-than a word of memory (i.e. a @code{char} or a @code{short}) is no
-faster than accessing a word of memory, i.e., if such access
-require more than one instruction or if there is no difference in cost
-between byte and (aligned) word loads.
-
-When this macro is not defined, the compiler will access a field by
-finding the smallest containing object; when it is defined, a fullword
-load will be used if alignment permits. Unless bytes accesses are
-faster than word accesses, using word accesses is preferable since it
-may eliminate subsequent memory access if subsequent accesses occur to
-other fields in the same word of the structure, but to different bytes.
-
-@findex SLOW_ZERO_EXTEND
-@item SLOW_ZERO_EXTEND
-Define this macro if zero-extension (of a @code{char} or @code{short}
-to an @code{int}) can be done faster if the destination is a register
-that is known to be zero.
-
-If you define this macro, you must have instruction patterns that
-recognize RTL structures like this:
-
-@smallexample
-(set (strict_low_part (subreg:QI (reg:SI @dots{}) 0)) @dots{})
-@end smallexample
-
-@noindent
-and likewise for @code{HImode}.
-
-@findex SLOW_UNALIGNED_ACCESS
-@item SLOW_UNALIGNED_ACCESS
-Define this macro to be the value 1 if unaligned accesses have a cost
-many times greater than aligned accesses, for example if they are
-emulated in a trap handler.
-
-When this macro is non-zero, the compiler will act as if
-@code{STRICT_ALIGNMENT} were non-zero when generating code for block
-moves. This can cause significantly more instructions to be produced.
-Therefore, do not set this macro non-zero if unaligned accesses only add a
-cycle or two to the time for a memory access.
-
-If the value of this macro is always zero, it need not be defined.
-
-@findex DONT_REDUCE_ADDR
-@item DONT_REDUCE_ADDR
-Define this macro to inhibit strength reduction of memory addresses.
-(On some machines, such strength reduction seems to do harm rather
-than good.)
-
-@findex MOVE_RATIO
-@item MOVE_RATIO
-The number of scalar move insns which should be generated instead of a
-string move insn or a library call. Increasing the value will always
-make code faster, but eventually incurs high cost in increased code size.
-
-If you don't define this, a reasonable default is used.
-
-@findex NO_FUNCTION_CSE
-@item NO_FUNCTION_CSE
-Define this macro if it is as good or better to call a constant
-function address than to call an address kept in a register.
-
-@findex NO_RECURSIVE_FUNCTION_CSE
-@item NO_RECURSIVE_FUNCTION_CSE
-Define this macro if it is as good or better for a function to call
-itself with an explicit address than to call an address kept in a
-register.
-
-@findex ADJUST_COST
-@item ADJUST_COST (@var{insn}, @var{link}, @var{dep_insn}, @var{cost})
-A C statement (sans semicolon) to update the integer variable @var{cost}
-based on the relationship between @var{insn} that is dependent on
-@var{dep_insn} through the dependence @var{link}. The default is to
-make no adjustment to @var{cost}. This can be used for example to
-specify to the scheduler that an output- or anti-dependence does not
-incur the same cost as a data-dependence.
-@end table
-
-@node Sections
-@section Dividing the Output into Sections (Texts, Data, @dots{})
-@c the above section title is WAY too long. maybe cut the part between
-@c the (...)? --mew 10feb93
-
-An object file is divided into sections containing different types of
-data. In the most common case, there are three sections: the @dfn{text
-section}, which holds instructions and read-only data; the @dfn{data
-section}, which holds initialized writable data; and the @dfn{bss
-section}, which holds uninitialized data. Some systems have other kinds
-of sections.
-
-The compiler must tell the assembler when to switch sections. These
-macros control what commands to output to tell the assembler this. You
-can also define additional sections.
-
-@table @code
-@findex TEXT_SECTION_ASM_OP
-@item TEXT_SECTION_ASM_OP
-A C expression whose value is a string containing the assembler
-operation that should precede instructions and read-only data. Normally
-@code{".text"} is right.
-
-@findex DATA_SECTION_ASM_OP
-@item DATA_SECTION_ASM_OP
-A C expression whose value is a string containing the assembler
-operation to identify the following data as writable initialized data.
-Normally @code{".data"} is right.
-
-@findex SHARED_SECTION_ASM_OP
-@item SHARED_SECTION_ASM_OP
-if defined, a C expression whose value is a string containing the
-assembler operation to identify the following data as shared data. If
-not defined, @code{DATA_SECTION_ASM_OP} will be used.
-
-@findex INIT_SECTION_ASM_OP
-@item INIT_SECTION_ASM_OP
-if defined, a C expression whose value is a string containing the
-assembler operation to identify the following data as initialization
-code. If not defined, GNU CC will assume such a section does not
-exist.
-
-@findex EXTRA_SECTIONS
-@findex in_text
-@findex in_data
-@item EXTRA_SECTIONS
-A list of names for sections other than the standard two, which are
-@code{in_text} and @code{in_data}. You need not define this macro
-on a system with no other sections (that GCC needs to use).
-
-@findex EXTRA_SECTION_FUNCTIONS
-@findex text_section
-@findex data_section
-@item EXTRA_SECTION_FUNCTIONS
-One or more functions to be defined in @file{varasm.c}. These
-functions should do jobs analogous to those of @code{text_section} and
-@code{data_section}, for your additional sections. Do not define this
-macro if you do not define @code{EXTRA_SECTIONS}.
-
-@findex READONLY_DATA_SECTION
-@item READONLY_DATA_SECTION
-On most machines, read-only variables, constants, and jump tables are
-placed in the text section. If this is not the case on your machine,
-this macro should be defined to be the name of a function (either
-@code{data_section} or a function defined in @code{EXTRA_SECTIONS}) that
-switches to the section to be used for read-only items.
-
-If these items should be placed in the text section, this macro should
-not be defined.
-
-@findex SELECT_SECTION
-@item SELECT_SECTION (@var{exp}, @var{reloc})
-A C statement or statements to switch to the appropriate section for
-output of @var{exp}. You can assume that @var{exp} is either a
-@code{VAR_DECL} node or a constant of some sort. @var{reloc}
-indicates whether the initial value of @var{exp} requires link-time
-relocations. Select the section by calling @code{text_section} or one
-of the alternatives for other sections.
-
-Do not define this macro if you put all read-only variables and
-constants in the read-only data section (usually the text section).
-
-@findex SELECT_RTX_SECTION
-@item SELECT_RTX_SECTION (@var{mode}, @var{rtx})
-A C statement or statements to switch to the appropriate section for
-output of @var{rtx} in mode @var{mode}. You can assume that @var{rtx}
-is some kind of constant in RTL. The argument @var{mode} is redundant
-except in the case of a @code{const_int} rtx. Select the section by
-calling @code{text_section} or one of the alternatives for other
-sections.
-
-Do not define this macro if you put all constants in the read-only
-data section.
-
-@findex JUMP_TABLES_IN_TEXT_SECTION
-@item JUMP_TABLES_IN_TEXT_SECTION
-Define this macro if jump tables (for @code{tablejump} insns) should be
-output in the text section, along with the assembler instructions.
-Otherwise, the readonly data section is used.
-
-This macro is irrelevant if there is no separate readonly data section.
-
-@findex ENCODE_SECTION_INFO
-@item ENCODE_SECTION_INFO (@var{decl})
-Define this macro if references to a symbol must be treated differently
-depending on something about the variable or function named by the
-symbol (such as what section it is in).
-
-The macro definition, if any, is executed immediately after the rtl for
-@var{decl} has been created and stored in @code{DECL_RTL (@var{decl})}.
-The value of the rtl will be a @code{mem} whose address is a
-@code{symbol_ref}.
-
-@cindex @code{SYMBOL_REF_FLAG}, in @code{ENCODE_SECTION_INFO}
-The usual thing for this macro to do is to record a flag in the
-@code{symbol_ref} (such as @code{SYMBOL_REF_FLAG}) or to store a
-modified name string in the @code{symbol_ref} (if one bit is not enough
-information).
-
-@findex STRIP_NAME_ENCODING
-@item STRIP_NAME_ENCODING (@var{var}, @var{sym_name})
-Decode @var{sym_name} and store the real name part in @var{var}, sans
-the characters that encode section info. Define this macro if
-@code{ENCODE_SECTION_INFO} alters the symbol's name string.
-@end table
-
-@node PIC
-@section Position Independent Code
-@cindex position independent code
-@cindex PIC
-
-This section describes macros that help implement generation of position
-independent code. Simply defining these macros is not enough to
-generate valid PIC; you must also add support to the macros
-@code{GO_IF_LEGITIMATE_ADDRESS} and @code{PRINT_OPERAND_ADDRESS}, as
-well as @code{LEGITIMIZE_ADDRESS}. You must modify the definition of
-@samp{movsi} to do something appropriate when the source operand
-contains a symbolic address. You may also need to alter the handling of
-switch statements so that they use relative addresses.
-@c i rearranged the order of the macros above to try to force one of
-@c them to the next line, to eliminate an overfull hbox. --mew 10feb93
-
-@table @code
-@findex PIC_OFFSET_TABLE_REGNUM
-@item PIC_OFFSET_TABLE_REGNUM
-The register number of the register used to address a table of static
-data addresses in memory. In some cases this register is defined by a
-processor's ``application binary interface'' (ABI). When this macro
-is defined, RTL is generated for this register once, as with the stack
-pointer and frame pointer registers. If this macro is not defined, it
-is up to the machine-dependent files to allocate such a register (if
-necessary).
-
-findex PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
-@item PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
-Define this macro if the register defined by
-@code{PIC_OFFSET_TABLE_REGNUM} is clobbered by calls. Do not define
-this macro if @code{PPIC_OFFSET_TABLE_REGNUM} is not defined.
-
-@findex FINALIZE_PIC
-@item FINALIZE_PIC
-By generating position-independent code, when two different programs (A
-and B) share a common library (libC.a), the text of the library can be
-shared whether or not the library is linked at the same address for both
-programs. In some of these environments, position-independent code
-requires not only the use of different addressing modes, but also
-special code to enable the use of these addressing modes.
-
-The @code{FINALIZE_PIC} macro serves as a hook to emit these special
-codes once the function is being compiled into assembly code, but not
-before. (It is not done before, because in the case of compiling an
-inline function, it would lead to multiple PIC prologues being
-included in functions which used inline functions and were compiled to
-assembly language.)
-
-@findex LEGITIMATE_PIC_OPERAND_P
-@item LEGITIMATE_PIC_OPERAND_P (@var{x})
-A C expression that is nonzero if @var{x} is a legitimate immediate
-operand on the target machine when generating position independent code.
-You can assume that @var{x} satisfies @code{CONSTANT_P}, so you need not
-check this. You can also assume @var{flag_pic} is true, so you need not
-check it either. You need not define this macro if all constants
-(including @code{SYMBOL_REF}) can be immediate operands when generating
-position independent code.
-@end table
-
-@node Assembler Format
-@section Defining the Output Assembler Language
-
-This section describes macros whose principal purpose is to describe how
-to write instructions in assembler language--rather than what the
-instructions do.
-
-@menu
-* File Framework:: Structural information for the assembler file.
-* Data Output:: Output of constants (numbers, strings, addresses).
-* Uninitialized Data:: Output of uninitialized variables.
-* Label Output:: Output and generation of labels.
-* Initialization:: General principles of initialization
- and termination routines.
-* Macros for Initialization::
- Specific macros that control the handling of
- initialization and termination routines.
-* Instruction Output:: Output of actual instructions.
-* Dispatch Tables:: Output of jump tables.
-* Alignment Output:: Pseudo ops for alignment and skipping data.
-@end menu
-
-@node File Framework
-@subsection The Overall Framework of an Assembler File
-@cindex assembler format
-@cindex output of assembler code
-
-@c prevent bad page break with this line
-This describes the overall framework of an assembler file.
-
-@table @code
-@findex ASM_FILE_START
-@item ASM_FILE_START (@var{stream})
-A C expression which outputs to the stdio stream @var{stream}
-some appropriate text to go at the start of an assembler file.
-
-Normally this macro is defined to output a line containing
-@samp{#NO_APP}, which is a comment that has no effect on most
-assemblers but tells the GNU assembler that it can save time by not
-checking for certain assembler constructs.
-
-On systems that use SDB, it is necessary to output certain commands;
-see @file{attasm.h}.
-
-@findex ASM_FILE_END
-@item ASM_FILE_END (@var{stream})
-A C expression which outputs to the stdio stream @var{stream}
-some appropriate text to go at the end of an assembler file.
-
-If this macro is not defined, the default is to output nothing
-special at the end of the file. Most systems don't require any
-definition.
-
-On systems that use SDB, it is necessary to output certain commands;
-see @file{attasm.h}.
-
-@findex ASM_IDENTIFY_GCC
-@item ASM_IDENTIFY_GCC (@var{file})
-A C statement to output assembler commands which will identify
-the object file as having been compiled with GNU CC (or another
-GNU compiler).
-
-If you don't define this macro, the string @samp{gcc_compiled.:}
-is output. This string is calculated to define a symbol which,
-on BSD systems, will never be defined for any other reason.
-GDB checks for the presence of this symbol when reading the
-symbol table of an executable.
-
-On non-BSD systems, you must arrange communication with GDB in
-some other fashion. If GDB is not used on your system, you can
-define this macro with an empty body.
-
-@findex ASM_COMMENT_START
-@item ASM_COMMENT_START
-A C string constant describing how to begin a comment in the target
-assembler language. The compiler assumes that the comment will end at
-the end of the line.
-
-@findex ASM_APP_ON
-@item ASM_APP_ON
-A C string constant for text to be output before each @code{asm}
-statement or group of consecutive ones. Normally this is
-@code{"#APP"}, which is a comment that has no effect on most
-assemblers but tells the GNU assembler that it must check the lines
-that follow for all valid assembler constructs.
-
-@findex ASM_APP_OFF
-@item ASM_APP_OFF
-A C string constant for text to be output after each @code{asm}
-statement or group of consecutive ones. Normally this is
-@code{"#NO_APP"}, which tells the GNU assembler to resume making the
-time-saving assumptions that are valid for ordinary compiler output.
-
-@findex ASM_OUTPUT_SOURCE_FILENAME
-@item ASM_OUTPUT_SOURCE_FILENAME (@var{stream}, @var{name})
-A C statement to output COFF information or DWARF debugging information
-which indicates that filename @var{name} is the current source file to
-the stdio stream @var{stream}.
-
-This macro need not be defined if the standard form of output
-for the file format in use is appropriate.
-
-@findex ASM_OUTPUT_SOURCE_LINE
-@item ASM_OUTPUT_SOURCE_LINE (@var{stream}, @var{line})
-A C statement to output DBX or SDB debugging information before code
-for line number @var{line} of the current source file to the
-stdio stream @var{stream}.
-
-This macro need not be defined if the standard form of debugging
-information for the debugger in use is appropriate.
-
-@findex ASM_OUTPUT_IDENT
-@item ASM_OUTPUT_IDENT (@var{stream}, @var{string})
-A C statement to output something to the assembler file to handle a
-@samp{#ident} directive containing the text @var{string}. If this
-macro is not defined, nothing is output for a @samp{#ident} directive.
-
-@findex ASM_OUTPUT_SECTION_NAME
-@item ASM_OUTPUT_SECTION_NAME (@var{stream}, @var{string})
-A C statement to output something to the assembler file to switch to the
-section contained in @var{string}. Some target formats do not support
-arbitrary sections. Do not define this macro in such cases.
-
-At present this macro is only used to support section attributes.
-When this macro is undefined, section attributes are disabled.
-
-@findex OBJC_PROLOGUE
-@item OBJC_PROLOGUE
-A C statement to output any assembler statements which are required to
-precede any Objective C object definitions or message sending. The
-statement is executed only when compiling an Objective C program.
-@end table
-
-@need 2000
-@node Data Output
-@subsection Output of Data
-
-@c prevent bad page break with this line
-This describes data output.
-
-@table @code
-@findex ASM_OUTPUT_LONG_DOUBLE
-@findex ASM_OUTPUT_DOUBLE
-@findex ASM_OUTPUT_FLOAT
-@item ASM_OUTPUT_LONG_DOUBLE (@var{stream}, @var{value})
-@itemx ASM_OUTPUT_DOUBLE (@var{stream}, @var{value})
-@itemx ASM_OUTPUT_FLOAT (@var{stream}, @var{value})
-@itemx ASM_OUTPUT_THREE_QUARTER_FLOAT (@var{stream}, @var{value})
-@itemx ASM_OUTPUT_SHORT_FLOAT (@var{stream}, @var{value})
-@itemx ASM_OUTPUT_BYTE_FLOAT (@var{stream}, @var{value})
-A C statement to output to the stdio stream @var{stream} an assembler
-instruction to assemble a floating-point constant of @code{TFmode},
-@code{DFmode}, @code{SFmode}, @code{TQFmode}, @code{HFmode}, or
-@code{QFmode}, respectively, whose value is @var{value}. @var{value}
-will be a C expression of type @code{REAL_VALUE_TYPE}. Macros such as
-@code{REAL_VALUE_TO_TARGET_DOUBLE} are useful for writing these
-definitions.
-
-@findex ASM_OUTPUT_QUADRUPLE_INT
-@findex ASM_OUTPUT_DOUBLE_INT
-@findex ASM_OUTPUT_INT
-@findex ASM_OUTPUT_SHORT
-@findex ASM_OUTPUT_CHAR
-@findex output_addr_const
-@item ASM_OUTPUT_QUADRUPLE_INT (@var{stream}, @var{exp})
-@itemx ASM_OUTPUT_DOUBLE_INT (@var{stream}, @var{exp})
-@itemx ASM_OUTPUT_INT (@var{stream}, @var{exp})
-@itemx ASM_OUTPUT_SHORT (@var{stream}, @var{exp})
-@itemx ASM_OUTPUT_CHAR (@var{stream}, @var{exp})
-A C statement to output to the stdio stream @var{stream} an assembler
-instruction to assemble an integer of 16, 8, 4, 2 or 1 bytes,
-respectively, whose value is @var{value}. The argument @var{exp} will
-be an RTL expression which represents a constant value. Use
-@samp{output_addr_const (@var{stream}, @var{exp})} to output this value
-as an assembler expression.@refill
-
-For sizes larger than @code{UNITS_PER_WORD}, if the action of a macro
-would be identical to repeatedly calling the macro corresponding to
-a size of @code{UNITS_PER_WORD}, once for each word, you need not define
-the macro.
-
-@findex ASM_OUTPUT_BYTE
-@item ASM_OUTPUT_BYTE (@var{stream}, @var{value})
-A C statement to output to the stdio stream @var{stream} an assembler
-instruction to assemble a single byte containing the number @var{value}.
-
-@findex ASM_BYTE_OP
-@item ASM_BYTE_OP
-A C string constant giving the pseudo-op to use for a sequence of
-single-byte constants. If this macro is not defined, the default is
-@code{"byte"}.
-
-@findex ASM_OUTPUT_ASCII
-@item ASM_OUTPUT_ASCII (@var{stream}, @var{ptr}, @var{len})
-A C statement to output to the stdio stream @var{stream} an assembler
-instruction to assemble a string constant containing the @var{len}
-bytes at @var{ptr}. @var{ptr} will be a C expression of type
-@code{char *} and @var{len} a C expression of type @code{int}.
-
-If the assembler has a @code{.ascii} pseudo-op as found in the
-Berkeley Unix assembler, do not define the macro
-@code{ASM_OUTPUT_ASCII}.
-
-@findex ASM_OUTPUT_POOL_PROLOGUE
-@item ASM_OUTPUT_POOL_PROLOGUE (@var{file} @var{funname} @var{fundecl} @var{size})
-A C statement to output assembler commands to define the start of the
-constant pool for a function. @var{funname} is a string giving
-the name of the function. Should the return type of the function
-be required, it can be obtained via @var{fundecl}. @var{size}
-is the size, in bytes, of the constant pool that will be written
-immediately after this call.
-
-If no constant-pool prefix is required, the usual case, this macro need
-not be defined.
-
-@findex ASM_OUTPUT_SPECIAL_POOL_ENTRY
-@item ASM_OUTPUT_SPECIAL_POOL_ENTRY (@var{file}, @var{x}, @var{mode}, @var{align}, @var{labelno}, @var{jumpto})
-A C statement (with or without semicolon) to output a constant in the
-constant pool, if it needs special treatment. (This macro need not do
-anything for RTL expressions that can be output normally.)
-
-The argument @var{file} is the standard I/O stream to output the
-assembler code on. @var{x} is the RTL expression for the constant to
-output, and @var{mode} is the machine mode (in case @var{x} is a
-@samp{const_int}). @var{align} is the required alignment for the value
-@var{x}; you should output an assembler directive to force this much
-alignment.
-
-The argument @var{labelno} is a number to use in an internal label for
-the address of this pool entry. The definition of this macro is
-responsible for outputting the label definition at the proper place.
-Here is how to do this:
-
-@example
-ASM_OUTPUT_INTERNAL_LABEL (@var{file}, "LC", @var{labelno});
-@end example
-
-When you output a pool entry specially, you should end with a
-@code{goto} to the label @var{jumpto}. This will prevent the same pool
-entry from being output a second time in the usual manner.
-
-You need not define this macro if it would do nothing.
-
-@findex IS_ASM_LOGICAL_LINE_SEPARATOR
-@item IS_ASM_LOGICAL_LINE_SEPARATOR (@var{C})
-Define this macro as a C expression which is nonzero if @var{C} is
-used as a logical line separator by the assembler.
-
-If you do not define this macro, the default is that only
-the character @samp{;} is treated as a logical line separator.
-
-
-@findex ASM_OPEN_PAREN
-@findex ASM_CLOSE_PAREN
-@item ASM_OPEN_PAREN
-@itemx ASM_CLOSE_PAREN
-These macros are defined as C string constant, describing the syntax
-in the assembler for grouping arithmetic expressions. The following
-definitions are correct for most assemblers:
-
-@example
-#define ASM_OPEN_PAREN "("
-#define ASM_CLOSE_PAREN ")"
-@end example
-@end table
-
- These macros are provided by @file{real.h} for writing the definitions
-of @code{ASM_OUTPUT_DOUBLE} and the like:
-
-@table @code
-@item REAL_VALUE_TO_TARGET_SINGLE (@var{x}, @var{l})
-@itemx REAL_VALUE_TO_TARGET_DOUBLE (@var{x}, @var{l})
-@itemx REAL_VALUE_TO_TARGET_LONG_DOUBLE (@var{x}, @var{l})
-@findex REAL_VALUE_TO_TARGET_SINGLE
-@findex REAL_VALUE_TO_TARGET_DOUBLE
-@findex REAL_VALUE_TO_TARGET_LONG_DOUBLE
-These translate @var{x}, of type @code{REAL_VALUE_TYPE}, to the target's
-floating point representation, and store its bit pattern in the array of
-@code{long int} whose address is @var{l}. The number of elements in the
-output array is determined by the size of the desired target floating
-point data type: 32 bits of it go in each @code{long int} array
-element. Each array element holds 32 bits of the result, even if
-@code{long int} is wider than 32 bits on the host machine.
-
-The array element values are designed so that you can print them out
-using @code{fprintf} in the order they should appear in the target
-machine's memory.
-
-@item REAL_VALUE_TO_DECIMAL (@var{x}, @var{format}, @var{string})
-@findex REAL_VALUE_TO_DECIMAL
-This macro converts @var{x}, of type @code{REAL_VALUE_TYPE}, to a
-decimal number and stores it as a string into @var{string}.
-You must pass, as @var{string}, the address of a long enough block
-of space to hold the result.
-
-The argument @var{format} is a @code{printf}-specification that serves
-as a suggestion for how to format the output string.
-@end table
-
-@node Uninitialized Data
-@subsection Output of Uninitialized Variables
-
-Each of the macros in this section is used to do the whole job of
-outputting a single uninitialized variable.
-
-@table @code
-@findex ASM_OUTPUT_COMMON
-@item ASM_OUTPUT_COMMON (@var{stream}, @var{name}, @var{size}, @var{rounded})
-A C statement (sans semicolon) to output to the stdio stream
-@var{stream} the assembler definition of a common-label named
-@var{name} whose size is @var{size} bytes. The variable @var{rounded}
-is the size rounded up to whatever alignment the caller wants.
-
-Use the expression @code{assemble_name (@var{stream}, @var{name})} to
-output the name itself; before and after that, output the additional
-assembler syntax for defining the name, and a newline.
-
-This macro controls how the assembler definitions of uninitialized
-global variables are output.
-
-@findex ASM_OUTPUT_ALIGNED_COMMON
-@item ASM_OUTPUT_ALIGNED_COMMON (@var{stream}, @var{name}, @var{size}, @var{alignment})
-Like @code{ASM_OUTPUT_COMMON} except takes the required alignment as a
-separate, explicit argument. If you define this macro, it is used in
-place of @code{ASM_OUTPUT_COMMON}, and gives you more flexibility in
-handling the required alignment of the variable. The alignment is specified
-as the number of bits.
-
-@findex ASM_OUTPUT_SHARED_COMMON
-@item ASM_OUTPUT_SHARED_COMMON (@var{stream}, @var{name}, @var{size}, @var{rounded})
-If defined, it is similar to @code{ASM_OUTPUT_COMMON}, except that it
-is used when @var{name} is shared. If not defined, @code{ASM_OUTPUT_COMMON}
-will be used.
-
-@findex ASM_OUTPUT_LOCAL
-@item ASM_OUTPUT_LOCAL (@var{stream}, @var{name}, @var{size}, @var{rounded})
-A C statement (sans semicolon) to output to the stdio stream
-@var{stream} the assembler definition of a local-common-label named
-@var{name} whose size is @var{size} bytes. The variable @var{rounded}
-is the size rounded up to whatever alignment the caller wants.
-
-Use the expression @code{assemble_name (@var{stream}, @var{name})} to
-output the name itself; before and after that, output the additional
-assembler syntax for defining the name, and a newline.
-
-This macro controls how the assembler definitions of uninitialized
-static variables are output.
-
-@findex ASM_OUTPUT_ALIGNED_LOCAL
-@item ASM_OUTPUT_ALIGNED_LOCAL (@var{stream}, @var{name}, @var{size}, @var{alignment})
-Like @code{ASM_OUTPUT_LOCAL} except takes the required alignment as a
-separate, explicit argument. If you define this macro, it is used in
-place of @code{ASM_OUTPUT_LOCAL}, and gives you more flexibility in
-handling the required alignment of the variable. The alignment is specified
-as the number of bits.
-
-@findex ASM_OUTPUT_SHARED_LOCAL
-@item ASM_OUTPUT_SHARED_LOCAL (@var{stream}, @var{name}, @var{size}, @var{rounded})
-If defined, it is similar to @code{ASM_OUTPUT_LOCAL}, except that it
-is used when @var{name} is shared. If not defined, @code{ASM_OUTPUT_LOCAL}
-will be used.
-@end table
-
-@node Label Output
-@subsection Output and Generation of Labels
-
-@c prevent bad page break with this line
-This is about outputting labels.
-
-@table @code
-@findex ASM_OUTPUT_LABEL
-@findex assemble_name
-@item ASM_OUTPUT_LABEL (@var{stream}, @var{name})
-A C statement (sans semicolon) to output to the stdio stream
-@var{stream} the assembler definition of a label named @var{name}.
-Use the expression @code{assemble_name (@var{stream}, @var{name})} to
-output the name itself; before and after that, output the additional
-assembler syntax for defining the name, and a newline.
-
-@findex ASM_DECLARE_FUNCTION_NAME
-@item ASM_DECLARE_FUNCTION_NAME (@var{stream}, @var{name}, @var{decl})
-A C statement (sans semicolon) to output to the stdio stream
-@var{stream} any text necessary for declaring the name @var{name} of a
-function which is being defined. This macro is responsible for
-outputting the label definition (perhaps using
-@code{ASM_OUTPUT_LABEL}). The argument @var{decl} is the
-@code{FUNCTION_DECL} tree node representing the function.
-
-If this macro is not defined, then the function name is defined in the
-usual manner as a label (by means of @code{ASM_OUTPUT_LABEL}).
-
-@findex ASM_DECLARE_FUNCTION_SIZE
-@item ASM_DECLARE_FUNCTION_SIZE (@var{stream}, @var{name}, @var{decl})
-A C statement (sans semicolon) to output to the stdio stream
-@var{stream} any text necessary for declaring the size of a function
-which is being defined. The argument @var{name} is the name of the
-function. The argument @var{decl} is the @code{FUNCTION_DECL} tree node
-representing the function.
-
-If this macro is not defined, then the function size is not defined.
-
-@findex ASM_DECLARE_OBJECT_NAME
-@item ASM_DECLARE_OBJECT_NAME (@var{stream}, @var{name}, @var{decl})
-A C statement (sans semicolon) to output to the stdio stream
-@var{stream} any text necessary for declaring the name @var{name} of an
-initialized variable which is being defined. This macro must output the
-label definition (perhaps using @code{ASM_OUTPUT_LABEL}). The argument
-@var{decl} is the @code{VAR_DECL} tree node representing the variable.
-
-If this macro is not defined, then the variable name is defined in the
-usual manner as a label (by means of @code{ASM_OUTPUT_LABEL}).
-
-@findex ASM_FINISH_DECLARE_OBJECT
-@item ASM_FINISH_DECLARE_OBJECT (@var{stream}, @var{decl}, @var{toplevel}, @var{atend})
-A C statement (sans semicolon) to finish up declaring a variable name
-once the compiler has processed its initializer fully and thus has had a
-chance to determine the size of an array when controlled by an
-initializer. This is used on systems where it's necessary to declare
-something about the size of the object.
-
-If you don't define this macro, that is equivalent to defining it to do
-nothing.
-
-@findex ASM_GLOBALIZE_LABEL
-@item ASM_GLOBALIZE_LABEL (@var{stream}, @var{name})
-A C statement (sans semicolon) to output to the stdio stream
-@var{stream} some commands that will make the label @var{name} global;
-that is, available for reference from other files. Use the expression
-@code{assemble_name (@var{stream}, @var{name})} to output the name
-itself; before and after that, output the additional assembler syntax
-for making that name global, and a newline.
-
-@findex ASM_OUTPUT_EXTERNAL
-@item ASM_OUTPUT_EXTERNAL (@var{stream}, @var{decl}, @var{name})
-A C statement (sans semicolon) to output to the stdio stream
-@var{stream} any text necessary for declaring the name of an external
-symbol named @var{name} which is referenced in this compilation but
-not defined. The value of @var{decl} is the tree node for the
-declaration.
-
-This macro need not be defined if it does not need to output anything.
-The GNU assembler and most Unix assemblers don't require anything.
-
-@findex ASM_OUTPUT_EXTERNAL_LIBCALL
-@item ASM_OUTPUT_EXTERNAL_LIBCALL (@var{stream}, @var{symref})
-A C statement (sans semicolon) to output on @var{stream} an assembler
-pseudo-op to declare a library function name external. The name of the
-library function is given by @var{symref}, which has type @code{rtx} and
-is a @code{symbol_ref}.
-
-This macro need not be defined if it does not need to output anything.
-The GNU assembler and most Unix assemblers don't require anything.
-
-@findex ASM_OUTPUT_LABELREF
-@item ASM_OUTPUT_LABELREF (@var{stream}, @var{name})
-A C statement (sans semicolon) to output to the stdio stream
-@var{stream} a reference in assembler syntax to a label named
-@var{name}. This should add @samp{_} to the front of the name, if that
-is customary on your operating system, as it is in most Berkeley Unix
-systems. This macro is used in @code{assemble_name}.
-
-@ignore @c Seems not to exist anymore.
-@findex ASM_OUTPUT_LABELREF_AS_INT
-@item ASM_OUTPUT_LABELREF_AS_INT (@var{file}, @var{label})
-Define this macro for systems that use the program @code{collect2}.
-The definition should be a C statement to output a word containing
-a reference to the label @var{label}.
-@end ignore
-
-@findex ASM_OUTPUT_INTERNAL_LABEL
-@item ASM_OUTPUT_INTERNAL_LABEL (@var{stream}, @var{prefix}, @var{num})
-A C statement to output to the stdio stream @var{stream} a label whose
-name is made from the string @var{prefix} and the number @var{num}.
-
-It is absolutely essential that these labels be distinct from the labels
-used for user-level functions and variables. Otherwise, certain programs
-will have name conflicts with internal labels.
-
-It is desirable to exclude internal labels from the symbol table of the
-object file. Most assemblers have a naming convention for labels that
-should be excluded; on many systems, the letter @samp{L} at the
-beginning of a label has this effect. You should find out what
-convention your system uses, and follow it.
-
-The usual definition of this macro is as follows:
-
-@example
-fprintf (@var{stream}, "L%s%d:\n", @var{prefix}, @var{num})
-@end example
-
-@findex ASM_GENERATE_INTERNAL_LABEL
-@item ASM_GENERATE_INTERNAL_LABEL (@var{string}, @var{prefix}, @var{num})
-A C statement to store into the string @var{string} a label whose name
-is made from the string @var{prefix} and the number @var{num}.
-
-This string, when output subsequently by @code{assemble_name}, should
-produce the output that @code{ASM_OUTPUT_INTERNAL_LABEL} would produce
-with the same @var{prefix} and @var{num}.
-
-If the string begins with @samp{*}, then @code{assemble_name} will
-output the rest of the string unchanged. It is often convenient for
-@code{ASM_GENERATE_INTERNAL_LABEL} to use @samp{*} in this way. If the
-string doesn't start with @samp{*}, then @code{ASM_OUTPUT_LABELREF} gets
-to output the string, and may change it. (Of course,
-@code{ASM_OUTPUT_LABELREF} is also part of your machine description, so
-you should know what it does on your machine.)
-
-@findex ASM_FORMAT_PRIVATE_NAME
-@item ASM_FORMAT_PRIVATE_NAME (@var{outvar}, @var{name}, @var{number})
-A C expression to assign to @var{outvar} (which is a variable of type
-@code{char *}) a newly allocated string made from the string
-@var{name} and the number @var{number}, with some suitable punctuation
-added. Use @code{alloca} to get space for the string.
-
-The string will be used as an argument to @code{ASM_OUTPUT_LABELREF} to
-produce an assembler label for an internal static variable whose name is
-@var{name}. Therefore, the string must be such as to result in valid
-assembler code. The argument @var{number} is different each time this
-macro is executed; it prevents conflicts between similarly-named
-internal static variables in different scopes.
-
-Ideally this string should not be a valid C identifier, to prevent any
-conflict with the user's own symbols. Most assemblers allow periods
-or percent signs in assembler symbols; putting at least one of these
-between the name and the number will suffice.
-
-@findex ASM_OUTPUT_DEF
-@item ASM_OUTPUT_DEF (@var{stream}, @var{name}, @var{value})
-A C statement to output to the stdio stream @var{stream} assembler code
-which defines (equates) the symbol @var{name} to have the value @var{value}.
-
-If SET_ASM_OP is defined, a default definition is provided which is
-correct for most systems.
-@findex OBJC_GEN_METHOD_LABEL
-@item OBJC_GEN_METHOD_LABEL (@var{buf}, @var{is_inst}, @var{class_name}, @var{cat_name}, @var{sel_name})
-Define this macro to override the default assembler names used for
-Objective C methods.
-
-The default name is a unique method number followed by the name of the
-class (e.g.@: @samp{_1_Foo}). For methods in categories, the name of
-the category is also included in the assembler name (e.g.@:
-@samp{_1_Foo_Bar}).
-
-These names are safe on most systems, but make debugging difficult since
-the method's selector is not present in the name. Therefore, particular
-systems define other ways of computing names.
-
-@var{buf} is an expression of type @code{char *} which gives you a
-buffer in which to store the name; its length is as long as
-@var{class_name}, @var{cat_name} and @var{sel_name} put together, plus
-50 characters extra.
-
-The argument @var{is_inst} specifies whether the method is an instance
-method or a class method; @var{class_name} is the name of the class;
-@var{cat_name} is the name of the category (or NULL if the method is not
-in a category); and @var{sel_name} is the name of the selector.
-
-On systems where the assembler can handle quoted names, you can use this
-macro to provide more human-readable names.
-@end table
-
-@node Initialization
-@subsection How Initialization Functions Are Handled
-@cindex initialization routines
-@cindex termination routines
-@cindex constructors, output of
-@cindex destructors, output of
-
-The compiled code for certain languages includes @dfn{constructors}
-(also called @dfn{initialization routines})---functions to initialize
-data in the program when the program is started. These functions need
-to be called before the program is ``started''---that is to say, before
-@code{main} is called.
-
-Compiling some languages generates @dfn{destructors} (also called
-@dfn{termination routines}) that should be called when the program
-terminates.
-
-To make the initialization and termination functions work, the compiler
-must output something in the assembler code to cause those functions to
-be called at the appropriate time. When you port the compiler to a new
-system, you need to specify how to do this.
-
-There are two major ways that GCC currently supports the execution of
-initialization and termination functions. Each way has two variants.
-Much of the structure is common to all four variations.
-
-@findex __CTOR_LIST__
-@findex __DTOR_LIST__
-The linker must build two lists of these functions---a list of
-initialization functions, called @code{__CTOR_LIST__}, and a list of
-termination functions, called @code{__DTOR_LIST__}.
-
-Each list always begins with an ignored function pointer (which may hold
-0, @minus{}1, or a count of the function pointers after it, depending on
-the environment). This is followed by a series of zero or more function
-pointers to constructors (or destructors), followed by a function
-pointer containing zero.
-
-Depending on the operating system and its executable file format, either
-@file{crtstuff.c} or @file{libgcc2.c} traverses these lists at startup
-time and exit time. Constructors are called in forward order of the
-list; destructors in reverse order.
-
-The best way to handle static constructors works only for object file
-formats which provide arbitrarily-named sections. A section is set
-aside for a list of constructors, and another for a list of destructors.
-Traditionally these are called @samp{.ctors} and @samp{.dtors}. Each
-object file that defines an initialization function also puts a word in
-the constructor section to point to that function. The linker
-accumulates all these words into one contiguous @samp{.ctors} section.
-Termination functions are handled similarly.
-
-To use this method, you need appropriate definitions of the macros
-@code{ASM_OUTPUT_CONSTRUCTOR} and @code{ASM_OUTPUT_DESTRUCTOR}. Usually
-you can get them by including @file{svr4.h}.
-
-When arbitrary sections are available, there are two variants, depending
-upon how the code in @file{crtstuff.c} is called. On systems that
-support an @dfn{init} section which is executed at program startup,
-parts of @file{crtstuff.c} are compiled into that section. The
-program is linked by the @code{gcc} driver like this:
-
-@example
-ld -o @var{output_file} crtbegin.o @dots{} crtend.o -lgcc
-@end example
-
-The head of a function (@code{__do_global_ctors}) appears in the init
-section of @file{crtbegin.o}; the remainder of the function appears in
-the init section of @file{crtend.o}. The linker will pull these two
-parts of the section together, making a whole function. If any of the
-user's object files linked into the middle of it contribute code, then that
-code will be executed as part of the body of @code{__do_global_ctors}.
-
-To use this variant, you must define the @code{INIT_SECTION_ASM_OP}
-macro properly.
-
-If no init section is available, do not define
-@code{INIT_SECTION_ASM_OP}. Then @code{__do_global_ctors} is built into
-the text section like all other functions, and resides in
-@file{libgcc.a}. When GCC compiles any function called @code{main}, it
-inserts a procedure call to @code{__main} as the first executable code
-after the function prologue. The @code{__main} function, also defined
-in @file{libgcc2.c}, simply calls @file{__do_global_ctors}.
-
-In file formats that don't support arbitrary sections, there are again
-two variants. In the simplest variant, the GNU linker (GNU @code{ld})
-and an `a.out' format must be used. In this case,
-@code{ASM_OUTPUT_CONSTRUCTOR} is defined to produce a @code{.stabs}
-entry of type @samp{N_SETT}, referencing the name @code{__CTOR_LIST__},
-and with the address of the void function containing the initialization
-code as its value. The GNU linker recognizes this as a request to add
-the value to a ``set''; the values are accumulated, and are eventually
-placed in the executable as a vector in the format described above, with
-a leading (ignored) count and a trailing zero element.
-@code{ASM_OUTPUT_DESTRUCTOR} is handled similarly. Since no init
-section is available, the absence of @code{INIT_SECTION_ASM_OP} causes
-the compilation of @code{main} to call @code{__main} as above, starting
-the initialization process.
-
-The last variant uses neither arbitrary sections nor the GNU linker.
-This is preferable when you want to do dynamic linking and when using
-file formats which the GNU linker does not support, such as `ECOFF'. In
-this case, @code{ASM_OUTPUT_CONSTRUCTOR} does not produce an
-@code{N_SETT} symbol; initialization and termination functions are
-recognized simply by their names. This requires an extra program in the
-linkage step, called @code{collect2}. This program pretends to be the
-linker, for use with GNU CC; it does its job by running the ordinary
-linker, but also arranges to include the vectors of initialization and
-termination functions. These functions are called via @code{__main} as
-described above.
-
-Choosing among these configuration options has been simplified by a set
-of operating-system-dependent files in the @file{config} subdirectory.
-These files define all of the relevant parameters. Usually it is
-sufficient to include one into your specific machine-dependent
-configuration file. These files are:
-
-@table @file
-@item aoutos.h
-For operating systems using the `a.out' format.
-
-@item next.h
-For operating systems using the `MachO' format.
-
-@item svr3.h
-For System V Release 3 and similar systems using `COFF' format.
-
-@item svr4.h
-For System V Release 4 and similar systems using `ELF' format.
-
-@item vms.h
-For the VMS operating system.
-@end table
-
-@ifinfo
-The following section describes the specific macros that control and
-customize the handling of initialization and termination functions.
-@end ifinfo
-
-@node Macros for Initialization
-@subsection Macros Controlling Initialization Routines
-
-Here are the macros that control how the compiler handles initialization
-and termination functions:
-
-@table @code
-@findex INIT_SECTION_ASM_OP
-@item INIT_SECTION_ASM_OP
-If defined, a C string constant for the assembler operation to identify
-the following data as initialization code. If not defined, GNU CC will
-assume such a section does not exist. When you are using special
-sections for initialization and termination functions, this macro also
-controls how @file{crtstuff.c} and @file{libgcc2.c} arrange to run the
-initialization functions.
-
-@item HAS_INIT_SECTION
-@findex HAS_INIT_SECTION
-If defined, @code{main} will not call @code{__main} as described above.
-This macro should be defined for systems that control the contents of the
-init section on a symbol-by-symbol basis, such as OSF/1, and should not
-be defined explicitly for systems that support
-@code{INIT_SECTION_ASM_OP}.
-
-@item INVOKE__main
-@findex INVOKE__main
-If defined, @code{main} will call @code{__main} despite the presence of
-@code{INIT_SECTION_ASM_OP}. This macro should be defined for systems
-where the init section is not actually run automatically, but is still
-useful for collecting the lists of constructors and destructors.
-
-@item ASM_OUTPUT_CONSTRUCTOR (@var{stream}, @var{name})
-@findex ASM_OUTPUT_CONSTRUCTOR
-Define this macro as a C statement to output on the stream @var{stream}
-the assembler code to arrange to call the function named @var{name} at
-initialization time.
-
-Assume that @var{name} is the name of a C function generated
-automatically by the compiler. This function takes no arguments. Use
-the function @code{assemble_name} to output the name @var{name}; this
-performs any system-specific syntactic transformations such as adding an
-underscore.
-
-If you don't define this macro, nothing special is output to arrange to
-call the function. This is correct when the function will be called in
-some other manner---for example, by means of the @code{collect2} program,
-which looks through the symbol table to find these functions by their
-names.
-
-@item ASM_OUTPUT_DESTRUCTOR (@var{stream}, @var{name})
-@findex ASM_OUTPUT_DESTRUCTOR
-This is like @code{ASM_OUTPUT_CONSTRUCTOR} but used for termination
-functions rather than initialization functions.
-@end table
-
-If your system uses @code{collect2} as the means of processing
-constructors, then that program normally uses @code{nm} to scan an
-object file for constructor functions to be called. On certain kinds of
-systems, you can define these macros to make @code{collect2} work faster
-(and, in some cases, make it work at all):
-
-@table @code
-@findex OBJECT_FORMAT_COFF
-@item OBJECT_FORMAT_COFF
-Define this macro if the system uses COFF (Common Object File Format)
-object files, so that @code{collect2} can assume this format and scan
-object files directly for dynamic constructor/destructor functions.
-
-@findex OBJECT_FORMAT_ROSE
-@item OBJECT_FORMAT_ROSE
-Define this macro if the system uses ROSE format object files, so that
-@code{collect2} can assume this format and scan object files directly
-for dynamic constructor/destructor functions.
-
-@findex REAL_NM_FILE_NAME
-@item REAL_NM_FILE_NAME
-Define this macro as a C string constant containing the file name to use
-to execute @code{nm}. The default is to search the path normally for
-@code{nm}.
-@end table
-
-These macros are effective only in a native compiler; @code{collect2} as
-part of a cross compiler always uses @code{nm} for the target machine.
-
-@node Instruction Output
-@subsection Output of Assembler Instructions
-
-@c prevent bad page break with this line
-This describes assembler instruction output.
-
-@table @code
-@findex REGISTER_NAMES
-@item REGISTER_NAMES
-A C initializer containing the assembler's names for the machine
-registers, each one as a C string constant. This is what translates
-register numbers in the compiler into assembler language.
-
-@findex ADDITIONAL_REGISTER_NAMES
-@item ADDITIONAL_REGISTER_NAMES
-If defined, a C initializer for an array of structures containing a name
-and a register number. This macro defines additional names for hard
-registers, thus allowing the @code{asm} option in declarations to refer
-to registers using alternate names.
-
-@findex ASM_OUTPUT_OPCODE
-@item ASM_OUTPUT_OPCODE (@var{stream}, @var{ptr})
-Define this macro if you are using an unusual assembler that
-requires different names for the machine instructions.
-
-The definition is a C statement or statements which output an
-assembler instruction opcode to the stdio stream @var{stream}. The
-macro-operand @var{ptr} is a variable of type @code{char *} which
-points to the opcode name in its ``internal'' form---the form that is
-written in the machine description. The definition should output the
-opcode name to @var{stream}, performing any translation you desire, and
-increment the variable @var{ptr} to point at the end of the opcode
-so that it will not be output twice.
-
-In fact, your macro definition may process less than the entire opcode
-name, or more than the opcode name; but if you want to process text
-that includes @samp{%}-sequences to substitute operands, you must take
-care of the substitution yourself. Just be sure to increment
-@var{ptr} over whatever text should not be output normally.
-
-@findex recog_operand
-If you need to look at the operand values, they can be found as the
-elements of @code{recog_operand}.
-
-If the macro definition does nothing, the instruction is output
-in the usual way.
-
-@findex FINAL_PRESCAN_INSN
-@item FINAL_PRESCAN_INSN (@var{insn}, @var{opvec}, @var{noperands})
-If defined, a C statement to be executed just prior to the output of
-assembler code for @var{insn}, to modify the extracted operands so
-they will be output differently.
-
-Here the argument @var{opvec} is the vector containing the operands
-extracted from @var{insn}, and @var{noperands} is the number of
-elements of the vector which contain meaningful data for this insn.
-The contents of this vector are what will be used to convert the insn
-template into assembler code, so you can change the assembler output
-by changing the contents of the vector.
-
-This macro is useful when various assembler syntaxes share a single
-file of instruction patterns; by defining this macro differently, you
-can cause a large class of instructions to be output differently (such
-as with rearranged operands). Naturally, variations in assembler
-syntax affecting individual insn patterns ought to be handled by
-writing conditional output routines in those patterns.
-
-If this macro is not defined, it is equivalent to a null statement.
-
-@findex PRINT_OPERAND
-@item PRINT_OPERAND (@var{stream}, @var{x}, @var{code})
-A C compound statement to output to stdio stream @var{stream} the
-assembler syntax for an instruction operand @var{x}. @var{x} is an
-RTL expression.
-
-@var{code} is a value that can be used to specify one of several ways
-of printing the operand. It is used when identical operands must be
-printed differently depending on the context. @var{code} comes from
-the @samp{%} specification that was used to request printing of the
-operand. If the specification was just @samp{%@var{digit}} then
-@var{code} is 0; if the specification was @samp{%@var{ltr}
-@var{digit}} then @var{code} is the ASCII code for @var{ltr}.
-
-@findex reg_names
-If @var{x} is a register, this macro should print the register's name.
-The names can be found in an array @code{reg_names} whose type is
-@code{char *[]}. @code{reg_names} is initialized from
-@code{REGISTER_NAMES}.
-
-When the machine description has a specification @samp{%@var{punct}}
-(a @samp{%} followed by a punctuation character), this macro is called
-with a null pointer for @var{x} and the punctuation character for
-@var{code}.
-
-@findex PRINT_OPERAND_PUNCT_VALID_P
-@item PRINT_OPERAND_PUNCT_VALID_P (@var{code})
-A C expression which evaluates to true if @var{code} is a valid
-punctuation character for use in the @code{PRINT_OPERAND} macro. If
-@code{PRINT_OPERAND_PUNCT_VALID_P} is not defined, it means that no
-punctuation characters (except for the standard one, @samp{%}) are used
-in this way.
-
-@findex PRINT_OPERAND_ADDRESS
-@item PRINT_OPERAND_ADDRESS (@var{stream}, @var{x})
-A C compound statement to output to stdio stream @var{stream} the
-assembler syntax for an instruction operand that is a memory reference
-whose address is @var{x}. @var{x} is an RTL expression.
-
-@cindex @code{ENCODE_SECTION_INFO} usage
-On some machines, the syntax for a symbolic address depends on the
-section that the address refers to. On these machines, define the macro
-@code{ENCODE_SECTION_INFO} to store the information into the
-@code{symbol_ref}, and then check for it here. @xref{Assembler Format}.
-
-@findex DBR_OUTPUT_SEQEND
-@findex dbr_sequence_length
-@item DBR_OUTPUT_SEQEND(@var{file})
-A C statement, to be executed after all slot-filler instructions have
-been output. If necessary, call @code{dbr_sequence_length} to
-determine the number of slots filled in a sequence (zero if not
-currently outputting a sequence), to decide how many no-ops to output,
-or whatever.
-
-Don't define this macro if it has nothing to do, but it is helpful in
-reading assembly output if the extent of the delay sequence is made
-explicit (e.g. with white space).
-
-@findex final_sequence
-Note that output routines for instructions with delay slots must be
-prepared to deal with not being output as part of a sequence (i.e.
-when the scheduling pass is not run, or when no slot fillers could be
-found.) The variable @code{final_sequence} is null when not
-processing a sequence, otherwise it contains the @code{sequence} rtx
-being output.
-
-@findex REGISTER_PREFIX
-@findex LOCAL_LABEL_PREFIX
-@findex USER_LABEL_PREFIX
-@findex IMMEDIATE_PREFIX
-@findex asm_fprintf
-@item REGISTER_PREFIX
-@itemx LOCAL_LABEL_PREFIX
-@itemx USER_LABEL_PREFIX
-@itemx IMMEDIATE_PREFIX
-If defined, C string expressions to be used for the @samp{%R}, @samp{%L},
-@samp{%U}, and @samp{%I} options of @code{asm_fprintf} (see
-@file{final.c}). These are useful when a single @file{md} file must
-support multiple assembler formats. In that case, the various @file{tm.h}
-files can define these macros differently.
-
-@findex ASSEMBLER_DIALECT
-@item ASSEMBLER_DIALECT
-If your target supports multiple dialects of assembler language (such as
-different opcodes), define this macro as a C expression that gives the
-numeric index of the assembler langauge dialect to use, with zero as the
-first variant.
-
-If this macro is defined, you may use
-@samp{@{option0|option1|option2@dots{}@}} constructs in the output
-templates of patterns (@pxref{Output Template}) or in the first argument
-of @code{asm_fprintf}. This construct outputs @samp{option0},
-@samp{option1} or @samp{option2}, etc., if the value of
-@code{ASSEMBLER_DIALECT} is zero, one or two, etc. Any special
-characters within these strings retain their usual meaning.
-
-If you do not define this macro, the characters @samp{@{}, @samp{|} and
-@samp{@}} do not have any special meaning when used in templates or
-operands to @code{asm_fprintf}.
-
-Define the macros @code{REGISTER_PREFIX}, @code{LOCAL_LABEL_PREFIX},
-@code{USER_LABEL_PREFIX} and @code{IMMEDIATE_PREFIX} if you can express
-the variations in assemble language syntax with that mechanism. Define
-@code{ASSEMBLER_DIALECT} and use the @samp{@{option0|option1@}} syntax
-if the syntax variant are larger and involve such things as different
-opcodes or operand order.
-
-@findex ASM_OUTPUT_REG_PUSH
-@item ASM_OUTPUT_REG_PUSH (@var{stream}, @var{regno})
-A C expression to output to @var{stream} some assembler code
-which will push hard register number @var{regno} onto the stack.
-The code need not be optimal, since this macro is used only when
-profiling.
-
-@findex ASM_OUTPUT_REG_POP
-@item ASM_OUTPUT_REG_POP (@var{stream}, @var{regno})
-A C expression to output to @var{stream} some assembler code
-which will pop hard register number @var{regno} off of the stack.
-The code need not be optimal, since this macro is used only when
-profiling.
-@end table
-
-@node Dispatch Tables
-@subsection Output of Dispatch Tables
-
-@c prevent bad page break with this line
-This concerns dispatch tables.
-
-@table @code
-@cindex dispatch table
-@findex ASM_OUTPUT_ADDR_DIFF_ELT
-@item ASM_OUTPUT_ADDR_DIFF_ELT (@var{stream}, @var{value}, @var{rel})
-This macro should be provided on machines where the addresses
-in a dispatch table are relative to the table's own address.
-
-The definition should be a C statement to output to the stdio stream
-@var{stream} an assembler pseudo-instruction to generate a difference
-between two labels. @var{value} and @var{rel} are the numbers of two
-internal labels. The definitions of these labels are output using
-@code{ASM_OUTPUT_INTERNAL_LABEL}, and they must be printed in the same
-way here. For example,
-
-@example
-fprintf (@var{stream}, "\t.word L%d-L%d\n",
- @var{value}, @var{rel})
-@end example
-
-@findex ASM_OUTPUT_ADDR_VEC_ELT
-@item ASM_OUTPUT_ADDR_VEC_ELT (@var{stream}, @var{value})
-This macro should be provided on machines where the addresses
-in a dispatch table are absolute.
-
-The definition should be a C statement to output to the stdio stream
-@var{stream} an assembler pseudo-instruction to generate a reference to
-a label. @var{value} is the number of an internal label whose
-definition is output using @code{ASM_OUTPUT_INTERNAL_LABEL}.
-For example,
-
-@example
-fprintf (@var{stream}, "\t.word L%d\n", @var{value})
-@end example
-
-@findex ASM_OUTPUT_CASE_LABEL
-@item ASM_OUTPUT_CASE_LABEL (@var{stream}, @var{prefix}, @var{num}, @var{table})
-Define this if the label before a jump-table needs to be output
-specially. The first three arguments are the same as for
-@code{ASM_OUTPUT_INTERNAL_LABEL}; the fourth argument is the
-jump-table which follows (a @code{jump_insn} containing an
-@code{addr_vec} or @code{addr_diff_vec}).
-
-This feature is used on system V to output a @code{swbeg} statement
-for the table.
-
-If this macro is not defined, these labels are output with
-@code{ASM_OUTPUT_INTERNAL_LABEL}.
-
-@findex ASM_OUTPUT_CASE_END
-@item ASM_OUTPUT_CASE_END (@var{stream}, @var{num}, @var{table})
-Define this if something special must be output at the end of a
-jump-table. The definition should be a C statement to be executed
-after the assembler code for the table is written. It should write
-the appropriate code to stdio stream @var{stream}. The argument
-@var{table} is the jump-table insn, and @var{num} is the label-number
-of the preceding label.
-
-If this macro is not defined, nothing special is output at the end of
-the jump-table.
-@end table
-
-@node Alignment Output
-@subsection Assembler Commands for Alignment
-
-@c prevent bad page break with this line
-This describes commands for alignment.
-
-@table @code
-@findex ASM_OUTPUT_ALIGN_CODE
-@item ASM_OUTPUT_ALIGN_CODE (@var{file})
-A C expression to output text to align the location counter in the way
-that is desirable at a point in the code that is reached only by
-jumping.
-
-This macro need not be defined if you don't want any special alignment
-to be done at such a time. Most machine descriptions do not currently
-define the macro.
-
-@findex ASM_OUTPUT_LOOP_ALIGN
-@item ASM_OUTPUT_LOOP_ALIGN (@var{file})
-A C expression to output text to align the location counter in the way
-that is desirable at the beginning of a loop.
-
-This macro need not be defined if you don't want any special alignment
-to be done at such a time. Most machine descriptions do not currently
-define the macro.
-
-@findex ASM_OUTPUT_SKIP
-@item ASM_OUTPUT_SKIP (@var{stream}, @var{nbytes})
-A C statement to output to the stdio stream @var{stream} an assembler
-instruction to advance the location counter by @var{nbytes} bytes.
-Those bytes should be zero when loaded. @var{nbytes} will be a C
-expression of type @code{int}.
-
-@findex ASM_NO_SKIP_IN_TEXT
-@item ASM_NO_SKIP_IN_TEXT
-Define this macro if @code{ASM_OUTPUT_SKIP} should not be used in the
-text section because it fails put zeros in the bytes that are skipped.
-This is true on many Unix systems, where the pseudo--op to skip bytes
-produces no-op instructions rather than zeros when used in the text
-section.
-
-@findex ASM_OUTPUT_ALIGN
-@item ASM_OUTPUT_ALIGN (@var{stream}, @var{power})
-A C statement to output to the stdio stream @var{stream} an assembler
-command to advance the location counter to a multiple of 2 to the
-@var{power} bytes. @var{power} will be a C expression of type @code{int}.
-@end table
-
-@need 3000
-@node Debugging Info
-@section Controlling Debugging Information Format
-
-@c prevent bad page break with this line
-This describes how to specify debugging information.
-
-@menu
-* All Debuggers:: Macros that affect all debugging formats uniformly.
-* DBX Options:: Macros enabling specific options in DBX format.
-* DBX Hooks:: Hook macros for varying DBX format.
-* File Names and DBX:: Macros controlling output of file names in DBX format.
-* SDB and DWARF:: Macros for SDB (COFF) and DWARF formats.
-@end menu
-
-@node All Debuggers
-@subsection Macros Affecting All Debugging Formats
-
-@c prevent bad page break with this line
-These macros affect all debugging formats.
-
-@table @code
-@findex DBX_REGISTER_NUMBER
-@item DBX_REGISTER_NUMBER (@var{regno})
-A C expression that returns the DBX register number for the compiler
-register number @var{regno}. In simple cases, the value of this
-expression may be @var{regno} itself. But sometimes there are some
-registers that the compiler knows about and DBX does not, or vice
-versa. In such cases, some register may need to have one number in
-the compiler and another for DBX.
-
-If two registers have consecutive numbers inside GNU CC, and they can be
-used as a pair to hold a multiword value, then they @emph{must} have
-consecutive numbers after renumbering with @code{DBX_REGISTER_NUMBER}.
-Otherwise, debuggers will be unable to access such a pair, because they
-expect register pairs to be consecutive in their own numbering scheme.
-
-If you find yourself defining @code{DBX_REGISTER_NUMBER} in way that
-does not preserve register pairs, then what you must do instead is
-redefine the actual register numbering scheme.
-
-@findex DEBUGGER_AUTO_OFFSET
-@item DEBUGGER_AUTO_OFFSET (@var{x})
-A C expression that returns the integer offset value for an automatic
-variable having address @var{x} (an RTL expression). The default
-computation assumes that @var{x} is based on the frame-pointer and
-gives the offset from the frame-pointer. This is required for targets
-that produce debugging output for DBX or COFF-style debugging output
-for SDB and allow the frame-pointer to be eliminated when the
-@samp{-g} options is used.
-
-@findex DEBUGGER_ARG_OFFSET
-@item DEBUGGER_ARG_OFFSET (@var{offset}, @var{x})
-A C expression that returns the integer offset value for an argument
-having address @var{x} (an RTL expression). The nominal offset is
-@var{offset}.
-
-@findex PREFERRED_DEBUGGING_TYPE
-@item PREFERRED_DEBUGGING_TYPE
-A C expression that returns the type of debugging output GNU CC produces
-when the user specifies @samp{-g} or @samp{-ggdb}. Define this if you
-have arranged for GNU CC to support more than one format of debugging
-output. Currently, the allowable values are @code{DBX_DEBUG},
-@code{SDB_DEBUG}, @code{DWARF_DEBUG}, and @code{XCOFF_DEBUG}.
-
-The value of this macro only affects the default debugging output; the
-user can always get a specific type of output by using @samp{-gstabs},
-@samp{-gcoff}, @samp{-gdwarf}, or @samp{-gxcoff}.
-@end table
-
-@node DBX Options
-@subsection Specific Options for DBX Output
-
-@c prevent bad page break with this line
-These are specific options for DBX output.
-
-@table @code
-@findex DBX_DEBUGGING_INFO
-@item DBX_DEBUGGING_INFO
-Define this macro if GNU CC should produce debugging output for DBX
-in response to the @samp{-g} option.
-
-@findex XCOFF_DEBUGGING_INFO
-@item XCOFF_DEBUGGING_INFO
-Define this macro if GNU CC should produce XCOFF format debugging output
-in response to the @samp{-g} option. This is a variant of DBX format.
-
-@findex DEFAULT_GDB_EXTENSIONS
-@item DEFAULT_GDB_EXTENSIONS
-Define this macro to control whether GNU CC should by default generate
-GDB's extended version of DBX debugging information (assuming DBX-format
-debugging information is enabled at all). If you don't define the
-macro, the default is 1: always generate the extended information
-if there is any occasion to.
-
-@findex DEBUG_SYMS_TEXT
-@item DEBUG_SYMS_TEXT
-Define this macro if all @code{.stabs} commands should be output while
-in the text section.
-
-@findex ASM_STABS_OP
-@item ASM_STABS_OP
-A C string constant naming the assembler pseudo op to use instead of
-@code{.stabs} to define an ordinary debugging symbol. If you don't
-define this macro, @code{.stabs} is used. This macro applies only to
-DBX debugging information format.
-
-@findex ASM_STABD_OP
-@item ASM_STABD_OP
-A C string constant naming the assembler pseudo op to use instead of
-@code{.stabd} to define a debugging symbol whose value is the current
-location. If you don't define this macro, @code{.stabd} is used.
-This macro applies only to DBX debugging information format.
-
-@findex ASM_STABN_OP
-@item ASM_STABN_OP
-A C string constant naming the assembler pseudo op to use instead of
-@code{.stabn} to define a debugging symbol with no name. If you don't
-define this macro, @code{.stabn} is used. This macro applies only to
-DBX debugging information format.
-
-@findex DBX_NO_XREFS
-@item DBX_NO_XREFS
-Define this macro if DBX on your system does not support the construct
-@samp{xs@var{tagname}}. On some systems, this construct is used to
-describe a forward reference to a structure named @var{tagname}.
-On other systems, this construct is not supported at all.
-
-@findex DBX_CONTIN_LENGTH
-@item DBX_CONTIN_LENGTH
-A symbol name in DBX-format debugging information is normally
-continued (split into two separate @code{.stabs} directives) when it
-exceeds a certain length (by default, 80 characters). On some
-operating systems, DBX requires this splitting; on others, splitting
-must not be done. You can inhibit splitting by defining this macro
-with the value zero. You can override the default splitting-length by
-defining this macro as an expression for the length you desire.
-
-@findex DBX_CONTIN_CHAR
-@item DBX_CONTIN_CHAR
-Normally continuation is indicated by adding a @samp{\} character to
-the end of a @code{.stabs} string when a continuation follows. To use
-a different character instead, define this macro as a character
-constant for the character you want to use. Do not define this macro
-if backslash is correct for your system.
-
-@findex DBX_STATIC_STAB_DATA_SECTION
-@item DBX_STATIC_STAB_DATA_SECTION
-Define this macro if it is necessary to go to the data section before
-outputting the @samp{.stabs} pseudo-op for a non-global static
-variable.
-
-@findex DBX_TYPE_DECL_STABS_CODE
-@item DBX_TYPE_DECL_STABS_CODE
-The value to use in the ``code'' field of the @code{.stabs} directive
-for a typedef. The default is @code{N_LSYM}.
-
-@findex DBX_STATIC_CONST_VAR_CODE
-@item DBX_STATIC_CONST_VAR_CODE
-The value to use in the ``code'' field of the @code{.stabs} directive
-for a static variable located in the text section. DBX format does not
-provide any ``right'' way to do this. The default is @code{N_FUN}.
-
-@findex DBX_REGPARM_STABS_CODE
-@item DBX_REGPARM_STABS_CODE
-The value to use in the ``code'' field of the @code{.stabs} directive
-for a parameter passed in registers. DBX format does not provide any
-``right'' way to do this. The default is @code{N_RSYM}.
-
-@findex DBX_REGPARM_STABS_LETTER
-@item DBX_REGPARM_STABS_LETTER
-The letter to use in DBX symbol data to identify a symbol as a parameter
-passed in registers. DBX format does not customarily provide any way to
-do this. The default is @code{'P'}.
-
-@findex DBX_MEMPARM_STABS_LETTER
-@item DBX_MEMPARM_STABS_LETTER
-The letter to use in DBX symbol data to identify a symbol as a stack
-parameter. The default is @code{'p'}.
-
-@findex DBX_FUNCTION_FIRST
-@item DBX_FUNCTION_FIRST
-Define this macro if the DBX information for a function and its
-arguments should precede the assembler code for the function. Normally,
-in DBX format, the debugging information entirely follows the assembler
-code.
-
-@findex DBX_LBRAC_FIRST
-@item DBX_LBRAC_FIRST
-Define this macro if the @code{N_LBRAC} symbol for a block should
-precede the debugging information for variables and functions defined in
-that block. Normally, in DBX format, the @code{N_LBRAC} symbol comes
-first.
-
-@findex DBX_BLOCKS_FUNCTION_RELATIVE
-@item DBX_BLOCKS_FUNCTION_RELATIVE
-Define this macro if the value of a symbol describing the scope of a
-block (@code{N_LBRAC} or @code{N_RBRAC}) should be relative to the start
-of the enclosing function. Normally, GNU C uses an absolute address.
-@end table
-
-@node DBX Hooks
-@subsection Open-Ended Hooks for DBX Format
-
-@c prevent bad page break with this line
-These are hooks for DBX format.
-
-@table @code
-@findex DBX_OUTPUT_LBRAC
-@item DBX_OUTPUT_LBRAC (@var{stream}, @var{name})
-Define this macro to say how to output to @var{stream} the debugging
-information for the start of a scope level for variable names. The
-argument @var{name} is the name of an assembler symbol (for use with
-@code{assemble_name}) whose value is the address where the scope begins.
-
-@findex DBX_OUTPUT_RBRAC
-@item DBX_OUTPUT_RBRAC (@var{stream}, @var{name})
-Like @code{DBX_OUTPUT_LBRAC}, but for the end of a scope level.
-
-@findex DBX_OUTPUT_ENUM
-@item DBX_OUTPUT_ENUM (@var{stream}, @var{type})
-Define this macro if the target machine requires special handling to
-output an enumeration type. The definition should be a C statement
-(sans semicolon) to output the appropriate information to @var{stream}
-for the type @var{type}.
-
-@findex DBX_OUTPUT_FUNCTION_END
-@item DBX_OUTPUT_FUNCTION_END (@var{stream}, @var{function})
-Define this macro if the target machine requires special output at the
-end of the debugging information for a function. The definition should
-be a C statement (sans semicolon) to output the appropriate information
-to @var{stream}. @var{function} is the @code{FUNCTION_DECL} node for
-the function.
-
-@findex DBX_OUTPUT_STANDARD_TYPES
-@item DBX_OUTPUT_STANDARD_TYPES (@var{syms})
-Define this macro if you need to control the order of output of the
-standard data types at the beginning of compilation. The argument
-@var{syms} is a @code{tree} which is a chain of all the predefined
-global symbols, including names of data types.
-
-Normally, DBX output starts with definitions of the types for integers
-and characters, followed by all the other predefined types of the
-particular language in no particular order.
-
-On some machines, it is necessary to output different particular types
-first. To do this, define @code{DBX_OUTPUT_STANDARD_TYPES} to output
-those symbols in the necessary order. Any predefined types that you
-don't explicitly output will be output afterward in no particular order.
-
-Be careful not to define this macro so that it works only for C. There
-are no global variables to access most of the built-in types, because
-another language may have another set of types. The way to output a
-particular type is to look through @var{syms} to see if you can find it.
-Here is an example:
-
-@smallexample
-@{
- tree decl;
- for (decl = syms; decl; decl = TREE_CHAIN (decl))
- if (!strcmp (IDENTIFIER_POINTER (DECL_NAME (decl)),
- "long int"))
- dbxout_symbol (decl);
- @dots{}
-@}
-@end smallexample
-
-@noindent
-This does nothing if the expected type does not exist.
-
-See the function @code{init_decl_processing} in @file{c-decl.c} to find
-the names to use for all the built-in C types.
-
-Here is another way of finding a particular type:
-
-@c this is still overfull. --mew 10feb93
-@smallexample
-@{
- tree decl;
- for (decl = syms; decl; decl = TREE_CHAIN (decl))
- if (TREE_CODE (decl) == TYPE_DECL
- && (TREE_CODE (TREE_TYPE (decl))
- == INTEGER_CST)
- && TYPE_PRECISION (TREE_TYPE (decl)) == 16
- && TYPE_UNSIGNED (TREE_TYPE (decl)))
-@group
- /* @r{This must be @code{unsigned short}.} */
- dbxout_symbol (decl);
- @dots{}
-@}
-@end group
-@end smallexample
-@end table
-
-@node File Names and DBX
-@subsection File Names in DBX Format
-
-@c prevent bad page break with this line
-This describes file names in DBX format.
-
-@table @code
-@findex DBX_WORKING_DIRECTORY
-@item DBX_WORKING_DIRECTORY
-Define this if DBX wants to have the current directory recorded in each
-object file.
-
-Note that the working directory is always recorded if GDB extensions are
-enabled.
-
-@findex DBX_OUTPUT_MAIN_SOURCE_FILENAME
-@item DBX_OUTPUT_MAIN_SOURCE_FILENAME (@var{stream}, @var{name})
-A C statement to output DBX debugging information to the stdio stream
-@var{stream} which indicates that file @var{name} is the main source
-file---the file specified as the input file for compilation.
-This macro is called only once, at the beginning of compilation.
-
-This macro need not be defined if the standard form of output
-for DBX debugging information is appropriate.
-
-@findex DBX_OUTPUT_MAIN_SOURCE_DIRECTORY
-@item DBX_OUTPUT_MAIN_SOURCE_DIRECTORY (@var{stream}, @var{name})
-A C statement to output DBX debugging information to the stdio stream
-@var{stream} which indicates that the current directory during
-compilation is named @var{name}.
-
-This macro need not be defined if the standard form of output
-for DBX debugging information is appropriate.
-
-@findex DBX_OUTPUT_MAIN_SOURCE_FILE_END
-@item DBX_OUTPUT_MAIN_SOURCE_FILE_END (@var{stream}, @var{name})
-A C statement to output DBX debugging information at the end of
-compilation of the main source file @var{name}.
-
-If you don't define this macro, nothing special is output at the end
-of compilation, which is correct for most machines.
-
-@findex DBX_OUTPUT_SOURCE_FILENAME
-@item DBX_OUTPUT_SOURCE_FILENAME (@var{stream}, @var{name})
-A C statement to output DBX debugging information to the stdio stream
-@var{stream} which indicates that file @var{name} is the current source
-file. This output is generated each time input shifts to a different
-source file as a result of @samp{#include}, the end of an included file,
-or a @samp{#line} command.
-
-This macro need not be defined if the standard form of output
-for DBX debugging information is appropriate.
-@end table
-
-@need 2000
-@node SDB and DWARF
-@subsection Macros for SDB and DWARF Output
-
-@c prevent bad page break with this line
-Here are macros for SDB and DWARF output.
-
-@table @code
-@findex SDB_DEBUGGING_INFO
-@item SDB_DEBUGGING_INFO
-Define this macro if GNU CC should produce COFF-style debugging output
-for SDB in response to the @samp{-g} option.
-
-@findex DWARF_DEBUGGING_INFO
-@item DWARF_DEBUGGING_INFO
-Define this macro if GNU CC should produce dwarf format debugging output
-in response to the @samp{-g} option.
-
-@findex PUT_SDB_@dots{}
-@item PUT_SDB_@dots{}
-Define these macros to override the assembler syntax for the special
-SDB assembler directives. See @file{sdbout.c} for a list of these
-macros and their arguments. If the standard syntax is used, you need
-not define them yourself.
-
-@findex SDB_DELIM
-@item SDB_DELIM
-Some assemblers do not support a semicolon as a delimiter, even between
-SDB assembler directives. In that case, define this macro to be the
-delimiter to use (usually @samp{\n}). It is not necessary to define
-a new set of @code{PUT_SDB_@var{op}} macros if this is the only change
-required.
-
-@findex SDB_GENERATE_FAKE
-@item SDB_GENERATE_FAKE
-Define this macro to override the usual method of constructing a dummy
-name for anonymous structure and union types. See @file{sdbout.c} for
-more information.
-
-@findex SDB_ALLOW_UNKNOWN_REFERENCES
-@item SDB_ALLOW_UNKNOWN_REFERENCES
-Define this macro to allow references to unknown structure,
-union, or enumeration tags to be emitted. Standard COFF does not
-allow handling of unknown references, MIPS ECOFF has support for
-it.
-
-@findex SDB_ALLOW_FORWARD_REFERENCES
-@item SDB_ALLOW_FORWARD_REFERENCES
-Define this macro to allow references to structure, union, or
-enumeration tags that have not yet been seen to be handled. Some
-assemblers choke if forward tags are used, while some require it.
-@end table
-
-@node Cross-compilation
-@section Cross Compilation and Floating Point
-@cindex cross compilation and floating point
-@cindex floating point and cross compilation
-
-While all modern machines use 2's complement representation for integers,
-there are a variety of representations for floating point numbers. This
-means that in a cross-compiler the representation of floating point numbers
-in the compiled program may be different from that used in the machine
-doing the compilation.
-
-@findex atof
-Because different representation systems may offer different amounts of
-range and precision, the cross compiler cannot safely use the host
-machine's floating point arithmetic. Therefore, floating point constants
-must be represented in the target machine's format. This means that the
-cross compiler cannot use @code{atof} to parse a floating point constant;
-it must have its own special routine to use instead. Also, constant
-folding must emulate the target machine's arithmetic (or must not be done
-at all).
-
-The macros in the following table should be defined only if you are cross
-compiling between different floating point formats.
-
-Otherwise, don't define them. Then default definitions will be set up which
-use @code{double} as the data type, @code{==} to test for equality, etc.
-
-You don't need to worry about how many times you use an operand of any
-of these macros. The compiler never uses operands which have side effects.
-
-@table @code
-@findex REAL_VALUE_TYPE
-@item REAL_VALUE_TYPE
-A macro for the C data type to be used to hold a floating point value
-in the target machine's format. Typically this would be a
-@code{struct} containing an array of @code{int}.
-
-@findex REAL_VALUES_EQUAL
-@item REAL_VALUES_EQUAL (@var{x}, @var{y})
-A macro for a C expression which compares for equality the two values,
-@var{x} and @var{y}, both of type @code{REAL_VALUE_TYPE}.
-
-@findex REAL_VALUES_LESS
-@item REAL_VALUES_LESS (@var{x}, @var{y})
-A macro for a C expression which tests whether @var{x} is less than
-@var{y}, both values being of type @code{REAL_VALUE_TYPE} and
-interpreted as floating point numbers in the target machine's
-representation.
-
-@findex REAL_VALUE_LDEXP
-@findex ldexp
-@item REAL_VALUE_LDEXP (@var{x}, @var{scale})
-A macro for a C expression which performs the standard library
-function @code{ldexp}, but using the target machine's floating point
-representation. Both @var{x} and the value of the expression have
-type @code{REAL_VALUE_TYPE}. The second argument, @var{scale}, is an
-integer.
-
-@findex REAL_VALUE_FIX
-@item REAL_VALUE_FIX (@var{x})
-A macro whose definition is a C expression to convert the target-machine
-floating point value @var{x} to a signed integer. @var{x} has type
-@code{REAL_VALUE_TYPE}.
-
-@findex REAL_VALUE_UNSIGNED_FIX
-@item REAL_VALUE_UNSIGNED_FIX (@var{x})
-A macro whose definition is a C expression to convert the target-machine
-floating point value @var{x} to an unsigned integer. @var{x} has type
-@code{REAL_VALUE_TYPE}.
-
-@findex REAL_VALUE_RNDZINT
-@item REAL_VALUE_RNDZINT (@var{x})
-A macro whose definition is a C expression to round the target-machine
-floating point value @var{x} towards zero to an integer value (but still
-as a floating point number). @var{x} has type @code{REAL_VALUE_TYPE},
-and so does the value.
-
-@findex REAL_VALUE_UNSIGNED_RNDZINT
-@item REAL_VALUE_UNSIGNED_RNDZINT (@var{x})
-A macro whose definition is a C expression to round the target-machine
-floating point value @var{x} towards zero to an unsigned integer value
-(but still represented as a floating point number). @var{x} has type
-@code{REAL_VALUE_TYPE}, and so does the value.
-
-@findex REAL_VALUE_ATOF
-@item REAL_VALUE_ATOF (@var{string}, @var{mode})
-A macro for a C expression which converts @var{string}, an expression of
-type @code{char *}, into a floating point number in the target machine's
-representation for mode @var{mode}. The value has type
-@code{REAL_VALUE_TYPE}.
-
-@findex REAL_INFINITY
-@item REAL_INFINITY
-Define this macro if infinity is a possible floating point value, and
-therefore division by 0 is legitimate.
-
-@findex REAL_VALUE_ISINF
-@findex isinf
-@item REAL_VALUE_ISINF (@var{x})
-A macro for a C expression which determines whether @var{x}, a floating
-point value, is infinity. The value has type @code{int}.
-By default, this is defined to call @code{isinf}.
-
-@findex REAL_VALUE_ISNAN
-@findex isnan
-@item REAL_VALUE_ISNAN (@var{x})
-A macro for a C expression which determines whether @var{x}, a floating
-point value, is a ``nan'' (not-a-number). The value has type
-@code{int}. By default, this is defined to call @code{isnan}.
-@end table
-
-@cindex constant folding and floating point
-Define the following additional macros if you want to make floating
-point constant folding work while cross compiling. If you don't
-define them, cross compilation is still possible, but constant folding
-will not happen for floating point values.
-
-@table @code
-@findex REAL_ARITHMETIC
-@item REAL_ARITHMETIC (@var{output}, @var{code}, @var{x}, @var{y})
-A macro for a C statement which calculates an arithmetic operation of
-the two floating point values @var{x} and @var{y}, both of type
-@code{REAL_VALUE_TYPE} in the target machine's representation, to
-produce a result of the same type and representation which is stored
-in @var{output} (which will be a variable).
-
-The operation to be performed is specified by @var{code}, a tree code
-which will always be one of the following: @code{PLUS_EXPR},
-@code{MINUS_EXPR}, @code{MULT_EXPR}, @code{RDIV_EXPR},
-@code{MAX_EXPR}, @code{MIN_EXPR}.@refill
-
-@cindex overflow while constant folding
-The expansion of this macro is responsible for checking for overflow.
-If overflow happens, the macro expansion should execute the statement
-@code{return 0;}, which indicates the inability to perform the
-arithmetic operation requested.
-
-@findex REAL_VALUE_NEGATE
-@item REAL_VALUE_NEGATE (@var{x})
-A macro for a C expression which returns the negative of the floating
-point value @var{x}. Both @var{x} and the value of the expression
-have type @code{REAL_VALUE_TYPE} and are in the target machine's
-floating point representation.
-
-There is no way for this macro to report overflow, since overflow
-can't happen in the negation operation.
-
-@findex REAL_VALUE_TRUNCATE
-@item REAL_VALUE_TRUNCATE (@var{mode}, @var{x})
-A macro for a C expression which converts the floating point value
-@var{x} to mode @var{mode}.
-
-Both @var{x} and the value of the expression are in the target machine's
-floating point representation and have type @code{REAL_VALUE_TYPE}.
-However, the value should have an appropriate bit pattern to be output
-properly as a floating constant whose precision accords with mode
-@var{mode}.
-
-There is no way for this macro to report overflow.
-
-@findex REAL_VALUE_TO_INT
-@item REAL_VALUE_TO_INT (@var{low}, @var{high}, @var{x})
-A macro for a C expression which converts a floating point value
-@var{x} into a double-precision integer which is then stored into
-@var{low} and @var{high}, two variables of type @var{int}.
-
-@item REAL_VALUE_FROM_INT (@var{x}, @var{low}, @var{high})
-@findex REAL_VALUE_FROM_INT
-A macro for a C expression which converts a double-precision integer
-found in @var{low} and @var{high}, two variables of type @var{int},
-into a floating point value which is then stored into @var{x}.
-@end table
-
-@node Misc
-@section Miscellaneous Parameters
-@cindex parameters, miscellaneous
-
-@c prevent bad page break with this line
-Here are several miscellaneous parameters.
-
-@table @code
-@item PREDICATE_CODES
-@findex PREDICATE_CODES
-Define this if you have defined special-purpose predicates in the file
-@file{@var{machine}.c}. This macro is called within an initializer of an
-array of structures. The first field in the structure is the name of a
-predicate and the second field is an array of rtl codes. For each
-predicate, list all rtl codes that can be in expressions matched by the
-predicate. The list should have a trailing comma. Here is an example
-of two entries in the list for a typical RISC machine:
-
-@smallexample
-#define PREDICATE_CODES \
- @{"gen_reg_rtx_operand", @{SUBREG, REG@}@}, \
- @{"reg_or_short_cint_operand", @{SUBREG, REG, CONST_INT@}@},
-@end smallexample
-
-Defining this macro does not affect the generated code (however,
-incorrect definitions that omit an rtl code that may be matched by the
-predicate can cause the compiler to malfunction). Instead, it allows
-the table built by @file{genrecog} to be more compact and efficient,
-thus speeding up the compiler. The most important predicates to include
-in the list specified by this macro are thoses used in the most insn
-patterns.
-
-@findex CASE_VECTOR_MODE
-@item CASE_VECTOR_MODE
-An alias for a machine mode name. This is the machine mode that
-elements of a jump-table should have.
-
-@findex CASE_VECTOR_PC_RELATIVE
-@item CASE_VECTOR_PC_RELATIVE
-Define this macro if jump-tables should contain relative addresses.
-
-@findex CASE_DROPS_THROUGH
-@item CASE_DROPS_THROUGH
-Define this if control falls through a @code{case} insn when the index
-value is out of range. This means the specified default-label is
-actually ignored by the @code{case} insn proper.
-
-@findex CASE_VALUES_THRESHOLD
-@item CASE_VALUES_THRESHOLD
-Define this to be the smallest number of different values for which it
-is best to use a jump-table instead of a tree of conditional branches.
-The default is four for machines with a @code{casesi} instruction and
-five otherwise. This is best for most machines.
-
-@findex WORD_REGISTER_OPERATIONS
-@item WORD_REGISTER_OPERATIONS
-Define this macro if operations between registers with integral mode
-smaller than a word are always performed on the entire register.
-Most RISC machines have this property and most CISC machines do not.
-
-@findex LOAD_EXTEND_OP
-@item LOAD_EXTEND_OP (@var{mode})
-Define this macro to be a C expression indicating when insns that read
-memory in @var{mode}, an integral mode narrower than a word, set the
-bits outside of @var{mode} to be either the sign-extension or the
-zero-extension of the data read. Return @code{SIGN_EXTEND} for values
-of @var{mode} for which the
-insn sign-extends, @code{ZERO_EXTEND} for which it zero-extends, and
-@code{NIL} for other modes.
-
-This macro is not called with @var{mode} non-integral or with a width
-greater than or equal to @code{BITS_PER_WORD}, so you may return any
-value in this case. Do not define this macro if it would always return
-@code{NIL}. On machines where this macro is defined, you will normally
-define it as the constant @code{SIGN_EXTEND} or @code{ZERO_EXTEND}.
-
-@findex IMPLICIT_FIX_EXPR
-@item IMPLICIT_FIX_EXPR
-An alias for a tree code that should be used by default for conversion
-of floating point values to fixed point. Normally,
-@code{FIX_ROUND_EXPR} is used.@refill
-
-@findex FIXUNS_TRUNC_LIKE_FIX_TRUNC
-@item FIXUNS_TRUNC_LIKE_FIX_TRUNC
-Define this macro if the same instructions that convert a floating
-point number to a signed fixed point number also convert validly to an
-unsigned one.
-
-@findex EASY_DIV_EXPR
-@item EASY_DIV_EXPR
-An alias for a tree code that is the easiest kind of division to
-compile code for in the general case. It may be
-@code{TRUNC_DIV_EXPR}, @code{FLOOR_DIV_EXPR}, @code{CEIL_DIV_EXPR} or
-@code{ROUND_DIV_EXPR}. These four division operators differ in how
-they round the result to an integer. @code{EASY_DIV_EXPR} is used
-when it is permissible to use any of those kinds of division and the
-choice should be made on the basis of efficiency.@refill
-
-@findex MOVE_MAX
-@item MOVE_MAX
-The maximum number of bytes that a single instruction can move quickly
-from memory to memory.
-
-@findex MAX_MOVE_MAX
-@item MAX_MOVE_MAX
-The maximum number of bytes that a single instruction can move quickly
-from memory to memory. If this is undefined, the default is
-@code{MOVE_MAX}. Otherwise, it is the constant value that is the
-largest value that @code{MOVE_MAX} can have at run-time.
-
-@findex SHIFT_COUNT_TRUNCATED
-@item SHIFT_COUNT_TRUNCATED
-A C expression that is nonzero if on this machine the number of bits
-actually used for the count of a shift operation is equal to the number
-of bits needed to represent the size of the object being shifted. When
-this macro is non-zero, the compiler will assume that it is safe to omit
-a sign-extend, zero-extend, and certain bitwise `and' instructions that
-truncates the count of a shift operation. On machines that have
-instructions that act on bitfields at variable positions, which may
-include `bit test' instructions, a nonzero @code{SHIFT_COUNT_TRUNCATED}
-also enables deletion of truncations of the values that serve as
-arguments to bitfield instructions.
-
-If both types of instructions truncate the count (for shifts) and
-position (for bitfield operations), or if no variable-position bitfield
-instructions exist, you should define this macro.
-
-However, on some machines, such as the 80386 and the 680x0, truncation
-only applies to shift operations and not the (real or pretended)
-bitfield operations. Define @code{SHIFT_COUNT_TRUNCATED} to be zero on
-such machines. Instead, add patterns to the @file{md} file that include
-the implied truncation of the shift instructions.
-
-You need not define this macro if it would always have the value of zero.
-
-@findex TRULY_NOOP_TRUNCATION
-@item TRULY_NOOP_TRUNCATION (@var{outprec}, @var{inprec})
-A C expression which is nonzero if on this machine it is safe to
-``convert'' an integer of @var{inprec} bits to one of @var{outprec}
-bits (where @var{outprec} is smaller than @var{inprec}) by merely
-operating on it as if it had only @var{outprec} bits.
-
-On many machines, this expression can be 1.
-
-@c rearranged this, removed the phrase "it is reported that". this was
-@c to fix an overfull hbox. --mew 10feb93
-When @code{TRULY_NOOP_TRUNCATION} returns 1 for a pair of sizes for
-modes for which @code{MODES_TIEABLE_P} is 0, suboptimal code can result.
-If this is the case, making @code{TRULY_NOOP_TRUNCATION} return 0 in
-such cases may improve things.
-
-@findex STORE_FLAG_VALUE
-@item STORE_FLAG_VALUE
-A C expression describing the value returned by a comparison operator
-with an integral mode and stored by a store-flag instruction
-(@samp{s@var{cond}}) when the condition is true. This description must
-apply to @emph{all} the @samp{s@var{cond}} patterns and all the
-comparison operators whose results have a @code{MODE_INT} mode.
-
-A value of 1 or -1 means that the instruction implementing the
-comparison operator returns exactly 1 or -1 when the comparison is true
-and 0 when the comparison is false. Otherwise, the value indicates
-which bits of the result are guaranteed to be 1 when the comparison is
-true. This value is interpreted in the mode of the comparison
-operation, which is given by the mode of the first operand in the
-@samp{s@var{cond}} pattern. Either the low bit or the sign bit of
-@code{STORE_FLAG_VALUE} be on. Presently, only those bits are used by
-the compiler.
-
-If @code{STORE_FLAG_VALUE} is neither 1 or -1, the compiler will
-generate code that depends only on the specified bits. It can also
-replace comparison operators with equivalent operations if they cause
-the required bits to be set, even if the remaining bits are undefined.
-For example, on a machine whose comparison operators return an
-@code{SImode} value and where @code{STORE_FLAG_VALUE} is defined as
-@samp{0x80000000}, saying that just the sign bit is relevant, the
-expression
-
-@smallexample
-(ne:SI (and:SI @var{x} (const_int @var{power-of-2})) (const_int 0))
-@end smallexample
-
-@noindent
-can be converted to
-
-@smallexample
-(ashift:SI @var{x} (const_int @var{n}))
-@end smallexample
-
-@noindent
-where @var{n} is the appropriate shift count to move the bit being
-tested into the sign bit.
-
-There is no way to describe a machine that always sets the low-order bit
-for a true value, but does not guarantee the value of any other bits,
-but we do not know of any machine that has such an instruction. If you
-are trying to port GNU CC to such a machine, include an instruction to
-perform a logical-and of the result with 1 in the pattern for the
-comparison operators and let us know
-@ifset USING
-(@pxref{Bug Reporting,,How to Report Bugs}).
-@end ifset
-@ifclear USING
-(@pxref{Bug Reporting,,How to Report Bugs,gcc.info,Using GCC}).
-@end ifclear
-
-Often, a machine will have multiple instructions that obtain a value
-from a comparison (or the condition codes). Here are rules to guide the
-choice of value for @code{STORE_FLAG_VALUE}, and hence the instructions
-to be used:
-
-@itemize @bullet
-@item
-Use the shortest sequence that yields a valid definition for
-@code{STORE_FLAG_VALUE}. It is more efficient for the compiler to
-``normalize'' the value (convert it to, e.g., 1 or 0) than for the
-comparison operators to do so because there may be opportunities to
-combine the normalization with other operations.
-
-@item
-For equal-length sequences, use a value of 1 or -1, with -1 being
-slightly preferred on machines with expensive jumps and 1 preferred on
-other machines.
-
-@item
-As a second choice, choose a value of @samp{0x80000001} if instructions
-exist that set both the sign and low-order bits but do not define the
-others.
-
-@item
-Otherwise, use a value of @samp{0x80000000}.
-@end itemize
-
-Many machines can produce both the value chosen for
-@code{STORE_FLAG_VALUE} and its negation in the same number of
-instructions. On those machines, you should also define a pattern for
-those cases, e.g., one matching
-
-@smallexample
-(set @var{A} (neg:@var{m} (ne:@var{m} @var{B} @var{C})))
-@end smallexample
-
-Some machines can also perform @code{and} or @code{plus} operations on
-condition code values with less instructions than the corresponding
-@samp{s@var{cond}} insn followed by @code{and} or @code{plus}. On those
-machines, define the appropriate patterns. Use the names @code{incscc}
-and @code{decscc}, respectively, for the the patterns which perform
-@code{plus} or @code{minus} operations on condition code values. See
-@file{rs6000.md} for some examples. The GNU Superoptizer can be used to
-find such instruction sequences on other machines.
-
-You need not define @code{STORE_FLAG_VALUE} if the machine has no store-flag
-instructions.
-
-@findex FLOAT_STORE_FLAG_VALUE
-@item FLOAT_STORE_FLAG_VALUE
-A C expression that gives a non-zero floating point value that is
-returned when comparison operators with floating-point results are true.
-Define this macro on machine that have comparison operations that return
-floating-point values. If there are no such operations, do not define
-this macro.
-
-@findex Pmode
-@item Pmode
-An alias for the machine mode for pointers. Normally the definition
-can be
-
-@smallexample
-#define Pmode SImode
-@end smallexample
-
-@findex FUNCTION_MODE
-@item FUNCTION_MODE
-An alias for the machine mode used for memory references to functions
-being called, in @code{call} RTL expressions. On most machines this
-should be @code{QImode}.
-
-@findex INTEGRATE_THRESHOLD
-@item INTEGRATE_THRESHOLD (@var{decl})
-A C expression for the maximum number of instructions above which the
-function @var{decl} should not be inlined. @var{decl} is a
-@code{FUNCTION_DECL} node.
-
-The default definition of this macro is 64 plus 8 times the number of
-arguments that the function accepts. Some people think a larger
-threshold should be used on RISC machines.
-
-@findex SCCS_DIRECTIVE
-@item SCCS_DIRECTIVE
-Define this if the preprocessor should ignore @code{#sccs} directives
-and print no error message.
-
-@findex NO_IMPLICIT_EXTERN_C
-@item NO_IMPLICIT_EXTERN_C
-Define this macro if the system header files support C++ as well as C.
-This macro inhibits the usual method of using system header files in
-C++, which is to pretend that the file's contents are enclosed in
-@samp{extern "C" @{@dots{}@}}.
-
-@findex HANDLE_PRAGMA
-@findex #pragma
-@findex pragma
-@item HANDLE_PRAGMA (@var{stream})
-Define this macro if you want to implement any pragmas. If defined, it
-should be a C statement to be executed when @code{#pragma} is seen. The
-argument @var{stream} is the stdio input stream from which the source
-text can be read.
-
-It is generally a bad idea to implement new uses of @code{#pragma}. The
-only reason to define this macro is for compatibility with other
-compilers that do support @code{#pragma} for the sake of any user
-programs which already use it.
-
-@findex VALID_MACHINE_ATTRIBUTE
-@item VALID_MACHINE_ATTRIBUTE (@var{type}, @var{attributes}, @var{identifier})
-Define this macro if you want to support machine specific attributes for
-types. If defined, it should be a C statement whose value is nonzero if
-@var{identifier} is an attribute that is valid for @var{type}. The
-attributes in @var{attributes} have previously been assigned to @var{type}.
-
-@findex COMP_TYPE_ATTRIBUTES
-@item COMP_TYPE_ATTRIBUTES (@var{type1}, @var{type2})
-Define this macro if type attributes must be checked for compatibility.
-If defined, it should be a C statement that returns zero if the
-attributes on @var{type1} and @var{type2} are incompatible, one if they
-are compatible, and two if they are nearly compatible (which causes a
-warning to be generated).
-
-@findex SET_DEFAULT_TYPE_ATTRIBUTES
-@item SET_DEFAULT_TYPE_ATTRIBUTES (@var{type})
-Define this macro if you want to give the newly defined @var{type} some
-default attributes.
-
-@findex DOLLARS_IN_IDENTIFIERS
-@item DOLLARS_IN_IDENTIFIERS
-Define this macro to control use of the character @samp{$} in identifier
-names. The value should be 0, 1, or 2. 0 means @samp{$} is not allowed
-by default; 1 means it is allowed by default if @samp{-traditional} is
-used; 2 means it is allowed by default provided @samp{-ansi} is not used.
-1 is the default; there is no need to define this macro in that case.
-
-@findex NO_DOLLAR_IN_LABEL
-@item NO_DOLLAR_IN_LABEL
-Define this macro if the assembler does not accept the character
-@samp{$} in label names. By default constructors and destructors in
-G++ have @samp{$} in the identifiers. If this macro is defined,
-@samp{.} is used instead.
-
-@findex NO_DOT_IN_LABEL
-@item NO_DOT_IN_LABEL
-Define this macro if the assembler does not accept the character
-@samp{.} in label names. By default constructors and destructors in G++
-have names that use @samp{.}. If this macro is defined, these names
-are rewritten to avoid @samp{.}.
-
-@findex DEFAULT_MAIN_RETURN
-@item DEFAULT_MAIN_RETURN
-Define this macro if the target system expects every program's @code{main}
-function to return a standard ``success'' value by default (if no other
-value is explicitly returned).
-
-The definition should be a C statement (sans semicolon) to generate the
-appropriate rtl instructions. It is used only when compiling the end of
-@code{main}.
-
-@item HAVE_ATEXIT
-@findex HAVE_ATEXIT
-Define this if the target system supports the function
-@code{atexit} from the ANSI C standard. If this is not defined,
-and @code{INIT_SECTION_ASM_OP} is not defined, a default
-@code{exit} function will be provided to support C++.
-
-@item EXIT_BODY
-@findex EXIT_BODY
-Define this if your @code{exit} function needs to do something
-besides calling an external function @code{_cleanup} before
-terminating with @code{_exit}. The @code{EXIT_BODY} macro is
-only needed if netiher @code{HAVE_ATEXIT} nor
-@code{INIT_SECTION_ASM_OP} are defined.
-
-@findex INSN_SETS_ARE_DELAYED
-@item INSN_SETS_ARE_DELAYED (@var{insn})
-Define this macro as a C expression that is nonzero if it is safe for the
-delay slot scheduler to place instructions in the delay slot of @var{insn},
-even if they appear to use a resource set or clobbered in @var{insn}.
-@var{insn} is always a @code{jump_insn} or an @code{insn}; GNU CC knows that
-every @code{call_insn} has this behavior. On machines where some @code{insn}
-or @code{jump_insn} is really a function call and hence has this behavior,
-you should define this macro.
-
-You need not define this macro if it would always return zero.
-
-@findex INSN_REFERENCES_ARE_DELAYED
-@item INSN_REFERENCES_ARE_DELAYED (@var{insn})
-Define this macro as a C expression that is nonzero if it is safe for the
-delay slot scheduler to place instructions in the delay slot of @var{insn},
-even if they appear to set or clobber a resource referenced in @var{insn}.
-@var{insn} is always a @code{jump_insn} or an @code{insn}. On machines where
-some @code{insn} or @code{jump_insn} is really a function call and its operands
-are registers whose use is actually in the subroutine it calls, you should
-define this macro. Doing so allows the delay slot scheduler to move
-instructions which copy arguments into the argument registers into the delay
-slot of @var{insn}.
-
-You need not define this macro if it would always return zero.
-
-@findex MACHINE_DEPENDENT_REORG
-@item MACHINE_DEPENDENT_REORG (@var{insn})
-In rare cases, correct code generation requires extra machine
-dependent processing between the second jump optimization pass and
-delayed branch scheduling. On those machines, define this macro as a C
-statement to act on the code starting at @var{insn}.
-@end table
OpenPOWER on IntegriCloud