summaryrefslogtreecommitdiffstats
path: root/gnu/usr.bin/cc/cc_int/flow.c
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/cc/cc_int/flow.c')
-rw-r--r--gnu/usr.bin/cc/cc_int/flow.c2793
1 files changed, 2793 insertions, 0 deletions
diff --git a/gnu/usr.bin/cc/cc_int/flow.c b/gnu/usr.bin/cc/cc_int/flow.c
new file mode 100644
index 0000000..cc9fed9
--- /dev/null
+++ b/gnu/usr.bin/cc/cc_int/flow.c
@@ -0,0 +1,2793 @@
+/* Data flow analysis for GNU compiler.
+ Copyright (C) 1987, 1988, 1992, 1993, 1994 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+
+/* This file contains the data flow analysis pass of the compiler.
+ It computes data flow information
+ which tells combine_instructions which insns to consider combining
+ and controls register allocation.
+
+ Additional data flow information that is too bulky to record
+ is generated during the analysis, and is used at that time to
+ create autoincrement and autodecrement addressing.
+
+ The first step is dividing the function into basic blocks.
+ find_basic_blocks does this. Then life_analysis determines
+ where each register is live and where it is dead.
+
+ ** find_basic_blocks **
+
+ find_basic_blocks divides the current function's rtl
+ into basic blocks. It records the beginnings and ends of the
+ basic blocks in the vectors basic_block_head and basic_block_end,
+ and the number of blocks in n_basic_blocks.
+
+ find_basic_blocks also finds any unreachable loops
+ and deletes them.
+
+ ** life_analysis **
+
+ life_analysis is called immediately after find_basic_blocks.
+ It uses the basic block information to determine where each
+ hard or pseudo register is live.
+
+ ** live-register info **
+
+ The information about where each register is live is in two parts:
+ the REG_NOTES of insns, and the vector basic_block_live_at_start.
+
+ basic_block_live_at_start has an element for each basic block,
+ and the element is a bit-vector with a bit for each hard or pseudo
+ register. The bit is 1 if the register is live at the beginning
+ of the basic block.
+
+ Two types of elements can be added to an insn's REG_NOTES.
+ A REG_DEAD note is added to an insn's REG_NOTES for any register
+ that meets both of two conditions: The value in the register is not
+ needed in subsequent insns and the insn does not replace the value in
+ the register (in the case of multi-word hard registers, the value in
+ each register must be replaced by the insn to avoid a REG_DEAD note).
+
+ In the vast majority of cases, an object in a REG_DEAD note will be
+ used somewhere in the insn. The (rare) exception to this is if an
+ insn uses a multi-word hard register and only some of the registers are
+ needed in subsequent insns. In that case, REG_DEAD notes will be
+ provided for those hard registers that are not subsequently needed.
+ Partial REG_DEAD notes of this type do not occur when an insn sets
+ only some of the hard registers used in such a multi-word operand;
+ omitting REG_DEAD notes for objects stored in an insn is optional and
+ the desire to do so does not justify the complexity of the partial
+ REG_DEAD notes.
+
+ REG_UNUSED notes are added for each register that is set by the insn
+ but is unused subsequently (if every register set by the insn is unused
+ and the insn does not reference memory or have some other side-effect,
+ the insn is deleted instead). If only part of a multi-word hard
+ register is used in a subsequent insn, REG_UNUSED notes are made for
+ the parts that will not be used.
+
+ To determine which registers are live after any insn, one can
+ start from the beginning of the basic block and scan insns, noting
+ which registers are set by each insn and which die there.
+
+ ** Other actions of life_analysis **
+
+ life_analysis sets up the LOG_LINKS fields of insns because the
+ information needed to do so is readily available.
+
+ life_analysis deletes insns whose only effect is to store a value
+ that is never used.
+
+ life_analysis notices cases where a reference to a register as
+ a memory address can be combined with a preceding or following
+ incrementation or decrementation of the register. The separate
+ instruction to increment or decrement is deleted and the address
+ is changed to a POST_INC or similar rtx.
+
+ Each time an incrementing or decrementing address is created,
+ a REG_INC element is added to the insn's REG_NOTES list.
+
+ life_analysis fills in certain vectors containing information about
+ register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
+ reg_n_calls_crosses and reg_basic_block. */
+
+#include <stdio.h>
+#include "config.h"
+#include "rtl.h"
+#include "basic-block.h"
+#include "insn-config.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "flags.h"
+#include "output.h"
+
+#include "obstack.h"
+#define obstack_chunk_alloc xmalloc
+#define obstack_chunk_free free
+
+/* List of labels that must never be deleted. */
+extern rtx forced_labels;
+
+/* Get the basic block number of an insn.
+ This info should not be expected to remain available
+ after the end of life_analysis. */
+
+/* This is the limit of the allocated space in the following two arrays. */
+
+static int max_uid_for_flow;
+
+#define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)]
+
+/* This is where the BLOCK_NUM values are really stored.
+ This is set up by find_basic_blocks and used there and in life_analysis,
+ and then freed. */
+
+static int *uid_block_number;
+
+/* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
+
+#define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
+static char *uid_volatile;
+
+/* Number of basic blocks in the current function. */
+
+int n_basic_blocks;
+
+/* Maximum register number used in this function, plus one. */
+
+int max_regno;
+
+/* Maximum number of SCRATCH rtx's used in any basic block of this function. */
+
+int max_scratch;
+
+/* Number of SCRATCH rtx's in the current block. */
+
+static int num_scratch;
+
+/* Indexed by n, gives number of basic block that (REG n) is used in.
+ If the value is REG_BLOCK_GLOBAL (-2),
+ it means (REG n) is used in more than one basic block.
+ REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
+ This information remains valid for the rest of the compilation
+ of the current function; it is used to control register allocation. */
+
+int *reg_basic_block;
+
+/* Indexed by n, gives number of times (REG n) is used or set, each
+ weighted by its loop-depth.
+ This information remains valid for the rest of the compilation
+ of the current function; it is used to control register allocation. */
+
+int *reg_n_refs;
+
+/* Indexed by N, gives number of places register N dies.
+ This information remains valid for the rest of the compilation
+ of the current function; it is used to control register allocation. */
+
+short *reg_n_deaths;
+
+/* Indexed by N, gives 1 if that reg is live across any CALL_INSNs.
+ This information remains valid for the rest of the compilation
+ of the current function; it is used to control register allocation. */
+
+int *reg_n_calls_crossed;
+
+/* Total number of instructions at which (REG n) is live.
+ The larger this is, the less priority (REG n) gets for
+ allocation in a real register.
+ This information remains valid for the rest of the compilation
+ of the current function; it is used to control register allocation.
+
+ local-alloc.c may alter this number to change the priority.
+
+ Negative values are special.
+ -1 is used to mark a pseudo reg which has a constant or memory equivalent
+ and is used infrequently enough that it should not get a hard register.
+ -2 is used to mark a pseudo reg for a parameter, when a frame pointer
+ is not required. global.c makes an allocno for this but does
+ not try to assign a hard register to it. */
+
+int *reg_live_length;
+
+/* Element N is the next insn that uses (hard or pseudo) register number N
+ within the current basic block; or zero, if there is no such insn.
+ This is valid only during the final backward scan in propagate_block. */
+
+static rtx *reg_next_use;
+
+/* Size of a regset for the current function,
+ in (1) bytes and (2) elements. */
+
+int regset_bytes;
+int regset_size;
+
+/* Element N is first insn in basic block N.
+ This info lasts until we finish compiling the function. */
+
+rtx *basic_block_head;
+
+/* Element N is last insn in basic block N.
+ This info lasts until we finish compiling the function. */
+
+rtx *basic_block_end;
+
+/* Element N is a regset describing the registers live
+ at the start of basic block N.
+ This info lasts until we finish compiling the function. */
+
+regset *basic_block_live_at_start;
+
+/* Regset of regs live when calls to `setjmp'-like functions happen. */
+
+regset regs_live_at_setjmp;
+
+/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
+ that have to go in the same hard reg.
+ The first two regs in the list are a pair, and the next two
+ are another pair, etc. */
+rtx regs_may_share;
+
+/* Element N is nonzero if control can drop into basic block N
+ from the preceding basic block. Freed after life_analysis. */
+
+static char *basic_block_drops_in;
+
+/* Element N is depth within loops of the last insn in basic block number N.
+ Freed after life_analysis. */
+
+static short *basic_block_loop_depth;
+
+/* Element N nonzero if basic block N can actually be reached.
+ Vector exists only during find_basic_blocks. */
+
+static char *block_live_static;
+
+/* Depth within loops of basic block being scanned for lifetime analysis,
+ plus one. This is the weight attached to references to registers. */
+
+static int loop_depth;
+
+/* During propagate_block, this is non-zero if the value of CC0 is live. */
+
+static int cc0_live;
+
+/* During propagate_block, this contains the last MEM stored into. It
+ is used to eliminate consecutive stores to the same location. */
+
+static rtx last_mem_set;
+
+/* Set of registers that may be eliminable. These are handled specially
+ in updating regs_ever_live. */
+
+static HARD_REG_SET elim_reg_set;
+
+/* Forward declarations */
+static void find_basic_blocks PROTO((rtx, rtx));
+static int uses_reg_or_mem PROTO((rtx));
+static void mark_label_ref PROTO((rtx, rtx, int));
+static void life_analysis PROTO((rtx, int));
+void allocate_for_life_analysis PROTO((void));
+static void init_regset_vector PROTO((regset *, regset, int, int));
+static void propagate_block PROTO((regset, rtx, rtx, int,
+ regset, int));
+static int insn_dead_p PROTO((rtx, regset, int));
+static int libcall_dead_p PROTO((rtx, regset, rtx, rtx));
+static void mark_set_regs PROTO((regset, regset, rtx,
+ rtx, regset));
+static void mark_set_1 PROTO((regset, regset, rtx,
+ rtx, regset));
+static void find_auto_inc PROTO((regset, rtx, rtx));
+static void mark_used_regs PROTO((regset, regset, rtx, int, rtx));
+static int try_pre_increment_1 PROTO((rtx));
+static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT));
+static rtx find_use_as_address PROTO((rtx, rtx, HOST_WIDE_INT));
+void dump_flow_info PROTO((FILE *));
+
+/* Find basic blocks of the current function and perform data flow analysis.
+ F is the first insn of the function and NREGS the number of register numbers
+ in use. */
+
+void
+flow_analysis (f, nregs, file)
+ rtx f;
+ int nregs;
+ FILE *file;
+{
+ register rtx insn;
+ register int i;
+ rtx nonlocal_label_list = nonlocal_label_rtx_list ();
+
+#ifdef ELIMINABLE_REGS
+ static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
+#endif
+
+ /* Record which registers will be eliminated. We use this in
+ mark_used_regs. */
+
+ CLEAR_HARD_REG_SET (elim_reg_set);
+
+#ifdef ELIMINABLE_REGS
+ for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
+ SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
+#else
+ SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
+#endif
+
+ /* Count the basic blocks. Also find maximum insn uid value used. */
+
+ {
+ register RTX_CODE prev_code = JUMP_INSN;
+ register RTX_CODE code;
+
+ max_uid_for_flow = 0;
+
+ for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
+ {
+ code = GET_CODE (insn);
+ if (INSN_UID (insn) > max_uid_for_flow)
+ max_uid_for_flow = INSN_UID (insn);
+ if (code == CODE_LABEL
+ || (GET_RTX_CLASS (code) == 'i'
+ && (prev_code == JUMP_INSN
+ || (prev_code == CALL_INSN
+ && nonlocal_label_list != 0)
+ || prev_code == BARRIER)))
+ i++;
+ if (code != NOTE)
+ prev_code = code;
+ }
+ }
+
+#ifdef AUTO_INC_DEC
+ /* Leave space for insns we make in some cases for auto-inc. These cases
+ are rare, so we don't need too much space. */
+ max_uid_for_flow += max_uid_for_flow / 10;
+#endif
+
+ /* Allocate some tables that last till end of compiling this function
+ and some needed only in find_basic_blocks and life_analysis. */
+
+ n_basic_blocks = i;
+ basic_block_head = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
+ basic_block_end = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
+ basic_block_drops_in = (char *) alloca (n_basic_blocks);
+ basic_block_loop_depth = (short *) alloca (n_basic_blocks * sizeof (short));
+ uid_block_number
+ = (int *) alloca ((max_uid_for_flow + 1) * sizeof (int));
+ uid_volatile = (char *) alloca (max_uid_for_flow + 1);
+ bzero (uid_volatile, max_uid_for_flow + 1);
+
+ find_basic_blocks (f, nonlocal_label_list);
+ life_analysis (f, nregs);
+ if (file)
+ dump_flow_info (file);
+
+ basic_block_drops_in = 0;
+ uid_block_number = 0;
+ basic_block_loop_depth = 0;
+}
+
+/* Find all basic blocks of the function whose first insn is F.
+ Store the correct data in the tables that describe the basic blocks,
+ set up the chains of references for each CODE_LABEL, and
+ delete any entire basic blocks that cannot be reached.
+
+ NONLOCAL_LABEL_LIST is the same local variable from flow_analysis. */
+
+static void
+find_basic_blocks (f, nonlocal_label_list)
+ rtx f, nonlocal_label_list;
+{
+ register rtx insn;
+ register int i;
+ register char *block_live = (char *) alloca (n_basic_blocks);
+ register char *block_marked = (char *) alloca (n_basic_blocks);
+ /* List of label_refs to all labels whose addresses are taken
+ and used as data. */
+ rtx label_value_list = 0;
+ rtx x, note;
+ enum rtx_code prev_code, code;
+ int depth;
+
+ block_live_static = block_live;
+ bzero (block_live, n_basic_blocks);
+ bzero (block_marked, n_basic_blocks);
+
+ /* Initialize with just block 0 reachable and no blocks marked. */
+ if (n_basic_blocks > 0)
+ block_live[0] = 1;
+
+ /* Initialize the ref chain of each label to 0. Record where all the
+ blocks start and end and their depth in loops. For each insn, record
+ the block it is in. Also mark as reachable any blocks headed by labels
+ that must not be deleted. */
+
+ for (insn = f, i = -1, prev_code = JUMP_INSN, depth = 1;
+ insn; insn = NEXT_INSN (insn))
+ {
+ code = GET_CODE (insn);
+ if (code == NOTE)
+ {
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
+ depth++;
+ else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
+ depth--;
+ }
+
+ /* A basic block starts at label, or after something that can jump. */
+ else if (code == CODE_LABEL
+ || (GET_RTX_CLASS (code) == 'i'
+ && (prev_code == JUMP_INSN
+ || (prev_code == CALL_INSN
+ && nonlocal_label_list != 0)
+ || prev_code == BARRIER)))
+ {
+ basic_block_head[++i] = insn;
+ basic_block_end[i] = insn;
+ basic_block_loop_depth[i] = depth;
+
+ if (code == CODE_LABEL)
+ {
+ LABEL_REFS (insn) = insn;
+ /* Any label that cannot be deleted
+ is considered to start a reachable block. */
+ if (LABEL_PRESERVE_P (insn))
+ block_live[i] = 1;
+ }
+ }
+
+ else if (GET_RTX_CLASS (code) == 'i')
+ {
+ basic_block_end[i] = insn;
+ basic_block_loop_depth[i] = depth;
+ }
+
+ if (GET_RTX_CLASS (code) == 'i')
+ {
+ /* Make a list of all labels referred to other than by jumps. */
+ for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_LABEL)
+ label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
+ label_value_list);
+ }
+
+ BLOCK_NUM (insn) = i;
+
+ if (code != NOTE)
+ prev_code = code;
+ }
+
+ if (i + 1 != n_basic_blocks)
+ abort ();
+
+ /* Don't delete the labels (in this function)
+ that are referenced by non-jump instructions. */
+
+ for (x = label_value_list; x; x = XEXP (x, 1))
+ if (! LABEL_REF_NONLOCAL_P (x))
+ block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
+
+ for (x = forced_labels; x; x = XEXP (x, 1))
+ if (! LABEL_REF_NONLOCAL_P (x))
+ block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
+
+ /* Record which basic blocks control can drop in to. */
+
+ for (i = 0; i < n_basic_blocks; i++)
+ {
+ for (insn = PREV_INSN (basic_block_head[i]);
+ insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn))
+ ;
+
+ basic_block_drops_in[i] = insn && GET_CODE (insn) != BARRIER;
+ }
+
+ /* Now find which basic blocks can actually be reached
+ and put all jump insns' LABEL_REFS onto the ref-chains
+ of their target labels. */
+
+ if (n_basic_blocks > 0)
+ {
+ int something_marked = 1;
+
+ /* Find all indirect jump insns and mark them as possibly jumping to all
+ the labels whose addresses are explicitly used. This is because,
+ when there are computed gotos, we can't tell which labels they jump
+ to, of all the possibilities.
+
+ Tablejumps and casesi insns are OK and we can recognize them by
+ a (use (label_ref)). */
+
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == JUMP_INSN)
+ {
+ rtx pat = PATTERN (insn);
+ int computed_jump = 0;
+
+ if (GET_CODE (pat) == PARALLEL)
+ {
+ int len = XVECLEN (pat, 0);
+ int has_use_labelref = 0;
+
+ for (i = len - 1; i >= 0; i--)
+ if (GET_CODE (XVECEXP (pat, 0, i)) == USE
+ && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
+ == LABEL_REF))
+ has_use_labelref = 1;
+
+ if (! has_use_labelref)
+ for (i = len - 1; i >= 0; i--)
+ if (GET_CODE (XVECEXP (pat, 0, i)) == SET
+ && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
+ && uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
+ computed_jump = 1;
+ }
+ else if (GET_CODE (pat) == SET
+ && SET_DEST (pat) == pc_rtx
+ && uses_reg_or_mem (SET_SRC (pat)))
+ computed_jump = 1;
+
+ if (computed_jump)
+ {
+ for (x = label_value_list; x; x = XEXP (x, 1))
+ mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
+ insn, 0);
+
+ for (x = forced_labels; x; x = XEXP (x, 1))
+ mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
+ insn, 0);
+ }
+ }
+
+ /* Find all call insns and mark them as possibly jumping
+ to all the nonlocal goto handler labels. */
+
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ for (x = nonlocal_label_list; x; x = XEXP (x, 1))
+ /* Don't try marking labels that
+ were deleted as unreferenced. */
+ if (GET_CODE (XEXP (x, 0)) == CODE_LABEL)
+ mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
+ insn, 0);
+
+ /* ??? This could be made smarter:
+ in some cases it's possible to tell that certain
+ calls will not do a nonlocal goto.
+
+ For example, if the nested functions that do the
+ nonlocal gotos do not have their addresses taken, then
+ only calls to those functions or to other nested
+ functions that use them could possibly do nonlocal
+ gotos. */
+ }
+
+ /* Pass over all blocks, marking each block that is reachable
+ and has not yet been marked.
+ Keep doing this until, in one pass, no blocks have been marked.
+ Then blocks_live and blocks_marked are identical and correct.
+ In addition, all jumps actually reachable have been marked. */
+
+ while (something_marked)
+ {
+ something_marked = 0;
+ for (i = 0; i < n_basic_blocks; i++)
+ if (block_live[i] && !block_marked[i])
+ {
+ block_marked[i] = 1;
+ something_marked = 1;
+ if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
+ block_live[i + 1] = 1;
+ insn = basic_block_end[i];
+ if (GET_CODE (insn) == JUMP_INSN)
+ mark_label_ref (PATTERN (insn), insn, 0);
+ }
+ }
+
+ /* Now delete the code for any basic blocks that can't be reached.
+ They can occur because jump_optimize does not recognize
+ unreachable loops as unreachable. */
+
+ for (i = 0; i < n_basic_blocks; i++)
+ if (!block_live[i])
+ {
+ insn = basic_block_head[i];
+ while (1)
+ {
+ if (GET_CODE (insn) == BARRIER)
+ abort ();
+ if (GET_CODE (insn) != NOTE)
+ {
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ }
+ if (insn == basic_block_end[i])
+ {
+ /* BARRIERs are between basic blocks, not part of one.
+ Delete a BARRIER if the preceding jump is deleted.
+ We cannot alter a BARRIER into a NOTE
+ because it is too short; but we can really delete
+ it because it is not part of a basic block. */
+ if (NEXT_INSN (insn) != 0
+ && GET_CODE (NEXT_INSN (insn)) == BARRIER)
+ delete_insn (NEXT_INSN (insn));
+ break;
+ }
+ insn = NEXT_INSN (insn);
+ }
+ /* Each time we delete some basic blocks,
+ see if there is a jump around them that is
+ being turned into a no-op. If so, delete it. */
+
+ if (block_live[i - 1])
+ {
+ register int j;
+ for (j = i; j < n_basic_blocks; j++)
+ if (block_live[j])
+ {
+ rtx label;
+ insn = basic_block_end[i - 1];
+ if (GET_CODE (insn) == JUMP_INSN
+ /* An unconditional jump is the only possibility
+ we must check for, since a conditional one
+ would make these blocks live. */
+ && simplejump_p (insn)
+ && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
+ && INSN_UID (label) != 0
+ && BLOCK_NUM (label) == j)
+ {
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
+ abort ();
+ delete_insn (NEXT_INSN (insn));
+ }
+ break;
+ }
+ }
+ }
+ }
+}
+
+/* Return 1 if X contain a REG or MEM that is not in the constant pool. */
+
+static int
+uses_reg_or_mem (x)
+ rtx x;
+{
+ enum rtx_code code = GET_CODE (x);
+ int i, j;
+ char *fmt;
+
+ if (code == REG
+ || (code == MEM
+ && ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))))
+ return 1;
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e'
+ && uses_reg_or_mem (XEXP (x, i)))
+ return 1;
+
+ if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ if (uses_reg_or_mem (XVECEXP (x, i, j)))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Check expression X for label references;
+ if one is found, add INSN to the label's chain of references.
+
+ CHECKDUP means check for and avoid creating duplicate references
+ from the same insn. Such duplicates do no serious harm but
+ can slow life analysis. CHECKDUP is set only when duplicates
+ are likely. */
+
+static void
+mark_label_ref (x, insn, checkdup)
+ rtx x, insn;
+ int checkdup;
+{
+ register RTX_CODE code;
+ register int i;
+ register char *fmt;
+
+ /* We can be called with NULL when scanning label_value_list. */
+ if (x == 0)
+ return;
+
+ code = GET_CODE (x);
+ if (code == LABEL_REF)
+ {
+ register rtx label = XEXP (x, 0);
+ register rtx y;
+ if (GET_CODE (label) != CODE_LABEL)
+ abort ();
+ /* If the label was never emitted, this insn is junk,
+ but avoid a crash trying to refer to BLOCK_NUM (label).
+ This can happen as a result of a syntax error
+ and a diagnostic has already been printed. */
+ if (INSN_UID (label) == 0)
+ return;
+ CONTAINING_INSN (x) = insn;
+ /* if CHECKDUP is set, check for duplicate ref from same insn
+ and don't insert. */
+ if (checkdup)
+ for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
+ if (CONTAINING_INSN (y) == insn)
+ return;
+ LABEL_NEXTREF (x) = LABEL_REFS (label);
+ LABEL_REFS (label) = x;
+ block_live_static[BLOCK_NUM (label)] = 1;
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ mark_label_ref (XEXP (x, i), insn, 0);
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ mark_label_ref (XVECEXP (x, i, j), insn, 1);
+ }
+ }
+}
+
+/* Determine which registers are live at the start of each
+ basic block of the function whose first insn is F.
+ NREGS is the number of registers used in F.
+ We allocate the vector basic_block_live_at_start
+ and the regsets that it points to, and fill them with the data.
+ regset_size and regset_bytes are also set here. */
+
+static void
+life_analysis (f, nregs)
+ rtx f;
+ int nregs;
+{
+ register regset tem;
+ int first_pass;
+ int changed;
+ /* For each basic block, a bitmask of regs
+ live on exit from the block. */
+ regset *basic_block_live_at_end;
+ /* For each basic block, a bitmask of regs
+ live on entry to a successor-block of this block.
+ If this does not match basic_block_live_at_end,
+ that must be updated, and the block must be rescanned. */
+ regset *basic_block_new_live_at_end;
+ /* For each basic block, a bitmask of regs
+ whose liveness at the end of the basic block
+ can make a difference in which regs are live on entry to the block.
+ These are the regs that are set within the basic block,
+ possibly excluding those that are used after they are set. */
+ regset *basic_block_significant;
+ register int i;
+ rtx insn;
+
+ struct obstack flow_obstack;
+
+ gcc_obstack_init (&flow_obstack);
+
+ max_regno = nregs;
+
+ bzero (regs_ever_live, sizeof regs_ever_live);
+
+ /* Allocate and zero out many data structures
+ that will record the data from lifetime analysis. */
+
+ allocate_for_life_analysis ();
+
+ reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
+ bzero ((char *) reg_next_use, nregs * sizeof (rtx));
+
+ /* Set up several regset-vectors used internally within this function.
+ Their meanings are documented above, with their declarations. */
+
+ basic_block_live_at_end
+ = (regset *) alloca (n_basic_blocks * sizeof (regset));
+
+ /* Don't use alloca since that leads to a crash rather than an error message
+ if there isn't enough space.
+ Don't use oballoc since we may need to allocate other things during
+ this function on the temporary obstack. */
+ tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
+ bzero ((char *) tem, n_basic_blocks * regset_bytes);
+ init_regset_vector (basic_block_live_at_end, tem,
+ n_basic_blocks, regset_bytes);
+
+ basic_block_new_live_at_end
+ = (regset *) alloca (n_basic_blocks * sizeof (regset));
+ tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
+ bzero ((char *) tem, n_basic_blocks * regset_bytes);
+ init_regset_vector (basic_block_new_live_at_end, tem,
+ n_basic_blocks, regset_bytes);
+
+ basic_block_significant
+ = (regset *) alloca (n_basic_blocks * sizeof (regset));
+ tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
+ bzero ((char *) tem, n_basic_blocks * regset_bytes);
+ init_regset_vector (basic_block_significant, tem,
+ n_basic_blocks, regset_bytes);
+
+ /* Record which insns refer to any volatile memory
+ or for any reason can't be deleted just because they are dead stores.
+ Also, delete any insns that copy a register to itself. */
+
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ {
+ enum rtx_code code1 = GET_CODE (insn);
+ if (code1 == CALL_INSN)
+ INSN_VOLATILE (insn) = 1;
+ else if (code1 == INSN || code1 == JUMP_INSN)
+ {
+ /* Delete (in effect) any obvious no-op moves. */
+ if (GET_CODE (PATTERN (insn)) == SET
+ && GET_CODE (SET_DEST (PATTERN (insn))) == REG
+ && GET_CODE (SET_SRC (PATTERN (insn))) == REG
+ && REGNO (SET_DEST (PATTERN (insn))) ==
+ REGNO (SET_SRC (PATTERN (insn)))
+ /* Insns carrying these notes are useful later on. */
+ && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
+ {
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ }
+ else if (GET_CODE (PATTERN (insn)) == PARALLEL)
+ {
+ /* If nothing but SETs of registers to themselves,
+ this insn can also be deleted. */
+ for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
+ {
+ rtx tem = XVECEXP (PATTERN (insn), 0, i);
+
+ if (GET_CODE (tem) == USE
+ || GET_CODE (tem) == CLOBBER)
+ continue;
+
+ if (GET_CODE (tem) != SET
+ || GET_CODE (SET_DEST (tem)) != REG
+ || GET_CODE (SET_SRC (tem)) != REG
+ || REGNO (SET_DEST (tem)) != REGNO (SET_SRC (tem)))
+ break;
+ }
+
+ if (i == XVECLEN (PATTERN (insn), 0)
+ /* Insns carrying these notes are useful later on. */
+ && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
+ {
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ }
+ else
+ INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
+ }
+ else if (GET_CODE (PATTERN (insn)) != USE)
+ INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
+ /* A SET that makes space on the stack cannot be dead.
+ (Such SETs occur only for allocating variable-size data,
+ so they will always have a PLUS or MINUS according to the
+ direction of stack growth.)
+ Even if this function never uses this stack pointer value,
+ signal handlers do! */
+ else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
+ && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
+#ifdef STACK_GROWS_DOWNWARD
+ && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
+#else
+ && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
+#endif
+ && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
+ INSN_VOLATILE (insn) = 1;
+ }
+ }
+
+ if (n_basic_blocks > 0)
+#ifdef EXIT_IGNORE_STACK
+ if (! EXIT_IGNORE_STACK
+ || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
+#endif
+ {
+ /* If exiting needs the right stack value,
+ consider the stack pointer live at the end of the function. */
+ basic_block_live_at_end[n_basic_blocks - 1]
+ [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
+ basic_block_new_live_at_end[n_basic_blocks - 1]
+ [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
+ }
+
+ /* Mark the frame pointer is needed at the end of the function. If
+ we end up eliminating it, it will be removed from the live list
+ of each basic block by reload. */
+
+ if (n_basic_blocks > 0)
+ {
+ basic_block_live_at_end[n_basic_blocks - 1]
+ [FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
+ basic_block_new_live_at_end[n_basic_blocks - 1]
+ [FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ /* If they are different, also mark the hard frame pointer as live */
+ basic_block_live_at_end[n_basic_blocks - 1]
+ [HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
+ % REGSET_ELT_BITS);
+ basic_block_new_live_at_end[n_basic_blocks - 1]
+ [HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
+ % REGSET_ELT_BITS);
+#endif
+ }
+
+ /* Mark all global registers as being live at the end of the function
+ since they may be referenced by our caller. */
+
+ if (n_basic_blocks > 0)
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (global_regs[i])
+ {
+ basic_block_live_at_end[n_basic_blocks - 1]
+ [i / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
+ basic_block_new_live_at_end[n_basic_blocks - 1]
+ [i / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
+ }
+
+ /* Propagate life info through the basic blocks
+ around the graph of basic blocks.
+
+ This is a relaxation process: each time a new register
+ is live at the end of the basic block, we must scan the block
+ to determine which registers are, as a consequence, live at the beginning
+ of that block. These registers must then be marked live at the ends
+ of all the blocks that can transfer control to that block.
+ The process continues until it reaches a fixed point. */
+
+ first_pass = 1;
+ changed = 1;
+ while (changed)
+ {
+ changed = 0;
+ for (i = n_basic_blocks - 1; i >= 0; i--)
+ {
+ int consider = first_pass;
+ int must_rescan = first_pass;
+ register int j;
+
+ if (!first_pass)
+ {
+ /* Set CONSIDER if this block needs thinking about at all
+ (that is, if the regs live now at the end of it
+ are not the same as were live at the end of it when
+ we last thought about it).
+ Set must_rescan if it needs to be thought about
+ instruction by instruction (that is, if any additional
+ reg that is live at the end now but was not live there before
+ is one of the significant regs of this basic block). */
+
+ for (j = 0; j < regset_size; j++)
+ {
+ register REGSET_ELT_TYPE x
+ = (basic_block_new_live_at_end[i][j]
+ & ~basic_block_live_at_end[i][j]);
+ if (x)
+ consider = 1;
+ if (x & basic_block_significant[i][j])
+ {
+ must_rescan = 1;
+ consider = 1;
+ break;
+ }
+ }
+
+ if (! consider)
+ continue;
+ }
+
+ /* The live_at_start of this block may be changing,
+ so another pass will be required after this one. */
+ changed = 1;
+
+ if (! must_rescan)
+ {
+ /* No complete rescan needed;
+ just record those variables newly known live at end
+ as live at start as well. */
+ for (j = 0; j < regset_size; j++)
+ {
+ register REGSET_ELT_TYPE x
+ = (basic_block_new_live_at_end[i][j]
+ & ~basic_block_live_at_end[i][j]);
+ basic_block_live_at_start[i][j] |= x;
+ basic_block_live_at_end[i][j] |= x;
+ }
+ }
+ else
+ {
+ /* Update the basic_block_live_at_start
+ by propagation backwards through the block. */
+ bcopy ((char *) basic_block_new_live_at_end[i],
+ (char *) basic_block_live_at_end[i], regset_bytes);
+ bcopy ((char *) basic_block_live_at_end[i],
+ (char *) basic_block_live_at_start[i], regset_bytes);
+ propagate_block (basic_block_live_at_start[i],
+ basic_block_head[i], basic_block_end[i], 0,
+ first_pass ? basic_block_significant[i]
+ : (regset) 0,
+ i);
+ }
+
+ {
+ register rtx jump, head;
+ /* Update the basic_block_new_live_at_end's of the block
+ that falls through into this one (if any). */
+ head = basic_block_head[i];
+ jump = PREV_INSN (head);
+ if (basic_block_drops_in[i])
+ {
+ register int from_block = BLOCK_NUM (jump);
+ register int j;
+ for (j = 0; j < regset_size; j++)
+ basic_block_new_live_at_end[from_block][j]
+ |= basic_block_live_at_start[i][j];
+ }
+ /* Update the basic_block_new_live_at_end's of
+ all the blocks that jump to this one. */
+ if (GET_CODE (head) == CODE_LABEL)
+ for (jump = LABEL_REFS (head);
+ jump != head;
+ jump = LABEL_NEXTREF (jump))
+ {
+ register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
+ register int j;
+ for (j = 0; j < regset_size; j++)
+ basic_block_new_live_at_end[from_block][j]
+ |= basic_block_live_at_start[i][j];
+ }
+ }
+#ifdef USE_C_ALLOCA
+ alloca (0);
+#endif
+ }
+ first_pass = 0;
+ }
+
+ /* The only pseudos that are live at the beginning of the function are
+ those that were not set anywhere in the function. local-alloc doesn't
+ know how to handle these correctly, so mark them as not local to any
+ one basic block. */
+
+ if (n_basic_blocks > 0)
+ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
+ if (basic_block_live_at_start[0][i / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
+ reg_basic_block[i] = REG_BLOCK_GLOBAL;
+
+ /* Now the life information is accurate.
+ Make one more pass over each basic block
+ to delete dead stores, create autoincrement addressing
+ and record how many times each register is used, is set, or dies.
+
+ To save time, we operate directly in basic_block_live_at_end[i],
+ thus destroying it (in fact, converting it into a copy of
+ basic_block_live_at_start[i]). This is ok now because
+ basic_block_live_at_end[i] is no longer used past this point. */
+
+ max_scratch = 0;
+
+ for (i = 0; i < n_basic_blocks; i++)
+ {
+ propagate_block (basic_block_live_at_end[i],
+ basic_block_head[i], basic_block_end[i], 1,
+ (regset) 0, i);
+#ifdef USE_C_ALLOCA
+ alloca (0);
+#endif
+ }
+
+#if 0
+ /* Something live during a setjmp should not be put in a register
+ on certain machines which restore regs from stack frames
+ rather than from the jmpbuf.
+ But we don't need to do this for the user's variables, since
+ ANSI says only volatile variables need this. */
+#ifdef LONGJMP_RESTORE_FROM_STACK
+ for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
+ if (regs_live_at_setjmp[i / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS))
+ && regno_reg_rtx[i] != 0 && ! REG_USERVAR_P (regno_reg_rtx[i]))
+ {
+ reg_live_length[i] = -1;
+ reg_basic_block[i] = -1;
+ }
+#endif
+#endif
+
+ /* We have a problem with any pseudoreg that
+ lives across the setjmp. ANSI says that if a
+ user variable does not change in value
+ between the setjmp and the longjmp, then the longjmp preserves it.
+ This includes longjmp from a place where the pseudo appears dead.
+ (In principle, the value still exists if it is in scope.)
+ If the pseudo goes in a hard reg, some other value may occupy
+ that hard reg where this pseudo is dead, thus clobbering the pseudo.
+ Conclusion: such a pseudo must not go in a hard reg. */
+ for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
+ if ((regs_live_at_setjmp[i / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
+ && regno_reg_rtx[i] != 0)
+ {
+ reg_live_length[i] = -1;
+ reg_basic_block[i] = -1;
+ }
+
+ obstack_free (&flow_obstack, NULL_PTR);
+}
+
+/* Subroutines of life analysis. */
+
+/* Allocate the permanent data structures that represent the results
+ of life analysis. Not static since used also for stupid life analysis. */
+
+void
+allocate_for_life_analysis ()
+{
+ register int i;
+ register regset tem;
+
+ regset_size = ((max_regno + REGSET_ELT_BITS - 1) / REGSET_ELT_BITS);
+ regset_bytes = regset_size * sizeof (*(regset)0);
+
+ reg_n_refs = (int *) oballoc (max_regno * sizeof (int));
+ bzero ((char *) reg_n_refs, max_regno * sizeof (int));
+
+ reg_n_sets = (short *) oballoc (max_regno * sizeof (short));
+ bzero ((char *) reg_n_sets, max_regno * sizeof (short));
+
+ reg_n_deaths = (short *) oballoc (max_regno * sizeof (short));
+ bzero ((char *) reg_n_deaths, max_regno * sizeof (short));
+
+ reg_live_length = (int *) oballoc (max_regno * sizeof (int));
+ bzero ((char *) reg_live_length, max_regno * sizeof (int));
+
+ reg_n_calls_crossed = (int *) oballoc (max_regno * sizeof (int));
+ bzero ((char *) reg_n_calls_crossed, max_regno * sizeof (int));
+
+ reg_basic_block = (int *) oballoc (max_regno * sizeof (int));
+ for (i = 0; i < max_regno; i++)
+ reg_basic_block[i] = REG_BLOCK_UNKNOWN;
+
+ basic_block_live_at_start
+ = (regset *) oballoc (n_basic_blocks * sizeof (regset));
+ tem = (regset) oballoc (n_basic_blocks * regset_bytes);
+ bzero ((char *) tem, n_basic_blocks * regset_bytes);
+ init_regset_vector (basic_block_live_at_start, tem,
+ n_basic_blocks, regset_bytes);
+
+ regs_live_at_setjmp = (regset) oballoc (regset_bytes);
+ bzero ((char *) regs_live_at_setjmp, regset_bytes);
+}
+
+/* Make each element of VECTOR point at a regset,
+ taking the space for all those regsets from SPACE.
+ SPACE is of type regset, but it is really as long as NELTS regsets.
+ BYTES_PER_ELT is the number of bytes in one regset. */
+
+static void
+init_regset_vector (vector, space, nelts, bytes_per_elt)
+ regset *vector;
+ regset space;
+ int nelts;
+ int bytes_per_elt;
+{
+ register int i;
+ register regset p = space;
+
+ for (i = 0; i < nelts; i++)
+ {
+ vector[i] = p;
+ p += bytes_per_elt / sizeof (*p);
+ }
+}
+
+/* Compute the registers live at the beginning of a basic block
+ from those live at the end.
+
+ When called, OLD contains those live at the end.
+ On return, it contains those live at the beginning.
+ FIRST and LAST are the first and last insns of the basic block.
+
+ FINAL is nonzero if we are doing the final pass which is not
+ for computing the life info (since that has already been done)
+ but for acting on it. On this pass, we delete dead stores,
+ set up the logical links and dead-variables lists of instructions,
+ and merge instructions for autoincrement and autodecrement addresses.
+
+ SIGNIFICANT is nonzero only the first time for each basic block.
+ If it is nonzero, it points to a regset in which we store
+ a 1 for each register that is set within the block.
+
+ BNUM is the number of the basic block. */
+
+static void
+propagate_block (old, first, last, final, significant, bnum)
+ register regset old;
+ rtx first;
+ rtx last;
+ int final;
+ regset significant;
+ int bnum;
+{
+ register rtx insn;
+ rtx prev;
+ regset live;
+ regset dead;
+
+ /* The following variables are used only if FINAL is nonzero. */
+ /* This vector gets one element for each reg that has been live
+ at any point in the basic block that has been scanned so far.
+ SOMETIMES_MAX says how many elements are in use so far.
+ In each element, OFFSET is the byte-number within a regset
+ for the register described by the element, and BIT is a mask
+ for that register's bit within the byte. */
+ register struct sometimes { short offset; short bit; } *regs_sometimes_live;
+ int sometimes_max = 0;
+ /* This regset has 1 for each reg that we have seen live so far.
+ It and REGS_SOMETIMES_LIVE are updated together. */
+ regset maxlive;
+
+ /* The loop depth may change in the middle of a basic block. Since we
+ scan from end to beginning, we start with the depth at the end of the
+ current basic block, and adjust as we pass ends and starts of loops. */
+ loop_depth = basic_block_loop_depth[bnum];
+
+ dead = (regset) alloca (regset_bytes);
+ live = (regset) alloca (regset_bytes);
+
+ cc0_live = 0;
+ last_mem_set = 0;
+
+ /* Include any notes at the end of the block in the scan.
+ This is in case the block ends with a call to setjmp. */
+
+ while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
+ {
+ /* Look for loop boundaries, we are going forward here. */
+ last = NEXT_INSN (last);
+ if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
+ loop_depth++;
+ else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
+ loop_depth--;
+ }
+
+ if (final)
+ {
+ register int i, offset;
+ REGSET_ELT_TYPE bit;
+
+ num_scratch = 0;
+ maxlive = (regset) alloca (regset_bytes);
+ bcopy ((char *) old, (char *) maxlive, regset_bytes);
+ regs_sometimes_live
+ = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
+
+ /* Process the regs live at the end of the block.
+ Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
+ Also mark them as not local to any one basic block. */
+
+ for (offset = 0, i = 0; offset < regset_size; offset++)
+ for (bit = 1; bit; bit <<= 1, i++)
+ {
+ if (i == max_regno)
+ break;
+ if (old[offset] & bit)
+ {
+ reg_basic_block[i] = REG_BLOCK_GLOBAL;
+ regs_sometimes_live[sometimes_max].offset = offset;
+ regs_sometimes_live[sometimes_max].bit = i % REGSET_ELT_BITS;
+ sometimes_max++;
+ }
+ }
+ }
+
+ /* Scan the block an insn at a time from end to beginning. */
+
+ for (insn = last; ; insn = prev)
+ {
+ prev = PREV_INSN (insn);
+
+ /* Look for loop boundaries, remembering that we are going backwards. */
+ if (GET_CODE (insn) == NOTE
+ && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
+ loop_depth++;
+ else if (GET_CODE (insn) == NOTE
+ && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
+ loop_depth--;
+
+ /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
+ Abort now rather than setting register status incorrectly. */
+ if (loop_depth == 0)
+ abort ();
+
+ /* If this is a call to `setjmp' et al,
+ warn if any non-volatile datum is live. */
+
+ if (final && GET_CODE (insn) == NOTE
+ && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
+ {
+ int i;
+ for (i = 0; i < regset_size; i++)
+ regs_live_at_setjmp[i] |= old[i];
+ }
+
+ /* Update the life-status of regs for this insn.
+ First DEAD gets which regs are set in this insn
+ then LIVE gets which regs are used in this insn.
+ Then the regs live before the insn
+ are those live after, with DEAD regs turned off,
+ and then LIVE regs turned on. */
+
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ register int i;
+ rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
+ int insn_is_dead
+ = (insn_dead_p (PATTERN (insn), old, 0)
+ /* Don't delete something that refers to volatile storage! */
+ && ! INSN_VOLATILE (insn));
+ int libcall_is_dead
+ = (insn_is_dead && note != 0
+ && libcall_dead_p (PATTERN (insn), old, note, insn));
+
+ /* If an instruction consists of just dead store(s) on final pass,
+ "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
+ We could really delete it with delete_insn, but that
+ can cause trouble for first or last insn in a basic block. */
+ if (final && insn_is_dead)
+ {
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+
+ /* CC0 is now known to be dead. Either this insn used it,
+ in which case it doesn't anymore, or clobbered it,
+ so the next insn can't use it. */
+ cc0_live = 0;
+
+ /* If this insn is copying the return value from a library call,
+ delete the entire library call. */
+ if (libcall_is_dead)
+ {
+ rtx first = XEXP (note, 0);
+ rtx p = insn;
+ while (INSN_DELETED_P (first))
+ first = NEXT_INSN (first);
+ while (p != first)
+ {
+ p = PREV_INSN (p);
+ PUT_CODE (p, NOTE);
+ NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (p) = 0;
+ }
+ }
+ goto flushed;
+ }
+
+ for (i = 0; i < regset_size; i++)
+ {
+ dead[i] = 0; /* Faster than bzero here */
+ live[i] = 0; /* since regset_size is usually small */
+ }
+
+ /* See if this is an increment or decrement that can be
+ merged into a following memory address. */
+#ifdef AUTO_INC_DEC
+ {
+ register rtx x = PATTERN (insn);
+ /* Does this instruction increment or decrement a register? */
+ if (final && GET_CODE (x) == SET
+ && GET_CODE (SET_DEST (x)) == REG
+ && (GET_CODE (SET_SRC (x)) == PLUS
+ || GET_CODE (SET_SRC (x)) == MINUS)
+ && XEXP (SET_SRC (x), 0) == SET_DEST (x)
+ && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
+ /* Ok, look for a following memory ref we can combine with.
+ If one is found, change the memory ref to a PRE_INC
+ or PRE_DEC, cancel this insn, and return 1.
+ Return 0 if nothing has been done. */
+ && try_pre_increment_1 (insn))
+ goto flushed;
+ }
+#endif /* AUTO_INC_DEC */
+
+ /* If this is not the final pass, and this insn is copying the
+ value of a library call and it's dead, don't scan the
+ insns that perform the library call, so that the call's
+ arguments are not marked live. */
+ if (libcall_is_dead)
+ {
+ /* Mark the dest reg as `significant'. */
+ mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);
+
+ insn = XEXP (note, 0);
+ prev = PREV_INSN (insn);
+ }
+ else if (GET_CODE (PATTERN (insn)) == SET
+ && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
+ && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
+ && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
+ && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
+ /* We have an insn to pop a constant amount off the stack.
+ (Such insns use PLUS regardless of the direction of the stack,
+ and any insn to adjust the stack by a constant is always a pop.)
+ These insns, if not dead stores, have no effect on life. */
+ ;
+ else
+ {
+ /* LIVE gets the regs used in INSN;
+ DEAD gets those set by it. Dead insns don't make anything
+ live. */
+
+ mark_set_regs (old, dead, PATTERN (insn),
+ final ? insn : NULL_RTX, significant);
+
+ /* If an insn doesn't use CC0, it becomes dead since we
+ assume that every insn clobbers it. So show it dead here;
+ mark_used_regs will set it live if it is referenced. */
+ cc0_live = 0;
+
+ if (! insn_is_dead)
+ mark_used_regs (old, live, PATTERN (insn), final, insn);
+
+ /* Sometimes we may have inserted something before INSN (such as
+ a move) when we make an auto-inc. So ensure we will scan
+ those insns. */
+#ifdef AUTO_INC_DEC
+ prev = PREV_INSN (insn);
+#endif
+
+ if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
+ {
+ register int i;
+
+ rtx note;
+
+ for (note = CALL_INSN_FUNCTION_USAGE (insn);
+ note;
+ note = XEXP (note, 1))
+ if (GET_CODE (XEXP (note, 0)) == USE)
+ mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
+ final, insn);
+
+ /* Each call clobbers all call-clobbered regs that are not
+ global. Note that the function-value reg is a
+ call-clobbered reg, and mark_set_regs has already had
+ a chance to handle it. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (call_used_regs[i] && ! global_regs[i])
+ dead[i / REGSET_ELT_BITS]
+ |= ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS));
+
+ /* The stack ptr is used (honorarily) by a CALL insn. */
+ live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
+ |= ((REGSET_ELT_TYPE) 1
+ << (STACK_POINTER_REGNUM % REGSET_ELT_BITS));
+
+ /* Calls may also reference any of the global registers,
+ so they are made live. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (global_regs[i])
+ live[i / REGSET_ELT_BITS]
+ |= ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS));
+
+ /* Calls also clobber memory. */
+ last_mem_set = 0;
+ }
+
+ /* Update OLD for the registers used or set. */
+ for (i = 0; i < regset_size; i++)
+ {
+ old[i] &= ~dead[i];
+ old[i] |= live[i];
+ }
+
+ if (GET_CODE (insn) == CALL_INSN && final)
+ {
+ /* Any regs live at the time of a call instruction
+ must not go in a register clobbered by calls.
+ Find all regs now live and record this for them. */
+
+ register struct sometimes *p = regs_sometimes_live;
+
+ for (i = 0; i < sometimes_max; i++, p++)
+ if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
+ reg_n_calls_crossed[p->offset * REGSET_ELT_BITS + p->bit]+= 1;
+ }
+ }
+
+ /* On final pass, add any additional sometimes-live regs
+ into MAXLIVE and REGS_SOMETIMES_LIVE.
+ Also update counts of how many insns each reg is live at. */
+
+ if (final)
+ {
+ for (i = 0; i < regset_size; i++)
+ {
+ register REGSET_ELT_TYPE diff = live[i] & ~maxlive[i];
+
+ if (diff)
+ {
+ register int regno;
+ maxlive[i] |= diff;
+ for (regno = 0; diff && regno < REGSET_ELT_BITS; regno++)
+ if (diff & ((REGSET_ELT_TYPE) 1 << regno))
+ {
+ regs_sometimes_live[sometimes_max].offset = i;
+ regs_sometimes_live[sometimes_max].bit = regno;
+ diff &= ~ ((REGSET_ELT_TYPE) 1 << regno);
+ sometimes_max++;
+ }
+ }
+ }
+
+ {
+ register struct sometimes *p = regs_sometimes_live;
+ for (i = 0; i < sometimes_max; i++, p++)
+ {
+ if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
+ reg_live_length[p->offset * REGSET_ELT_BITS + p->bit]++;
+ }
+ }
+ }
+ }
+ flushed: ;
+ if (insn == first)
+ break;
+ }
+
+ if (num_scratch > max_scratch)
+ max_scratch = num_scratch;
+}
+
+/* Return 1 if X (the body of an insn, or part of it) is just dead stores
+ (SET expressions whose destinations are registers dead after the insn).
+ NEEDED is the regset that says which regs are alive after the insn.
+
+ Unless CALL_OK is non-zero, an insn is needed if it contains a CALL. */
+
+static int
+insn_dead_p (x, needed, call_ok)
+ rtx x;
+ regset needed;
+ int call_ok;
+{
+ register RTX_CODE code = GET_CODE (x);
+ /* If setting something that's a reg or part of one,
+ see if that register's altered value will be live. */
+
+ if (code == SET)
+ {
+ register rtx r = SET_DEST (x);
+ /* A SET that is a subroutine call cannot be dead. */
+ if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
+ return 0;
+
+#ifdef HAVE_cc0
+ if (GET_CODE (r) == CC0)
+ return ! cc0_live;
+#endif
+
+ if (GET_CODE (r) == MEM && last_mem_set && ! MEM_VOLATILE_P (r)
+ && rtx_equal_p (r, last_mem_set))
+ return 1;
+
+ while (GET_CODE (r) == SUBREG
+ || GET_CODE (r) == STRICT_LOW_PART
+ || GET_CODE (r) == ZERO_EXTRACT
+ || GET_CODE (r) == SIGN_EXTRACT)
+ r = SUBREG_REG (r);
+
+ if (GET_CODE (r) == REG)
+ {
+ register int regno = REGNO (r);
+ register int offset = regno / REGSET_ELT_BITS;
+ register REGSET_ELT_TYPE bit
+ = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
+
+ /* Don't delete insns to set global regs. */
+ if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
+ /* Make sure insns to set frame pointer aren't deleted. */
+ || regno == FRAME_POINTER_REGNUM
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ || regno == HARD_FRAME_POINTER_REGNUM
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ /* Make sure insns to set arg pointer are never deleted
+ (if the arg pointer isn't fixed, there will be a USE for
+ it, so we can treat it normally). */
+ || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
+#endif
+ || (needed[offset] & bit) != 0)
+ return 0;
+
+ /* If this is a hard register, verify that subsequent words are
+ not needed. */
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
+
+ while (--n > 0)
+ if ((needed[(regno + n) / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1
+ << ((regno + n) % REGSET_ELT_BITS))) != 0)
+ return 0;
+ }
+
+ return 1;
+ }
+ }
+ /* If performing several activities,
+ insn is dead if each activity is individually dead.
+ Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
+ that's inside a PARALLEL doesn't make the insn worth keeping. */
+ else if (code == PARALLEL)
+ {
+ register int i = XVECLEN (x, 0);
+ for (i--; i >= 0; i--)
+ {
+ rtx elt = XVECEXP (x, 0, i);
+ if (!insn_dead_p (elt, needed, call_ok)
+ && GET_CODE (elt) != CLOBBER
+ && GET_CODE (elt) != USE)
+ return 0;
+ }
+ return 1;
+ }
+ /* We do not check CLOBBER or USE here.
+ An insn consisting of just a CLOBBER or just a USE
+ should not be deleted. */
+ return 0;
+}
+
+/* If X is the pattern of the last insn in a libcall, and assuming X is dead,
+ return 1 if the entire library call is dead.
+ This is true if X copies a register (hard or pseudo)
+ and if the hard return reg of the call insn is dead.
+ (The caller should have tested the destination of X already for death.)
+
+ If this insn doesn't just copy a register, then we don't
+ have an ordinary libcall. In that case, cse could not have
+ managed to substitute the source for the dest later on,
+ so we can assume the libcall is dead.
+
+ NEEDED is the bit vector of pseudoregs live before this insn.
+ NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
+
+static int
+libcall_dead_p (x, needed, note, insn)
+ rtx x;
+ regset needed;
+ rtx note;
+ rtx insn;
+{
+ register RTX_CODE code = GET_CODE (x);
+
+ if (code == SET)
+ {
+ register rtx r = SET_SRC (x);
+ if (GET_CODE (r) == REG)
+ {
+ rtx call = XEXP (note, 0);
+ register int i;
+
+ /* Find the call insn. */
+ while (call != insn && GET_CODE (call) != CALL_INSN)
+ call = NEXT_INSN (call);
+
+ /* If there is none, do nothing special,
+ since ordinary death handling can understand these insns. */
+ if (call == insn)
+ return 0;
+
+ /* See if the hard reg holding the value is dead.
+ If this is a PARALLEL, find the call within it. */
+ call = PATTERN (call);
+ if (GET_CODE (call) == PARALLEL)
+ {
+ for (i = XVECLEN (call, 0) - 1; i >= 0; i--)
+ if (GET_CODE (XVECEXP (call, 0, i)) == SET
+ && GET_CODE (SET_SRC (XVECEXP (call, 0, i))) == CALL)
+ break;
+
+ /* This may be a library call that is returning a value
+ via invisible pointer. Do nothing special, since
+ ordinary death handling can understand these insns. */
+ if (i < 0)
+ return 0;
+
+ call = XVECEXP (call, 0, i);
+ }
+
+ return insn_dead_p (call, needed, 1);
+ }
+ }
+ return 1;
+}
+
+/* Return 1 if register REGNO was used before it was set.
+ In other words, if it is live at function entry.
+ Don't count global regster variables, though. */
+
+int
+regno_uninitialized (regno)
+ int regno;
+{
+ if (n_basic_blocks == 0
+ || (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
+ return 0;
+
+ return (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS)));
+}
+
+/* 1 if register REGNO was alive at a place where `setjmp' was called
+ and was set more than once or is an argument.
+ Such regs may be clobbered by `longjmp'. */
+
+int
+regno_clobbered_at_setjmp (regno)
+ int regno;
+{
+ if (n_basic_blocks == 0)
+ return 0;
+
+ return ((reg_n_sets[regno] > 1
+ || (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
+ && (regs_live_at_setjmp[regno / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))));
+}
+
+/* Process the registers that are set within X.
+ Their bits are set to 1 in the regset DEAD,
+ because they are dead prior to this insn.
+
+ If INSN is nonzero, it is the insn being processed
+ and the fact that it is nonzero implies this is the FINAL pass
+ in propagate_block. In this case, various info about register
+ usage is stored, LOG_LINKS fields of insns are set up. */
+
+static void
+mark_set_regs (needed, dead, x, insn, significant)
+ regset needed;
+ regset dead;
+ rtx x;
+ rtx insn;
+ regset significant;
+{
+ register RTX_CODE code = GET_CODE (x);
+
+ if (code == SET || code == CLOBBER)
+ mark_set_1 (needed, dead, x, insn, significant);
+ else if (code == PARALLEL)
+ {
+ register int i;
+ for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
+ {
+ code = GET_CODE (XVECEXP (x, 0, i));
+ if (code == SET || code == CLOBBER)
+ mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
+ }
+ }
+}
+
+/* Process a single SET rtx, X. */
+
+static void
+mark_set_1 (needed, dead, x, insn, significant)
+ regset needed;
+ regset dead;
+ rtx x;
+ rtx insn;
+ regset significant;
+{
+ register int regno;
+ register rtx reg = SET_DEST (x);
+
+ /* Modifying just one hardware register of a multi-reg value
+ or just a byte field of a register
+ does not mean the value from before this insn is now dead.
+ But it does mean liveness of that register at the end of the block
+ is significant.
+
+ Within mark_set_1, however, we treat it as if the register is
+ indeed modified. mark_used_regs will, however, also treat this
+ register as being used. Thus, we treat these insns as setting a
+ new value for the register as a function of its old value. This
+ cases LOG_LINKS to be made appropriately and this will help combine. */
+
+ while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
+ || GET_CODE (reg) == SIGN_EXTRACT
+ || GET_CODE (reg) == STRICT_LOW_PART)
+ reg = XEXP (reg, 0);
+
+ /* If we are writing into memory or into a register mentioned in the
+ address of the last thing stored into memory, show we don't know
+ what the last store was. If we are writing memory, save the address
+ unless it is volatile. */
+ if (GET_CODE (reg) == MEM
+ || (GET_CODE (reg) == REG
+ && last_mem_set != 0 && reg_overlap_mentioned_p (reg, last_mem_set)))
+ last_mem_set = 0;
+
+ if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
+ /* There are no REG_INC notes for SP, so we can't assume we'll see
+ everything that invalidates it. To be safe, don't eliminate any
+ stores though SP; none of them should be redundant anyway. */
+ && ! reg_mentioned_p (stack_pointer_rtx, reg))
+ last_mem_set = reg;
+
+ if (GET_CODE (reg) == REG
+ && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ && regno != HARD_FRAME_POINTER_REGNUM
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
+#endif
+ && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
+ /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
+ {
+ register int offset = regno / REGSET_ELT_BITS;
+ register REGSET_ELT_TYPE bit
+ = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
+ REGSET_ELT_TYPE all_needed = (needed[offset] & bit);
+ REGSET_ELT_TYPE some_needed = (needed[offset] & bit);
+
+ /* Mark it as a significant register for this basic block. */
+ if (significant)
+ significant[offset] |= bit;
+
+ /* Mark it as as dead before this insn. */
+ dead[offset] |= bit;
+
+ /* A hard reg in a wide mode may really be multiple registers.
+ If so, mark all of them just like the first. */
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ int n;
+
+ /* Nothing below is needed for the stack pointer; get out asap.
+ Eg, log links aren't needed, since combine won't use them. */
+ if (regno == STACK_POINTER_REGNUM)
+ return;
+
+ n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
+ while (--n > 0)
+ {
+ if (significant)
+ significant[(regno + n) / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
+ dead[(regno + n) / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
+ some_needed
+ |= (needed[(regno + n) / REGSET_ELT_BITS]
+ & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
+ all_needed
+ &= (needed[(regno + n) / REGSET_ELT_BITS]
+ & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
+ }
+ }
+ /* Additional data to record if this is the final pass. */
+ if (insn)
+ {
+ register rtx y = reg_next_use[regno];
+ register int blocknum = BLOCK_NUM (insn);
+
+ /* The next use is no longer "next", since a store intervenes. */
+ reg_next_use[regno] = 0;
+
+ /* If this is a hard reg, record this function uses the reg. */
+
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ register int i;
+ int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
+
+ for (i = regno; i < endregno; i++)
+ {
+ regs_ever_live[i] = 1;
+ reg_n_sets[i]++;
+ }
+ }
+ else
+ {
+ /* Keep track of which basic blocks each reg appears in. */
+
+ if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
+ reg_basic_block[regno] = blocknum;
+ else if (reg_basic_block[regno] != blocknum)
+ reg_basic_block[regno] = REG_BLOCK_GLOBAL;
+
+ /* Count (weighted) references, stores, etc. This counts a
+ register twice if it is modified, but that is correct. */
+ reg_n_sets[regno]++;
+
+ reg_n_refs[regno] += loop_depth;
+
+ /* The insns where a reg is live are normally counted
+ elsewhere, but we want the count to include the insn
+ where the reg is set, and the normal counting mechanism
+ would not count it. */
+ reg_live_length[regno]++;
+ }
+
+ if (all_needed)
+ {
+ /* Make a logical link from the next following insn
+ that uses this register, back to this insn.
+ The following insns have already been processed.
+
+ We don't build a LOG_LINK for hard registers containing
+ in ASM_OPERANDs. If these registers get replaced,
+ we might wind up changing the semantics of the insn,
+ even if reload can make what appear to be valid assignments
+ later. */
+ if (y && (BLOCK_NUM (y) == blocknum)
+ && (regno >= FIRST_PSEUDO_REGISTER
+ || asm_noperands (PATTERN (y)) < 0))
+ LOG_LINKS (y)
+ = gen_rtx (INSN_LIST, VOIDmode, insn, LOG_LINKS (y));
+ }
+ else if (! some_needed)
+ {
+ /* Note that dead stores have already been deleted when possible
+ If we get here, we have found a dead store that cannot
+ be eliminated (because the same insn does something useful).
+ Indicate this by marking the reg being set as dying here. */
+ REG_NOTES (insn)
+ = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
+ reg_n_deaths[REGNO (reg)]++;
+ }
+ else
+ {
+ /* This is a case where we have a multi-word hard register
+ and some, but not all, of the words of the register are
+ needed in subsequent insns. Write REG_UNUSED notes
+ for those parts that were not needed. This case should
+ be rare. */
+
+ int i;
+
+ for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
+ i >= 0; i--)
+ if ((needed[(regno + i) / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1
+ << ((regno + i) % REGSET_ELT_BITS))) == 0)
+ REG_NOTES (insn)
+ = gen_rtx (EXPR_LIST, REG_UNUSED,
+ gen_rtx (REG, reg_raw_mode[regno + i],
+ regno + i),
+ REG_NOTES (insn));
+ }
+ }
+ }
+ else if (GET_CODE (reg) == REG)
+ reg_next_use[regno] = 0;
+
+ /* If this is the last pass and this is a SCRATCH, show it will be dying
+ here and count it. */
+ else if (GET_CODE (reg) == SCRATCH && insn != 0)
+ {
+ REG_NOTES (insn)
+ = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
+ num_scratch++;
+ }
+}
+
+#ifdef AUTO_INC_DEC
+
+/* X is a MEM found in INSN. See if we can convert it into an auto-increment
+ reference. */
+
+static void
+find_auto_inc (needed, x, insn)
+ regset needed;
+ rtx x;
+ rtx insn;
+{
+ rtx addr = XEXP (x, 0);
+ HOST_WIDE_INT offset = 0;
+ rtx set;
+
+ /* Here we detect use of an index register which might be good for
+ postincrement, postdecrement, preincrement, or predecrement. */
+
+ if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
+ offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
+
+ if (GET_CODE (addr) == REG)
+ {
+ register rtx y;
+ register int size = GET_MODE_SIZE (GET_MODE (x));
+ rtx use;
+ rtx incr;
+ int regno = REGNO (addr);
+
+ /* Is the next use an increment that might make auto-increment? */
+ if ((incr = reg_next_use[regno]) != 0
+ && (set = single_set (incr)) != 0
+ && GET_CODE (set) == SET
+ && BLOCK_NUM (incr) == BLOCK_NUM (insn)
+ /* Can't add side effects to jumps; if reg is spilled and
+ reloaded, there's no way to store back the altered value. */
+ && GET_CODE (insn) != JUMP_INSN
+ && (y = SET_SRC (set), GET_CODE (y) == PLUS)
+ && XEXP (y, 0) == addr
+ && GET_CODE (XEXP (y, 1)) == CONST_INT
+ && (0
+#ifdef HAVE_POST_INCREMENT
+ || (INTVAL (XEXP (y, 1)) == size && offset == 0)
+#endif
+#ifdef HAVE_POST_DECREMENT
+ || (INTVAL (XEXP (y, 1)) == - size && offset == 0)
+#endif
+#ifdef HAVE_PRE_INCREMENT
+ || (INTVAL (XEXP (y, 1)) == size && offset == size)
+#endif
+#ifdef HAVE_PRE_DECREMENT
+ || (INTVAL (XEXP (y, 1)) == - size && offset == - size)
+#endif
+ )
+ /* Make sure this reg appears only once in this insn. */
+ && (use = find_use_as_address (PATTERN (insn), addr, offset),
+ use != 0 && use != (rtx) 1))
+ {
+ int win = 0;
+ rtx q = SET_DEST (set);
+
+ if (dead_or_set_p (incr, addr))
+ win = 1;
+ else if (GET_CODE (q) == REG
+ /* PREV_INSN used here to check the semi-open interval
+ [insn,incr). */
+ && ! reg_used_between_p (q, PREV_INSN (insn), incr))
+ {
+ /* We have *p followed sometime later by q = p+size.
+ Both p and q must be live afterward,
+ and q is not used between INSN and it's assignment.
+ Change it to q = p, ...*q..., q = q+size.
+ Then fall into the usual case. */
+ rtx insns, temp;
+
+ start_sequence ();
+ emit_move_insn (q, addr);
+ insns = get_insns ();
+ end_sequence ();
+
+ /* If anything in INSNS have UID's that don't fit within the
+ extra space we allocate earlier, we can't make this auto-inc.
+ This should never happen. */
+ for (temp = insns; temp; temp = NEXT_INSN (temp))
+ {
+ if (INSN_UID (temp) > max_uid_for_flow)
+ return;
+ BLOCK_NUM (temp) = BLOCK_NUM (insn);
+ }
+
+ emit_insns_before (insns, insn);
+
+ if (basic_block_head[BLOCK_NUM (insn)] == insn)
+ basic_block_head[BLOCK_NUM (insn)] = insns;
+
+ XEXP (x, 0) = q;
+ XEXP (y, 0) = q;
+
+ /* INCR will become a NOTE and INSN won't contain a
+ use of ADDR. If a use of ADDR was just placed in
+ the insn before INSN, make that the next use.
+ Otherwise, invalidate it. */
+ if (GET_CODE (PREV_INSN (insn)) == INSN
+ && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
+ && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
+ reg_next_use[regno] = PREV_INSN (insn);
+ else
+ reg_next_use[regno] = 0;
+
+ addr = q;
+ regno = REGNO (q);
+ win = 1;
+
+ /* REGNO is now used in INCR which is below INSN, but
+ it previously wasn't live here. If we don't mark
+ it as needed, we'll put a REG_DEAD note for it
+ on this insn, which is incorrect. */
+ needed[regno / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
+
+ /* If there are any calls between INSN and INCR, show
+ that REGNO now crosses them. */
+ for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
+ if (GET_CODE (temp) == CALL_INSN)
+ reg_n_calls_crossed[regno]++;
+ }
+
+ if (win
+ /* If we have found a suitable auto-increment, do
+ POST_INC around the register here, and patch out the
+ increment instruction that follows. */
+ && validate_change (insn, &XEXP (x, 0),
+ gen_rtx ((INTVAL (XEXP (y, 1)) == size
+ ? (offset ? PRE_INC : POST_INC)
+ : (offset ? PRE_DEC : POST_DEC)),
+ Pmode, addr), 0))
+ {
+ /* Record that this insn has an implicit side effect. */
+ REG_NOTES (insn)
+ = gen_rtx (EXPR_LIST, REG_INC, addr, REG_NOTES (insn));
+
+ /* Modify the old increment-insn to simply copy
+ the already-incremented value of our register. */
+ SET_SRC (set) = addr;
+ /* Indicate insn must be re-recognized. */
+ INSN_CODE (incr) = -1;
+
+ /* If that makes it a no-op (copying the register into itself)
+ then delete it so it won't appear to be a "use" and a "set"
+ of this register. */
+ if (SET_DEST (set) == addr)
+ {
+ PUT_CODE (incr, NOTE);
+ NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (incr) = 0;
+ }
+
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ {
+ /* Count an extra reference to the reg. When a reg is
+ incremented, spilling it is worse, so we want to make
+ that less likely. */
+ reg_n_refs[regno] += loop_depth;
+ /* Count the increment as a setting of the register,
+ even though it isn't a SET in rtl. */
+ reg_n_sets[regno]++;
+ }
+ }
+ }
+ }
+}
+#endif /* AUTO_INC_DEC */
+
+/* Scan expression X and store a 1-bit in LIVE for each reg it uses.
+ This is done assuming the registers needed from X
+ are those that have 1-bits in NEEDED.
+
+ On the final pass, FINAL is 1. This means try for autoincrement
+ and count the uses and deaths of each pseudo-reg.
+
+ INSN is the containing instruction. If INSN is dead, this function is not
+ called. */
+
+static void
+mark_used_regs (needed, live, x, final, insn)
+ regset needed;
+ regset live;
+ rtx x;
+ int final;
+ rtx insn;
+{
+ register RTX_CODE code;
+ register int regno;
+ int i;
+
+ retry:
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case LABEL_REF:
+ case SYMBOL_REF:
+ case CONST_INT:
+ case CONST:
+ case CONST_DOUBLE:
+ case PC:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ case ASM_INPUT:
+ return;
+
+#ifdef HAVE_cc0
+ case CC0:
+ cc0_live = 1;
+ return;
+#endif
+
+ case CLOBBER:
+ /* If we are clobbering a MEM, mark any registers inside the address
+ as being used. */
+ if (GET_CODE (XEXP (x, 0)) == MEM)
+ mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
+ return;
+
+ case MEM:
+ /* Invalidate the data for the last MEM stored. We could do this only
+ if the addresses conflict, but this doesn't seem worthwhile. */
+ last_mem_set = 0;
+
+#ifdef AUTO_INC_DEC
+ if (final)
+ find_auto_inc (needed, x, insn);
+#endif
+ break;
+
+ case REG:
+ /* See a register other than being set
+ => mark it as needed. */
+
+ regno = REGNO (x);
+ {
+ register int offset = regno / REGSET_ELT_BITS;
+ register REGSET_ELT_TYPE bit
+ = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
+ REGSET_ELT_TYPE all_needed = needed[offset] & bit;
+ REGSET_ELT_TYPE some_needed = needed[offset] & bit;
+
+ live[offset] |= bit;
+ /* A hard reg in a wide mode may really be multiple registers.
+ If so, mark all of them just like the first. */
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ int n;
+
+ /* For stack ptr or fixed arg pointer,
+ nothing below can be necessary, so waste no more time. */
+ if (regno == STACK_POINTER_REGNUM
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ || regno == HARD_FRAME_POINTER_REGNUM
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
+#endif
+ || regno == FRAME_POINTER_REGNUM)
+ {
+ /* If this is a register we are going to try to eliminate,
+ don't mark it live here. If we are successful in
+ eliminating it, it need not be live unless it is used for
+ pseudos, in which case it will have been set live when
+ it was allocated to the pseudos. If the register will not
+ be eliminated, reload will set it live at that point. */
+
+ if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
+ regs_ever_live[regno] = 1;
+ return;
+ }
+ /* No death notes for global register variables;
+ their values are live after this function exits. */
+ if (global_regs[regno])
+ {
+ if (final)
+ reg_next_use[regno] = insn;
+ return;
+ }
+
+ n = HARD_REGNO_NREGS (regno, GET_MODE (x));
+ while (--n > 0)
+ {
+ live[(regno + n) / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
+ some_needed
+ |= (needed[(regno + n) / REGSET_ELT_BITS]
+ & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
+ all_needed
+ &= (needed[(regno + n) / REGSET_ELT_BITS]
+ & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
+ }
+ }
+ if (final)
+ {
+ /* Record where each reg is used, so when the reg
+ is set we know the next insn that uses it. */
+
+ reg_next_use[regno] = insn;
+
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ /* If a hard reg is being used,
+ record that this function does use it. */
+
+ i = HARD_REGNO_NREGS (regno, GET_MODE (x));
+ if (i == 0)
+ i = 1;
+ do
+ regs_ever_live[regno + --i] = 1;
+ while (i > 0);
+ }
+ else
+ {
+ /* Keep track of which basic block each reg appears in. */
+
+ register int blocknum = BLOCK_NUM (insn);
+
+ if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
+ reg_basic_block[regno] = blocknum;
+ else if (reg_basic_block[regno] != blocknum)
+ reg_basic_block[regno] = REG_BLOCK_GLOBAL;
+
+ /* Count (weighted) number of uses of each reg. */
+
+ reg_n_refs[regno] += loop_depth;
+ }
+
+ /* Record and count the insns in which a reg dies.
+ If it is used in this insn and was dead below the insn
+ then it dies in this insn. If it was set in this insn,
+ we do not make a REG_DEAD note; likewise if we already
+ made such a note. */
+
+ if (! all_needed
+ && ! dead_or_set_p (insn, x)
+#if 0
+ && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
+#endif
+ )
+ {
+ /* If none of the words in X is needed, make a REG_DEAD
+ note. Otherwise, we must make partial REG_DEAD notes. */
+ if (! some_needed)
+ {
+ REG_NOTES (insn)
+ = gen_rtx (EXPR_LIST, REG_DEAD, x, REG_NOTES (insn));
+ reg_n_deaths[regno]++;
+ }
+ else
+ {
+ int i;
+
+ /* Don't make a REG_DEAD note for a part of a register
+ that is set in the insn. */
+
+ for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
+ i >= 0; i--)
+ if ((needed[(regno + i) / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1
+ << ((regno + i) % REGSET_ELT_BITS))) == 0
+ && ! dead_or_set_regno_p (insn, regno + i))
+ REG_NOTES (insn)
+ = gen_rtx (EXPR_LIST, REG_DEAD,
+ gen_rtx (REG, reg_raw_mode[regno + i],
+ regno + i),
+ REG_NOTES (insn));
+ }
+ }
+ }
+ }
+ return;
+
+ case SET:
+ {
+ register rtx testreg = SET_DEST (x);
+ int mark_dest = 0;
+
+ /* If storing into MEM, don't show it as being used. But do
+ show the address as being used. */
+ if (GET_CODE (testreg) == MEM)
+ {
+#ifdef AUTO_INC_DEC
+ if (final)
+ find_auto_inc (needed, testreg, insn);
+#endif
+ mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
+ mark_used_regs (needed, live, SET_SRC (x), final, insn);
+ return;
+ }
+
+ /* Storing in STRICT_LOW_PART is like storing in a reg
+ in that this SET might be dead, so ignore it in TESTREG.
+ but in some other ways it is like using the reg.
+
+ Storing in a SUBREG or a bit field is like storing the entire
+ register in that if the register's value is not used
+ then this SET is not needed. */
+ while (GET_CODE (testreg) == STRICT_LOW_PART
+ || GET_CODE (testreg) == ZERO_EXTRACT
+ || GET_CODE (testreg) == SIGN_EXTRACT
+ || GET_CODE (testreg) == SUBREG)
+ {
+ /* Modifying a single register in an alternate mode
+ does not use any of the old value. But these other
+ ways of storing in a register do use the old value. */
+ if (GET_CODE (testreg) == SUBREG
+ && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
+ ;
+ else
+ mark_dest = 1;
+
+ testreg = XEXP (testreg, 0);
+ }
+
+ /* If this is a store into a register,
+ recursively scan the value being stored. */
+
+ if (GET_CODE (testreg) == REG
+ && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ && regno != HARD_FRAME_POINTER_REGNUM
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
+#endif
+ )
+ /* We used to exclude global_regs here, but that seems wrong.
+ Storing in them is like storing in mem. */
+ {
+ mark_used_regs (needed, live, SET_SRC (x), final, insn);
+ if (mark_dest)
+ mark_used_regs (needed, live, SET_DEST (x), final, insn);
+ return;
+ }
+ }
+ break;
+
+ case RETURN:
+ /* If exiting needs the right stack value, consider this insn as
+ using the stack pointer. In any event, consider it as using
+ all global registers. */
+
+#ifdef EXIT_IGNORE_STACK
+ if (! EXIT_IGNORE_STACK
+ || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
+#endif
+ live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (global_regs[i])
+ live[i / REGSET_ELT_BITS]
+ |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
+ break;
+ }
+
+ /* Recursively scan the operands of this expression. */
+
+ {
+ register char *fmt = GET_RTX_FORMAT (code);
+ register int i;
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ /* Tail recursive case: save a function call level. */
+ if (i == 0)
+ {
+ x = XEXP (x, 0);
+ goto retry;
+ }
+ mark_used_regs (needed, live, XEXP (x, i), final, insn);
+ }
+ else if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
+ }
+ }
+ }
+}
+
+#ifdef AUTO_INC_DEC
+
+static int
+try_pre_increment_1 (insn)
+ rtx insn;
+{
+ /* Find the next use of this reg. If in same basic block,
+ make it do pre-increment or pre-decrement if appropriate. */
+ rtx x = PATTERN (insn);
+ HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
+ * INTVAL (XEXP (SET_SRC (x), 1)));
+ int regno = REGNO (SET_DEST (x));
+ rtx y = reg_next_use[regno];
+ if (y != 0
+ && BLOCK_NUM (y) == BLOCK_NUM (insn)
+ /* Don't do this if the reg dies, or gets set in y; a standard addressing
+ mode would be better. */
+ && ! dead_or_set_p (y, SET_DEST (x))
+ && try_pre_increment (y, SET_DEST (PATTERN (insn)),
+ amount))
+ {
+ /* We have found a suitable auto-increment
+ and already changed insn Y to do it.
+ So flush this increment-instruction. */
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ /* Count a reference to this reg for the increment
+ insn we are deleting. When a reg is incremented.
+ spilling it is worse, so we want to make that
+ less likely. */
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ {
+ reg_n_refs[regno] += loop_depth;
+ reg_n_sets[regno]++;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/* Try to change INSN so that it does pre-increment or pre-decrement
+ addressing on register REG in order to add AMOUNT to REG.
+ AMOUNT is negative for pre-decrement.
+ Returns 1 if the change could be made.
+ This checks all about the validity of the result of modifying INSN. */
+
+static int
+try_pre_increment (insn, reg, amount)
+ rtx insn, reg;
+ HOST_WIDE_INT amount;
+{
+ register rtx use;
+
+ /* Nonzero if we can try to make a pre-increment or pre-decrement.
+ For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
+ int pre_ok = 0;
+ /* Nonzero if we can try to make a post-increment or post-decrement.
+ For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
+ It is possible for both PRE_OK and POST_OK to be nonzero if the machine
+ supports both pre-inc and post-inc, or both pre-dec and post-dec. */
+ int post_ok = 0;
+
+ /* Nonzero if the opportunity actually requires post-inc or post-dec. */
+ int do_post = 0;
+
+ /* From the sign of increment, see which possibilities are conceivable
+ on this target machine. */
+#ifdef HAVE_PRE_INCREMENT
+ if (amount > 0)
+ pre_ok = 1;
+#endif
+#ifdef HAVE_POST_INCREMENT
+ if (amount > 0)
+ post_ok = 1;
+#endif
+
+#ifdef HAVE_PRE_DECREMENT
+ if (amount < 0)
+ pre_ok = 1;
+#endif
+#ifdef HAVE_POST_DECREMENT
+ if (amount < 0)
+ post_ok = 1;
+#endif
+
+ if (! (pre_ok || post_ok))
+ return 0;
+
+ /* It is not safe to add a side effect to a jump insn
+ because if the incremented register is spilled and must be reloaded
+ there would be no way to store the incremented value back in memory. */
+
+ if (GET_CODE (insn) == JUMP_INSN)
+ return 0;
+
+ use = 0;
+ if (pre_ok)
+ use = find_use_as_address (PATTERN (insn), reg, 0);
+ if (post_ok && (use == 0 || use == (rtx) 1))
+ {
+ use = find_use_as_address (PATTERN (insn), reg, -amount);
+ do_post = 1;
+ }
+
+ if (use == 0 || use == (rtx) 1)
+ return 0;
+
+ if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
+ return 0;
+
+ /* See if this combination of instruction and addressing mode exists. */
+ if (! validate_change (insn, &XEXP (use, 0),
+ gen_rtx (amount > 0
+ ? (do_post ? POST_INC : PRE_INC)
+ : (do_post ? POST_DEC : PRE_DEC),
+ Pmode, reg), 0))
+ return 0;
+
+ /* Record that this insn now has an implicit side effect on X. */
+ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_INC, reg, REG_NOTES (insn));
+ return 1;
+}
+
+#endif /* AUTO_INC_DEC */
+
+/* Find the place in the rtx X where REG is used as a memory address.
+ Return the MEM rtx that so uses it.
+ If PLUSCONST is nonzero, search instead for a memory address equivalent to
+ (plus REG (const_int PLUSCONST)).
+
+ If such an address does not appear, return 0.
+ If REG appears more than once, or is used other than in such an address,
+ return (rtx)1. */
+
+static rtx
+find_use_as_address (x, reg, plusconst)
+ register rtx x;
+ rtx reg;
+ HOST_WIDE_INT plusconst;
+{
+ enum rtx_code code = GET_CODE (x);
+ char *fmt = GET_RTX_FORMAT (code);
+ register int i;
+ register rtx value = 0;
+ register rtx tem;
+
+ if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
+ return x;
+
+ if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
+ && XEXP (XEXP (x, 0), 0) == reg
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
+ return x;
+
+ if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
+ {
+ /* If REG occurs inside a MEM used in a bit-field reference,
+ that is unacceptable. */
+ if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
+ return (rtx) (HOST_WIDE_INT) 1;
+ }
+
+ if (x == reg)
+ return (rtx) (HOST_WIDE_INT) 1;
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ tem = find_use_as_address (XEXP (x, i), reg, plusconst);
+ if (value == 0)
+ value = tem;
+ else if (tem != 0)
+ return (rtx) (HOST_WIDE_INT) 1;
+ }
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ {
+ tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
+ if (value == 0)
+ value = tem;
+ else if (tem != 0)
+ return (rtx) (HOST_WIDE_INT) 1;
+ }
+ }
+ }
+
+ return value;
+}
+
+/* Write information about registers and basic blocks into FILE.
+ This is part of making a debugging dump. */
+
+void
+dump_flow_info (file)
+ FILE *file;
+{
+ register int i;
+ static char *reg_class_names[] = REG_CLASS_NAMES;
+
+ fprintf (file, "%d registers.\n", max_regno);
+
+ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
+ if (reg_n_refs[i])
+ {
+ enum reg_class class, altclass;
+ fprintf (file, "\nRegister %d used %d times across %d insns",
+ i, reg_n_refs[i], reg_live_length[i]);
+ if (reg_basic_block[i] >= 0)
+ fprintf (file, " in block %d", reg_basic_block[i]);
+ if (reg_n_deaths[i] != 1)
+ fprintf (file, "; dies in %d places", reg_n_deaths[i]);
+ if (reg_n_calls_crossed[i] == 1)
+ fprintf (file, "; crosses 1 call");
+ else if (reg_n_calls_crossed[i])
+ fprintf (file, "; crosses %d calls", reg_n_calls_crossed[i]);
+ if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
+ fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
+ class = reg_preferred_class (i);
+ altclass = reg_alternate_class (i);
+ if (class != GENERAL_REGS || altclass != ALL_REGS)
+ {
+ if (altclass == ALL_REGS || class == ALL_REGS)
+ fprintf (file, "; pref %s", reg_class_names[(int) class]);
+ else if (altclass == NO_REGS)
+ fprintf (file, "; %s or none", reg_class_names[(int) class]);
+ else
+ fprintf (file, "; pref %s, else %s",
+ reg_class_names[(int) class],
+ reg_class_names[(int) altclass]);
+ }
+ if (REGNO_POINTER_FLAG (i))
+ fprintf (file, "; pointer");
+ fprintf (file, ".\n");
+ }
+ fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
+ for (i = 0; i < n_basic_blocks; i++)
+ {
+ register rtx head, jump;
+ register int regno;
+ fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
+ i,
+ INSN_UID (basic_block_head[i]),
+ INSN_UID (basic_block_end[i]));
+ /* The control flow graph's storage is freed
+ now when flow_analysis returns.
+ Don't try to print it if it is gone. */
+ if (basic_block_drops_in)
+ {
+ fprintf (file, "Reached from blocks: ");
+ head = basic_block_head[i];
+ if (GET_CODE (head) == CODE_LABEL)
+ for (jump = LABEL_REFS (head);
+ jump != head;
+ jump = LABEL_NEXTREF (jump))
+ {
+ register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
+ fprintf (file, " %d", from_block);
+ }
+ if (basic_block_drops_in[i])
+ fprintf (file, " previous");
+ }
+ fprintf (file, "\nRegisters live at start:");
+ for (regno = 0; regno < max_regno; regno++)
+ {
+ register int offset = regno / REGSET_ELT_BITS;
+ register REGSET_ELT_TYPE bit
+ = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
+ if (basic_block_live_at_start[i][offset] & bit)
+ fprintf (file, " %d", regno);
+ }
+ fprintf (file, "\n");
+ }
+ fprintf (file, "\n");
+}
OpenPOWER on IntegriCloud