diff options
Diffstat (limited to 'docs/tutorial/OCamlLangImpl4.rst')
-rw-r--r-- | docs/tutorial/OCamlLangImpl4.rst | 915 |
1 files changed, 915 insertions, 0 deletions
diff --git a/docs/tutorial/OCamlLangImpl4.rst b/docs/tutorial/OCamlLangImpl4.rst new file mode 100644 index 0000000..b13b2af --- /dev/null +++ b/docs/tutorial/OCamlLangImpl4.rst @@ -0,0 +1,915 @@ +============================================== +Kaleidoscope: Adding JIT and Optimizer Support +============================================== + +.. contents:: + :local: + +Chapter 4 Introduction +====================== + +Welcome to Chapter 4 of the "`Implementing a language with +LLVM <index.html>`_" tutorial. Chapters 1-3 described the implementation +of a simple language and added support for generating LLVM IR. This +chapter describes two new techniques: adding optimizer support to your +language, and adding JIT compiler support. These additions will +demonstrate how to get nice, efficient code for the Kaleidoscope +language. + +Trivial Constant Folding +======================== + +**Note:** the default ``IRBuilder`` now always includes the constant +folding optimisations below. + +Our demonstration for Chapter 3 is elegant and easy to extend. +Unfortunately, it does not produce wonderful code. For example, when +compiling simple code, we don't get obvious optimizations: + +:: + + ready> def test(x) 1+2+x; + Read function definition: + define double @test(double %x) { + entry: + %addtmp = fadd double 1.000000e+00, 2.000000e+00 + %addtmp1 = fadd double %addtmp, %x + ret double %addtmp1 + } + +This code is a very, very literal transcription of the AST built by +parsing the input. As such, this transcription lacks optimizations like +constant folding (we'd like to get "``add x, 3.0``" in the example +above) as well as other more important optimizations. Constant folding, +in particular, is a very common and very important optimization: so much +so that many language implementors implement constant folding support in +their AST representation. + +With LLVM, you don't need this support in the AST. Since all calls to +build LLVM IR go through the LLVM builder, it would be nice if the +builder itself checked to see if there was a constant folding +opportunity when you call it. If so, it could just do the constant fold +and return the constant instead of creating an instruction. This is +exactly what the ``LLVMFoldingBuilder`` class does. + +All we did was switch from ``LLVMBuilder`` to ``LLVMFoldingBuilder``. +Though we change no other code, we now have all of our instructions +implicitly constant folded without us having to do anything about it. +For example, the input above now compiles to: + +:: + + ready> def test(x) 1+2+x; + Read function definition: + define double @test(double %x) { + entry: + %addtmp = fadd double 3.000000e+00, %x + ret double %addtmp + } + +Well, that was easy :). In practice, we recommend always using +``LLVMFoldingBuilder`` when generating code like this. It has no +"syntactic overhead" for its use (you don't have to uglify your compiler +with constant checks everywhere) and it can dramatically reduce the +amount of LLVM IR that is generated in some cases (particular for +languages with a macro preprocessor or that use a lot of constants). + +On the other hand, the ``LLVMFoldingBuilder`` is limited by the fact +that it does all of its analysis inline with the code as it is built. If +you take a slightly more complex example: + +:: + + ready> def test(x) (1+2+x)*(x+(1+2)); + ready> Read function definition: + define double @test(double %x) { + entry: + %addtmp = fadd double 3.000000e+00, %x + %addtmp1 = fadd double %x, 3.000000e+00 + %multmp = fmul double %addtmp, %addtmp1 + ret double %multmp + } + +In this case, the LHS and RHS of the multiplication are the same value. +We'd really like to see this generate "``tmp = x+3; result = tmp*tmp;``" +instead of computing "``x*3``" twice. + +Unfortunately, no amount of local analysis will be able to detect and +correct this. This requires two transformations: reassociation of +expressions (to make the add's lexically identical) and Common +Subexpression Elimination (CSE) to delete the redundant add instruction. +Fortunately, LLVM provides a broad range of optimizations that you can +use, in the form of "passes". + +LLVM Optimization Passes +======================== + +LLVM provides many optimization passes, which do many different sorts of +things and have different tradeoffs. Unlike other systems, LLVM doesn't +hold to the mistaken notion that one set of optimizations is right for +all languages and for all situations. LLVM allows a compiler implementor +to make complete decisions about what optimizations to use, in which +order, and in what situation. + +As a concrete example, LLVM supports both "whole module" passes, which +look across as large of body of code as they can (often a whole file, +but if run at link time, this can be a substantial portion of the whole +program). It also supports and includes "per-function" passes which just +operate on a single function at a time, without looking at other +functions. For more information on passes and how they are run, see the +`How to Write a Pass <../WritingAnLLVMPass.html>`_ document and the +`List of LLVM Passes <../Passes.html>`_. + +For Kaleidoscope, we are currently generating functions on the fly, one +at a time, as the user types them in. We aren't shooting for the +ultimate optimization experience in this setting, but we also want to +catch the easy and quick stuff where possible. As such, we will choose +to run a few per-function optimizations as the user types the function +in. If we wanted to make a "static Kaleidoscope compiler", we would use +exactly the code we have now, except that we would defer running the +optimizer until the entire file has been parsed. + +In order to get per-function optimizations going, we need to set up a +`Llvm.PassManager <../WritingAnLLVMPass.html#passmanager>`_ to hold and +organize the LLVM optimizations that we want to run. Once we have that, +we can add a set of optimizations to run. The code looks like this: + +.. code-block:: ocaml + + (* Create the JIT. *) + let the_execution_engine = ExecutionEngine.create Codegen.the_module in + let the_fpm = PassManager.create_function Codegen.the_module in + + (* Set up the optimizer pipeline. Start with registering info about how the + * target lays out data structures. *) + DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm; + + (* Do simple "peephole" optimizations and bit-twiddling optzn. *) + add_instruction_combining the_fpm; + + (* reassociate expressions. *) + add_reassociation the_fpm; + + (* Eliminate Common SubExpressions. *) + add_gvn the_fpm; + + (* Simplify the control flow graph (deleting unreachable blocks, etc). *) + add_cfg_simplification the_fpm; + + ignore (PassManager.initialize the_fpm); + + (* Run the main "interpreter loop" now. *) + Toplevel.main_loop the_fpm the_execution_engine stream; + +The meat of the matter here, is the definition of "``the_fpm``". It +requires a pointer to the ``the_module`` to construct itself. Once it is +set up, we use a series of "add" calls to add a bunch of LLVM passes. +The first pass is basically boilerplate, it adds a pass so that later +optimizations know how the data structures in the program are laid out. +The "``the_execution_engine``" variable is related to the JIT, which we +will get to in the next section. + +In this case, we choose to add 4 optimization passes. The passes we +chose here are a pretty standard set of "cleanup" optimizations that are +useful for a wide variety of code. I won't delve into what they do but, +believe me, they are a good starting place :). + +Once the ``Llvm.PassManager.`` is set up, we need to make use of it. We +do this by running it after our newly created function is constructed +(in ``Codegen.codegen_func``), but before it is returned to the client: + +.. code-block:: ocaml + + let codegen_func the_fpm = function + ... + try + let ret_val = codegen_expr body in + + (* Finish off the function. *) + let _ = build_ret ret_val builder in + + (* Validate the generated code, checking for consistency. *) + Llvm_analysis.assert_valid_function the_function; + + (* Optimize the function. *) + let _ = PassManager.run_function the_function the_fpm in + + the_function + +As you can see, this is pretty straightforward. The ``the_fpm`` +optimizes and updates the LLVM Function\* in place, improving +(hopefully) its body. With this in place, we can try our test above +again: + +:: + + ready> def test(x) (1+2+x)*(x+(1+2)); + ready> Read function definition: + define double @test(double %x) { + entry: + %addtmp = fadd double %x, 3.000000e+00 + %multmp = fmul double %addtmp, %addtmp + ret double %multmp + } + +As expected, we now get our nicely optimized code, saving a floating +point add instruction from every execution of this function. + +LLVM provides a wide variety of optimizations that can be used in +certain circumstances. Some `documentation about the various +passes <../Passes.html>`_ is available, but it isn't very complete. +Another good source of ideas can come from looking at the passes that +``Clang`` runs to get started. The "``opt``" tool allows you to +experiment with passes from the command line, so you can see if they do +anything. + +Now that we have reasonable code coming out of our front-end, lets talk +about executing it! + +Adding a JIT Compiler +===================== + +Code that is available in LLVM IR can have a wide variety of tools +applied to it. For example, you can run optimizations on it (as we did +above), you can dump it out in textual or binary forms, you can compile +the code to an assembly file (.s) for some target, or you can JIT +compile it. The nice thing about the LLVM IR representation is that it +is the "common currency" between many different parts of the compiler. + +In this section, we'll add JIT compiler support to our interpreter. The +basic idea that we want for Kaleidoscope is to have the user enter +function bodies as they do now, but immediately evaluate the top-level +expressions they type in. For example, if they type in "1 + 2;", we +should evaluate and print out 3. If they define a function, they should +be able to call it from the command line. + +In order to do this, we first declare and initialize the JIT. This is +done by adding a global variable and a call in ``main``: + +.. code-block:: ocaml + + ... + let main () = + ... + (* Create the JIT. *) + let the_execution_engine = ExecutionEngine.create Codegen.the_module in + ... + +This creates an abstract "Execution Engine" which can be either a JIT +compiler or the LLVM interpreter. LLVM will automatically pick a JIT +compiler for you if one is available for your platform, otherwise it +will fall back to the interpreter. + +Once the ``Llvm_executionengine.ExecutionEngine.t`` is created, the JIT +is ready to be used. There are a variety of APIs that are useful, but +the simplest one is the +"``Llvm_executionengine.ExecutionEngine.run_function``" function. This +method JIT compiles the specified LLVM Function and returns a function +pointer to the generated machine code. In our case, this means that we +can change the code that parses a top-level expression to look like +this: + +.. code-block:: ocaml + + (* Evaluate a top-level expression into an anonymous function. *) + let e = Parser.parse_toplevel stream in + print_endline "parsed a top-level expr"; + let the_function = Codegen.codegen_func the_fpm e in + dump_value the_function; + + (* JIT the function, returning a function pointer. *) + let result = ExecutionEngine.run_function the_function [||] + the_execution_engine in + + print_string "Evaluated to "; + print_float (GenericValue.as_float Codegen.double_type result); + print_newline (); + +Recall that we compile top-level expressions into a self-contained LLVM +function that takes no arguments and returns the computed double. +Because the LLVM JIT compiler matches the native platform ABI, this +means that you can just cast the result pointer to a function pointer of +that type and call it directly. This means, there is no difference +between JIT compiled code and native machine code that is statically +linked into your application. + +With just these two changes, lets see how Kaleidoscope works now! + +:: + + ready> 4+5; + define double @""() { + entry: + ret double 9.000000e+00 + } + + Evaluated to 9.000000 + +Well this looks like it is basically working. The dump of the function +shows the "no argument function that always returns double" that we +synthesize for each top level expression that is typed in. This +demonstrates very basic functionality, but can we do more? + +:: + + ready> def testfunc(x y) x + y*2; + Read function definition: + define double @testfunc(double %x, double %y) { + entry: + %multmp = fmul double %y, 2.000000e+00 + %addtmp = fadd double %multmp, %x + ret double %addtmp + } + + ready> testfunc(4, 10); + define double @""() { + entry: + %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01) + ret double %calltmp + } + + Evaluated to 24.000000 + +This illustrates that we can now call user code, but there is something +a bit subtle going on here. Note that we only invoke the JIT on the +anonymous functions that *call testfunc*, but we never invoked it on +*testfunc* itself. What actually happened here is that the JIT scanned +for all non-JIT'd functions transitively called from the anonymous +function and compiled all of them before returning from +``run_function``. + +The JIT provides a number of other more advanced interfaces for things +like freeing allocated machine code, rejit'ing functions to update them, +etc. However, even with this simple code, we get some surprisingly +powerful capabilities - check this out (I removed the dump of the +anonymous functions, you should get the idea by now :) : + +:: + + ready> extern sin(x); + Read extern: + declare double @sin(double) + + ready> extern cos(x); + Read extern: + declare double @cos(double) + + ready> sin(1.0); + Evaluated to 0.841471 + + ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x); + Read function definition: + define double @foo(double %x) { + entry: + %calltmp = call double @sin(double %x) + %multmp = fmul double %calltmp, %calltmp + %calltmp2 = call double @cos(double %x) + %multmp4 = fmul double %calltmp2, %calltmp2 + %addtmp = fadd double %multmp, %multmp4 + ret double %addtmp + } + + ready> foo(4.0); + Evaluated to 1.000000 + +Whoa, how does the JIT know about sin and cos? The answer is +surprisingly simple: in this example, the JIT started execution of a +function and got to a function call. It realized that the function was +not yet JIT compiled and invoked the standard set of routines to resolve +the function. In this case, there is no body defined for the function, +so the JIT ended up calling "``dlsym("sin")``" on the Kaleidoscope +process itself. Since "``sin``" is defined within the JIT's address +space, it simply patches up calls in the module to call the libm version +of ``sin`` directly. + +The LLVM JIT provides a number of interfaces (look in the +``llvm_executionengine.mli`` file) for controlling how unknown functions +get resolved. It allows you to establish explicit mappings between IR +objects and addresses (useful for LLVM global variables that you want to +map to static tables, for example), allows you to dynamically decide on +the fly based on the function name, and even allows you to have the JIT +compile functions lazily the first time they're called. + +One interesting application of this is that we can now extend the +language by writing arbitrary C code to implement operations. For +example, if we add: + +.. code-block:: c++ + + /* putchard - putchar that takes a double and returns 0. */ + extern "C" + double putchard(double X) { + putchar((char)X); + return 0; + } + +Now we can produce simple output to the console by using things like: +"``extern putchard(x); putchard(120);``", which prints a lowercase 'x' +on the console (120 is the ASCII code for 'x'). Similar code could be +used to implement file I/O, console input, and many other capabilities +in Kaleidoscope. + +This completes the JIT and optimizer chapter of the Kaleidoscope +tutorial. At this point, we can compile a non-Turing-complete +programming language, optimize and JIT compile it in a user-driven way. +Next up we'll look into `extending the language with control flow +constructs <OCamlLangImpl5.html>`_, tackling some interesting LLVM IR +issues along the way. + +Full Code Listing +================= + +Here is the complete code listing for our running example, enhanced with +the LLVM JIT and optimizer. To build this example, use: + +.. code-block:: bash + + # Compile + ocamlbuild toy.byte + # Run + ./toy.byte + +Here is the code: + +\_tags: + :: + + <{lexer,parser}.ml>: use_camlp4, pp(camlp4of) + <*.{byte,native}>: g++, use_llvm, use_llvm_analysis + <*.{byte,native}>: use_llvm_executionengine, use_llvm_target + <*.{byte,native}>: use_llvm_scalar_opts, use_bindings + +myocamlbuild.ml: + .. code-block:: ocaml + + open Ocamlbuild_plugin;; + + ocaml_lib ~extern:true "llvm";; + ocaml_lib ~extern:true "llvm_analysis";; + ocaml_lib ~extern:true "llvm_executionengine";; + ocaml_lib ~extern:true "llvm_target";; + ocaml_lib ~extern:true "llvm_scalar_opts";; + + flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);; + dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];; + +token.ml: + .. code-block:: ocaml + + (*===----------------------------------------------------------------------=== + * Lexer Tokens + *===----------------------------------------------------------------------===*) + + (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of + * these others for known things. *) + type token = + (* commands *) + | Def | Extern + + (* primary *) + | Ident of string | Number of float + + (* unknown *) + | Kwd of char + +lexer.ml: + .. code-block:: ocaml + + (*===----------------------------------------------------------------------=== + * Lexer + *===----------------------------------------------------------------------===*) + + let rec lex = parser + (* Skip any whitespace. *) + | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream + + (* identifier: [a-zA-Z][a-zA-Z0-9] *) + | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> + let buffer = Buffer.create 1 in + Buffer.add_char buffer c; + lex_ident buffer stream + + (* number: [0-9.]+ *) + | [< ' ('0' .. '9' as c); stream >] -> + let buffer = Buffer.create 1 in + Buffer.add_char buffer c; + lex_number buffer stream + + (* Comment until end of line. *) + | [< ' ('#'); stream >] -> + lex_comment stream + + (* Otherwise, just return the character as its ascii value. *) + | [< 'c; stream >] -> + [< 'Token.Kwd c; lex stream >] + + (* end of stream. *) + | [< >] -> [< >] + + and lex_number buffer = parser + | [< ' ('0' .. '9' | '.' as c); stream >] -> + Buffer.add_char buffer c; + lex_number buffer stream + | [< stream=lex >] -> + [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] + + and lex_ident buffer = parser + | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> + Buffer.add_char buffer c; + lex_ident buffer stream + | [< stream=lex >] -> + match Buffer.contents buffer with + | "def" -> [< 'Token.Def; stream >] + | "extern" -> [< 'Token.Extern; stream >] + | id -> [< 'Token.Ident id; stream >] + + and lex_comment = parser + | [< ' ('\n'); stream=lex >] -> stream + | [< 'c; e=lex_comment >] -> e + | [< >] -> [< >] + +ast.ml: + .. code-block:: ocaml + + (*===----------------------------------------------------------------------=== + * Abstract Syntax Tree (aka Parse Tree) + *===----------------------------------------------------------------------===*) + + (* expr - Base type for all expression nodes. *) + type expr = + (* variant for numeric literals like "1.0". *) + | Number of float + + (* variant for referencing a variable, like "a". *) + | Variable of string + + (* variant for a binary operator. *) + | Binary of char * expr * expr + + (* variant for function calls. *) + | Call of string * expr array + + (* proto - This type represents the "prototype" for a function, which captures + * its name, and its argument names (thus implicitly the number of arguments the + * function takes). *) + type proto = Prototype of string * string array + + (* func - This type represents a function definition itself. *) + type func = Function of proto * expr + +parser.ml: + .. code-block:: ocaml + + (*===---------------------------------------------------------------------=== + * Parser + *===---------------------------------------------------------------------===*) + + (* binop_precedence - This holds the precedence for each binary operator that is + * defined *) + let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 + + (* precedence - Get the precedence of the pending binary operator token. *) + let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 + + (* primary + * ::= identifier + * ::= numberexpr + * ::= parenexpr *) + let rec parse_primary = parser + (* numberexpr ::= number *) + | [< 'Token.Number n >] -> Ast.Number n + + (* parenexpr ::= '(' expression ')' *) + | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e + + (* identifierexpr + * ::= identifier + * ::= identifier '(' argumentexpr ')' *) + | [< 'Token.Ident id; stream >] -> + let rec parse_args accumulator = parser + | [< e=parse_expr; stream >] -> + begin parser + | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e + | [< >] -> e :: accumulator + end stream + | [< >] -> accumulator + in + let rec parse_ident id = parser + (* Call. *) + | [< 'Token.Kwd '('; + args=parse_args []; + 'Token.Kwd ')' ?? "expected ')'">] -> + Ast.Call (id, Array.of_list (List.rev args)) + + (* Simple variable ref. *) + | [< >] -> Ast.Variable id + in + parse_ident id stream + + | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") + + (* binoprhs + * ::= ('+' primary)* *) + and parse_bin_rhs expr_prec lhs stream = + match Stream.peek stream with + (* If this is a binop, find its precedence. *) + | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> + let token_prec = precedence c in + + (* If this is a binop that binds at least as tightly as the current binop, + * consume it, otherwise we are done. *) + if token_prec < expr_prec then lhs else begin + (* Eat the binop. *) + Stream.junk stream; + + (* Parse the primary expression after the binary operator. *) + let rhs = parse_primary stream in + + (* Okay, we know this is a binop. *) + let rhs = + match Stream.peek stream with + | Some (Token.Kwd c2) -> + (* If BinOp binds less tightly with rhs than the operator after + * rhs, let the pending operator take rhs as its lhs. *) + let next_prec = precedence c2 in + if token_prec < next_prec + then parse_bin_rhs (token_prec + 1) rhs stream + else rhs + | _ -> rhs + in + + (* Merge lhs/rhs. *) + let lhs = Ast.Binary (c, lhs, rhs) in + parse_bin_rhs expr_prec lhs stream + end + | _ -> lhs + + (* expression + * ::= primary binoprhs *) + and parse_expr = parser + | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream + + (* prototype + * ::= id '(' id* ')' *) + let parse_prototype = + let rec parse_args accumulator = parser + | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e + | [< >] -> accumulator + in + + parser + | [< 'Token.Ident id; + 'Token.Kwd '(' ?? "expected '(' in prototype"; + args=parse_args []; + 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> + (* success. *) + Ast.Prototype (id, Array.of_list (List.rev args)) + + | [< >] -> + raise (Stream.Error "expected function name in prototype") + + (* definition ::= 'def' prototype expression *) + let parse_definition = parser + | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> + Ast.Function (p, e) + + (* toplevelexpr ::= expression *) + let parse_toplevel = parser + | [< e=parse_expr >] -> + (* Make an anonymous proto. *) + Ast.Function (Ast.Prototype ("", [||]), e) + + (* external ::= 'extern' prototype *) + let parse_extern = parser + | [< 'Token.Extern; e=parse_prototype >] -> e + +codegen.ml: + .. code-block:: ocaml + + (*===----------------------------------------------------------------------=== + * Code Generation + *===----------------------------------------------------------------------===*) + + open Llvm + + exception Error of string + + let context = global_context () + let the_module = create_module context "my cool jit" + let builder = builder context + let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 + let double_type = double_type context + + let rec codegen_expr = function + | Ast.Number n -> const_float double_type n + | Ast.Variable name -> + (try Hashtbl.find named_values name with + | Not_found -> raise (Error "unknown variable name")) + | Ast.Binary (op, lhs, rhs) -> + let lhs_val = codegen_expr lhs in + let rhs_val = codegen_expr rhs in + begin + match op with + | '+' -> build_add lhs_val rhs_val "addtmp" builder + | '-' -> build_sub lhs_val rhs_val "subtmp" builder + | '*' -> build_mul lhs_val rhs_val "multmp" builder + | '<' -> + (* Convert bool 0/1 to double 0.0 or 1.0 *) + let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in + build_uitofp i double_type "booltmp" builder + | _ -> raise (Error "invalid binary operator") + end + | Ast.Call (callee, args) -> + (* Look up the name in the module table. *) + let callee = + match lookup_function callee the_module with + | Some callee -> callee + | None -> raise (Error "unknown function referenced") + in + let params = params callee in + + (* If argument mismatch error. *) + if Array.length params == Array.length args then () else + raise (Error "incorrect # arguments passed"); + let args = Array.map codegen_expr args in + build_call callee args "calltmp" builder + + let codegen_proto = function + | Ast.Prototype (name, args) -> + (* Make the function type: double(double,double) etc. *) + let doubles = Array.make (Array.length args) double_type in + let ft = function_type double_type doubles in + let f = + match lookup_function name the_module with + | None -> declare_function name ft the_module + + (* If 'f' conflicted, there was already something named 'name'. If it + * has a body, don't allow redefinition or reextern. *) + | Some f -> + (* If 'f' already has a body, reject this. *) + if block_begin f <> At_end f then + raise (Error "redefinition of function"); + + (* If 'f' took a different number of arguments, reject. *) + if element_type (type_of f) <> ft then + raise (Error "redefinition of function with different # args"); + f + in + + (* Set names for all arguments. *) + Array.iteri (fun i a -> + let n = args.(i) in + set_value_name n a; + Hashtbl.add named_values n a; + ) (params f); + f + + let codegen_func the_fpm = function + | Ast.Function (proto, body) -> + Hashtbl.clear named_values; + let the_function = codegen_proto proto in + + (* Create a new basic block to start insertion into. *) + let bb = append_block context "entry" the_function in + position_at_end bb builder; + + try + let ret_val = codegen_expr body in + + (* Finish off the function. *) + let _ = build_ret ret_val builder in + + (* Validate the generated code, checking for consistency. *) + Llvm_analysis.assert_valid_function the_function; + + (* Optimize the function. *) + let _ = PassManager.run_function the_function the_fpm in + + the_function + with e -> + delete_function the_function; + raise e + +toplevel.ml: + .. code-block:: ocaml + + (*===----------------------------------------------------------------------=== + * Top-Level parsing and JIT Driver + *===----------------------------------------------------------------------===*) + + open Llvm + open Llvm_executionengine + + (* top ::= definition | external | expression | ';' *) + let rec main_loop the_fpm the_execution_engine stream = + match Stream.peek stream with + | None -> () + + (* ignore top-level semicolons. *) + | Some (Token.Kwd ';') -> + Stream.junk stream; + main_loop the_fpm the_execution_engine stream + + | Some token -> + begin + try match token with + | Token.Def -> + let e = Parser.parse_definition stream in + print_endline "parsed a function definition."; + dump_value (Codegen.codegen_func the_fpm e); + | Token.Extern -> + let e = Parser.parse_extern stream in + print_endline "parsed an extern."; + dump_value (Codegen.codegen_proto e); + | _ -> + (* Evaluate a top-level expression into an anonymous function. *) + let e = Parser.parse_toplevel stream in + print_endline "parsed a top-level expr"; + let the_function = Codegen.codegen_func the_fpm e in + dump_value the_function; + + (* JIT the function, returning a function pointer. *) + let result = ExecutionEngine.run_function the_function [||] + the_execution_engine in + + print_string "Evaluated to "; + print_float (GenericValue.as_float Codegen.double_type result); + print_newline (); + with Stream.Error s | Codegen.Error s -> + (* Skip token for error recovery. *) + Stream.junk stream; + print_endline s; + end; + print_string "ready> "; flush stdout; + main_loop the_fpm the_execution_engine stream + +toy.ml: + .. code-block:: ocaml + + (*===----------------------------------------------------------------------=== + * Main driver code. + *===----------------------------------------------------------------------===*) + + open Llvm + open Llvm_executionengine + open Llvm_target + open Llvm_scalar_opts + + let main () = + ignore (initialize_native_target ()); + + (* Install standard binary operators. + * 1 is the lowest precedence. *) + Hashtbl.add Parser.binop_precedence '<' 10; + Hashtbl.add Parser.binop_precedence '+' 20; + Hashtbl.add Parser.binop_precedence '-' 20; + Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *) + + (* Prime the first token. *) + print_string "ready> "; flush stdout; + let stream = Lexer.lex (Stream.of_channel stdin) in + + (* Create the JIT. *) + let the_execution_engine = ExecutionEngine.create Codegen.the_module in + let the_fpm = PassManager.create_function Codegen.the_module in + + (* Set up the optimizer pipeline. Start with registering info about how the + * target lays out data structures. *) + DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm; + + (* Do simple "peephole" optimizations and bit-twiddling optzn. *) + add_instruction_combination the_fpm; + + (* reassociate expressions. *) + add_reassociation the_fpm; + + (* Eliminate Common SubExpressions. *) + add_gvn the_fpm; + + (* Simplify the control flow graph (deleting unreachable blocks, etc). *) + add_cfg_simplification the_fpm; + + ignore (PassManager.initialize the_fpm); + + (* Run the main "interpreter loop" now. *) + Toplevel.main_loop the_fpm the_execution_engine stream; + + (* Print out all the generated code. *) + dump_module Codegen.the_module + ;; + + main () + +bindings.c + .. code-block:: c + + #include <stdio.h> + + /* putchard - putchar that takes a double and returns 0. */ + extern double putchard(double X) { + putchar((char)X); + return 0; + } + +`Next: Extending the language: control flow <OCamlLangImpl5.html>`_ + |