summaryrefslogtreecommitdiffstats
path: root/docs/LanguageExtensions.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/LanguageExtensions.html')
-rw-r--r--docs/LanguageExtensions.html2082
1 files changed, 0 insertions, 2082 deletions
diff --git a/docs/LanguageExtensions.html b/docs/LanguageExtensions.html
deleted file mode 100644
index 8c0e5b7..0000000
--- a/docs/LanguageExtensions.html
+++ /dev/null
@@ -1,2082 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-<!-- Material used from: HTML 4.01 specs: http://www.w3.org/TR/html401/ -->
-<html>
-<head>
- <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>Clang Language Extensions</title>
- <link type="text/css" rel="stylesheet" href="../menu.css">
- <link type="text/css" rel="stylesheet" href="../content.css">
- <style type="text/css">
- td {
- vertical-align: top;
- }
- th { background-color: #ffddaa; }
- </style>
-</head>
-<body>
-
-<!--#include virtual="../menu.html.incl"-->
-
-<div id="content">
-
-<h1>Clang Language Extensions</h1>
-
-<ul>
-<li><a href="#intro">Introduction</a></li>
-<li><a href="#feature_check">Feature Checking Macros</a></li>
-<li><a href="#has_include">Include File Checking Macros</a></li>
-<li><a href="#builtinmacros">Builtin Macros</a></li>
-<li><a href="#vectors">Vectors and Extended Vectors</a></li>
-<li><a href="#deprecated">Messages on <tt>deprecated</tt> and <tt>unavailable</tt> attributes</a></li>
-<li><a href="#attributes-on-enumerators">Attributes on enumerators</a></li>
-<li><a href="#user_specified_system_framework">'User-Specified' System Frameworks</a></li>
-<li><a href="#availability">Availability attribute</a></li>
-<li><a href="#checking_language_features">Checks for Standard Language Features</a>
- <ul>
- <li><a href="#cxx98">C++98</a>
- <ul>
- <li><a href="#cxx_exceptions">C++ exceptions</a></li>
- <li><a href="#cxx_rtti">C++ RTTI</a></li>
- </ul></li>
- <li><a href="#cxx11">C++11</a>
- <ul>
- <li><a href="#cxx_access_control_sfinae">C++11 SFINAE includes access control</a></li>
- <li><a href="#cxx_alias_templates">C++11 alias templates</a></li>
- <li><a href="#cxx_alignas">C++11 alignment specifiers</a></li>
- <li><a href="#cxx_attributes">C++11 attributes</a></li>
- <li><a href="#cxx_constexpr">C++11 generalized constant expressions</a></li>
- <li><a href="#cxx_decltype">C++11 <tt>decltype()</tt></a></li>
- <li><a href="#cxx_default_function_template_args">C++11 default template arguments in function templates</a></li>
- <li><a href="#cxx_defaulted_functions">C++11 defaulted functions</a></li>
- <li><a href="#cxx_delegating_constructor">C++11 delegating constructors</a></li>
- <li><a href="#cxx_deleted_functions">C++11 deleted functions</a></li>
- <li><a href="#cxx_explicit_conversions">C++11 explicit conversion functions</a></li>
- <li><a href="#cxx_generalized_initializers">C++11 generalized initializers</a></li>
- <li><a href="#cxx_implicit_moves">C++11 implicit move constructors/assignment operators</a></li>
- <li><a href="#cxx_inheriting_constructors">C++11 inheriting constructors</a></li>
- <li><a href="#cxx_inline_namespaces">C++11 inline namespaces</a></li>
- <li><a href="#cxx_lambdas">C++11 lambdas</a></li>
- <li><a href="#cxx_local_type_template_args">C++11 local and unnamed types as template arguments</a></li>
- <li><a href="#cxx_noexcept">C++11 noexcept specification</a></li>
- <li><a href="#cxx_nonstatic_member_init">C++11 in-class non-static data member initialization</a></li>
- <li><a href="#cxx_nullptr">C++11 nullptr</a></li>
- <li><a href="#cxx_override_control">C++11 override control</a></li>
- <li><a href="#cxx_range_for">C++11 range-based for loop</a></li>
- <li><a href="#cxx_raw_string_literals">C++11 raw string literals</a></li>
- <li><a href="#cxx_rvalue_references">C++11 rvalue references</a></li>
- <li><a href="#cxx_reference_qualified_functions">C++11 reference-qualified functions</a></li>
- <li><a href="#cxx_static_assert">C++11 <tt>static_assert()</tt></a></li>
- <li><a href="#cxx_auto_type">C++11 type inference</a></li>
- <li><a href="#cxx_strong_enums">C++11 strongly-typed enumerations</a></li>
- <li><a href="#cxx_trailing_return">C++11 trailing return type</a></li>
- <li><a href="#cxx_unicode_literals">C++11 Unicode string literals</a></li>
- <li><a href="#cxx_unrestricted_unions">C++11 unrestricted unions</a></li>
- <li><a href="#cxx_user_literals">C++11 user-defined literals</a></li>
- <li><a href="#cxx_variadic_templates">C++11 variadic templates</a></li>
- </ul></li>
- <li><a href="#c11">C11</a>
- <ul>
- <li><a href="#c_alignas">C11 alignment specifiers</a></li>
- <li><a href="#c_atomic">C11 atomic operations</a></li>
- <li><a href="#c_generic_selections">C11 generic selections</a></li>
- <li><a href="#c_static_assert">C11 <tt>_Static_assert()</tt></a></li>
- </ul></li>
-</ul></li>
-<li><a href="#checking_type_traits">Checks for Type Traits</a></li>
-<li><a href="#blocks">Blocks</a></li>
-<li><a href="#objc_features">Objective-C Features</a>
- <ul>
- <li><a href="#objc_instancetype">Related result types</a></li>
- <li><a href="#objc_arc">Automatic reference counting</a></li>
- <li><a href="#objc_fixed_enum">Enumerations with a fixed underlying type</a></li>
- <li><a href="#objc_lambdas">Interoperability with C++11 lambdas</a></li>
- <li><a href="#objc_object_literals_subscripting">Object Literals and Subscripting</a></li>
- </ul>
-</li>
-<li><a href="#overloading-in-c">Function Overloading in C</a></li>
-<li><a href="#complex-list-init">Initializer lists for complex numbers in C</a></li>
-<li><a href="#builtins">Builtin Functions</a>
- <ul>
- <li><a href="#__builtin_readcyclecounter">__builtin_readcyclecounter</a></li>
- <li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li>
- <li><a href="#__builtin_unreachable">__builtin_unreachable</a></li>
- <li><a href="#__sync_swap">__sync_swap</a></li>
- </ul>
-</li>
-<li><a href="#non-standard-attributes">Non-standard C++11 Attributes</a>
-<ul>
- <li><a href="#clang__fallthrough">The <tt>clang::fallthrough</tt> attribute</a></li>
-</ul>
-</li>
-<li><a href="#targetspecific">Target-Specific Extensions</a>
- <ul>
- <li><a href="#x86-specific">X86/X86-64 Language Extensions</a></li>
- </ul>
-</li>
-<li><a href="#analyzerspecific">Static Analysis-Specific Extensions</a></li>
-<li><a href="#dynamicanalyzerspecific">Dynamic Analysis-Specific Extensions</a>
- <ul>
- <li><a href="#address_sanitizer">AddressSanitizer</a></li>
- </ul>
-</li>
-<li><a href="#threadsafety">Thread Safety Annotation Checking</a>
- <ul>
- <li><a href="#ts_noanal"><tt>no_thread_safety_analysis</tt></a></li>
- <li><a href="#ts_lockable"><tt>lockable</tt></a></li>
- <li><a href="#ts_scopedlockable"><tt>scoped_lockable</tt></a></li>
- <li><a href="#ts_guardedvar"><tt>guarded_var</tt></a></li>
- <li><a href="#ts_ptguardedvar"><tt>pt_guarded_var</tt></a></li>
- <li><a href="#ts_guardedby"><tt>guarded_by(l)</tt></a></li>
- <li><a href="#ts_ptguardedby"><tt>pt_guarded_by(l)</tt></a></li>
- <li><a href="#ts_acquiredbefore"><tt>acquired_before(...)</tt></a></li>
- <li><a href="#ts_acquiredafter"><tt>acquired_after(...)</tt></a></li>
- <li><a href="#ts_elf"><tt>exclusive_lock_function(...)</tt></a></li>
- <li><a href="#ts_slf"><tt>shared_lock_function(...)</tt></a></li>
- <li><a href="#ts_etf"><tt>exclusive_trylock_function(...)</tt></a></li>
- <li><a href="#ts_stf"><tt>shared_trylock_function(...)</tt></a></li>
- <li><a href="#ts_uf"><tt>unlock_function(...)</tt></a></li>
- <li><a href="#ts_lr"><tt>lock_returned(l)</tt></a></li>
- <li><a href="#ts_le"><tt>locks_excluded(...)</tt></a></li>
- <li><a href="#ts_elr"><tt>exclusive_locks_required(...)</tt></a></li>
- <li><a href="#ts_slr"><tt>shared_locks_required(...)</tt></a></li>
- </ul>
-</li>
-<li><a href="#type_safety">Type Safety Checking</a>
- <ul>
- <li><a href="#argument_with_type_tag"><tt>argument_with_type_tag(...)</tt></a></li>
- <li><a href="#pointer_with_type_tag"><tt>pointer_with_type_tag(...)</tt></a></li>
- <li><a href="#type_tag_for_datatype"><tt>type_tag_for_datatype(...)</tt></a></li>
- </ul>
-</li>
-</ul>
-
-<!-- ======================================================================= -->
-<h2 id="intro">Introduction</h2>
-<!-- ======================================================================= -->
-
-<p>This document describes the language extensions provided by Clang. In
-addition to the language extensions listed here, Clang aims to support a broad
-range of GCC extensions. Please see the <a
-href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for
-more information on these extensions.</p>
-
-<!-- ======================================================================= -->
-<h2 id="feature_check">Feature Checking Macros</h2>
-<!-- ======================================================================= -->
-
-<p>Language extensions can be very useful, but only if you know you can depend
-on them. In order to allow fine-grain features checks, we support three builtin
-function-like macros. This allows you to directly test for a feature in your
-code without having to resort to something like autoconf or fragile "compiler
-version checks".</p>
-
-<!-- ======================================================================= -->
-<h3><a name="__has_builtin">__has_builtin</a></h3>
-<!-- ======================================================================= -->
-
-<p>This function-like macro takes a single identifier argument that is the name
-of a builtin function. It evaluates to 1 if the builtin is supported or 0 if
-not. It can be used like this:</p>
-
-<blockquote>
-<pre>
-#ifndef __has_builtin // Optional of course.
- #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
-#endif
-
-...
-#if __has_builtin(__builtin_trap)
- __builtin_trap();
-#else
- abort();
-#endif
-...
-</pre>
-</blockquote>
-
-
-<!-- ======================================================================= -->
-<h3><a name="__has_feature_extension"> __has_feature and __has_extension</a></h3>
-<!-- ======================================================================= -->
-
-<p>These function-like macros take a single identifier argument that is the
-name of a feature. <code>__has_feature</code> evaluates to 1 if the feature
-is both supported by Clang and standardized in the current language standard
-or 0 if not (but see <a href="#has_feature_back_compat">below</a>), while
-<code>__has_extension</code> evaluates to 1 if the feature is supported by
-Clang in the current language (either as a language extension or a standard
-language feature) or 0 if not. They can be used like this:</p>
-
-<blockquote>
-<pre>
-#ifndef __has_feature // Optional of course.
- #define __has_feature(x) 0 // Compatibility with non-clang compilers.
-#endif
-#ifndef __has_extension
- #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
-#endif
-
-...
-#if __has_feature(cxx_rvalue_references)
-// This code will only be compiled with the -std=c++11 and -std=gnu++11
-// options, because rvalue references are only standardized in C++11.
-#endif
-
-#if __has_extension(cxx_rvalue_references)
-// This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
-// and -std=gnu++98 options, because rvalue references are supported as a
-// language extension in C++98.
-#endif
-</pre>
-</blockquote>
-
-<p id="has_feature_back_compat">For backwards compatibility reasons,
-<code>__has_feature</code> can also be used to test for support for
-non-standardized features, i.e. features not prefixed <code>c_</code>,
-<code>cxx_</code> or <code>objc_</code>.</p>
-
-<p id="has_feature_for_non_language_features">
-Another use of <code>__has_feature</code> is to check for compiler features
-not related to the language standard, such as e.g.
-<a href="AddressSanitizer.html">AddressSanitizer</a>.
-
-<p>If the <code>-pedantic-errors</code> option is given,
-<code>__has_extension</code> is equivalent to <code>__has_feature</code>.</p>
-
-<p>The feature tag is described along with the language feature below.</p>
-
-<p>The feature name or extension name can also be specified with a preceding and
-following <code>__</code> (double underscore) to avoid interference from a macro
-with the same name. For instance, <code>__cxx_rvalue_references__</code> can be
-used instead of <code>cxx_rvalue_references</code>.</p>
-
-<!-- ======================================================================= -->
-<h3><a name="__has_attribute">__has_attribute</a></h3>
-<!-- ======================================================================= -->
-
-<p>This function-like macro takes a single identifier argument that is the name
-of an attribute. It evaluates to 1 if the attribute is supported or 0 if not. It
-can be used like this:</p>
-
-<blockquote>
-<pre>
-#ifndef __has_attribute // Optional of course.
- #define __has_attribute(x) 0 // Compatibility with non-clang compilers.
-#endif
-
-...
-#if __has_attribute(always_inline)
-#define ALWAYS_INLINE __attribute__((always_inline))
-#else
-#define ALWAYS_INLINE
-#endif
-...
-</pre>
-</blockquote>
-
-<p>The attribute name can also be specified with a preceding and
-following <code>__</code> (double underscore) to avoid interference from a macro
-with the same name. For instance, <code>__always_inline__</code> can be used
-instead of <code>always_inline</code>.</p>
-
-<!-- ======================================================================= -->
-<h2 id="has_include">Include File Checking Macros</h2>
-<!-- ======================================================================= -->
-
-<p>Not all developments systems have the same include files.
-The <a href="#__has_include">__has_include</a> and
-<a href="#__has_include_next">__has_include_next</a> macros allow you to
-check for the existence of an include file before doing
-a possibly failing #include directive.</p>
-
-<!-- ======================================================================= -->
-<h3><a name="__has_include">__has_include</a></h3>
-<!-- ======================================================================= -->
-
-<p>This function-like macro takes a single file name string argument that
-is the name of an include file. It evaluates to 1 if the file can
-be found using the include paths, or 0 otherwise:</p>
-
-<blockquote>
-<pre>
-// Note the two possible file name string formats.
-#if __has_include("myinclude.h") &amp;&amp; __has_include(&lt;stdint.h&gt;)
-# include "myinclude.h"
-#endif
-
-// To avoid problem with non-clang compilers not having this macro.
-#if defined(__has_include) &amp;&amp; __has_include("myinclude.h")
-# include "myinclude.h"
-#endif
-</pre>
-</blockquote>
-
-<p>To test for this feature, use #if defined(__has_include).</p>
-
-<!-- ======================================================================= -->
-<h3><a name="__has_include_next">__has_include_next</a></h3>
-<!-- ======================================================================= -->
-
-<p>This function-like macro takes a single file name string argument that
-is the name of an include file. It is like __has_include except that it
-looks for the second instance of the given file found in the include
-paths. It evaluates to 1 if the second instance of the file can
-be found using the include paths, or 0 otherwise:</p>
-
-<blockquote>
-<pre>
-// Note the two possible file name string formats.
-#if __has_include_next("myinclude.h") &amp;&amp; __has_include_next(&lt;stdint.h&gt;)
-# include_next "myinclude.h"
-#endif
-
-// To avoid problem with non-clang compilers not having this macro.
-#if defined(__has_include_next) &amp;&amp; __has_include_next("myinclude.h")
-# include_next "myinclude.h"
-#endif
-</pre>
-</blockquote>
-
-<p>Note that __has_include_next, like the GNU extension
-#include_next directive, is intended for use in headers only,
-and will issue a warning if used in the top-level compilation
-file. A warning will also be issued if an absolute path
-is used in the file argument.</p>
-
-
-<!-- ======================================================================= -->
-<h3><a name="__has_warning">__has_warning</a></h3>
-<!-- ======================================================================= -->
-
-<p>This function-like macro takes a string literal that represents a command
- line option for a warning and returns true if that is a valid warning
- option.</p>
-
-<blockquote>
-<pre>
-#if __has_warning("-Wformat")
-...
-#endif
-</pre>
-</blockquote>
-
-<!-- ======================================================================= -->
-<h2 id="builtinmacros">Builtin Macros</h2>
-<!-- ======================================================================= -->
-
-<dl>
- <dt><code>__BASE_FILE__</code></dt>
- <dd>Defined to a string that contains the name of the main input
- file passed to Clang.</dd>
-
- <dt><code>__COUNTER__</code></dt>
- <dd>Defined to an integer value that starts at zero and is
- incremented each time the <code>__COUNTER__</code> macro is
- expanded.</dd>
-
- <dt><code>__INCLUDE_LEVEL__</code></dt>
- <dd>Defined to an integral value that is the include depth of the
- file currently being translated. For the main file, this value is
- zero.</dd>
-
- <dt><code>__TIMESTAMP__</code></dt>
- <dd>Defined to the date and time of the last modification of the
- current source file.</dd>
-
- <dt><code>__clang__</code></dt>
- <dd>Defined when compiling with Clang</dd>
-
- <dt><code>__clang_major__</code></dt>
- <dd>Defined to the major marketing version number of Clang (e.g., the
- 2 in 2.0.1). Note that marketing version numbers should not be used to
- check for language features, as different vendors use different numbering
- schemes. Instead, use the <a href="#feature_check">feature checking
- macros</a>.</dd>
-
- <dt><code>__clang_minor__</code></dt>
- <dd>Defined to the minor version number of Clang (e.g., the 0 in
- 2.0.1). Note that marketing version numbers should not be used to
- check for language features, as different vendors use different numbering
- schemes. Instead, use the <a href="#feature_check">feature checking
- macros</a>.</dd>
-
- <dt><code>__clang_patchlevel__</code></dt>
- <dd>Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).</dd>
-
- <dt><code>__clang_version__</code></dt>
- <dd>Defined to a string that captures the Clang marketing version, including
- the Subversion tag or revision number, e.g., "1.5 (trunk 102332)".</dd>
-</dl>
-
-<!-- ======================================================================= -->
-<h2 id="vectors">Vectors and Extended Vectors</h2>
-<!-- ======================================================================= -->
-
-<p>Supports the GCC, OpenCL, AltiVec and NEON vector extensions.</p>
-
-<p>OpenCL vector types are created using <tt>ext_vector_type</tt> attribute. It
-support for <tt>V.xyzw</tt> syntax and other tidbits as seen in OpenCL. An
-example is:</p>
-
-<blockquote>
-<pre>
-typedef float float4 <b>__attribute__((ext_vector_type(4)))</b>;
-typedef float float2 <b>__attribute__((ext_vector_type(2)))</b>;
-
-float4 foo(float2 a, float2 b) {
- float4 c;
- c.xz = a;
- c.yw = b;
- return c;
-}
-</pre>
-</blockquote>
-
-<p>Query for this feature with
-<tt>__has_extension(attribute_ext_vector_type)</tt>.</p>
-
-<p>Giving <tt>-faltivec</tt> option to clang enables support for AltiVec vector
-syntax and functions. For example:</p>
-
-<blockquote>
-<pre>
-vector float foo(vector int a) {
- vector int b;
- b = vec_add(a, a) + a;
- return (vector float)b;
-}
-</pre>
-</blockquote>
-
-<p>NEON vector types are created using <tt>neon_vector_type</tt> and
-<tt>neon_polyvector_type</tt> attributes. For example:</p>
-
-<blockquote>
-<pre>
-typedef <b>__attribute__((neon_vector_type(8)))</b> int8_t int8x8_t;
-typedef <b>__attribute__((neon_polyvector_type(16)))</b> poly8_t poly8x16_t;
-
-int8x8_t foo(int8x8_t a) {
- int8x8_t v;
- v = a;
- return v;
-}
-</pre>
-</blockquote>
-
-<!-- ======================================================================= -->
-<h3><a name="vector_literals">Vector Literals</a></h3>
-<!-- ======================================================================= -->
-
-<p>Vector literals can be used to create vectors from a set of scalars, or
-vectors. Either parentheses or braces form can be used. In the parentheses form
-the number of literal values specified must be one, i.e. referring to a scalar
-value, or must match the size of the vector type being created. If a single
-scalar literal value is specified, the scalar literal value will be replicated
-to all the components of the vector type. In the brackets form any number of
-literals can be specified. For example:</p>
-
-<blockquote>
-<pre>
-typedef int v4si __attribute__((__vector_size__(16)));
-typedef float float4 __attribute__((ext_vector_type(4)));
-typedef float float2 __attribute__((ext_vector_type(2)));
-
-v4si vsi = (v4si){1, 2, 3, 4};
-float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
-vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
-vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
-vector int vi3 = (vector int)(1, 2); // error
-vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
-vector int vi5 = (vector int)(1, 2, 3, 4);
-float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
-</pre>
-</blockquote>
-
-<!-- ======================================================================= -->
-<h3><a name="vector_operations">Vector Operations</a></h3>
-<!-- ======================================================================= -->
-
-<p>The table below shows the support for each operation by vector extension.
-A dash indicates that an operation is not accepted according to a corresponding
-specification.</p>
-
-<table width="500" border="1" cellspacing="0">
- <tr>
- <th>Operator</th>
- <th>OpenCL</th>
- <th>AltiVec</th>
- <th>GCC</th>
- <th>NEON</th>
- </tr>
- <tr>
- <td>[]</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">-</td>
- </tr>
- <tr>
- <td>unary operators +, -</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">-</td>
- </tr>
- <tr>
- <td>++, --</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">-</td>
- <td align="center">-</td>
- </tr>
- <tr>
- <td>+, -, *, /, %</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">-</td>
- </tr>
- <tr>
- <td>bitwise operators &, |, ^, ~</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">-</td>
- </tr>
- <tr>
- <td>&gt&gt, &lt&lt</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">-</td>
- </tr>
- <tr>
- <td>!, &&,||</td>
- <td align="center">no</td>
- <td align="center">-</td>
- <td align="center">-</td>
- <td align="center">-</td>
- </tr>
- <tr>
- <td>==,!=, >, <, >=, <=</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">-</td>
- <td align="center">-</td>
- </tr>
- <tr>
- <td>=</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- </tr>
- <tr>
- <td>:?</td>
- <td align="center">yes</td>
- <td align="center">-</td>
- <td align="center">-</td>
- <td align="center">-</td>
- </tr>
- <tr>
- <td>sizeof</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- <td align="center">yes</td>
- </tr>
-</table>
-
-<p>See also <a href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p>
-
-<!-- ======================================================================= -->
-<h2 id="deprecated">Messages on <tt>deprecated</tt> and <tt>unavailable</tt> Attributes</h2>
-<!-- ======================================================================= -->
-
-<p>An optional string message can be added to the <tt>deprecated</tt>
-and <tt>unavailable</tt> attributes. For example:</p>
-
-<blockquote>
-<pre>void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));</pre>
-</blockquote>
-
-<p>If the deprecated or unavailable declaration is used, the message
-will be incorporated into the appropriate diagnostic:</p>
-
-<blockquote>
-<pre>harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
- [-Wdeprecated-declarations]
- explode();
- ^</pre>
-</blockquote>
-
-<p>Query for this feature
-with <tt>__has_extension(attribute_deprecated_with_message)</tt>
-and <tt>__has_extension(attribute_unavailable_with_message)</tt>.</p>
-
-<!-- ======================================================================= -->
-<h2 id="attributes-on-enumerators">Attributes on Enumerators</h2>
-<!-- ======================================================================= -->
-
-<p>Clang allows attributes to be written on individual enumerators.
-This allows enumerators to be deprecated, made unavailable, etc. The
-attribute must appear after the enumerator name and before any
-initializer, like so:</p>
-
-<blockquote>
-<pre>enum OperationMode {
- OM_Invalid,
- OM_Normal,
- OM_Terrified __attribute__((deprecated)),
- OM_AbortOnError __attribute__((deprecated)) = 4
-};</pre>
-</blockquote>
-
-<p>Attributes on the <tt>enum</tt> declaration do not apply to
-individual enumerators.</p>
-
-<p>Query for this feature with <tt>__has_extension(enumerator_attributes)</tt>.</p>
-
-<!-- ======================================================================= -->
-<h2 id="user_specified_system_framework">'User-Specified' System Frameworks</h2>
-<!-- ======================================================================= -->
-
-<p>Clang provides a mechanism by which frameworks can be built in such a way
-that they will always be treated as being 'system frameworks', even if they are
-not present in a system framework directory. This can be useful to system
-framework developers who want to be able to test building other applications
-with development builds of their framework, including the manner in which the
-compiler changes warning behavior for system headers.</p>
-
-<p>Framework developers can opt-in to this mechanism by creating a
-'.system_framework' file at the top-level of their framework. That is, the
-framework should have contents like:</p>
-
-<pre>
- .../TestFramework.framework
- .../TestFramework.framework/.system_framework
- .../TestFramework.framework/Headers
- .../TestFramework.framework/Headers/TestFramework.h
- ...
-</pre>
-
-<p>Clang will treat the presence of this file as an indicator that the framework
-should be treated as a system framework, regardless of how it was found in the
-framework search path. For consistency, we recommend that such files never be
-included in installed versions of the framework.</p>
-
-<!-- ======================================================================= -->
-<h2 id="availability">Availability attribute</h2>
-<!-- ======================================================================= -->
-
-<p>Clang introduces the <code>availability</code> attribute, which can
-be placed on declarations to describe the lifecycle of that
-declaration relative to operating system versions. Consider the function declaration for a hypothetical function <code>f</code>:</p>
-
-<pre>
-void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7)));
-</pre>
-
-<p>The availability attribute states that <code>f</code> was introduced in Mac OS X 10.4, deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7. This information is used by Clang to determine when it is safe to use <code>f</code>: for example, if Clang is instructed to compile code for Mac OS X 10.5, a call to <code>f()</code> succeeds. If Clang is instructed to compile code for Mac OS X 10.6, the call succeeds but Clang emits a warning specifying that the function is deprecated. Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call fails because <code>f()</code> is no longer available.</p>
-
-<p>The availablility attribute is a comma-separated list starting with the platform name and then including clauses specifying important milestones in the declaration's lifetime (in any order) along with additional information. Those clauses can be:</p>
-
-<dl>
- <dt>introduced=<i>version</i></dt>
- <dd>The first version in which this declaration was introduced.</dd>
-
- <dt>deprecated=<i>version</i></dt>
- <dd>The first version in which this declaration was deprecated, meaning that users should migrate away from this API.</dd>
-
- <dt>obsoleted=<i>version</i></dt>
- <dd>The first version in which this declaration was obsoleted, meaning that it was removed completely and can no longer be used.</dd>
-
- <dt>unavailable</dt>
- <dd>This declaration is never available on this platform.</dd>
-
- <dt>message=<i>string-literal</i></dt>
- <dd>Additional message text that Clang will provide when emitting a warning or error about use of a deprecated or obsoleted declaration. Useful to direct users to replacement APIs.</dd>
-</dl>
-
-<p>Multiple availability attributes can be placed on a declaration, which may correspond to different platforms. Only the availability attribute with the platform corresponding to the target platform will be used; any others will be ignored. If no availability attribute specifies availability for the current target platform, the availability attributes are ignored. Supported platforms are:</p>
-
-<dl>
- <dt>ios</dt>
- <dd>Apple's iOS operating system. The minimum deployment target is specified by the <code>-mios-version-min=<i>version</i></code> or <code>-miphoneos-version-min=<i>version</i></code> command-line arguments.</dd>
-
- <dt>macosx</dt>
- <dd>Apple's Mac OS X operating system. The minimum deployment target is specified by the <code>-mmacosx-version-min=<i>version</i></code> command-line argument.</dd>
-</dl>
-
-<p>A declaration can be used even when deploying back to a platform
-version prior to when the declaration was introduced. When this
-happens, the declaration is <a
- href="https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html">weakly
-linked</a>, as if the <code>weak_import</code> attribute were added to the declaration. A weakly-linked declaration may or may not be present a run-time, and a program can determine whether the declaration is present by checking whether the address of that declaration is non-NULL.</p>
-
-<!-- ======================================================================= -->
-<h2 id="checking_language_features">Checks for Standard Language Features</h2>
-<!-- ======================================================================= -->
-
-<p>The <tt>__has_feature</tt> macro can be used to query if certain standard
-language features are enabled. The <tt>__has_extension</tt> macro can be used
-to query if language features are available as an extension when compiling for
-a standard which does not provide them. The features which can be tested are
-listed here.</p>
-
-<h3 id="cxx98">C++98</h3>
-
-<p>The features listed below are part of the C++98 standard. These features are
-enabled by default when compiling C++ code.</p>
-
-<h4 id="cxx_exceptions">C++ exceptions</h4>
-
-<p>Use <tt>__has_feature(cxx_exceptions)</tt> to determine if C++ exceptions have been enabled. For
-example, compiling code with <tt>-fno-exceptions</tt> disables C++ exceptions.</p>
-
-<h4 id="cxx_rtti">C++ RTTI</h4>
-
-<p>Use <tt>__has_feature(cxx_rtti)</tt> to determine if C++ RTTI has been enabled. For example,
-compiling code with <tt>-fno-rtti</tt> disables the use of RTTI.</p>
-
-<h3 id="cxx11">C++11</h3>
-
-<p>The features listed below are part of the C++11 standard. As a result, all
-these features are enabled with the <tt>-std=c++11</tt> or <tt>-std=gnu++11</tt>
-option when compiling C++ code.</p>
-
-<h4 id="cxx_access_control_sfinae">C++11 SFINAE includes access control</h4>
-
-<p>Use <tt>__has_feature(cxx_access_control_sfinae)</tt> or <tt>__has_extension(cxx_access_control_sfinae)</tt> to determine whether access-control errors (e.g., calling a private constructor) are considered to be template argument deduction errors (aka SFINAE errors), per <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170">C++ DR1170</a>.</p>
-
-<h4 id="cxx_alias_templates">C++11 alias templates</h4>
-
-<p>Use <tt>__has_feature(cxx_alias_templates)</tt> or
-<tt>__has_extension(cxx_alias_templates)</tt> to determine if support for
-C++11's alias declarations and alias templates is enabled.</p>
-
-<h4 id="cxx_alignas">C++11 alignment specifiers</h4>
-
-<p>Use <tt>__has_feature(cxx_alignas)</tt> or
-<tt>__has_extension(cxx_alignas)</tt> to determine if support for alignment
-specifiers using <tt>alignas</tt> is enabled.</p>
-
-<h4 id="cxx_attributes">C++11 attributes</h4>
-
-<p>Use <tt>__has_feature(cxx_attributes)</tt> or
-<tt>__has_extension(cxx_attributes)</tt> to determine if support for attribute
-parsing with C++11's square bracket notation is enabled.</p>
-
-<h4 id="cxx_constexpr">C++11 generalized constant expressions</h4>
-
-<p>Use <tt>__has_feature(cxx_constexpr)</tt> to determine if support
-for generalized constant expressions (e.g., <tt>constexpr</tt>) is
-enabled.</p>
-
-<h4 id="cxx_decltype">C++11 <tt>decltype()</tt></h4>
-
-<p>Use <tt>__has_feature(cxx_decltype)</tt> or
-<tt>__has_extension(cxx_decltype)</tt> to determine if support for the
-<tt>decltype()</tt> specifier is enabled. C++11's <tt>decltype</tt>
-does not require type-completeness of a function call expression.
-Use <tt>__has_feature(cxx_decltype_incomplete_return_types)</tt>
-or <tt>__has_extension(cxx_decltype_incomplete_return_types)</tt>
-to determine if support for this feature is enabled.</p>
-
-<h4 id="cxx_default_function_template_args">C++11 default template arguments in function templates</h4>
-
-<p>Use <tt>__has_feature(cxx_default_function_template_args)</tt> or
-<tt>__has_extension(cxx_default_function_template_args)</tt> to determine
-if support for default template arguments in function templates is enabled.</p>
-
-<h4 id="cxx_defaulted_functions">C++11 <tt>default</tt>ed functions</h4>
-
-<p>Use <tt>__has_feature(cxx_defaulted_functions)</tt> or
-<tt>__has_extension(cxx_defaulted_functions)</tt> to determine if support for
-defaulted function definitions (with <tt>= default</tt>) is enabled.</p>
-
-<h4 id="cxx_delegating_constructors">C++11 delegating constructors</h4>
-
-<p>Use <tt>__has_feature(cxx_delegating_constructors)</tt> to determine if
-support for delegating constructors is enabled.</p>
-
-<h4 id="cxx_deleted_functions">C++11 <tt>delete</tt>d functions</h4>
-
-<p>Use <tt>__has_feature(cxx_deleted_functions)</tt> or
-<tt>__has_extension(cxx_deleted_functions)</tt> to determine if support for
-deleted function definitions (with <tt>= delete</tt>) is enabled.</p>
-
-<h4 id="cxx_explicit_conversions">C++11 explicit conversion functions</h4>
-<p>Use <tt>__has_feature(cxx_explicit_conversions)</tt> to determine if support for <tt>explicit</tt> conversion functions is enabled.</p>
-
-<h4 id="cxx_generalized_initializers">C++11 generalized initializers</h4>
-
-<p>Use <tt>__has_feature(cxx_generalized_initializers)</tt> to determine if
-support for generalized initializers (using braced lists and
-<tt>std::initializer_list</tt>) is enabled.</p>
-
-<h4 id="cxx_implicit_moves">C++11 implicit move constructors/assignment operators</h4>
-
-<p>Use <tt>__has_feature(cxx_implicit_moves)</tt> to determine if Clang will
-implicitly generate move constructors and move assignment operators where needed.</p>
-
-<h4 id="cxx_inheriting_constructors">C++11 inheriting constructors</h4>
-
-<p>Use <tt>__has_feature(cxx_inheriting_constructors)</tt> to determine if support for inheriting constructors is enabled. Clang does not currently implement this feature.</p>
-
-<h4 id="cxx_inline_namespaces">C++11 inline namespaces</h4>
-
-<p>Use <tt>__has_feature(cxx_inline_namespaces)</tt> or
-<tt>__has_extension(cxx_inline_namespaces)</tt> to determine if support for
-inline namespaces is enabled.</p>
-
-<h4 id="cxx_lambdas">C++11 lambdas</h4>
-
-<p>Use <tt>__has_feature(cxx_lambdas)</tt> or
-<tt>__has_extension(cxx_lambdas)</tt> to determine if support for lambdas
-is enabled. </p>
-
-<h4 id="cxx_local_type_template_args">C++11 local and unnamed types as template arguments</h4>
-
-<p>Use <tt>__has_feature(cxx_local_type_template_args)</tt> or
-<tt>__has_extension(cxx_local_type_template_args)</tt> to determine if
-support for local and unnamed types as template arguments is enabled.</p>
-
-<h4 id="cxx_noexcept">C++11 noexcept</h4>
-
-<p>Use <tt>__has_feature(cxx_noexcept)</tt> or
-<tt>__has_extension(cxx_noexcept)</tt> to determine if support for noexcept
-exception specifications is enabled.</p>
-
-<h4 id="cxx_nonstatic_member_init">C++11 in-class non-static data member initialization</h4>
-
-<p>Use <tt>__has_feature(cxx_nonstatic_member_init)</tt> to determine whether in-class initialization of non-static data members is enabled.</p>
-
-<h4 id="cxx_nullptr">C++11 <tt>nullptr</tt></h4>
-
-<p>Use <tt>__has_feature(cxx_nullptr)</tt> or
-<tt>__has_extension(cxx_nullptr)</tt> to determine if support for
-<tt>nullptr</tt> is enabled.</p>
-
-<h4 id="cxx_override_control">C++11 <tt>override control</tt></h4>
-
-<p>Use <tt>__has_feature(cxx_override_control)</tt> or
-<tt>__has_extension(cxx_override_control)</tt> to determine if support for
-the override control keywords is enabled.</p>
-
-<h4 id="cxx_reference_qualified_functions">C++11 reference-qualified functions</h4>
-<p>Use <tt>__has_feature(cxx_reference_qualified_functions)</tt> or
-<tt>__has_extension(cxx_reference_qualified_functions)</tt> to determine
-if support for reference-qualified functions (e.g., member functions with
-<code>&amp;</code> or <code>&amp;&amp;</code> applied to <code>*this</code>)
-is enabled.</p>
-
-<h4 id="cxx_range_for">C++11 range-based <tt>for</tt> loop</h4>
-
-<p>Use <tt>__has_feature(cxx_range_for)</tt> or
-<tt>__has_extension(cxx_range_for)</tt> to determine if support for the
-range-based for loop is enabled. </p>
-
-<h4 id="cxx_raw_string_literals">C++11 raw string literals</h4>
-<p>Use <tt>__has_feature(cxx_raw_string_literals)</tt> to determine if support
-for raw string literals (e.g., <tt>R"x(foo\bar)x"</tt>) is enabled.</p>
-
-<h4 id="cxx_rvalue_references">C++11 rvalue references</h4>
-
-<p>Use <tt>__has_feature(cxx_rvalue_references)</tt> or
-<tt>__has_extension(cxx_rvalue_references)</tt> to determine if support for
-rvalue references is enabled. </p>
-
-<h4 id="cxx_static_assert">C++11 <tt>static_assert()</tt></h4>
-
-<p>Use <tt>__has_feature(cxx_static_assert)</tt> or
-<tt>__has_extension(cxx_static_assert)</tt> to determine if support for
-compile-time assertions using <tt>static_assert</tt> is enabled.</p>
-
-<h4 id="cxx_auto_type">C++11 type inference</h4>
-
-<p>Use <tt>__has_feature(cxx_auto_type)</tt> or
-<tt>__has_extension(cxx_auto_type)</tt> to determine C++11 type inference is
-supported using the <tt>auto</tt> specifier. If this is disabled, <tt>auto</tt>
-will instead be a storage class specifier, as in C or C++98.</p>
-
-<h4 id="cxx_strong_enums">C++11 strongly typed enumerations</h4>
-
-<p>Use <tt>__has_feature(cxx_strong_enums)</tt> or
-<tt>__has_extension(cxx_strong_enums)</tt> to determine if support for
-strongly typed, scoped enumerations is enabled.</p>
-
-<h4 id="cxx_trailing_return">C++11 trailing return type</h4>
-
-<p>Use <tt>__has_feature(cxx_trailing_return)</tt> or
-<tt>__has_extension(cxx_trailing_return)</tt> to determine if support for the
-alternate function declaration syntax with trailing return type is enabled.</p>
-
-<h4 id="cxx_unicode_literals">C++11 Unicode string literals</h4>
-<p>Use <tt>__has_feature(cxx_unicode_literals)</tt> to determine if
-support for Unicode string literals is enabled.</p>
-
-<h4 id="cxx_unrestricted_unions">C++11 unrestricted unions</h4>
-
-<p>Use <tt>__has_feature(cxx_unrestricted_unions)</tt> to determine if support for unrestricted unions is enabled.</p>
-
-<h4 id="cxx_user_literals">C++11 user-defined literals</h4>
-
-<p>Use <tt>__has_feature(cxx_user_literals)</tt> to determine if support for user-defined literals is enabled.</p>
-
-<h4 id="cxx_variadic_templates">C++11 variadic templates</h4>
-
-<p>Use <tt>__has_feature(cxx_variadic_templates)</tt> or
-<tt>__has_extension(cxx_variadic_templates)</tt> to determine if support
-for variadic templates is enabled.</p>
-
-<h3 id="c11">C11</h3>
-
-<p>The features listed below are part of the C11 standard. As a result, all
-these features are enabled with the <tt>-std=c11</tt> or <tt>-std=gnu11</tt>
-option when compiling C code. Additionally, because these features are all
-backward-compatible, they are available as extensions in all language modes.</p>
-
-<h4 id="c_alignas">C11 alignment specifiers</h4>
-
-<p>Use <tt>__has_feature(c_alignas)</tt> or <tt>__has_extension(c_alignas)</tt>
-to determine if support for alignment specifiers using <tt>_Alignas</tt>
-is enabled.</p>
-
-<h4 id="c_atomic">C11 atomic operations</h4>
-
-<p>Use <tt>__has_feature(c_atomic)</tt> or <tt>__has_extension(c_atomic)</tt>
-to determine if support for atomic types using <tt>_Atomic</tt> is enabled.
-Clang also provides <a href="#__c11_atomic">a set of builtins</a> which can be
-used to implement the <tt>&lt;stdatomic.h&gt;</tt> operations on
-<tt>_Atomic</tt> types.</p>
-
-<h4 id="c_generic_selections">C11 generic selections</h4>
-
-<p>Use <tt>__has_feature(c_generic_selections)</tt> or
-<tt>__has_extension(c_generic_selections)</tt> to determine if support for
-generic selections is enabled.</p>
-
-<p>As an extension, the C11 generic selection expression is available in all
-languages supported by Clang. The syntax is the same as that given in the
-C11 standard.</p>
-
-<p>In C, type compatibility is decided according to the rules given in the
-appropriate standard, but in C++, which lacks the type compatibility rules
-used in C, types are considered compatible only if they are equivalent.</p>
-
-<h4 id="c_static_assert">C11 <tt>_Static_assert()</tt></h4>
-
-<p>Use <tt>__has_feature(c_static_assert)</tt> or
-<tt>__has_extension(c_static_assert)</tt> to determine if support for
-compile-time assertions using <tt>_Static_assert</tt> is enabled.</p>
-
-<!-- ======================================================================= -->
-<h2 id="checking_type_traits">Checks for Type Traits</h2>
-<!-- ======================================================================= -->
-
-<p>Clang supports the <a href="http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html">GNU C++ type traits</a> and a subset of the <a href="http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx">Microsoft Visual C++ Type traits</a>. For each supported type trait <code>__X</code>, <code>__has_extension(X)</code> indicates the presence of the type trait. For example:
-<blockquote>
-<pre>
-#if __has_extension(is_convertible_to)
-template&lt;typename From, typename To&gt;
-struct is_convertible_to {
- static const bool value = __is_convertible_to(From, To);
-};
-#else
-// Emulate type trait
-#endif
-</pre>
-</blockquote>
-
-<p>The following type traits are supported by Clang:</p>
-<ul>
- <li><code>__has_nothrow_assign</code> (GNU, Microsoft)</li>
- <li><code>__has_nothrow_copy</code> (GNU, Microsoft)</li>
- <li><code>__has_nothrow_constructor</code> (GNU, Microsoft)</li>
- <li><code>__has_trivial_assign</code> (GNU, Microsoft)</li>
- <li><code>__has_trivial_copy</code> (GNU, Microsoft)</li>
- <li><code>__has_trivial_constructor</code> (GNU, Microsoft)</li>
- <li><code>__has_trivial_destructor</code> (GNU, Microsoft)</li>
- <li><code>__has_virtual_destructor</code> (GNU, Microsoft)</li>
- <li><code>__is_abstract</code> (GNU, Microsoft)</li>
- <li><code>__is_base_of</code> (GNU, Microsoft)</li>
- <li><code>__is_class</code> (GNU, Microsoft)</li>
- <li><code>__is_convertible_to</code> (Microsoft)</li>
- <li><code>__is_empty</code> (GNU, Microsoft)</li>
- <li><code>__is_enum</code> (GNU, Microsoft)</li>
- <li><code>__is_interface_class</code> (Microsoft)</li>
- <li><code>__is_pod</code> (GNU, Microsoft)</li>
- <li><code>__is_polymorphic</code> (GNU, Microsoft)</li>
- <li><code>__is_union</code> (GNU, Microsoft)</li>
- <li><code>__is_literal(type)</code>: Determines whether the given type is a literal type</li>
- <li><code>__is_final</code>: Determines whether the given type is declared with a <code>final</code> class-virt-specifier.</li>
- <li><code>__underlying_type(type)</code>: Retrieves the underlying type for a given <code>enum</code> type. This trait is required to implement the C++11 standard library.</li>
- <li><code>__is_trivially_assignable(totype, fromtype)</code>: Determines whether a value of type <tt>totype</tt> can be assigned to from a value of type <tt>fromtype</tt> such that no non-trivial functions are called as part of that assignment. This trait is required to implement the C++11 standard library.</li>
- <li><code>__is_trivially_constructible(type, argtypes...)</code>: Determines whether a value of type <tt>type</tt> can be direct-initialized with arguments of types <tt>argtypes...</tt> such that no non-trivial functions are called as part of that initialization. This trait is required to implement the C++11 standard library.</li>
-</ul>
-
-<!-- ======================================================================= -->
-<h2 id="blocks">Blocks</h2>
-<!-- ======================================================================= -->
-
-<p>The syntax and high level language feature description is in <a
-href="BlockLanguageSpec.txt">BlockLanguageSpec.txt</a>. Implementation and ABI
-details for the clang implementation are in <a
-href="Block-ABI-Apple.txt">Block-ABI-Apple.txt</a>.</p>
-
-
-<p>Query for this feature with __has_extension(blocks).</p>
-
-<!-- ======================================================================= -->
-<h2 id="objc_features">Objective-C Features</h2>
-<!-- ======================================================================= -->
-
-<h3 id="objc_instancetype">Related result types</h3>
-
-<p>According to Cocoa conventions, Objective-C methods with certain names ("init", "alloc", etc.) always return objects that are an instance of the receiving class's type. Such methods are said to have a "related result type", meaning that a message send to one of these methods will have the same static type as an instance of the receiver class. For example, given the following classes:</p>
-
-<blockquote>
-<pre>
-@interface NSObject
-+ (id)alloc;
-- (id)init;
-@end
-
-@interface NSArray : NSObject
-@end
-</pre>
-</blockquote>
-
-<p>and this common initialization pattern</p>
-
-<blockquote>
-<pre>
-NSArray *array = [[NSArray alloc] init];
-</pre>
-</blockquote>
-
-<p>the type of the expression <code>[NSArray alloc]</code> is
-<code>NSArray*</code> because <code>alloc</code> implicitly has a
-related result type. Similarly, the type of the expression
-<code>[[NSArray alloc] init]</code> is <code>NSArray*</code>, since
-<code>init</code> has a related result type and its receiver is known
-to have the type <code>NSArray *</code>. If neither <code>alloc</code> nor <code>init</code> had a related result type, the expressions would have had type <code>id</code>, as declared in the method signature.</p>
-
-<p>A method with a related result type can be declared by using the
-type <tt>instancetype</tt> as its result type. <tt>instancetype</tt>
-is a contextual keyword that is only permitted in the result type of
-an Objective-C method, e.g.</p>
-
-<pre>
-@interface A
-+ (<b>instancetype</b>)constructAnA;
-@end
-</pre>
-
-<p>The related result type can also be inferred for some methods.
-To determine whether a method has an inferred related result type, the first
-word in the camel-case selector (e.g., "init" in "initWithObjects") is
-considered, and the method will have a related result type if its return
-type is compatible with the type of its class and if</p>
-
-<ul>
-
- <li>the first word is "alloc" or "new", and the method is a class
- method, or</li>
-
- <li>the first word is "autorelease", "init", "retain", or "self",
- and the method is an instance method.</li>
-
-</ul>
-
-<p>If a method with a related result type is overridden by a subclass
-method, the subclass method must also return a type that is compatible
-with the subclass type. For example:</p>
-
-<blockquote>
-<pre>
-@interface NSString : NSObject
-- (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
-@end
-</pre>
-</blockquote>
-
-<p>Related result types only affect the type of a message send or
-property access via the given method. In all other respects, a method
-with a related result type is treated the same way as method that
-returns <tt>id</tt>.</p>
-
-<p>Use <tt>__has_feature(objc_instancetype)</tt> to determine whether
-the <tt>instancetype</tt> contextual keyword is available.</p>
-
-<!-- ======================================================================= -->
-<h2 id="objc_arc">Automatic reference counting </h2>
-<!-- ======================================================================= -->
-
-<p>Clang provides support for <a href="AutomaticReferenceCounting.html">automated reference counting</a> in Objective-C, which eliminates the need for manual retain/release/autorelease message sends. There are two feature macros associated with automatic reference counting: <code>__has_feature(objc_arc)</code> indicates the availability of automated reference counting in general, while <code>__has_feature(objc_arc_weak)</code> indicates that automated reference counting also includes support for <code>__weak</code> pointers to Objective-C objects.</p>
-
-<!-- ======================================================================= -->
-<h2 id="objc_fixed_enum">Enumerations with a fixed underlying type</h2>
-<!-- ======================================================================= -->
-
-<p>Clang provides support for C++11 enumerations with a fixed
-underlying type within Objective-C. For example, one can write an
-enumeration type as:</p>
-
-<pre>
-typedef enum : unsigned char { Red, Green, Blue } Color;
-</pre>
-
-<p>This specifies that the underlying type, which is used to store the
-enumeration value, is <tt>unsigned char</tt>.</p>
-
-<p>Use <tt>__has_feature(objc_fixed_enum)</tt> to determine whether
-support for fixed underlying types is available in Objective-C.</p>
-
-<!-- ======================================================================= -->
-<h2 id="objc_lambdas">Interoperability with C++11 lambdas</h2>
-<!-- ======================================================================= -->
-
-<p>Clang provides interoperability between C++11 lambdas and
-blocks-based APIs, by permitting a lambda to be implicitly converted
-to a block pointer with the corresponding signature. For example,
-consider an API such as <code>NSArray</code>'s array-sorting
-method:</p>
-
-<pre> - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr; </pre>
-
-<p><code>NSComparator</code> is simply a typedef for the block pointer
-<code>NSComparisonResult (^)(id, id)</code>, and parameters of this
-type are generally provided with block literals as arguments. However,
-one can also use a C++11 lambda so long as it provides the same
-signature (in this case, accepting two parameters of type
-<code>id</code> and returning an <code>NSComparisonResult</code>):</p>
-
-<pre>
- NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
- @"String 02"];
- const NSStringCompareOptions comparisonOptions
- = NSCaseInsensitiveSearch | NSNumericSearch |
- NSWidthInsensitiveSearch | NSForcedOrderingSearch;
- NSLocale *currentLocale = [NSLocale currentLocale];
- NSArray *sorted
- = [array sortedArrayUsingComparator:<b>[=](id s1, id s2) -&gt; NSComparisonResult {
- NSRange string1Range = NSMakeRange(0, [s1 length]);
- return [s1 compare:s2 options:comparisonOptions
- range:string1Range locale:currentLocale];
- }</b>];
- NSLog(@"sorted: %@", sorted);
-</pre>
-
-<p>This code relies on an implicit conversion from the type of the
-lambda expression (an unnamed, local class type called the <i>closure
-type</i>) to the corresponding block pointer type. The conversion
-itself is expressed by a conversion operator in that closure type
-that produces a block pointer with the same signature as the lambda
-itself, e.g.,</p>
-
-<pre>
- operator NSComparisonResult (^)(id, id)() const;
-</pre>
-
-<p>This conversion function returns a new block that simply forwards
-the two parameters to the lambda object (which it captures by copy),
-then returns the result. The returned block is first copied (with
-<tt>Block_copy</tt>) and then autoreleased. As an optimization, if a
-lambda expression is immediately converted to a block pointer (as in
-the first example, above), then the block is not copied and
-autoreleased: rather, it is given the same lifetime as a block literal
-written at that point in the program, which avoids the overhead of
-copying a block to the heap in the common case.</p>
-
-<p>The conversion from a lambda to a block pointer is only available
-in Objective-C++, and not in C++ with blocks, due to its use of
-Objective-C memory management (autorelease).</p>
-
-<!-- ======================================================================= -->
-<h2 id="objc_object_literals_subscripting">Object Literals and Subscripting</h2>
-<!-- ======================================================================= -->
-
-<p>Clang provides support for <a href="ObjectiveCLiterals.html">Object Literals
-and Subscripting</a> in Objective-C, which simplifies common Objective-C
-programming patterns, makes programs more concise, and improves the safety of
-container creation. There are several feature macros associated with object
-literals and subscripting: <code>__has_feature(objc_array_literals)</code>
-tests the availability of array literals;
-<code>__has_feature(objc_dictionary_literals)</code> tests the availability of
-dictionary literals; <code>__has_feature(objc_subscripting)</code> tests the
-availability of object subscripting.</p>
-
-<!-- ======================================================================= -->
-<h2 id="objc_default_synthesize_properties">Objective-C Autosynthesis of Properties</h2>
-<!-- ======================================================================= -->
-
-<p> Clang provides support for autosynthesis of declared properties. Using this
-feature, clang provides default synthesis of those properties not declared @dynamic
-and not having user provided backing getter and setter methods.
-<code>__has_feature(objc_default_synthesize_properties)</code> checks for availability
-of this feature in version of clang being used.</p>
-
-<!-- ======================================================================= -->
-<h2 id="overloading-in-c">Function Overloading in C</h2>
-<!-- ======================================================================= -->
-
-<p>Clang provides support for C++ function overloading in C. Function
-overloading in C is introduced using the <tt>overloadable</tt> attribute. For
-example, one might provide several overloaded versions of a <tt>tgsin</tt>
-function that invokes the appropriate standard function computing the sine of a
-value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt>
-precision:</p>
-
-<blockquote>
-<pre>
-#include &lt;math.h&gt;
-float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); }
-double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); }
-long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); }
-</pre>
-</blockquote>
-
-<p>Given these declarations, one can call <tt>tgsin</tt> with a
-<tt>float</tt> value to receive a <tt>float</tt> result, with a
-<tt>double</tt> to receive a <tt>double</tt> result, etc. Function
-overloading in C follows the rules of C++ function overloading to pick
-the best overload given the call arguments, with a few C-specific
-semantics:</p>
-<ul>
- <li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long
- double</tt> is ranked as a floating-point promotion (per C99) rather
- than as a floating-point conversion (as in C++).</li>
-
- <li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type
- <tt>U*</tt> is considered a pointer conversion (with conversion
- rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li>
-
- <li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt>
- is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This
- conversion is given "conversion" rank.</li>
-</ul>
-
-<p>The declaration of <tt>overloadable</tt> functions is restricted to
-function declarations and definitions. Most importantly, if any
-function with a given name is given the <tt>overloadable</tt>
-attribute, then all function declarations and definitions with that
-name (and in that scope) must have the <tt>overloadable</tt>
-attribute. This rule even applies to redeclarations of functions whose original
-declaration had the <tt>overloadable</tt> attribute, e.g.,</p>
-
-<blockquote>
-<pre>
-int f(int) __attribute__((overloadable));
-float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i>
-
-int g(int) __attribute__((overloadable));
-int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i>
-</pre>
-</blockquote>
-
-<p>Functions marked <tt>overloadable</tt> must have
-prototypes. Therefore, the following code is ill-formed:</p>
-
-<blockquote>
-<pre>
-int h() __attribute__((overloadable)); <i>// error: h does not have a prototype</i>
-</pre>
-</blockquote>
-
-<p>However, <tt>overloadable</tt> functions are allowed to use a
-ellipsis even if there are no named parameters (as is permitted in C++). This feature is particularly useful when combined with the <tt>unavailable</tt> attribute:</p>
-
-<blockquote>
-<pre>
-void honeypot(...) __attribute__((overloadable, unavailable)); <i>// calling me is an error</i>
-</pre>
-</blockquote>
-
-<p>Functions declared with the <tt>overloadable</tt> attribute have
-their names mangled according to the same rules as C++ function
-names. For example, the three <tt>tgsin</tt> functions in our
-motivating example get the mangled names <tt>_Z5tgsinf</tt>,
-<tt>_Z5tgsind</tt>, and <tt>_Z5tgsine</tt>, respectively. There are two
-caveats to this use of name mangling:</p>
-
-<ul>
-
- <li>Future versions of Clang may change the name mangling of
- functions overloaded in C, so you should not depend on an specific
- mangling. To be completely safe, we strongly urge the use of
- <tt>static inline</tt> with <tt>overloadable</tt> functions.</li>
-
- <li>The <tt>overloadable</tt> attribute has almost no meaning when
- used in C++, because names will already be mangled and functions are
- already overloadable. However, when an <tt>overloadable</tt>
- function occurs within an <tt>extern "C"</tt> linkage specification,
- it's name <i>will</i> be mangled in the same way as it would in
- C.</li>
-</ul>
-
-<p>Query for this feature with __has_extension(attribute_overloadable).</p>
-
-<!-- ======================================================================= -->
-<h2 id="complex-list-init">Initializer lists for complex numbers in C</h2>
-<!-- ======================================================================= -->
-
-<p>clang supports an extension which allows the following in C:</p>
-
-<blockquote>
-<pre>
-#include &lt;math.h&gt;
-#include &lt;complex.h&gt;
-complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
-</pre>
-</blockquote>
-
-<p>This construct is useful because there is no way to separately
-initialize the real and imaginary parts of a complex variable in
-standard C, given that clang does not support <code>_Imaginary</code>.
-(clang also supports the <code>__real__</code> and <code>__imag__</code>
-extensions from gcc, which help in some cases, but are not usable in
-static initializers.)
-
-<p>Note that this extension does not allow eliding the braces; the
-meaning of the following two lines is different:</p>
-
-<blockquote>
-<pre>
-complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
-complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
-</pre>
-</blockquote>
-
-<p>This extension also works in C++ mode, as far as that goes, but does not
- apply to the C++ <code>std::complex</code>. (In C++11, list
- initialization allows the same syntax to be used with
- <code>std::complex</code> with the same meaning.)
-
-<!-- ======================================================================= -->
-<h2 id="builtins">Builtin Functions</h2>
-<!-- ======================================================================= -->
-
-<p>Clang supports a number of builtin library functions with the same syntax as
-GCC, including things like <tt>__builtin_nan</tt>,
-<tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>,
-<tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc. In
-addition to the GCC builtins, Clang supports a number of builtins that GCC does
-not, which are listed here.</p>
-
-<p>Please note that Clang does not and will not support all of the GCC builtins
-for vector operations. Instead of using builtins, you should use the functions
-defined in target-specific header files like <tt>&lt;xmmintrin.h&gt;</tt>, which
-define portable wrappers for these. Many of the Clang versions of these
-functions are implemented directly in terms of <a href="#vectors">extended
-vector support</a> instead of builtins, in order to reduce the number of
-builtins that we need to implement.</p>
-
-<!-- ======================================================================= -->
-<h3><a name="__builtin_readcyclecounter">__builtin_readcyclecounter</a></h3>
-<!-- ======================================================================= -->
-
-<p><tt>__builtin_readcyclecounter</tt> is used to access the cycle counter
-register (or a similar low-latency, high-accuracy clock) on those targets that
-support it.
-</p>
-
-<p><b>Syntax:</b></p>
-
-<pre>
-__builtin_readcyclecounter()
-</pre>
-
-<p><b>Example of Use:</b></p>
-
-<pre>
-unsigned long long t0 = __builtin_readcyclecounter();
-do_something();
-unsigned long long t1 = __builtin_readcyclecounter();
-unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
-</pre>
-
-<p><b>Description:</b></p>
-
-<p>The __builtin_readcyclecounter() builtin returns the cycle counter value,
-which may be either global or process/thread-specific depending on the target.
-As the backing counters often overflow quickly (on the order of
-seconds) this should only be used for timing small intervals. When not
-supported by the target, the return value is always zero. This builtin
-takes no arguments and produces an unsigned long long result.
-</p>
-
-<p>Query for this feature with __has_builtin(__builtin_readcyclecounter).</p>
-
-<!-- ======================================================================= -->
-<h3><a name="__builtin_shufflevector">__builtin_shufflevector</a></h3>
-<!-- ======================================================================= -->
-
-<p><tt>__builtin_shufflevector</tt> is used to express generic vector
-permutation/shuffle/swizzle operations. This builtin is also very important for
-the implementation of various target-specific header files like
-<tt>&lt;xmmintrin.h&gt;</tt>.
-</p>
-
-<p><b>Syntax:</b></p>
-
-<pre>
-__builtin_shufflevector(vec1, vec2, index1, index2, ...)
-</pre>
-
-<p><b>Examples:</b></p>
-
-<pre>
- // Identity operation - return 4-element vector V1.
- __builtin_shufflevector(V1, V1, 0, 1, 2, 3)
-
- // "Splat" element 0 of V1 into a 4-element result.
- __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
-
- // Reverse 4-element vector V1.
- __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
-
- // Concatenate every other element of 4-element vectors V1 and V2.
- __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
-
- // Concatenate every other element of 8-element vectors V1 and V2.
- __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
-</pre>
-
-<p><b>Description:</b></p>
-
-<p>The first two arguments to __builtin_shufflevector are vectors that have the
-same element type. The remaining arguments are a list of integers that specify
-the elements indices of the first two vectors that should be extracted and
-returned in a new vector. These element indices are numbered sequentially
-starting with the first vector, continuing into the second vector. Thus, if
-vec1 is a 4-element vector, index 5 would refer to the second element of vec2.
-</p>
-
-<p>The result of __builtin_shufflevector is a vector
-with the same element type as vec1/vec2 but that has an element count equal to
-the number of indices specified.
-</p>
-
-<p>Query for this feature with __has_builtin(__builtin_shufflevector).</p>
-
-<!-- ======================================================================= -->
-<h3><a name="__builtin_unreachable">__builtin_unreachable</a></h3>
-<!-- ======================================================================= -->
-
-<p><tt>__builtin_unreachable</tt> is used to indicate that a specific point in
-the program cannot be reached, even if the compiler might otherwise think it
-can. This is useful to improve optimization and eliminates certain warnings.
-For example, without the <tt>__builtin_unreachable</tt> in the example below,
-the compiler assumes that the inline asm can fall through and prints a "function
-declared 'noreturn' should not return" warning.
-</p>
-
-<p><b>Syntax:</b></p>
-
-<pre>
-__builtin_unreachable()
-</pre>
-
-<p><b>Example of Use:</b></p>
-
-<pre>
-void myabort(void) __attribute__((noreturn));
-void myabort(void) {
- asm("int3");
- __builtin_unreachable();
-}
-</pre>
-
-<p><b>Description:</b></p>
-
-<p>The __builtin_unreachable() builtin has completely undefined behavior. Since
-it has undefined behavior, it is a statement that it is never reached and the
-optimizer can take advantage of this to produce better code. This builtin takes
-no arguments and produces a void result.
-</p>
-
-<p>Query for this feature with __has_builtin(__builtin_unreachable).</p>
-
-<!-- ======================================================================= -->
-<h3><a name="__sync_swap">__sync_swap</a></h3>
-<!-- ======================================================================= -->
-
-<p><tt>__sync_swap</tt> is used to atomically swap integers or pointers in
-memory.
-</p>
-
-<p><b>Syntax:</b></p>
-
-<pre>
-<i>type</i> __sync_swap(<i>type</i> *ptr, <i>type</i> value, ...)
-</pre>
-
-<p><b>Example of Use:</b></p>
-
-<pre>
-int old_value = __sync_swap(&amp;value, new_value);
-</pre>
-
-<p><b>Description:</b></p>
-
-<p>The __sync_swap() builtin extends the existing __sync_*() family of atomic
-intrinsics to allow code to atomically swap the current value with the new
-value. More importantly, it helps developers write more efficient and correct
-code by avoiding expensive loops around __sync_bool_compare_and_swap() or
-relying on the platform specific implementation details of
-__sync_lock_test_and_set(). The __sync_swap() builtin is a full barrier.
-</p>
-
-<!-- ======================================================================= -->
-<h3><a name="__c11_atomic">__c11_atomic builtins</a></h3>
-<!-- ======================================================================= -->
-
-<p>Clang provides a set of builtins which are intended to be used to implement
-C11's <tt>&lt;stdatomic.h&gt;</tt> header. These builtins provide the semantics
-of the <tt>_explicit</tt> form of the corresponding C11 operation, and are named
-with a <tt>__c11_</tt> prefix. The supported operations are:</p>
-
-<ul>
- <li><tt>__c11_atomic_init</tt></li>
- <li><tt>__c11_atomic_thread_fence</tt></li>
- <li><tt>__c11_atomic_signal_fence</tt></li>
- <li><tt>__c11_atomic_is_lock_free</tt></li>
- <li><tt>__c11_atomic_store</tt></li>
- <li><tt>__c11_atomic_load</tt></li>
- <li><tt>__c11_atomic_exchange</tt></li>
- <li><tt>__c11_atomic_compare_exchange_strong</tt></li>
- <li><tt>__c11_atomic_compare_exchange_weak</tt></li>
- <li><tt>__c11_atomic_fetch_add</tt></li>
- <li><tt>__c11_atomic_fetch_sub</tt></li>
- <li><tt>__c11_atomic_fetch_and</tt></li>
- <li><tt>__c11_atomic_fetch_or</tt></li>
- <li><tt>__c11_atomic_fetch_xor</tt></li>
-</ul>
-
-<!-- ======================================================================= -->
-<h2 id="non-standard-attributes">Non-standard C++11 Attributes</h2>
-<!-- ======================================================================= -->
-
-<p>Clang supports one non-standard C++11 attribute. It resides in the
-<tt>clang</tt> attribute namespace.</p>
-
-<!-- ======================================================================= -->
-<h3 id="clang__fallthrough">The <tt>clang::fallthrough</tt> attribute</h3>
-<!-- ======================================================================= -->
-
-<p>The <tt>clang::fallthrough</tt> attribute is used along with the
-<tt>-Wimplicit-fallthrough</tt> argument to annotate intentional fall-through
-between switch labels. It can only be applied to a null statement placed at a
-point of execution between any statement and the next switch label. It is common
-to mark these places with a specific comment, but this attribute is meant to
-replace comments with a more strict annotation, which can be checked by the
-compiler. This attribute doesn't change semantics of the code and can be used
-wherever an intended fall-through occurs. It is designed to mimic
-control-flow statements like <tt>break;</tt>, so it can be placed in most places
-where <tt>break;</tt> can, but only if there are no statements on the execution
-path between it and the next switch label.</p>
-<p>Here is an example:</p>
-<pre>
-// compile with -Wimplicit-fallthrough
-switch (n) {
-case 22:
-case 33: // no warning: no statements between case labels
- f();
-case 44: // warning: unannotated fall-through
- g();
- <b>[[clang::fallthrough]];</b>
-case 55: // no warning
- if (x) {
- h();
- break;
- }
- else {
- i();
- <b>[[clang::fallthrough]];</b>
- }
-case 66: // no warning
- p();
- <b>[[clang::fallthrough]];</b> // warning: fallthrough annotation does not directly precede case label
- q();
-case 77: // warning: unannotated fall-through
- r();
-}
-</pre>
-
-<!-- ======================================================================= -->
-<h2 id="targetspecific">Target-Specific Extensions</h2>
-<!-- ======================================================================= -->
-
-<p>Clang supports some language features conditionally on some targets.</p>
-
-<!-- ======================================================================= -->
-<h3 id="x86-specific">X86/X86-64 Language Extensions</h3>
-<!-- ======================================================================= -->
-
-<p>The X86 backend has these language extensions:</p>
-
-<!-- ======================================================================= -->
-<h4 id="x86-gs-segment">Memory references off the GS segment</h4>
-<!-- ======================================================================= -->
-
-<p>Annotating a pointer with address space #256 causes it to be code generated
-relative to the X86 GS segment register, and address space #257 causes it to be
-relative to the X86 FS segment. Note that this is a very very low-level
-feature that should only be used if you know what you're doing (for example in
-an OS kernel).</p>
-
-<p>Here is an example:</p>
-
-<pre>
-#define GS_RELATIVE __attribute__((address_space(256)))
-int foo(int GS_RELATIVE *P) {
- return *P;
-}
-</pre>
-
-<p>Which compiles to (on X86-32):</p>
-
-<pre>
-_foo:
- movl 4(%esp), %eax
- movl %gs:(%eax), %eax
- ret
-</pre>
-
-<!-- ======================================================================= -->
-<h2 id="analyzerspecific">Static Analysis-Specific Extensions</h2>
-<!-- ======================================================================= -->
-
-<p>Clang supports additional attributes that are useful for documenting program
-invariants and rules for static analysis tools. The extensions documented here
-are used by the <a
-href="http://clang.llvm.org/StaticAnalysis.html">path-sensitive static analyzer
-engine</a> that is part of Clang's Analysis library.</p>
-
-<h3 id="attr_analyzer_noreturn">The <tt>analyzer_noreturn</tt> attribute</h3>
-
-<p>Clang's static analysis engine understands the standard <tt>noreturn</tt>
-attribute. This attribute, which is typically affixed to a function prototype,
-indicates that a call to a given function never returns. Function prototypes for
-common functions like <tt>exit</tt> are typically annotated with this attribute,
-as well as a variety of common assertion handlers. Users can educate the static
-analyzer about their own custom assertion handles (thus cutting down on false
-positives due to false paths) by marking their own &quot;panic&quot; functions
-with this attribute.</p>
-
-<p>While useful, <tt>noreturn</tt> is not applicable in all cases. Sometimes
-there are special functions that for all intents and purposes should be
-considered panic functions (i.e., they are only called when an internal program
-error occurs) but may actually return so that the program can fail gracefully.
-The <tt>analyzer_noreturn</tt> attribute allows one to annotate such functions
-as being interpreted as &quot;no return&quot; functions by the analyzer (thus
-pruning bogus paths) but will not affect compilation (as in the case of
-<tt>noreturn</tt>).</p>
-
-<p><b>Usage</b>: The <tt>analyzer_noreturn</tt> attribute can be placed in the
-same places where the <tt>noreturn</tt> attribute can be placed. It is commonly
-placed at the end of function prototypes:</p>
-
-<pre>
- void foo() <b>__attribute__((analyzer_noreturn))</b>;
-</pre>
-
-<p>Query for this feature with
-<tt>__has_attribute(analyzer_noreturn)</tt>.</p>
-
-<h3 id="attr_method_family">The <tt>objc_method_family</tt> attribute</h3>
-
-<p>Many methods in Objective-C have conventional meanings determined
-by their selectors. For the purposes of static analysis, it is
-sometimes useful to be able to mark a method as having a particular
-conventional meaning despite not having the right selector, or as not
-having the conventional meaning that its selector would suggest.
-For these use cases, we provide an attribute to specifically describe
-the <q>method family</q> that a method belongs to.</p>
-
-<p><b>Usage</b>: <tt>__attribute__((objc_method_family(X)))</tt>,
-where <tt>X</tt> is one of <tt>none</tt>, <tt>alloc</tt>, <tt>copy</tt>,
-<tt>init</tt>, <tt>mutableCopy</tt>, or <tt>new</tt>. This attribute
-can only be placed at the end of a method declaration:</p>
-
-<pre>
- - (NSString*) initMyStringValue <b>__attribute__((objc_method_family(none)))</b>;
-</pre>
-
-<p>Users who do not wish to change the conventional meaning of a
-method, and who merely want to document its non-standard retain and
-release semantics, should use the
-<a href="#attr_retain_release">retaining behavior attributes</a>
-described below.</p>
-
-<p>Query for this feature with
-<tt>__has_attribute(objc_method_family)</tt>.</p>
-
-<h3 id="attr_retain_release">Objective-C retaining behavior attributes</h3>
-
-<p>In Objective-C, functions and methods are generally assumed to take
-and return objects with +0 retain counts, with some exceptions for
-special methods like <tt>+alloc</tt> and <tt>init</tt>. However,
-there are exceptions, and so Clang provides attributes to allow these
-exceptions to be documented, which helps the analyzer find leaks (and
-ignore non-leaks). Some exceptions may be better described using
-the <a href="#attr_method_family"><tt>objc_method_family</tt></a>
-attribute instead.</p>
-
-<p><b>Usage</b>: The <tt>ns_returns_retained</tt>, <tt>ns_returns_not_retained</tt>,
-<tt>ns_returns_autoreleased</tt>, <tt>cf_returns_retained</tt>,
-and <tt>cf_returns_not_retained</tt> attributes can be placed on
-methods and functions that return Objective-C or CoreFoundation
-objects. They are commonly placed at the end of a function prototype
-or method declaration:</p>
-
-<pre>
- id foo() <b>__attribute__((ns_returns_retained))</b>;
-
- - (NSString*) bar: (int) x <b>__attribute__((ns_returns_retained))</b>;
-</pre>
-
-<p>The <tt>*_returns_retained</tt> attributes specify that the
-returned object has a +1 retain count.
-The <tt>*_returns_not_retained</tt> attributes specify that the return
-object has a +0 retain count, even if the normal convention for its
-selector would be +1. <tt>ns_returns_autoreleased</tt> specifies that the
-returned object is +0, but is guaranteed to live at least as long as the
-next flush of an autorelease pool.</p>
-
-<p><b>Usage</b>: The <tt>ns_consumed</tt> and <tt>cf_consumed</tt>
-attributes can be placed on an parameter declaration; they specify
-that the argument is expected to have a +1 retain count, which will be
-balanced in some way by the function or method.
-The <tt>ns_consumes_self</tt> attribute can only be placed on an
-Objective-C method; it specifies that the method expects
-its <tt>self</tt> parameter to have a +1 retain count, which it will
-balance in some way.</p>
-
-<pre>
- void <b>foo(__attribute__((ns_consumed))</b> NSString *string);
-
- - (void) bar <b>__attribute__((ns_consumes_self))</b>;
- - (void) baz: (id) <b>__attribute__((ns_consumed))</b> x;
-</pre>
-
-<p>Query for these features with <tt>__has_attribute(ns_consumed)</tt>,
-<tt>__has_attribute(ns_returns_retained)</tt>, etc.</p>
-
-<!-- ======================================================================= -->
-<h2 id="dynamicanalyzerspecific">Dynamic Analysis-Specific Extensions</h2>
-<!-- ======================================================================= -->
-<h3 id="address_sanitizer">AddressSanitizer</h3>
-<p> Use <code>__has_feature(address_sanitizer)</code>
-to check if the code is being built with <a
- href="AddressSanitizer.html">AddressSanitizer</a>.
-</p>
-<p>Use <tt>__attribute__((no_address_safety_analysis))</tt> on a function
-declaration to specify that address safety instrumentation (e.g.
-AddressSanitizer) should not be applied to that function.
-</p>
-
-<!-- ======================================================================= -->
-<h2 id="threadsafety">Thread-Safety Annotation Checking</h2>
-<!-- ======================================================================= -->
-
-<p>Clang supports additional attributes for checking basic locking policies in
-multithreaded programs.
-Clang currently parses the following list of attributes, although
-<b>the implementation for these annotations is currently in development.</b>
-For more details, see the
-<a href="http://gcc.gnu.org/wiki/ThreadSafetyAnnotation">GCC implementation</a>.
-</p>
-
-<h4 id="ts_noanal">no_thread_safety_analysis</h4>
-
-<p>Use <tt>__attribute__((no_thread_safety_analysis))</tt> on a function
-declaration to specify that the thread safety analysis should not be run on that
-function. This attribute provides an escape hatch (e.g. for situations when it
-is difficult to annotate the locking policy). </p>
-
-<h4 id="ts_lockable">lockable</h4>
-
-<p>Use <tt>__attribute__((lockable))</tt> on a class definition to specify
-that it has a lockable type (e.g. a Mutex class). This annotation is primarily
-used to check consistency.</p>
-
-<h4 id="ts_scopedlockable">scoped_lockable</h4>
-
-<p>Use <tt>__attribute__((scoped_lockable))</tt> on a class definition to
-specify that it has a "scoped" lockable type. Objects of this type will acquire
-the lock upon construction and release it upon going out of scope.
- This annotation is primarily used to check
-consistency.</p>
-
-<h4 id="ts_guardedvar">guarded_var</h4>
-
-<p>Use <tt>__attribute__((guarded_var))</tt> on a variable declaration to
-specify that the variable must be accessed while holding some lock.</p>
-
-<h4 id="ts_ptguardedvar">pt_guarded_var</h4>
-
-<p>Use <tt>__attribute__((pt_guarded_var))</tt> on a pointer declaration to
-specify that the pointer must be dereferenced while holding some lock.</p>
-
-<h4 id="ts_guardedby">guarded_by(l)</h4>
-
-<p>Use <tt>__attribute__((guarded_by(l)))</tt> on a variable declaration to
-specify that the variable must be accessed while holding lock <tt>l</tt>.</p>
-
-<h4 id="ts_ptguardedby">pt_guarded_by(l)</h4>
-
-<p>Use <tt>__attribute__((pt_guarded_by(l)))</tt> on a pointer declaration to
-specify that the pointer must be dereferenced while holding lock <tt>l</tt>.</p>
-
-<h4 id="ts_acquiredbefore">acquired_before(...)</h4>
-
-<p>Use <tt>__attribute__((acquired_before(...)))</tt> on a declaration
-of a lockable variable to specify that the lock must be acquired before all
-attribute arguments. Arguments must be lockable type, and there must be at
-least one argument.</p>
-
-<h4 id="ts_acquiredafter">acquired_after(...)</h4>
-
-<p>Use <tt>__attribute__((acquired_after(...)))</tt> on a declaration
-of a lockable variable to specify that the lock must be acquired after all
-attribute arguments. Arguments must be lockable type, and there must be at
-least one argument.</p>
-
-<h4 id="ts_elf">exclusive_lock_function(...)</h4>
-
-<p>Use <tt>__attribute__((exclusive_lock_function(...)))</tt> on a function
-declaration to specify that the function acquires all listed locks
-exclusively. This attribute takes zero or more arguments: either of lockable
-type or integers indexing into function parameters of lockable type. If no
-arguments are given, the acquired lock is implicitly <tt>this</tt> of the
-enclosing object.</p>
-
-<h4 id="ts_slf">shared_lock_function(...)</h4>
-
-<p>Use <tt>__attribute__((shared_lock_function(...)))</tt> on a function
-declaration to specify that the function acquires all listed locks, although
- the locks may be shared (e.g. read locks). This attribute takes zero or more
-arguments: either of lockable type or integers indexing into function
-parameters of lockable type. If no arguments are given, the acquired lock is
-implicitly <tt>this</tt> of the enclosing object.</p>
-
-<h4 id="ts_etf">exclusive_trylock_function(...)</h4>
-
-<p>Use <tt>__attribute__((exclusive_lock_function(...)))</tt> on a function
-declaration to specify that the function will try (without blocking) to acquire
-all listed locks exclusively. This attribute takes one or more arguments. The
-first argument is an integer or boolean value specifying the return value of a
-successful lock acquisition. The remaining arugments are either of lockable type
-or integers indexing into function parameters of lockable type. If only one
-argument is given, the acquired lock is implicitly <tt>this</tt> of the
-enclosing object.</p>
-
-<h4 id="ts_stf">shared_trylock_function(...)</h4>
-
-<p>Use <tt>__attribute__((shared_lock_function(...)))</tt> on a function
-declaration to specify that the function will try (without blocking) to acquire
-all listed locks, although the locks may be shared (e.g. read locks). This
-attribute takes one or more arguments. The first argument is an integer or
-boolean value specifying the return value of a successful lock acquisition. The
-remaining arugments are either of lockable type or integers indexing into
-function parameters of lockable type. If only one argument is given, the
-acquired lock is implicitly <tt>this</tt> of the enclosing object.</p>
-
-<h4 id="ts_uf">unlock_function(...)</h4>
-
-<p>Use <tt>__attribute__((unlock_function(...)))</tt> on a function
-declaration to specify that the function release all listed locks. This
-attribute takes zero or more arguments: either of lockable type or integers
-indexing into function parameters of lockable type. If no arguments are given,
-the acquired lock is implicitly <tt>this</tt> of the enclosing object.</p>
-
-<h4 id="ts_lr">lock_returned(l)</h4>
-
-<p>Use <tt>__attribute__((lock_returned(l)))</tt> on a function
-declaration to specify that the function returns lock <tt>l</tt> (<tt>l</tt>
-must be of lockable type). This annotation is used to aid in resolving lock
-expressions.</p>
-
-<h4 id="ts_le">locks_excluded(...)</h4>
-
-<p>Use <tt>__attribute__((locks_excluded(...)))</tt> on a function declaration
-to specify that the function must not be called with the listed locks. Arguments
-must be lockable type, and there must be at least one argument.</p>
-
-<h4 id="ts_elr">exclusive_locks_required(...)</h4>
-
-<p>Use <tt>__attribute__((exclusive_locks_required(...)))</tt> on a function
-declaration to specify that the function must be called while holding the listed
-exclusive locks. Arguments must be lockable type, and there must be at
-least one argument.</p>
-
-<h4 id="ts_slr">shared_locks_required(...)</h4>
-
-<p>Use <tt>__attribute__((shared_locks_required(...)))</tt> on a function
-declaration to specify that the function must be called while holding the listed
-shared locks. Arguments must be lockable type, and there must be at
-least one argument.</p>
-
-<!-- ======================================================================= -->
-<h2 id="type_safety">Type Safety Checking</h2>
-<!-- ======================================================================= -->
-
-<p>Clang supports additional attributes to enable checking type safety
-properties that can't be enforced by C type system. Usecases include:</p>
-<ul>
-<li>MPI library implementations, where these attributes enable checking that
- buffer type matches the passed <tt>MPI_Datatype</tt>;</li>
-<li>for HDF5 library there is a similar usecase as MPI;</li>
-<li>checking types of variadic functions' arguments for functions like
- <tt>fcntl()</tt> and <tt>ioctl()</tt>.</li>
-</ul>
-
-<p>You can detect support for these attributes with __has_attribute(). For
-example:</p>
-
-<blockquote>
-<pre>
-#if defined(__has_attribute)
-# if __has_attribute(argument_with_type_tag) &amp;&amp; \
- __has_attribute(pointer_with_type_tag) &amp;&amp; \
- __has_attribute(type_tag_for_datatype)
-# define ATTR_MPI_PWT(buffer_idx, type_idx) __attribute__((pointer_with_type_tag(mpi,buffer_idx,type_idx)))
-/* ... other macros ... */
-# endif
-#endif
-
-#if !defined(ATTR_MPI_PWT)
-#define ATTR_MPI_PWT(buffer_idx, type_idx)
-#endif
-
-int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
- ATTR_MPI_PWT(1,3);
-</pre>
-</blockquote>
-
-<h3 id="argument_with_type_tag"><tt>argument_with_type_tag(...)</tt></h3>
-
-<p>Use <tt>__attribute__((argument_with_type_tag(arg_kind, arg_idx,
-type_tag_idx)))</tt> on a function declaration to specify that the function
-accepts a type tag that determines the type of some other argument.
-<tt>arg_kind</tt> is an identifier that should be used when annotating all
-applicable type tags.</p>
-
-<p>This attribute is primarily useful for checking arguments of variadic
-functions (<tt>pointer_with_type_tag</tt> can be used in most of non-variadic
-cases).</p>
-
-<p>For example:</p>
-<blockquote>
-<pre>
-int fcntl(int fd, int cmd, ...)
- __attribute__(( argument_with_type_tag(fcntl,3,2) ));
-</pre>
-</blockquote>
-
-<h3 id="pointer_with_type_tag"><tt>pointer_with_type_tag(...)</tt></h3>
-
-<p>Use <tt>__attribute__((pointer_with_type_tag(ptr_kind, ptr_idx,
-type_tag_idx)))</tt> on a function declaration to specify that the
-function accepts a type tag that determines the pointee type of some other
-pointer argument.</p>
-
-<p>For example:</p>
-<blockquote>
-<pre>
-int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
- __attribute__(( pointer_with_type_tag(mpi,1,3) ));
-</pre>
-</blockquote>
-
-<h3 id="type_tag_for_datatype"><tt>type_tag_for_datatype(...)</tt></h3>
-
-<p>Clang supports annotating type tags of two forms.</p>
-
-<ul>
-<li><b>Type tag that is an expression containing a reference to some declared
-identifier.</b> Use <tt>__attribute__((type_tag_for_datatype(kind, type)))</tt>
-on a declaration with that identifier:
-
-<blockquote>
-<pre>
-extern struct mpi_datatype mpi_datatype_int
- __attribute__(( type_tag_for_datatype(mpi,int) ));
-#define MPI_INT ((MPI_Datatype) &amp;mpi_datatype_int)
-</pre>
-</blockquote></li>
-
-<li><b>Type tag that is an integral literal.</b> Introduce a <tt>static
-const</tt> variable with a corresponding initializer value and attach
-<tt>__attribute__((type_tag_for_datatype(kind, type)))</tt> on that
-declaration, for example:
-
-<blockquote>
-<pre>
-#define MPI_INT ((MPI_Datatype) 42)
-static const MPI_Datatype mpi_datatype_int
- __attribute__(( type_tag_for_datatype(mpi,int) )) = 42
-</pre>
-</blockquote></li>
-</ul>
-
-<p>The attribute also accepts an optional third argument that determines how
-the expression is compared to the type tag. There are two supported flags:</p>
-
-<ul><li><tt>layout_compatible</tt> will cause types to be compared according to
-layout-compatibility rules (C++11 [class.mem] p&nbsp;17, 18). This is
-implemented to support annotating types like <tt>MPI_DOUBLE_INT</tt>.
-
-<p>For example:</p>
-<blockquote>
-<pre>
-/* In mpi.h */
-struct internal_mpi_double_int { double d; int i; };
-extern struct mpi_datatype mpi_datatype_double_int
- __attribute__(( type_tag_for_datatype(mpi, struct internal_mpi_double_int,
- layout_compatible) ));
-
-#define MPI_DOUBLE_INT ((MPI_Datatype) &amp;mpi_datatype_double_int)
-
-/* In user code */
-struct my_pair { double a; int b; };
-struct my_pair *buffer;
-MPI_Send(buffer, 1, MPI_DOUBLE_INT /*, ... */); // no warning
-
-struct my_int_pair { int a; int b; }
-struct my_int_pair *buffer2;
-MPI_Send(buffer2, 1, MPI_DOUBLE_INT /*, ... */); // warning: actual buffer element
- // type 'struct my_int_pair'
- // doesn't match specified MPI_Datatype
-</pre>
-</blockquote>
-</li>
-
-<li><tt>must_be_null</tt> specifies that the expression should be a null
-pointer constant, for example:
-
-<blockquote>
-<pre>
-/* In mpi.h */
-extern struct mpi_datatype mpi_datatype_null
- __attribute__(( type_tag_for_datatype(mpi, void, must_be_null) ));
-
-#define MPI_DATATYPE_NULL ((MPI_Datatype) &amp;mpi_datatype_null)
-
-/* In user code */
-MPI_Send(buffer, 1, MPI_DATATYPE_NULL /*, ... */); // warning: MPI_DATATYPE_NULL
- // was specified but buffer
- // is not a null pointer
-</pre>
-</blockquote>
-</li>
-</ul>
-
-</div>
-</body>
-</html>
OpenPOWER on IntegriCloud