summaryrefslogtreecommitdiffstats
path: root/gnu/usr.bin/as/expr.c
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/as/expr.c')
-rw-r--r--gnu/usr.bin/as/expr.c1000
1 files changed, 1000 insertions, 0 deletions
diff --git a/gnu/usr.bin/as/expr.c b/gnu/usr.bin/as/expr.c
new file mode 100644
index 0000000..c46961c
--- /dev/null
+++ b/gnu/usr.bin/as/expr.c
@@ -0,0 +1,1000 @@
+/* expr.c -operands, expressions-
+ Copyright (C) 1987, 1990, 1991, 1992 Free Software Foundation, Inc.
+
+ This file is part of GAS, the GNU Assembler.
+
+ GAS is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ GAS is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GAS; see the file COPYING. If not, write to
+ the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/*
+ * This is really a branch office of as-read.c. I split it out to clearly
+ * distinguish the world of expressions from the world of statements.
+ * (It also gives smaller files to re-compile.)
+ * Here, "operand"s are of expressions, not instructions.
+ */
+
+#ifndef lint
+static char rcsid[] = "$FreeBSD$";
+#endif
+
+#include <ctype.h>
+#include <string.h>
+
+#include "as.h"
+
+#include "obstack.h"
+
+#if __STDC__ == 1
+static void clean_up_expression(expressionS *expressionP);
+#else /* __STDC__ */
+static void clean_up_expression(); /* Internal. */
+#endif /* not __STDC__ */
+extern const char EXP_CHARS[]; /* JF hide MD floating pt stuff all the same place */
+extern const char FLT_CHARS[];
+
+#ifdef LOCAL_LABELS_DOLLAR
+extern int local_label_defined[];
+#endif
+
+/*
+ * Build any floating-point literal here.
+ * Also build any bignum literal here.
+ */
+
+/* LITTLENUM_TYPE generic_buffer[6]; */ /* JF this is a hack */
+/* Seems atof_machine can backscan through generic_bignum and hit whatever
+ happens to be loaded before it in memory. And its way too complicated
+ for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
+ and never write into the early words, thus they'll always be zero.
+ I hate Dean's floating-point code. Bleh.
+ */
+LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER+6];
+FLONUM_TYPE generic_floating_point_number =
+{
+ &generic_bignum[6], /* low (JF: Was 0) */
+ &generic_bignum[SIZE_OF_LARGE_NUMBER+6 - 1], /* high JF: (added +6) */
+ 0, /* leader */
+ 0, /* exponent */
+ 0 /* sign */
+ };
+/* If nonzero, we've been asked to assemble nan, +inf or -inf */
+int generic_floating_point_magic;
+
+/*
+ * Summary of operand().
+ *
+ * in: Input_line_pointer points to 1st char of operand, which may
+ * be a space.
+ *
+ * out: A expressionS. X_seg determines how to understand the rest of the
+ * expressionS.
+ * The operand may have been empty: in this case X_seg == SEG_ABSENT.
+ * Input_line_pointer->(next non-blank) char after operand.
+ *
+ */
+
+static segT
+ operand (expressionP)
+register expressionS * expressionP;
+{
+ register char c;
+ register char *name; /* points to name of symbol */
+ register symbolS * symbolP; /* Points to symbol */
+
+ extern const char hex_value[]; /* In hex_value.c */
+
+#ifdef PIC
+/* XXX */ expressionP->X_got_symbol = 0;
+#endif
+ SKIP_WHITESPACE(); /* Leading whitespace is part of operand. */
+ c = * input_line_pointer ++; /* Input_line_pointer->past char in c. */
+ if (isdigit(c) || (c == 'H' && input_line_pointer[0] == '\''))
+ {
+ register valueT number; /* offset or (absolute) value */
+ register short int digit; /* value of next digit in current radix */
+ /* invented for humans only, hope */
+ /* optimising compiler flushes it! */
+ register short int radix; /* 2, 8, 10 or 16 */
+ /* 0 means we saw start of a floating- */
+ /* point constant. */
+ register short int maxdig = 0;/* Highest permitted digit value. */
+ register int too_many_digits = 0; /* If we see >= this number of */
+ /* digits, assume it is a bignum. */
+ register char * digit_2; /*->2nd digit of number. */
+ int small; /* TRUE if fits in 32 bits. */
+
+
+ if (c == 'H' || c == '0') { /* non-decimal radix */
+ if ((c = *input_line_pointer ++) == 'x' || c == 'X' || c == '\'') {
+ c = *input_line_pointer ++; /* read past "0x" or "0X" or H' */
+ maxdig = radix = 16;
+ too_many_digits = 9;
+ } else {
+ /* If it says '0f' and the line ends or it DOESN'T look like
+ a floating point #, its a local label ref. DTRT */
+ /* likewise for the b's. xoxorich. */
+ if ((c == 'f' || c == 'b' || c == 'B')
+ && (!*input_line_pointer ||
+ (!strchr("+-.0123456789iInN",*input_line_pointer) &&
+ !strchr(EXP_CHARS,*input_line_pointer)))) {
+ maxdig = radix = 10;
+ too_many_digits = 11;
+ c = '0';
+ input_line_pointer -= 2;
+
+ } else if (c == 'b' || c == 'B') {
+ c = *input_line_pointer++;
+ maxdig = radix = 2;
+ too_many_digits = 33;
+
+ } else if (c && strchr(FLT_CHARS,c)) {
+ radix = 0; /* Start of floating-point constant. */
+ /* input_line_pointer->1st char of number. */
+ expressionP->X_add_number = -(isupper(c) ? tolower(c) : c);
+
+ } else { /* By elimination, assume octal radix. */
+ radix = maxdig = 8;
+ too_many_digits = 11;
+ }
+ } /* c == char after "0" or "0x" or "0X" or "0e" etc. */
+ } else {
+ maxdig = radix = 10;
+ too_many_digits = 11;
+ } /* if operand starts with a zero */
+
+ if (radix) { /* Fixed-point integer constant. */
+ /* May be bignum, or may fit in 32 bits. */
+ /*
+ * Most numbers fit into 32 bits, and we want this case to be fast.
+ * So we pretend it will fit into 32 bits. If, after making up a 32
+ * bit number, we realise that we have scanned more digits than
+ * comfortably fit into 32 bits, we re-scan the digits coding
+ * them into a bignum. For decimal and octal numbers we are conservative: some
+ * numbers may be assumed bignums when in fact they do fit into 32 bits.
+ * Numbers of any radix can have excess leading zeros: we strive
+ * to recognise this and cast them back into 32 bits.
+ * We must check that the bignum really is more than 32
+ * bits, and change it back to a 32-bit number if it fits.
+ * The number we are looking for is expected to be positive, but
+ * if it fits into 32 bits as an unsigned number, we let it be a 32-bit
+ * number. The cavalier approach is for speed in ordinary cases.
+ */
+ digit_2 = input_line_pointer;
+ for (number=0; (digit=hex_value[c])<maxdig; c = * input_line_pointer ++)
+ {
+ number = number * radix + digit;
+ }
+ /* C contains character after number. */
+ /* Input_line_pointer->char after C. */
+ small = input_line_pointer - digit_2 < too_many_digits;
+ if (!small)
+ {
+ /*
+ * We saw a lot of digits. Manufacture a bignum the hard way.
+ */
+ LITTLENUM_TYPE *leader; /*->high order littlenum of the bignum. */
+ LITTLENUM_TYPE *pointer; /*->littlenum we are frobbing now. */
+ long carry;
+
+ leader = generic_bignum;
+ generic_bignum[0] = 0;
+ generic_bignum[1] = 0;
+ /* We could just use digit_2, but lets be mnemonic. */
+ input_line_pointer = --digit_2; /*->1st digit. */
+ c = *input_line_pointer++;
+ for (; (carry = hex_value[c]) < maxdig; c = *input_line_pointer++)
+ {
+ for (pointer = generic_bignum;
+ pointer <= leader;
+ pointer++)
+ {
+ long work;
+
+ work = carry + radix * *pointer;
+ *pointer = work & LITTLENUM_MASK;
+ carry = work >> LITTLENUM_NUMBER_OF_BITS;
+ }
+ if (carry)
+ {
+ if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
+ { /* Room to grow a longer bignum. */
+ *++leader = carry;
+ }
+ }
+ }
+ /* Again, C is char after number, */
+ /* input_line_pointer->after C. */
+ know(sizeof (int) * 8 == 32);
+ know(LITTLENUM_NUMBER_OF_BITS == 16);
+ /* Hence the constant "2" in the next line. */
+ if (leader < generic_bignum + 2)
+ { /* Will fit into 32 bits. */
+ number =
+ ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
+ | (generic_bignum[0] & LITTLENUM_MASK);
+ small = 1;
+ }
+ else
+ {
+ number = leader - generic_bignum + 1; /* Number of littlenums in the bignum. */
+ }
+ }
+ if (small)
+ {
+ /*
+ * Here with number, in correct radix. c is the next char.
+ * Note that unlike Un*x, we allow "011f" "0x9f" to
+ * both mean the same as the (conventional) "9f". This is simply easier
+ * than checking for strict canonical form. Syntax sux!
+ */
+ if (number<10)
+ {
+ if (0
+#ifdef LOCAL_LABELS_FB
+ || c == 'b'
+#endif
+#ifdef LOCAL_LABELS_DOLLAR
+ || (c == '$' && local_label_defined[number])
+#endif
+ )
+ {
+ /*
+ * Backward ref to local label.
+ * Because it is backward, expect it to be DEFINED.
+ */
+ /*
+ * Construct a local label.
+ */
+ name = local_label_name ((int)number, 0);
+ if (((symbolP = symbol_find(name)) != NULL) /* seen before */
+ && (S_IS_DEFINED(symbolP))) /* symbol is defined: OK */
+ { /* Expected path: symbol defined. */
+ /* Local labels are never absolute. Don't waste time checking absoluteness. */
+ know(SEG_NORMAL(S_GET_SEGMENT(symbolP)));
+
+ expressionP->X_add_symbol = symbolP;
+ expressionP->X_add_number = 0;
+ expressionP->X_seg = S_GET_SEGMENT(symbolP);
+ }
+ else
+ { /* Either not seen or not defined. */
+ as_bad("Backw. ref to unknown label \"%d:\", 0 assumed.",
+ number);
+ expressionP->X_add_number = 0;
+ expressionP->X_seg = SEG_ABSOLUTE;
+ }
+ }
+ else
+ {
+ if (0
+#ifdef LOCAL_LABELS_FB
+ || c == 'f'
+#endif
+#ifdef LOCAL_LABELS_DOLLAR
+ || (c == '$' && !local_label_defined[number])
+#endif
+ )
+ {
+ /*
+ * Forward reference. Expect symbol to be undefined or
+ * unknown. Undefined: seen it before. Unknown: never seen
+ * it in this pass.
+ * Construct a local label name, then an undefined symbol.
+ * Don't create a XSEG frag for it: caller may do that.
+ * Just return it as never seen before.
+ */
+ name = local_label_name((int)number, 1);
+ symbolP = symbol_find_or_make(name);
+ /* We have no need to check symbol properties. */
+#ifndef MANY_SEGMENTS
+ /* Since "know" puts its arg into a "string", we
+ can't have newlines in the argument. */
+ know(S_GET_SEGMENT(symbolP) == SEG_UNKNOWN || S_GET_SEGMENT(symbolP) == SEG_TEXT || S_GET_SEGMENT(symbolP) == SEG_DATA);
+#endif
+ expressionP->X_add_symbol = symbolP;
+ expressionP->X_seg = SEG_UNKNOWN;
+ expressionP->X_subtract_symbol = NULL;
+ expressionP->X_add_number = 0;
+ }
+ else
+ { /* Really a number, not a local label. */
+ expressionP->X_add_number = number;
+ expressionP->X_seg = SEG_ABSOLUTE;
+ input_line_pointer--; /* Restore following character. */
+ } /* if (c == 'f') */
+ } /* if (c == 'b') */
+ }
+ else
+ { /* Really a number. */
+ expressionP->X_add_number = number;
+ expressionP->X_seg = SEG_ABSOLUTE;
+ input_line_pointer--; /* Restore following character. */
+ } /* if (number<10) */
+ }
+ else
+ {
+ expressionP->X_add_number = number;
+ expressionP->X_seg = SEG_BIG;
+ input_line_pointer --; /*->char following number. */
+ } /* if (small) */
+ } /* (If integer constant) */
+ else
+ { /* input_line_pointer->*/
+ /* floating-point constant. */
+ int error_code;
+
+ error_code = atof_generic
+ (& input_line_pointer, ".", EXP_CHARS,
+ & generic_floating_point_number);
+
+ if (error_code)
+ {
+ if (error_code == ERROR_EXPONENT_OVERFLOW)
+ {
+ as_bad("Bad floating-point constant: exponent overflow, probably assembling junk");
+ }
+ else
+ {
+ as_bad("Bad floating-point constant: unknown error code=%d.", error_code);
+ }
+ }
+ expressionP->X_seg = SEG_BIG;
+ /* input_line_pointer->just after constant, */
+ /* which may point to whitespace. */
+ know(expressionP->X_add_number < 0); /* < 0 means "floating point". */
+ } /* if (not floating-point constant) */
+ }
+ else if (c == '.' && !is_part_of_name(*input_line_pointer)) {
+ extern struct obstack frags;
+
+ /*
+ JF: '.' is pseudo symbol with value of current location in current
+ segment...
+ */
+ symbolP = symbol_new("\001L0",
+ now_seg,
+ (valueT)(obstack_next_free(&frags)-frag_now->fr_literal),
+ frag_now);
+
+ expressionP->X_add_number=0;
+ expressionP->X_add_symbol=symbolP;
+ expressionP->X_seg = now_seg;
+
+ } else if (is_name_beginner(c)) { /* here if did not begin with a digit */
+
+ /*
+ * Identifier begins here.
+ * This is kludged for speed, so code is repeated.
+ */
+ name = input_line_pointer - 1;
+ c = get_symbol_end();
+ symbolP = symbol_find_or_make(name);
+ /*
+ * If we have an absolute symbol or a reg, then we know its value now.
+ */
+ expressionP->X_seg = S_GET_SEGMENT(symbolP);
+ switch (expressionP->X_seg)
+ {
+ case SEG_ABSOLUTE:
+ case SEG_REGISTER:
+ expressionP->X_add_number = S_GET_VALUE(symbolP);
+ break;
+
+ default:
+ expressionP->X_add_number = 0;
+#ifdef PIC
+ if (symbolP == GOT_symbol) {
+ expressionP->X_got_symbol = symbolP;
+ got_referenced = 1;
+ } else
+#endif
+ expressionP->X_add_symbol = symbolP;
+ }
+ *input_line_pointer = c;
+ expressionP->X_subtract_symbol = NULL;
+ } else if (c == '(' || c == '[') {/* didn't begin with digit & not a name */
+ (void)expression(expressionP);
+ /* Expression() will pass trailing whitespace */
+ if (c == '(' && *input_line_pointer++ != ')' ||
+ c == '[' && *input_line_pointer++ != ']') {
+ as_bad("Missing ')' assumed");
+ input_line_pointer--;
+ }
+ /* here with input_line_pointer->char after "(...)" */
+ } else if (c == '~' || c == '-' || c == '+') {
+ /* unary operator: hope for SEG_ABSOLUTE */
+ switch (operand (expressionP)) {
+ case SEG_ABSOLUTE:
+ /* input_line_pointer->char after operand */
+ if (c == '-') {
+ expressionP->X_add_number = - expressionP->X_add_number;
+ /*
+ * Notice: '-' may overflow: no warning is given. This is compatible
+ * with other people's assemblers. Sigh.
+ */
+ } else if (c == '~') {
+ expressionP->X_add_number = ~ expressionP->X_add_number;
+ } else if (c != '+') {
+ know(0);
+ } /* switch on unary operator */
+ break;
+
+ default: /* unary on non-absolute is unsuported */
+ if (!SEG_NORMAL(operand(expressionP)))
+ {
+ as_bad("Unary operator %c ignored because bad operand follows", c);
+ break;
+ }
+ /* Fall through for normal segments ****/
+ case SEG_PASS1:
+ case SEG_UNKNOWN:
+ if (c == '-') { /* JF I hope this hack works */
+ expressionP->X_subtract_symbol=expressionP->X_add_symbol;
+ expressionP->X_add_symbol=0;
+ expressionP->X_seg=SEG_DIFFERENCE;
+ break;
+ }
+ /* Expression undisturbed from operand(). */
+ }
+ }
+ else if (c == '\'')
+ {
+ /*
+ * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted
+ * for a single quote. The next character, parity errors and all, is taken
+ * as the value of the operand. VERY KINKY.
+ */
+ expressionP->X_add_number = * input_line_pointer ++;
+ expressionP->X_seg = SEG_ABSOLUTE;
+ }
+ else
+ {
+ /* can't imagine any other kind of operand */
+ expressionP->X_seg = SEG_ABSENT;
+ input_line_pointer --;
+ md_operand (expressionP);
+ }
+ /*
+ * It is more 'efficient' to clean up the expressions when they are created.
+ * Doing it here saves lines of code.
+ */
+ clean_up_expression(expressionP);
+ SKIP_WHITESPACE(); /*->1st char after operand. */
+ know(*input_line_pointer != ' ');
+ return(expressionP->X_seg);
+} /* operand() */
+
+/* Internal. Simplify a struct expression for use by expr() */
+
+/*
+ * In: address of a expressionS.
+ * The X_seg field of the expressionS may only take certain values.
+ * Now, we permit SEG_PASS1 to make code smaller & faster.
+ * Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
+ * Out: expressionS may have been modified:
+ * 'foo-foo' symbol references cancelled to 0,
+ * which changes X_seg from SEG_DIFFERENCE to SEG_ABSOLUTE;
+ * Unused fields zeroed to help expr().
+ */
+
+static void
+ clean_up_expression (expressionP)
+register expressionS *expressionP;
+{
+ switch (expressionP->X_seg) {
+ case SEG_ABSENT:
+ case SEG_PASS1:
+ expressionP->X_add_symbol = NULL;
+ expressionP->X_subtract_symbol = NULL;
+ expressionP->X_add_number = 0;
+ break;
+
+ case SEG_BIG:
+ case SEG_ABSOLUTE:
+ expressionP->X_subtract_symbol = NULL;
+ expressionP->X_add_symbol = NULL;
+ break;
+
+ case SEG_UNKNOWN:
+ expressionP->X_subtract_symbol = NULL;
+ break;
+
+ case SEG_DIFFERENCE:
+ /*
+ * It does not hurt to 'cancel' NULL == NULL
+ * when comparing symbols for 'eq'ness.
+ * It is faster to re-cancel them to NULL
+ * than to check for this special case.
+ */
+ if (expressionP->X_subtract_symbol == expressionP->X_add_symbol
+ || (expressionP->X_subtract_symbol
+ && expressionP->X_add_symbol
+ && expressionP->X_subtract_symbol->sy_frag == expressionP->X_add_symbol->sy_frag
+ && S_GET_VALUE(expressionP->X_subtract_symbol) == S_GET_VALUE(expressionP->X_add_symbol))) {
+ expressionP->X_subtract_symbol = NULL;
+ expressionP->X_add_symbol = NULL;
+ expressionP->X_seg = SEG_ABSOLUTE;
+ }
+ break;
+
+ case SEG_REGISTER:
+ expressionP->X_add_symbol = NULL;
+ expressionP->X_subtract_symbol = NULL;
+ break;
+
+ default:
+ if (SEG_NORMAL(expressionP->X_seg)) {
+ expressionP->X_subtract_symbol = NULL;
+ }
+ else {
+ BAD_CASE (expressionP->X_seg);
+ }
+ break;
+ }
+} /* clean_up_expression() */
+
+/*
+ * expr_part ()
+ *
+ * Internal. Made a function because this code is used in 2 places.
+ * Generate error or correct X_?????_symbol of expressionS.
+ */
+
+/*
+ * symbol_1 += symbol_2 ... well ... sort of.
+ */
+
+static segT
+ expr_part (symbol_1_PP, symbol_2_P)
+symbolS ** symbol_1_PP;
+symbolS * symbol_2_P;
+{
+ segT return_value;
+#ifndef MANY_SEGMENTS
+ know((* symbol_1_PP) == NULL || (S_GET_SEGMENT(*symbol_1_PP) == SEG_TEXT) || (S_GET_SEGMENT(*symbol_1_PP) == SEG_DATA) || (S_GET_SEGMENT(*symbol_1_PP) == SEG_BSS) || (!S_IS_DEFINED(* symbol_1_PP)));
+ know(symbol_2_P == NULL || (S_GET_SEGMENT(symbol_2_P) == SEG_TEXT) || (S_GET_SEGMENT(symbol_2_P) == SEG_DATA) || (S_GET_SEGMENT(symbol_2_P) == SEG_BSS) || (!S_IS_DEFINED(symbol_2_P)));
+#endif
+ if (* symbol_1_PP)
+ {
+ if (!S_IS_DEFINED(* symbol_1_PP))
+ {
+ if (symbol_2_P)
+ {
+ return_value = SEG_PASS1;
+ * symbol_1_PP = NULL;
+ }
+ else
+ {
+ know(!S_IS_DEFINED(* symbol_1_PP));
+ return_value = SEG_UNKNOWN;
+ }
+ }
+ else
+ {
+ if (symbol_2_P)
+ {
+ if (!S_IS_DEFINED(symbol_2_P))
+ {
+ * symbol_1_PP = NULL;
+ return_value = SEG_PASS1;
+ }
+ else
+ {
+ /* {seg1} - {seg2} */
+ as_bad("Expression too complex, 2 symbols forgotten: \"%s\" \"%s\"",
+ S_GET_NAME(* symbol_1_PP), S_GET_NAME(symbol_2_P));
+ * symbol_1_PP = NULL;
+ return_value = SEG_ABSOLUTE;
+ }
+ }
+ else
+ {
+ return_value = S_GET_SEGMENT(* symbol_1_PP);
+ }
+ }
+ }
+ else
+ { /* (* symbol_1_PP) == NULL */
+ if (symbol_2_P)
+ {
+ * symbol_1_PP = symbol_2_P;
+ return_value = S_GET_SEGMENT(symbol_2_P);
+ }
+ else
+ {
+ * symbol_1_PP = NULL;
+ return_value = SEG_ABSOLUTE;
+ }
+ }
+#ifndef MANY_SEGMENTS
+ know(return_value == SEG_ABSOLUTE || return_value == SEG_TEXT || return_value == SEG_DATA || return_value == SEG_BSS || return_value == SEG_UNKNOWN || return_value == SEG_PASS1);
+#endif
+ know((*symbol_1_PP) == NULL || (S_GET_SEGMENT(*symbol_1_PP) == return_value));
+ return (return_value);
+} /* expr_part() */
+
+void ps (s)
+symbolS *s;
+{
+ fprintf (stdout, "%s type %s%s",
+ S_GET_NAME(s),
+ S_IS_EXTERNAL(s) ? "EXTERNAL " : "",
+ segment_name(S_GET_SEGMENT(s)));
+}
+void pe (e)
+expressionS *e;
+{
+ fprintf (stdout, " segment %s\n", segment_name (e->X_seg));
+ fprintf (stdout, " add_number %ld (%lx)\n",
+ e->X_add_number, e->X_add_number);
+ if (e->X_add_symbol) {
+ fprintf (stdout, " add_symbol ");
+ ps (e->X_add_symbol);
+ fprintf (stdout, "\n");
+ }
+ if (e->X_subtract_symbol) {
+ fprintf (stdout, " sub_symbol ");
+ ps (e->X_subtract_symbol);
+ fprintf (stdout, "\n");
+ }
+}
+
+/* Expression parser. */
+
+/*
+ * We allow an empty expression, and just assume (absolute,0) silently.
+ * Unary operators and parenthetical expressions are treated as operands.
+ * As usual, Q == quantity == operand, O == operator, X == expression mnemonics.
+ *
+ * We used to do a aho/ullman shift-reduce parser, but the logic got so
+ * warped that I flushed it and wrote a recursive-descent parser instead.
+ * Now things are stable, would anybody like to write a fast parser?
+ * Most expressions are either register (which does not even reach here)
+ * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
+ * So I guess it doesn't really matter how inefficient more complex expressions
+ * are parsed.
+ *
+ * After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
+ * Also, we have consumed any leading or trailing spaces (operand does that)
+ * and done all intervening operators.
+ */
+
+typedef enum
+{
+ O_illegal, /* (0) what we get for illegal op */
+
+ O_multiply, /* (1) * */
+ O_divide, /* (2) / */
+ O_modulus, /* (3) % */
+ O_left_shift, /* (4) < */
+ O_right_shift, /* (5) > */
+ O_bit_inclusive_or, /* (6) | */
+ O_bit_or_not, /* (7) ! */
+ O_bit_exclusive_or, /* (8) ^ */
+ O_bit_and, /* (9) & */
+ O_add, /* (10) + */
+ O_subtract /* (11) - */
+ }
+operatorT;
+
+#define __ O_illegal
+
+static const operatorT op_encoding[256] = { /* maps ASCII->operators */
+
+ __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+
+ __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
+ __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
+ __, __, __, __, __, __, __, __,
+ __, __, __, __, O_left_shift, __, O_right_shift, __,
+ __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, O_bit_exclusive_or, __,
+ __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, __, __,
+ __, __, __, __, O_bit_inclusive_or, __, __, __,
+
+ __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+ __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
+ };
+
+
+/*
+ * Rank Examples
+ * 0 operand, (expression)
+ * 1 + -
+ * 2 & ^ ! |
+ * 3 * / % << >>
+ */
+static const operator_rankT
+ op_rank[] = { 0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1 };
+
+/* Return resultP->X_seg. */
+segT expr(rank, resultP)
+ register operator_rankT rank; /* Larger # is higher rank. */
+ register expressionS *resultP; /* Deliver result here. */
+{
+ expressionS right;
+ register operatorT op_left;
+ register char c_left; /* 1st operator character. */
+ register operatorT op_right;
+ register char c_right;
+
+ know(rank >= 0);
+ (void) operand(resultP);
+ know(*input_line_pointer != ' '); /* Operand() gobbles spaces. */
+ c_left = *input_line_pointer; /* Potential operator character. */
+ op_left = op_encoding[c_left];
+
+ while (op_left != O_illegal && op_rank[(int) op_left] > rank) {
+ input_line_pointer++; /*->after 1st character of operator. */
+
+ /* Operators "<<" and ">>" have 2 characters. */
+ if (*input_line_pointer == c_left && (c_left == '<' || c_left == '>')) {
+ input_line_pointer ++;
+ } /*->after operator. */
+ if (SEG_ABSENT == expr (op_rank[(int) op_left], &right)) {
+ as_warn("Missing operand value assumed absolute 0.");
+ resultP->X_add_number = 0;
+ resultP->X_subtract_symbol = NULL;
+ resultP->X_add_symbol = NULL;
+ resultP->X_seg = SEG_ABSOLUTE;
+ }
+
+ know(*input_line_pointer != ' ');
+ c_right = *input_line_pointer;
+ op_right = op_encoding[c_right];
+
+ if (*input_line_pointer == c_right && (c_right == '<' || c_right == '>')) {
+ input_line_pointer ++;
+ } /*->after operator. */
+
+ know((int) op_right == 0 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
+ /* input_line_pointer->after right-hand quantity. */
+ /* left-hand quantity in resultP */
+ /* right-hand quantity in right. */
+ /* operator in op_left. */
+ if (resultP->X_seg == SEG_PASS1 || right.X_seg == SEG_PASS1) {
+ resultP->X_seg = SEG_PASS1;
+ } else {
+ if (resultP->X_seg == SEG_BIG) {
+ as_warn("Left operand of %c is a %s. Integer 0 assumed.",
+ c_left, resultP->X_add_number > 0 ? "bignum" : "float");
+ resultP->X_seg = SEG_ABSOLUTE;
+ resultP->X_add_symbol = 0;
+ resultP->X_subtract_symbol = 0;
+ resultP->X_add_number = 0;
+ }
+ if (right.X_seg == SEG_BIG) {
+ as_warn("Right operand of %c is a %s. Integer 0 assumed.",
+ c_left, right.X_add_number > 0 ? "bignum" : "float");
+ right.X_seg = SEG_ABSOLUTE;
+ right.X_add_symbol = 0;
+ right.X_subtract_symbol = 0;
+ right.X_add_number = 0;
+ }
+ if (op_left == O_subtract) {
+ /*
+ * Convert - into + by exchanging symbols and negating number.
+ * I know -infinity can't be negated in 2's complement:
+ * but then it can't be subtracted either. This trick
+ * does not cause any further inaccuracy.
+ */
+
+ register symbolS * symbolP;
+
+ right.X_add_number = - right.X_add_number;
+ symbolP = right.X_add_symbol;
+ right.X_add_symbol = right.X_subtract_symbol;
+ right.X_subtract_symbol = symbolP;
+ if (symbolP) {
+ right.X_seg = SEG_DIFFERENCE;
+ }
+ op_left = O_add;
+ }
+
+ if (op_left == O_add) {
+ segT seg1;
+ segT seg2;
+#ifndef MANY_SEGMENTS
+ know(resultP->X_seg == SEG_DATA
+ || resultP->X_seg == SEG_TEXT
+ || resultP->X_seg == SEG_BSS
+ || resultP->X_seg == SEG_UNKNOWN
+ || resultP->X_seg == SEG_DIFFERENCE
+ || resultP->X_seg == SEG_ABSOLUTE
+ || resultP->X_seg == SEG_PASS1);
+ know(right.X_seg == SEG_DATA
+ || right.X_seg == SEG_TEXT
+ || right.X_seg == SEG_BSS
+ || right.X_seg == SEG_UNKNOWN
+ || right.X_seg == SEG_DIFFERENCE
+ || right.X_seg == SEG_ABSOLUTE
+ || right.X_seg == SEG_PASS1);
+#endif
+ clean_up_expression(& right);
+ clean_up_expression(resultP);
+
+#ifdef PIC
+/* XXX - kludge here to accomodate "_GLOBAL_OFFSET_TABLE + (x - y)"
+ * expressions: this only works for this special case, the
+ * _GLOBAL_OFFSET_TABLE thing *must* be the left operand, the whole
+ * expression is given the segment of right expression (always a DIFFERENCE,
+ * which should get resolved by fixup_segment())
+ */
+ if (resultP->X_got_symbol) {
+ resultP->X_add_symbol = right.X_add_symbol;
+ resultP->X_subtract_symbol = right.X_subtract_symbol;
+ seg1 = S_GET_SEGMENT(right.X_add_symbol);
+ seg2 = S_GET_SEGMENT(right.X_subtract_symbol);
+ resultP->X_seg = right.X_seg;
+ } else {
+#endif
+ seg1 = expr_part(&resultP->X_add_symbol, right.X_add_symbol);
+ seg2 = expr_part(&resultP->X_subtract_symbol, right.X_subtract_symbol);
+#ifdef PIC
+ }
+#endif
+ if (seg1 == SEG_PASS1 || seg2 == SEG_PASS1) {
+ need_pass_2 = 1;
+ resultP->X_seg = SEG_PASS1;
+ } else if (seg2 == SEG_ABSOLUTE)
+ resultP->X_seg = seg1;
+ else if (seg1 != SEG_UNKNOWN
+ && seg1 != SEG_ABSOLUTE
+ && seg2 != SEG_UNKNOWN
+ && seg1 != seg2) {
+ know(seg2 != SEG_ABSOLUTE);
+ know(resultP->X_subtract_symbol);
+#ifndef MANY_SEGMENTS
+ know(seg1 == SEG_TEXT || seg1 == SEG_DATA || seg1 == SEG_BSS);
+ know(seg2 == SEG_TEXT || seg2 == SEG_DATA || seg2 == SEG_BSS);
+#endif
+ know(resultP->X_add_symbol);
+ know(resultP->X_subtract_symbol);
+ as_bad("Expression too complex: forgetting %s - %s",
+ S_GET_NAME(resultP->X_add_symbol),
+ S_GET_NAME(resultP->X_subtract_symbol));
+ resultP->X_seg = SEG_ABSOLUTE;
+ /* Clean_up_expression() will do the rest. */
+ } else
+ resultP->X_seg = SEG_DIFFERENCE;
+
+ resultP->X_add_number += right.X_add_number;
+ clean_up_expression(resultP);
+ } else { /* Not +. */
+ if (resultP->X_seg == SEG_UNKNOWN || right.X_seg == SEG_UNKNOWN) {
+ resultP->X_seg = SEG_PASS1;
+ need_pass_2 = 1;
+ } else {
+ resultP->X_subtract_symbol = NULL;
+ resultP->X_add_symbol = NULL;
+
+ /* Will be SEG_ABSOLUTE. */
+ if (resultP->X_seg != SEG_ABSOLUTE || right.X_seg != SEG_ABSOLUTE) {
+ as_bad("Relocation error. Absolute 0 assumed.");
+ resultP->X_seg = SEG_ABSOLUTE;
+ resultP->X_add_number = 0;
+ } else {
+ switch (op_left) {
+ case O_bit_inclusive_or:
+ resultP->X_add_number |= right.X_add_number;
+ break;
+
+ case O_modulus:
+ if (right.X_add_number) {
+ resultP->X_add_number %= right.X_add_number;
+ } else {
+ as_warn("Division by 0. 0 assumed.");
+ resultP->X_add_number = 0;
+ }
+ break;
+
+ case O_bit_and:
+ resultP->X_add_number &= right.X_add_number;
+ break;
+
+ case O_multiply:
+ resultP->X_add_number *= right.X_add_number;
+ break;
+
+ case O_divide:
+ if (right.X_add_number) {
+ resultP->X_add_number /= right.X_add_number;
+ } else {
+ as_warn("Division by 0. 0 assumed.");
+ resultP->X_add_number = 0;
+ }
+ break;
+
+ case O_left_shift:
+ resultP->X_add_number <<= right.X_add_number;
+ break;
+
+ case O_right_shift:
+ resultP->X_add_number >>= right.X_add_number;
+ break;
+
+ case O_bit_exclusive_or:
+ resultP->X_add_number ^= right.X_add_number;
+ break;
+
+ case O_bit_or_not:
+ resultP->X_add_number |= ~ right.X_add_number;
+ break;
+
+ default:
+ BAD_CASE(op_left);
+ break;
+ } /* switch (operator) */
+ }
+ } /* If we have to force need_pass_2. */
+ } /* If operator was +. */
+ } /* If we didn't set need_pass_2. */
+ op_left = op_right;
+ } /* While next operator is >= this rank. */
+
+ return(resultP->X_seg);
+} /* expr() */
+
+/*
+ * get_symbol_end()
+ *
+ * This lives here because it belongs equally in expr.c & read.c.
+ * Expr.c is just a branch office read.c anyway, and putting it
+ * here lessens the crowd at read.c.
+ *
+ * Assume input_line_pointer is at start of symbol name.
+ * Advance input_line_pointer past symbol name.
+ * Turn that character into a '\0', returning its former value.
+ * This allows a string compare (RMS wants symbol names to be strings)
+ * of the symbol name.
+ * There will always be a char following symbol name, because all good
+ * lines end in end-of-line.
+ */
+char
+ get_symbol_end()
+{
+ register char c;
+
+ while (is_part_of_name(c = *input_line_pointer++)) ;;
+ *--input_line_pointer = 0;
+ return (c);
+}
+
+
+unsigned int get_single_number()
+{
+ expressionS exp;
+ operand(&exp);
+ return exp.X_add_number;
+
+}
+/*
+ * Local Variables:
+ * comment-column: 0
+ * fill-column: 131
+ * End:
+ */
+
+/* end of expr.c */
OpenPOWER on IntegriCloud