summaryrefslogtreecommitdiffstats
path: root/docs/LangRef.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/LangRef.html')
-rw-r--r--docs/LangRef.html228
1 files changed, 103 insertions, 125 deletions
diff --git a/docs/LangRef.html b/docs/LangRef.html
index 48bddfd..8e17243 100644
--- a/docs/LangRef.html
+++ b/docs/LangRef.html
@@ -74,16 +74,14 @@
<ol>
<li><a href="#t_array">Array Type</a></li>
<li><a href="#t_struct">Structure Type</a></li>
- <li><a href="#t_pstruct">Packed Structure Type</a></li>
+ <li><a href="#t_opaque">Opaque Type</a></li>
<li><a href="#t_vector">Vector Type</a></li>
</ol>
</li>
<li><a href="#t_function">Function Type</a></li>
<li><a href="#t_pointer">Pointer Type</a></li>
- <li><a href="#t_opaque">Opaque Type</a></li>
</ol>
</li>
- <li><a href="#t_uprefs">Type Up-references</a></li>
</ol>
</li>
<li><a href="#constants">Constants</a>
@@ -241,6 +239,7 @@
<li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
<li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
<li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
+ <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
</ol>
</li>
<li><a href="#int_manip">Bit Manipulation Intrinsics</a>
@@ -1164,6 +1163,11 @@ define void @f() optsize { ... }
Most of the functions in the Windows system DLLs in Windows XP SP2 or
higher were compiled in this fashion.</dd>
+ <dt><tt><b>nonlazybind</b></tt></dt>
+ <dd>This attribute suppresses lazy symbol binding for the function. This
+ may make calls to the function faster, at the cost of extra program
+ startup time if the function is not called during program startup.</dd>
+
<dt><tt><b>inlinehint</b></tt></dt>
<dd>This attribute indicates that the source code contained a hint that inlining
this function is desirable (such as the "inline" keyword in C/C++). It
@@ -1529,7 +1533,6 @@ synchronization behavior.</p>
<a href="#t_function">function</a>,
<a href="#t_pointer">pointer</a>,
<a href="#t_struct">structure</a>,
- <a href="#t_pstruct">packed structure</a>,
<a href="#t_vector">vector</a>,
<a href="#t_opaque">opaque</a>.
</td>
@@ -1697,7 +1700,9 @@ synchronization behavior.</p>
possible to have a two dimensional array, using an array as the element type
of another array.</p>
-
+</div>
+
+
<!-- _______________________________________________________________________ -->
<h4>
<a name="t_aggregate">Aggregate Types</a>
@@ -1836,9 +1841,7 @@ synchronization behavior.</p>
<h5>Overview:</h5>
<p>The structure type is used to represent a collection of data members together
- in memory. The packing of the field types is defined to match the ABI of the
- underlying processor. The elements of a structure may be any type that has a
- size.</p>
+ in memory. The elements of a structure may be any type that has a size.</p>
<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
@@ -1846,66 +1849,76 @@ synchronization behavior.</p>
Structures in registers are accessed using the
'<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
'<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
+
+<p>Structures may optionally be "packed" structures, which indicate that the
+ alignment of the struct is one byte, and that there is no padding between
+ the elements. In non-packed structs, padding between field types is defined
+ by the target data string to match the underlying processor.</p>
+
+<p>Structures can either be "anonymous" or "named". An anonymous structure is
+ defined inline with other types (e.g. <tt>{i32, i32}*</tt>) and a named types
+ are always defined at the top level with a name. Anonmyous types are uniqued
+ by their contents and can never be recursive since there is no way to write
+ one. Named types can be recursive.
+</p>
+
<h5>Syntax:</h5>
<pre>
- { &lt;type list&gt; }
+ %T1 = type { &lt;type list&gt; } <i>; Named normal struct type</i>
+ %T2 = type &lt;{ &lt;type list&gt; }&gt; <i>; Named packed struct type</i>
</pre>
-
+
<h5>Examples:</h5>
<table class="layout">
<tr class="layout">
<td class="left"><tt>{ i32, i32, i32 }</tt></td>
<td class="left">A triple of three <tt>i32</tt> values</td>
- </tr><tr class="layout">
+ </tr>
+ <tr class="layout">
<td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
<td class="left">A pair, where the first element is a <tt>float</tt> and the
second element is a <a href="#t_pointer">pointer</a> to a
<a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
an <tt>i32</tt>.</td>
</tr>
+ <tr class="layout">
+ <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
+ <td class="left">A packed struct known to be 5 bytes in size.</td>
+ </tr>
</table>
</div>
-
+
<!-- _______________________________________________________________________ -->
<h4>
- <a name="t_pstruct">Packed Structure Type</a>
+ <a name="t_opaque">Opaque Type</a>
</h4>
<div>
<h5>Overview:</h5>
-<p>The packed structure type is used to represent a collection of data members
- together in memory. There is no padding between fields. Further, the
- alignment of a packed structure is 1 byte. The elements of a packed
- structure may be any type that has a size.</p>
-
-<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
- '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
- the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
+<p>Opaque types are used to represent named structure types that do not have a
+ body specified. This corresponds (for example) to the C notion of a forward
+ declared structure.</p>
<h5>Syntax:</h5>
<pre>
- &lt; { &lt;type list&gt; } &gt;
+ %X = type opaque
+ %52 = type opaque
</pre>
<h5>Examples:</h5>
<table class="layout">
<tr class="layout">
- <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
- <td class="left">A triple of three <tt>i32</tt> values</td>
- </tr><tr class="layout">
- <td class="left">
-<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
- <td class="left">A pair, where the first element is a <tt>float</tt> and the
- second element is a <a href="#t_pointer">pointer</a> to a
- <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
- an <tt>i32</tt>.</td>
+ <td class="left"><tt>opaque</tt></td>
+ <td class="left">An opaque type.</td>
</tr>
</table>
</div>
+
+
<!-- _______________________________________________________________________ -->
<h4>
<a name="t_pointer">Pointer Type</a>
@@ -1993,86 +2006,6 @@ synchronization behavior.</p>
</div>
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="t_opaque">Opaque Type</a>
-</h4>
-
-<div>
-
-<h5>Overview:</h5>
-<p>Opaque types are used to represent unknown types in the system. This
- corresponds (for example) to the C notion of a forward declared structure
- type. In LLVM, opaque types can eventually be resolved to any type (not just
- a structure type).</p>
-
-<h5>Syntax:</h5>
-<pre>
- opaque
-</pre>
-
-<h5>Examples:</h5>
-<table class="layout">
- <tr class="layout">
- <td class="left"><tt>opaque</tt></td>
- <td class="left">An opaque type.</td>
- </tr>
-</table>
-
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="t_uprefs">Type Up-references</a>
-</h3>
-
-<div>
-
-<h5>Overview:</h5>
-<p>An "up reference" allows you to refer to a lexically enclosing type without
- requiring it to have a name. For instance, a structure declaration may
- contain a pointer to any of the types it is lexically a member of. Example
- of up references (with their equivalent as named type declarations)
- include:</p>
-
-<pre>
- { \2 * } %x = type { %x* }
- { \2 }* %y = type { %y }*
- \1* %z = type %z*
-</pre>
-
-<p>An up reference is needed by the asmprinter for printing out cyclic types
- when there is no declared name for a type in the cycle. Because the
- asmprinter does not want to print out an infinite type string, it needs a
- syntax to handle recursive types that have no names (all names are optional
- in llvm IR).</p>
-
-<h5>Syntax:</h5>
-<pre>
- \&lt;level&gt;
-</pre>
-
-<p>The level is the count of the lexical type that is being referred to.</p>
-
-<h5>Examples:</h5>
-<table class="layout">
- <tr class="layout">
- <td class="left"><tt>\1*</tt></td>
- <td class="left">Self-referential pointer.</td>
- </tr>
- <tr class="layout">
- <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
- <td class="left">Recursive structure where the upref refers to the out-most
- structure.</td>
- </tr>
-</table>
-
-</div>
-
-</div>
-
<!-- *********************************************************************** -->
<h2><a name="constants">Constants</a></h2>
<!-- *********************************************************************** -->
@@ -6064,7 +5997,7 @@ LLVM</a>.</p>
<h5>Syntax:</h5>
<pre>
- declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
+ declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
</pre>
<h5>Overview:</h5>
@@ -6077,8 +6010,10 @@ LLVM</a>.</p>
<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
specifier determining if the fetch should be for a read (0) or write (1),
and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
- locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
- and <tt>locality</tt> arguments must be constant integers.</p>
+ locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
+ specifies whether the prefetch is performed on the data (1) or instruction (0)
+ cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
+ must be constant integers.</p>
<h5>Semantics:</h5>
<p>This intrinsic does not modify the behavior of the program. In particular,
@@ -6563,6 +6498,37 @@ LLVM</a>.</p>
<p>This function returns the same values as the libm <tt>log</tt> functions
would, and handles error conditions in the same way.</p>
+<h4>
+ <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
+</h4>
+
+<div>
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
+ floating point or vector of floating point type. Not all targets support all
+ types however.</p>
+
+<pre>
+ declare float @llvm.fma.f32(float %a, float %b, float %c)
+ declare double @llvm.fma.f64(double %a, double %b, double %c)
+ declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
+ declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
+ declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
+ operation.</p>
+
+<h5>Arguments:</h5>
+<p>The argument and return value are floating point numbers of the same
+ type.</p>
+
+<h5>Semantics:</h5>
+<p>This function returns the same values as the libm <tt>fma</tt> functions
+ would.</p>
+
</div>
<!-- ======================================================================= -->
@@ -6619,7 +6585,8 @@ LLVM</a>.</p>
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
- width. Not all targets support all bit widths however.</p>
+ width, or on any vector with integer elements. Not all targets support all
+ bit widths or vector types, however.</p>
<pre>
declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
@@ -6627,6 +6594,7 @@ LLVM</a>.</p>
declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
+ declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
</pre>
<h5>Overview:</h5>
@@ -6635,10 +6603,12 @@ LLVM</a>.</p>
<h5>Arguments:</h5>
<p>The only argument is the value to be counted. The argument may be of any
- integer type. The return type must match the argument type.</p>
+ integer type, or a vector with integer elements.
+ The return type must match the argument type.</p>
<h5>Semantics:</h5>
-<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
+<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
+ element of a vector.</p>
</div>
@@ -6651,7 +6621,8 @@ LLVM</a>.</p>
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
- integer bit width. Not all targets support all bit widths however.</p>
+ integer bit width, or any vector whose elements are integers. Not all
+ targets support all bit widths or vector types, however.</p>
<pre>
declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
@@ -6659,6 +6630,7 @@ LLVM</a>.</p>
declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
+ declare &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src;gt)
</pre>
<h5>Overview:</h5>
@@ -6667,11 +6639,13 @@ LLVM</a>.</p>
<h5>Arguments:</h5>
<p>The only argument is the value to be counted. The argument may be of any
- integer type. The return type must match the argument type.</p>
+ integer type, or any vector type with integer element type.
+ The return type must match the argument type.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
- zeros in a variable. If the src == 0 then the result is the size in bits of
+ zeros in a variable, or within each element of the vector if the operation
+ is of vector type. If the src == 0 then the result is the size in bits of
the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
</div>
@@ -6685,7 +6659,8 @@ LLVM</a>.</p>
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
- integer bit width. Not all targets support all bit widths however.</p>
+ integer bit width, or any vector of integer elements. Not all targets
+ support all bit widths or vector types, however.</p>
<pre>
declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
@@ -6693,6 +6668,7 @@ LLVM</a>.</p>
declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
+ declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
</pre>
<h5>Overview:</h5>
@@ -6701,11 +6677,13 @@ LLVM</a>.</p>
<h5>Arguments:</h5>
<p>The only argument is the value to be counted. The argument may be of any
- integer type. The return type must match the argument type.</p>
+ integer type, or a vectory with integer element type.. The return type
+ must match the argument type.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
- zeros in a variable. If the src == 0 then the result is the size in bits of
+ zeros in a variable, or within each element of a vector.
+ If the src == 0 then the result is the size in bits of
the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
</div>
@@ -7302,7 +7280,7 @@ LLVM</a>.</p>
store i32 4, %ptr
%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
- call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false)
+ call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false, i1 true)
<i>; guarantee the above finishes</i>
store i32 8, %ptr <i>; before this begins</i>
</pre>
@@ -8017,7 +7995,7 @@ LLVM</a>.</p>
<a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
<a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
- Last modified: $Date: 2011-05-27 02:36:31 +0200 (Fri, 27 May 2011) $
+ Last modified: $Date: 2011-07-09 19:41:24 +0200 (Sat, 09 Jul 2011) $
</address>
</body>
OpenPOWER on IntegriCloud