summaryrefslogtreecommitdiffstats
path: root/crypto/openssh/openbsd-compat/sha2.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/openssh/openbsd-compat/sha2.c')
-rwxr-xr-xcrypto/openssh/openbsd-compat/sha2.c882
1 files changed, 0 insertions, 882 deletions
diff --git a/crypto/openssh/openbsd-compat/sha2.c b/crypto/openssh/openbsd-compat/sha2.c
deleted file mode 100755
index cf8e0ad6..0000000
--- a/crypto/openssh/openbsd-compat/sha2.c
+++ /dev/null
@@ -1,882 +0,0 @@
-/* $OpenBSD: sha2.c,v 1.11 2005/08/08 08:05:35 espie Exp $ */
-
-/*
- * FILE: sha2.c
- * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
- *
- * Copyright (c) 2000-2001, Aaron D. Gifford
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the copyright holder nor the names of contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
- */
-
-/* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
-
-#include "includes.h"
-
-#include <openssl/opensslv.h>
-
-#if !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \
- (OPENSSL_VERSION_NUMBER >= 0x00907000L)
-#include <sys/types.h>
-#include <string.h>
-#include "sha2.h"
-
-/*
- * UNROLLED TRANSFORM LOOP NOTE:
- * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
- * loop version for the hash transform rounds (defined using macros
- * later in this file). Either define on the command line, for example:
- *
- * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
- *
- * or define below:
- *
- * #define SHA2_UNROLL_TRANSFORM
- *
- */
-
-/*** SHA-256/384/512 Machine Architecture Definitions *****************/
-/*
- * BYTE_ORDER NOTE:
- *
- * Please make sure that your system defines BYTE_ORDER. If your
- * architecture is little-endian, make sure it also defines
- * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
- * equivilent.
- *
- * If your system does not define the above, then you can do so by
- * hand like this:
- *
- * #define LITTLE_ENDIAN 1234
- * #define BIG_ENDIAN 4321
- *
- * And for little-endian machines, add:
- *
- * #define BYTE_ORDER LITTLE_ENDIAN
- *
- * Or for big-endian machines:
- *
- * #define BYTE_ORDER BIG_ENDIAN
- *
- * The FreeBSD machine this was written on defines BYTE_ORDER
- * appropriately by including <sys/types.h> (which in turn includes
- * <machine/endian.h> where the appropriate definitions are actually
- * made).
- */
-#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
-#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
-#endif
-
-
-/*** SHA-256/384/512 Various Length Definitions ***********************/
-/* NOTE: Most of these are in sha2.h */
-#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
-#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
-#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
-
-/*** ENDIAN SPECIFIC COPY MACROS **************************************/
-#define BE_8_TO_32(dst, cp) do { \
- (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \
- ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \
-} while(0)
-
-#define BE_8_TO_64(dst, cp) do { \
- (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \
- ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
- ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
- ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \
-} while (0)
-
-#define BE_64_TO_8(cp, src) do { \
- (cp)[0] = (src) >> 56; \
- (cp)[1] = (src) >> 48; \
- (cp)[2] = (src) >> 40; \
- (cp)[3] = (src) >> 32; \
- (cp)[4] = (src) >> 24; \
- (cp)[5] = (src) >> 16; \
- (cp)[6] = (src) >> 8; \
- (cp)[7] = (src); \
-} while (0)
-
-#define BE_32_TO_8(cp, src) do { \
- (cp)[0] = (src) >> 24; \
- (cp)[1] = (src) >> 16; \
- (cp)[2] = (src) >> 8; \
- (cp)[3] = (src); \
-} while (0)
-
-/*
- * Macro for incrementally adding the unsigned 64-bit integer n to the
- * unsigned 128-bit integer (represented using a two-element array of
- * 64-bit words):
- */
-#define ADDINC128(w,n) do { \
- (w)[0] += (u_int64_t)(n); \
- if ((w)[0] < (n)) { \
- (w)[1]++; \
- } \
-} while (0)
-
-/*** THE SIX LOGICAL FUNCTIONS ****************************************/
-/*
- * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
- *
- * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
- * S is a ROTATION) because the SHA-256/384/512 description document
- * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
- * same "backwards" definition.
- */
-/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
-#define R(b,x) ((x) >> (b))
-/* 32-bit Rotate-right (used in SHA-256): */
-#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
-/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
-#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
-
-/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
-#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
-#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
-
-/* Four of six logical functions used in SHA-256: */
-#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
-#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
-#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
-#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
-
-/* Four of six logical functions used in SHA-384 and SHA-512: */
-#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
-#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
-#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
-#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
-
-
-/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
-/* Hash constant words K for SHA-256: */
-const static u_int32_t K256[64] = {
- 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
- 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
- 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
- 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
- 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
- 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
- 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
- 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
- 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
- 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
- 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
- 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
- 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
- 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
- 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
- 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
-};
-
-/* Initial hash value H for SHA-256: */
-const static u_int32_t sha256_initial_hash_value[8] = {
- 0x6a09e667UL,
- 0xbb67ae85UL,
- 0x3c6ef372UL,
- 0xa54ff53aUL,
- 0x510e527fUL,
- 0x9b05688cUL,
- 0x1f83d9abUL,
- 0x5be0cd19UL
-};
-
-/* Hash constant words K for SHA-384 and SHA-512: */
-const static u_int64_t K512[80] = {
- 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
- 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
- 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
- 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
- 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
- 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
- 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
- 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
- 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
- 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
- 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
- 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
- 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
- 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
- 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
- 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
- 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
- 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
- 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
- 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
- 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
- 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
- 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
- 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
- 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
- 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
- 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
- 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
- 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
- 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
- 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
- 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
- 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
- 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
- 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
- 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
- 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
- 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
- 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
- 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
-};
-
-/* Initial hash value H for SHA-384 */
-const static u_int64_t sha384_initial_hash_value[8] = {
- 0xcbbb9d5dc1059ed8ULL,
- 0x629a292a367cd507ULL,
- 0x9159015a3070dd17ULL,
- 0x152fecd8f70e5939ULL,
- 0x67332667ffc00b31ULL,
- 0x8eb44a8768581511ULL,
- 0xdb0c2e0d64f98fa7ULL,
- 0x47b5481dbefa4fa4ULL
-};
-
-/* Initial hash value H for SHA-512 */
-const static u_int64_t sha512_initial_hash_value[8] = {
- 0x6a09e667f3bcc908ULL,
- 0xbb67ae8584caa73bULL,
- 0x3c6ef372fe94f82bULL,
- 0xa54ff53a5f1d36f1ULL,
- 0x510e527fade682d1ULL,
- 0x9b05688c2b3e6c1fULL,
- 0x1f83d9abfb41bd6bULL,
- 0x5be0cd19137e2179ULL
-};
-
-
-/*** SHA-256: *********************************************************/
-void
-SHA256_Init(SHA256_CTX *context)
-{
- if (context == NULL)
- return;
- memcpy(context->state, sha256_initial_hash_value,
- sizeof(sha256_initial_hash_value));
- memset(context->buffer, 0, sizeof(context->buffer));
- context->bitcount = 0;
-}
-
-#ifdef SHA2_UNROLL_TRANSFORM
-
-/* Unrolled SHA-256 round macros: */
-
-#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
- BE_8_TO_32(W256[j], data); \
- data += 4; \
- T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
- (d) += T1; \
- (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
- j++; \
-} while(0)
-
-#define ROUND256(a,b,c,d,e,f,g,h) do { \
- s0 = W256[(j+1)&0x0f]; \
- s0 = sigma0_256(s0); \
- s1 = W256[(j+14)&0x0f]; \
- s1 = sigma1_256(s1); \
- T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
- (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
- (d) += T1; \
- (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
- j++; \
-} while(0)
-
-void
-SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
-{
- u_int32_t a, b, c, d, e, f, g, h, s0, s1;
- u_int32_t T1, W256[16];
- int j;
-
- /* Initialize registers with the prev. intermediate value */
- a = state[0];
- b = state[1];
- c = state[2];
- d = state[3];
- e = state[4];
- f = state[5];
- g = state[6];
- h = state[7];
-
- j = 0;
- do {
- /* Rounds 0 to 15 (unrolled): */
- ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
- ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
- ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
- ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
- ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
- ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
- ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
- ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
- } while (j < 16);
-
- /* Now for the remaining rounds up to 63: */
- do {
- ROUND256(a,b,c,d,e,f,g,h);
- ROUND256(h,a,b,c,d,e,f,g);
- ROUND256(g,h,a,b,c,d,e,f);
- ROUND256(f,g,h,a,b,c,d,e);
- ROUND256(e,f,g,h,a,b,c,d);
- ROUND256(d,e,f,g,h,a,b,c);
- ROUND256(c,d,e,f,g,h,a,b);
- ROUND256(b,c,d,e,f,g,h,a);
- } while (j < 64);
-
- /* Compute the current intermediate hash value */
- state[0] += a;
- state[1] += b;
- state[2] += c;
- state[3] += d;
- state[4] += e;
- state[5] += f;
- state[6] += g;
- state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = 0;
-}
-
-#else /* SHA2_UNROLL_TRANSFORM */
-
-void
-SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
-{
- u_int32_t a, b, c, d, e, f, g, h, s0, s1;
- u_int32_t T1, T2, W256[16];
- int j;
-
- /* Initialize registers with the prev. intermediate value */
- a = state[0];
- b = state[1];
- c = state[2];
- d = state[3];
- e = state[4];
- f = state[5];
- g = state[6];
- h = state[7];
-
- j = 0;
- do {
- BE_8_TO_32(W256[j], data);
- data += 4;
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 16);
-
- do {
- /* Part of the message block expansion: */
- s0 = W256[(j+1)&0x0f];
- s0 = sigma0_256(s0);
- s1 = W256[(j+14)&0x0f];
- s1 = sigma1_256(s1);
-
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
- (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 64);
-
- /* Compute the current intermediate hash value */
- state[0] += a;
- state[1] += b;
- state[2] += c;
- state[3] += d;
- state[4] += e;
- state[5] += f;
- state[6] += g;
- state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = T2 = 0;
-}
-
-#endif /* SHA2_UNROLL_TRANSFORM */
-
-void
-SHA256_Update(SHA256_CTX *context, const u_int8_t *data, size_t len)
-{
- size_t freespace, usedspace;
-
- /* Calling with no data is valid (we do nothing) */
- if (len == 0)
- return;
-
- usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
- if (usedspace > 0) {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA256_BLOCK_LENGTH - usedspace;
-
- if (len >= freespace) {
- /* Fill the buffer completely and process it */
- memcpy(&context->buffer[usedspace], data, freespace);
- context->bitcount += freespace << 3;
- len -= freespace;
- data += freespace;
- SHA256_Transform(context->state, context->buffer);
- } else {
- /* The buffer is not yet full */
- memcpy(&context->buffer[usedspace], data, len);
- context->bitcount += len << 3;
- /* Clean up: */
- usedspace = freespace = 0;
- return;
- }
- }
- while (len >= SHA256_BLOCK_LENGTH) {
- /* Process as many complete blocks as we can */
- SHA256_Transform(context->state, data);
- context->bitcount += SHA256_BLOCK_LENGTH << 3;
- len -= SHA256_BLOCK_LENGTH;
- data += SHA256_BLOCK_LENGTH;
- }
- if (len > 0) {
- /* There's left-overs, so save 'em */
- memcpy(context->buffer, data, len);
- context->bitcount += len << 3;
- }
- /* Clean up: */
- usedspace = freespace = 0;
-}
-
-void
-SHA256_Pad(SHA256_CTX *context)
-{
- unsigned int usedspace;
-
- usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
- if (usedspace > 0) {
- /* Begin padding with a 1 bit: */
- context->buffer[usedspace++] = 0x80;
-
- if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
- /* Set-up for the last transform: */
- memset(&context->buffer[usedspace], 0,
- SHA256_SHORT_BLOCK_LENGTH - usedspace);
- } else {
- if (usedspace < SHA256_BLOCK_LENGTH) {
- memset(&context->buffer[usedspace], 0,
- SHA256_BLOCK_LENGTH - usedspace);
- }
- /* Do second-to-last transform: */
- SHA256_Transform(context->state, context->buffer);
-
- /* Prepare for last transform: */
- memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
- }
- } else {
- /* Set-up for the last transform: */
- memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
-
- /* Begin padding with a 1 bit: */
- *context->buffer = 0x80;
- }
- /* Store the length of input data (in bits) in big endian format: */
- BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
- context->bitcount);
-
- /* Final transform: */
- SHA256_Transform(context->state, context->buffer);
-
- /* Clean up: */
- usedspace = 0;
-}
-
-void
-SHA256_Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA256_CTX *context)
-{
- SHA256_Pad(context);
-
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != NULL) {
-#if BYTE_ORDER == LITTLE_ENDIAN
- int i;
-
- /* Convert TO host byte order */
- for (i = 0; i < 8; i++)
- BE_32_TO_8(digest + i * 4, context->state[i]);
-#else
- memcpy(digest, context->state, SHA256_DIGEST_LENGTH);
-#endif
- memset(context, 0, sizeof(*context));
- }
-}
-
-
-/*** SHA-512: *********************************************************/
-void
-SHA512_Init(SHA512_CTX *context)
-{
- if (context == NULL)
- return;
- memcpy(context->state, sha512_initial_hash_value,
- sizeof(sha512_initial_hash_value));
- memset(context->buffer, 0, sizeof(context->buffer));
- context->bitcount[0] = context->bitcount[1] = 0;
-}
-
-#ifdef SHA2_UNROLL_TRANSFORM
-
-/* Unrolled SHA-512 round macros: */
-
-#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
- BE_8_TO_64(W512[j], data); \
- data += 8; \
- T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
- (d) += T1; \
- (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
- j++; \
-} while(0)
-
-
-#define ROUND512(a,b,c,d,e,f,g,h) do { \
- s0 = W512[(j+1)&0x0f]; \
- s0 = sigma0_512(s0); \
- s1 = W512[(j+14)&0x0f]; \
- s1 = sigma1_512(s1); \
- T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
- (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
- (d) += T1; \
- (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
- j++; \
-} while(0)
-
-void
-SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
-{
- u_int64_t a, b, c, d, e, f, g, h, s0, s1;
- u_int64_t T1, W512[16];
- int j;
-
- /* Initialize registers with the prev. intermediate value */
- a = state[0];
- b = state[1];
- c = state[2];
- d = state[3];
- e = state[4];
- f = state[5];
- g = state[6];
- h = state[7];
-
- j = 0;
- do {
- /* Rounds 0 to 15 (unrolled): */
- ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
- ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
- ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
- ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
- ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
- ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
- ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
- ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
- } while (j < 16);
-
- /* Now for the remaining rounds up to 79: */
- do {
- ROUND512(a,b,c,d,e,f,g,h);
- ROUND512(h,a,b,c,d,e,f,g);
- ROUND512(g,h,a,b,c,d,e,f);
- ROUND512(f,g,h,a,b,c,d,e);
- ROUND512(e,f,g,h,a,b,c,d);
- ROUND512(d,e,f,g,h,a,b,c);
- ROUND512(c,d,e,f,g,h,a,b);
- ROUND512(b,c,d,e,f,g,h,a);
- } while (j < 80);
-
- /* Compute the current intermediate hash value */
- state[0] += a;
- state[1] += b;
- state[2] += c;
- state[3] += d;
- state[4] += e;
- state[5] += f;
- state[6] += g;
- state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = 0;
-}
-
-#else /* SHA2_UNROLL_TRANSFORM */
-
-void
-SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
-{
- u_int64_t a, b, c, d, e, f, g, h, s0, s1;
- u_int64_t T1, T2, W512[16];
- int j;
-
- /* Initialize registers with the prev. intermediate value */
- a = state[0];
- b = state[1];
- c = state[2];
- d = state[3];
- e = state[4];
- f = state[5];
- g = state[6];
- h = state[7];
-
- j = 0;
- do {
- BE_8_TO_64(W512[j], data);
- data += 8;
- /* Apply the SHA-512 compression function to update a..h */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
- T2 = Sigma0_512(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 16);
-
- do {
- /* Part of the message block expansion: */
- s0 = W512[(j+1)&0x0f];
- s0 = sigma0_512(s0);
- s1 = W512[(j+14)&0x0f];
- s1 = sigma1_512(s1);
-
- /* Apply the SHA-512 compression function to update a..h */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
- (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
- T2 = Sigma0_512(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 80);
-
- /* Compute the current intermediate hash value */
- state[0] += a;
- state[1] += b;
- state[2] += c;
- state[3] += d;
- state[4] += e;
- state[5] += f;
- state[6] += g;
- state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = T2 = 0;
-}
-
-#endif /* SHA2_UNROLL_TRANSFORM */
-
-void
-SHA512_Update(SHA512_CTX *context, const u_int8_t *data, size_t len)
-{
- size_t freespace, usedspace;
-
- /* Calling with no data is valid (we do nothing) */
- if (len == 0)
- return;
-
- usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
- if (usedspace > 0) {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA512_BLOCK_LENGTH - usedspace;
-
- if (len >= freespace) {
- /* Fill the buffer completely and process it */
- memcpy(&context->buffer[usedspace], data, freespace);
- ADDINC128(context->bitcount, freespace << 3);
- len -= freespace;
- data += freespace;
- SHA512_Transform(context->state, context->buffer);
- } else {
- /* The buffer is not yet full */
- memcpy(&context->buffer[usedspace], data, len);
- ADDINC128(context->bitcount, len << 3);
- /* Clean up: */
- usedspace = freespace = 0;
- return;
- }
- }
- while (len >= SHA512_BLOCK_LENGTH) {
- /* Process as many complete blocks as we can */
- SHA512_Transform(context->state, data);
- ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
- len -= SHA512_BLOCK_LENGTH;
- data += SHA512_BLOCK_LENGTH;
- }
- if (len > 0) {
- /* There's left-overs, so save 'em */
- memcpy(context->buffer, data, len);
- ADDINC128(context->bitcount, len << 3);
- }
- /* Clean up: */
- usedspace = freespace = 0;
-}
-
-void
-SHA512_Pad(SHA512_CTX *context)
-{
- unsigned int usedspace;
-
- usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
- if (usedspace > 0) {
- /* Begin padding with a 1 bit: */
- context->buffer[usedspace++] = 0x80;
-
- if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
- /* Set-up for the last transform: */
- memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
- } else {
- if (usedspace < SHA512_BLOCK_LENGTH) {
- memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
- }
- /* Do second-to-last transform: */
- SHA512_Transform(context->state, context->buffer);
-
- /* And set-up for the last transform: */
- memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
- }
- } else {
- /* Prepare for final transform: */
- memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
-
- /* Begin padding with a 1 bit: */
- *context->buffer = 0x80;
- }
- /* Store the length of input data (in bits) in big endian format: */
- BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
- context->bitcount[1]);
- BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
- context->bitcount[0]);
-
- /* Final transform: */
- SHA512_Transform(context->state, context->buffer);
-
- /* Clean up: */
- usedspace = 0;
-}
-
-void
-SHA512_Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
-{
- SHA512_Pad(context);
-
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != NULL) {
-#if BYTE_ORDER == LITTLE_ENDIAN
- int i;
-
- /* Convert TO host byte order */
- for (i = 0; i < 8; i++)
- BE_64_TO_8(digest + i * 8, context->state[i]);
-#else
- memcpy(digest, context->state, SHA512_DIGEST_LENGTH);
-#endif
- memset(context, 0, sizeof(*context));
- }
-}
-
-
-#if 0
-/*** SHA-384: *********************************************************/
-void
-SHA384_Init(SHA384_CTX *context)
-{
- if (context == NULL)
- return;
- memcpy(context->state, sha384_initial_hash_value,
- sizeof(sha384_initial_hash_value));
- memset(context->buffer, 0, sizeof(context->buffer));
- context->bitcount[0] = context->bitcount[1] = 0;
-}
-
-__weak_alias(SHA384_Transform, SHA512_Transform);
-__weak_alias(SHA384_Update, SHA512_Update);
-__weak_alias(SHA384_Pad, SHA512_Pad);
-
-void
-SHA384_Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA384_CTX *context)
-{
- SHA384_Pad(context);
-
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != NULL) {
-#if BYTE_ORDER == LITTLE_ENDIAN
- int i;
-
- /* Convert TO host byte order */
- for (i = 0; i < 6; i++)
- BE_64_TO_8(digest + i * 8, context->state[i]);
-#else
- memcpy(digest, context->state, SHA384_DIGEST_LENGTH);
-#endif
- }
-
- /* Zero out state data */
- memset(context, 0, sizeof(*context));
-}
-#endif
-
-#endif /* !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \
- (OPENSSL_VERSION_NUMBER >= 0x00907000L) */
OpenPOWER on IntegriCloud