diff options
Diffstat (limited to 'crypto/openssh/openbsd-compat/sha2.c')
-rwxr-xr-x | crypto/openssh/openbsd-compat/sha2.c | 882 |
1 files changed, 0 insertions, 882 deletions
diff --git a/crypto/openssh/openbsd-compat/sha2.c b/crypto/openssh/openbsd-compat/sha2.c deleted file mode 100755 index cf8e0ad6..0000000 --- a/crypto/openssh/openbsd-compat/sha2.c +++ /dev/null @@ -1,882 +0,0 @@ -/* $OpenBSD: sha2.c,v 1.11 2005/08/08 08:05:35 espie Exp $ */ - -/* - * FILE: sha2.c - * AUTHOR: Aaron D. Gifford <me@aarongifford.com> - * - * Copyright (c) 2000-2001, Aaron D. Gifford - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. Neither the name of the copyright holder nor the names of contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * - * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ - */ - -/* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */ - -#include "includes.h" - -#include <openssl/opensslv.h> - -#if !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \ - (OPENSSL_VERSION_NUMBER >= 0x00907000L) -#include <sys/types.h> -#include <string.h> -#include "sha2.h" - -/* - * UNROLLED TRANSFORM LOOP NOTE: - * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform - * loop version for the hash transform rounds (defined using macros - * later in this file). Either define on the command line, for example: - * - * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c - * - * or define below: - * - * #define SHA2_UNROLL_TRANSFORM - * - */ - -/*** SHA-256/384/512 Machine Architecture Definitions *****************/ -/* - * BYTE_ORDER NOTE: - * - * Please make sure that your system defines BYTE_ORDER. If your - * architecture is little-endian, make sure it also defines - * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are - * equivilent. - * - * If your system does not define the above, then you can do so by - * hand like this: - * - * #define LITTLE_ENDIAN 1234 - * #define BIG_ENDIAN 4321 - * - * And for little-endian machines, add: - * - * #define BYTE_ORDER LITTLE_ENDIAN - * - * Or for big-endian machines: - * - * #define BYTE_ORDER BIG_ENDIAN - * - * The FreeBSD machine this was written on defines BYTE_ORDER - * appropriately by including <sys/types.h> (which in turn includes - * <machine/endian.h> where the appropriate definitions are actually - * made). - */ -#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) -#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN -#endif - - -/*** SHA-256/384/512 Various Length Definitions ***********************/ -/* NOTE: Most of these are in sha2.h */ -#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) -#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) -#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) - -/*** ENDIAN SPECIFIC COPY MACROS **************************************/ -#define BE_8_TO_32(dst, cp) do { \ - (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \ - ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \ -} while(0) - -#define BE_8_TO_64(dst, cp) do { \ - (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \ - ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \ - ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \ - ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \ -} while (0) - -#define BE_64_TO_8(cp, src) do { \ - (cp)[0] = (src) >> 56; \ - (cp)[1] = (src) >> 48; \ - (cp)[2] = (src) >> 40; \ - (cp)[3] = (src) >> 32; \ - (cp)[4] = (src) >> 24; \ - (cp)[5] = (src) >> 16; \ - (cp)[6] = (src) >> 8; \ - (cp)[7] = (src); \ -} while (0) - -#define BE_32_TO_8(cp, src) do { \ - (cp)[0] = (src) >> 24; \ - (cp)[1] = (src) >> 16; \ - (cp)[2] = (src) >> 8; \ - (cp)[3] = (src); \ -} while (0) - -/* - * Macro for incrementally adding the unsigned 64-bit integer n to the - * unsigned 128-bit integer (represented using a two-element array of - * 64-bit words): - */ -#define ADDINC128(w,n) do { \ - (w)[0] += (u_int64_t)(n); \ - if ((w)[0] < (n)) { \ - (w)[1]++; \ - } \ -} while (0) - -/*** THE SIX LOGICAL FUNCTIONS ****************************************/ -/* - * Bit shifting and rotation (used by the six SHA-XYZ logical functions: - * - * NOTE: The naming of R and S appears backwards here (R is a SHIFT and - * S is a ROTATION) because the SHA-256/384/512 description document - * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this - * same "backwards" definition. - */ -/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ -#define R(b,x) ((x) >> (b)) -/* 32-bit Rotate-right (used in SHA-256): */ -#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) -/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ -#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) - -/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ -#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) -#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) - -/* Four of six logical functions used in SHA-256: */ -#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) -#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) -#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) -#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) - -/* Four of six logical functions used in SHA-384 and SHA-512: */ -#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) -#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) -#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) -#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) - - -/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ -/* Hash constant words K for SHA-256: */ -const static u_int32_t K256[64] = { - 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, - 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, - 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, - 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, - 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, - 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, - 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, - 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, - 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, - 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, - 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, - 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, - 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, - 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, - 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, - 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL -}; - -/* Initial hash value H for SHA-256: */ -const static u_int32_t sha256_initial_hash_value[8] = { - 0x6a09e667UL, - 0xbb67ae85UL, - 0x3c6ef372UL, - 0xa54ff53aUL, - 0x510e527fUL, - 0x9b05688cUL, - 0x1f83d9abUL, - 0x5be0cd19UL -}; - -/* Hash constant words K for SHA-384 and SHA-512: */ -const static u_int64_t K512[80] = { - 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, - 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, - 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, - 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, - 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, - 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, - 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, - 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, - 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, - 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, - 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, - 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, - 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, - 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, - 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, - 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, - 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, - 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, - 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, - 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, - 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, - 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, - 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, - 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, - 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, - 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, - 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, - 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, - 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, - 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, - 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, - 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, - 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, - 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, - 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, - 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, - 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, - 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, - 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, - 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL -}; - -/* Initial hash value H for SHA-384 */ -const static u_int64_t sha384_initial_hash_value[8] = { - 0xcbbb9d5dc1059ed8ULL, - 0x629a292a367cd507ULL, - 0x9159015a3070dd17ULL, - 0x152fecd8f70e5939ULL, - 0x67332667ffc00b31ULL, - 0x8eb44a8768581511ULL, - 0xdb0c2e0d64f98fa7ULL, - 0x47b5481dbefa4fa4ULL -}; - -/* Initial hash value H for SHA-512 */ -const static u_int64_t sha512_initial_hash_value[8] = { - 0x6a09e667f3bcc908ULL, - 0xbb67ae8584caa73bULL, - 0x3c6ef372fe94f82bULL, - 0xa54ff53a5f1d36f1ULL, - 0x510e527fade682d1ULL, - 0x9b05688c2b3e6c1fULL, - 0x1f83d9abfb41bd6bULL, - 0x5be0cd19137e2179ULL -}; - - -/*** SHA-256: *********************************************************/ -void -SHA256_Init(SHA256_CTX *context) -{ - if (context == NULL) - return; - memcpy(context->state, sha256_initial_hash_value, - sizeof(sha256_initial_hash_value)); - memset(context->buffer, 0, sizeof(context->buffer)); - context->bitcount = 0; -} - -#ifdef SHA2_UNROLL_TRANSFORM - -/* Unrolled SHA-256 round macros: */ - -#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ - BE_8_TO_32(W256[j], data); \ - data += 4; \ - T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ - (d) += T1; \ - (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ - j++; \ -} while(0) - -#define ROUND256(a,b,c,d,e,f,g,h) do { \ - s0 = W256[(j+1)&0x0f]; \ - s0 = sigma0_256(s0); \ - s1 = W256[(j+14)&0x0f]; \ - s1 = sigma1_256(s1); \ - T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ - (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ - (d) += T1; \ - (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ - j++; \ -} while(0) - -void -SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) -{ - u_int32_t a, b, c, d, e, f, g, h, s0, s1; - u_int32_t T1, W256[16]; - int j; - - /* Initialize registers with the prev. intermediate value */ - a = state[0]; - b = state[1]; - c = state[2]; - d = state[3]; - e = state[4]; - f = state[5]; - g = state[6]; - h = state[7]; - - j = 0; - do { - /* Rounds 0 to 15 (unrolled): */ - ROUND256_0_TO_15(a,b,c,d,e,f,g,h); - ROUND256_0_TO_15(h,a,b,c,d,e,f,g); - ROUND256_0_TO_15(g,h,a,b,c,d,e,f); - ROUND256_0_TO_15(f,g,h,a,b,c,d,e); - ROUND256_0_TO_15(e,f,g,h,a,b,c,d); - ROUND256_0_TO_15(d,e,f,g,h,a,b,c); - ROUND256_0_TO_15(c,d,e,f,g,h,a,b); - ROUND256_0_TO_15(b,c,d,e,f,g,h,a); - } while (j < 16); - - /* Now for the remaining rounds up to 63: */ - do { - ROUND256(a,b,c,d,e,f,g,h); - ROUND256(h,a,b,c,d,e,f,g); - ROUND256(g,h,a,b,c,d,e,f); - ROUND256(f,g,h,a,b,c,d,e); - ROUND256(e,f,g,h,a,b,c,d); - ROUND256(d,e,f,g,h,a,b,c); - ROUND256(c,d,e,f,g,h,a,b); - ROUND256(b,c,d,e,f,g,h,a); - } while (j < 64); - - /* Compute the current intermediate hash value */ - state[0] += a; - state[1] += b; - state[2] += c; - state[3] += d; - state[4] += e; - state[5] += f; - state[6] += g; - state[7] += h; - - /* Clean up */ - a = b = c = d = e = f = g = h = T1 = 0; -} - -#else /* SHA2_UNROLL_TRANSFORM */ - -void -SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) -{ - u_int32_t a, b, c, d, e, f, g, h, s0, s1; - u_int32_t T1, T2, W256[16]; - int j; - - /* Initialize registers with the prev. intermediate value */ - a = state[0]; - b = state[1]; - c = state[2]; - d = state[3]; - e = state[4]; - f = state[5]; - g = state[6]; - h = state[7]; - - j = 0; - do { - BE_8_TO_32(W256[j], data); - data += 4; - /* Apply the SHA-256 compression function to update a..h */ - T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; - T2 = Sigma0_256(a) + Maj(a, b, c); - h = g; - g = f; - f = e; - e = d + T1; - d = c; - c = b; - b = a; - a = T1 + T2; - - j++; - } while (j < 16); - - do { - /* Part of the message block expansion: */ - s0 = W256[(j+1)&0x0f]; - s0 = sigma0_256(s0); - s1 = W256[(j+14)&0x0f]; - s1 = sigma1_256(s1); - - /* Apply the SHA-256 compression function to update a..h */ - T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + - (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); - T2 = Sigma0_256(a) + Maj(a, b, c); - h = g; - g = f; - f = e; - e = d + T1; - d = c; - c = b; - b = a; - a = T1 + T2; - - j++; - } while (j < 64); - - /* Compute the current intermediate hash value */ - state[0] += a; - state[1] += b; - state[2] += c; - state[3] += d; - state[4] += e; - state[5] += f; - state[6] += g; - state[7] += h; - - /* Clean up */ - a = b = c = d = e = f = g = h = T1 = T2 = 0; -} - -#endif /* SHA2_UNROLL_TRANSFORM */ - -void -SHA256_Update(SHA256_CTX *context, const u_int8_t *data, size_t len) -{ - size_t freespace, usedspace; - - /* Calling with no data is valid (we do nothing) */ - if (len == 0) - return; - - usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; - if (usedspace > 0) { - /* Calculate how much free space is available in the buffer */ - freespace = SHA256_BLOCK_LENGTH - usedspace; - - if (len >= freespace) { - /* Fill the buffer completely and process it */ - memcpy(&context->buffer[usedspace], data, freespace); - context->bitcount += freespace << 3; - len -= freespace; - data += freespace; - SHA256_Transform(context->state, context->buffer); - } else { - /* The buffer is not yet full */ - memcpy(&context->buffer[usedspace], data, len); - context->bitcount += len << 3; - /* Clean up: */ - usedspace = freespace = 0; - return; - } - } - while (len >= SHA256_BLOCK_LENGTH) { - /* Process as many complete blocks as we can */ - SHA256_Transform(context->state, data); - context->bitcount += SHA256_BLOCK_LENGTH << 3; - len -= SHA256_BLOCK_LENGTH; - data += SHA256_BLOCK_LENGTH; - } - if (len > 0) { - /* There's left-overs, so save 'em */ - memcpy(context->buffer, data, len); - context->bitcount += len << 3; - } - /* Clean up: */ - usedspace = freespace = 0; -} - -void -SHA256_Pad(SHA256_CTX *context) -{ - unsigned int usedspace; - - usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; - if (usedspace > 0) { - /* Begin padding with a 1 bit: */ - context->buffer[usedspace++] = 0x80; - - if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { - /* Set-up for the last transform: */ - memset(&context->buffer[usedspace], 0, - SHA256_SHORT_BLOCK_LENGTH - usedspace); - } else { - if (usedspace < SHA256_BLOCK_LENGTH) { - memset(&context->buffer[usedspace], 0, - SHA256_BLOCK_LENGTH - usedspace); - } - /* Do second-to-last transform: */ - SHA256_Transform(context->state, context->buffer); - - /* Prepare for last transform: */ - memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); - } - } else { - /* Set-up for the last transform: */ - memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); - - /* Begin padding with a 1 bit: */ - *context->buffer = 0x80; - } - /* Store the length of input data (in bits) in big endian format: */ - BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], - context->bitcount); - - /* Final transform: */ - SHA256_Transform(context->state, context->buffer); - - /* Clean up: */ - usedspace = 0; -} - -void -SHA256_Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA256_CTX *context) -{ - SHA256_Pad(context); - - /* If no digest buffer is passed, we don't bother doing this: */ - if (digest != NULL) { -#if BYTE_ORDER == LITTLE_ENDIAN - int i; - - /* Convert TO host byte order */ - for (i = 0; i < 8; i++) - BE_32_TO_8(digest + i * 4, context->state[i]); -#else - memcpy(digest, context->state, SHA256_DIGEST_LENGTH); -#endif - memset(context, 0, sizeof(*context)); - } -} - - -/*** SHA-512: *********************************************************/ -void -SHA512_Init(SHA512_CTX *context) -{ - if (context == NULL) - return; - memcpy(context->state, sha512_initial_hash_value, - sizeof(sha512_initial_hash_value)); - memset(context->buffer, 0, sizeof(context->buffer)); - context->bitcount[0] = context->bitcount[1] = 0; -} - -#ifdef SHA2_UNROLL_TRANSFORM - -/* Unrolled SHA-512 round macros: */ - -#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ - BE_8_TO_64(W512[j], data); \ - data += 8; \ - T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ - (d) += T1; \ - (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ - j++; \ -} while(0) - - -#define ROUND512(a,b,c,d,e,f,g,h) do { \ - s0 = W512[(j+1)&0x0f]; \ - s0 = sigma0_512(s0); \ - s1 = W512[(j+14)&0x0f]; \ - s1 = sigma1_512(s1); \ - T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ - (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ - (d) += T1; \ - (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ - j++; \ -} while(0) - -void -SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) -{ - u_int64_t a, b, c, d, e, f, g, h, s0, s1; - u_int64_t T1, W512[16]; - int j; - - /* Initialize registers with the prev. intermediate value */ - a = state[0]; - b = state[1]; - c = state[2]; - d = state[3]; - e = state[4]; - f = state[5]; - g = state[6]; - h = state[7]; - - j = 0; - do { - /* Rounds 0 to 15 (unrolled): */ - ROUND512_0_TO_15(a,b,c,d,e,f,g,h); - ROUND512_0_TO_15(h,a,b,c,d,e,f,g); - ROUND512_0_TO_15(g,h,a,b,c,d,e,f); - ROUND512_0_TO_15(f,g,h,a,b,c,d,e); - ROUND512_0_TO_15(e,f,g,h,a,b,c,d); - ROUND512_0_TO_15(d,e,f,g,h,a,b,c); - ROUND512_0_TO_15(c,d,e,f,g,h,a,b); - ROUND512_0_TO_15(b,c,d,e,f,g,h,a); - } while (j < 16); - - /* Now for the remaining rounds up to 79: */ - do { - ROUND512(a,b,c,d,e,f,g,h); - ROUND512(h,a,b,c,d,e,f,g); - ROUND512(g,h,a,b,c,d,e,f); - ROUND512(f,g,h,a,b,c,d,e); - ROUND512(e,f,g,h,a,b,c,d); - ROUND512(d,e,f,g,h,a,b,c); - ROUND512(c,d,e,f,g,h,a,b); - ROUND512(b,c,d,e,f,g,h,a); - } while (j < 80); - - /* Compute the current intermediate hash value */ - state[0] += a; - state[1] += b; - state[2] += c; - state[3] += d; - state[4] += e; - state[5] += f; - state[6] += g; - state[7] += h; - - /* Clean up */ - a = b = c = d = e = f = g = h = T1 = 0; -} - -#else /* SHA2_UNROLL_TRANSFORM */ - -void -SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) -{ - u_int64_t a, b, c, d, e, f, g, h, s0, s1; - u_int64_t T1, T2, W512[16]; - int j; - - /* Initialize registers with the prev. intermediate value */ - a = state[0]; - b = state[1]; - c = state[2]; - d = state[3]; - e = state[4]; - f = state[5]; - g = state[6]; - h = state[7]; - - j = 0; - do { - BE_8_TO_64(W512[j], data); - data += 8; - /* Apply the SHA-512 compression function to update a..h */ - T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; - T2 = Sigma0_512(a) + Maj(a, b, c); - h = g; - g = f; - f = e; - e = d + T1; - d = c; - c = b; - b = a; - a = T1 + T2; - - j++; - } while (j < 16); - - do { - /* Part of the message block expansion: */ - s0 = W512[(j+1)&0x0f]; - s0 = sigma0_512(s0); - s1 = W512[(j+14)&0x0f]; - s1 = sigma1_512(s1); - - /* Apply the SHA-512 compression function to update a..h */ - T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + - (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); - T2 = Sigma0_512(a) + Maj(a, b, c); - h = g; - g = f; - f = e; - e = d + T1; - d = c; - c = b; - b = a; - a = T1 + T2; - - j++; - } while (j < 80); - - /* Compute the current intermediate hash value */ - state[0] += a; - state[1] += b; - state[2] += c; - state[3] += d; - state[4] += e; - state[5] += f; - state[6] += g; - state[7] += h; - - /* Clean up */ - a = b = c = d = e = f = g = h = T1 = T2 = 0; -} - -#endif /* SHA2_UNROLL_TRANSFORM */ - -void -SHA512_Update(SHA512_CTX *context, const u_int8_t *data, size_t len) -{ - size_t freespace, usedspace; - - /* Calling with no data is valid (we do nothing) */ - if (len == 0) - return; - - usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; - if (usedspace > 0) { - /* Calculate how much free space is available in the buffer */ - freespace = SHA512_BLOCK_LENGTH - usedspace; - - if (len >= freespace) { - /* Fill the buffer completely and process it */ - memcpy(&context->buffer[usedspace], data, freespace); - ADDINC128(context->bitcount, freespace << 3); - len -= freespace; - data += freespace; - SHA512_Transform(context->state, context->buffer); - } else { - /* The buffer is not yet full */ - memcpy(&context->buffer[usedspace], data, len); - ADDINC128(context->bitcount, len << 3); - /* Clean up: */ - usedspace = freespace = 0; - return; - } - } - while (len >= SHA512_BLOCK_LENGTH) { - /* Process as many complete blocks as we can */ - SHA512_Transform(context->state, data); - ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); - len -= SHA512_BLOCK_LENGTH; - data += SHA512_BLOCK_LENGTH; - } - if (len > 0) { - /* There's left-overs, so save 'em */ - memcpy(context->buffer, data, len); - ADDINC128(context->bitcount, len << 3); - } - /* Clean up: */ - usedspace = freespace = 0; -} - -void -SHA512_Pad(SHA512_CTX *context) -{ - unsigned int usedspace; - - usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; - if (usedspace > 0) { - /* Begin padding with a 1 bit: */ - context->buffer[usedspace++] = 0x80; - - if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { - /* Set-up for the last transform: */ - memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); - } else { - if (usedspace < SHA512_BLOCK_LENGTH) { - memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); - } - /* Do second-to-last transform: */ - SHA512_Transform(context->state, context->buffer); - - /* And set-up for the last transform: */ - memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); - } - } else { - /* Prepare for final transform: */ - memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); - - /* Begin padding with a 1 bit: */ - *context->buffer = 0x80; - } - /* Store the length of input data (in bits) in big endian format: */ - BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], - context->bitcount[1]); - BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], - context->bitcount[0]); - - /* Final transform: */ - SHA512_Transform(context->state, context->buffer); - - /* Clean up: */ - usedspace = 0; -} - -void -SHA512_Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context) -{ - SHA512_Pad(context); - - /* If no digest buffer is passed, we don't bother doing this: */ - if (digest != NULL) { -#if BYTE_ORDER == LITTLE_ENDIAN - int i; - - /* Convert TO host byte order */ - for (i = 0; i < 8; i++) - BE_64_TO_8(digest + i * 8, context->state[i]); -#else - memcpy(digest, context->state, SHA512_DIGEST_LENGTH); -#endif - memset(context, 0, sizeof(*context)); - } -} - - -#if 0 -/*** SHA-384: *********************************************************/ -void -SHA384_Init(SHA384_CTX *context) -{ - if (context == NULL) - return; - memcpy(context->state, sha384_initial_hash_value, - sizeof(sha384_initial_hash_value)); - memset(context->buffer, 0, sizeof(context->buffer)); - context->bitcount[0] = context->bitcount[1] = 0; -} - -__weak_alias(SHA384_Transform, SHA512_Transform); -__weak_alias(SHA384_Update, SHA512_Update); -__weak_alias(SHA384_Pad, SHA512_Pad); - -void -SHA384_Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA384_CTX *context) -{ - SHA384_Pad(context); - - /* If no digest buffer is passed, we don't bother doing this: */ - if (digest != NULL) { -#if BYTE_ORDER == LITTLE_ENDIAN - int i; - - /* Convert TO host byte order */ - for (i = 0; i < 6; i++) - BE_64_TO_8(digest + i * 8, context->state[i]); -#else - memcpy(digest, context->state, SHA384_DIGEST_LENGTH); -#endif - } - - /* Zero out state data */ - memset(context, 0, sizeof(*context)); -} -#endif - -#endif /* !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \ - (OPENSSL_VERSION_NUMBER >= 0x00907000L) */ |