summaryrefslogtreecommitdiffstats
path: root/crypto/heimdal/doc/standardisation/rfc1510.txt
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/heimdal/doc/standardisation/rfc1510.txt')
-rw-r--r--crypto/heimdal/doc/standardisation/rfc1510.txt6275
1 files changed, 0 insertions, 6275 deletions
diff --git a/crypto/heimdal/doc/standardisation/rfc1510.txt b/crypto/heimdal/doc/standardisation/rfc1510.txt
deleted file mode 100644
index bc810cc..0000000
--- a/crypto/heimdal/doc/standardisation/rfc1510.txt
+++ /dev/null
@@ -1,6275 +0,0 @@
-
-
-
-
-
-
-Network Working Group J. Kohl
-Request for Comments: 1510 Digital Equipment Corporation
- C. Neuman
- ISI
- September 1993
-
-
- The Kerberos Network Authentication Service (V5)
-
-Status of this Memo
-
- This RFC specifies an Internet standards track protocol for the
- Internet community, and requests discussion and suggestions for
- improvements. Please refer to the current edition of the "Internet
- Official Protocol Standards" for the standardization state and status
- of this protocol. Distribution of this memo is unlimited.
-
-Abstract
-
- This document gives an overview and specification of Version 5 of the
- protocol for the Kerberos network authentication system. Version 4,
- described elsewhere [1,2], is presently in production use at MIT's
- Project Athena, and at other Internet sites.
-
-Overview
-
- Project Athena, Athena, Athena MUSE, Discuss, Hesiod, Kerberos,
- Moira, and Zephyr are trademarks of the Massachusetts Institute of
- Technology (MIT). No commercial use of these trademarks may be made
- without prior written permission of MIT.
-
- This RFC describes the concepts and model upon which the Kerberos
- network authentication system is based. It also specifies Version 5
- of the Kerberos protocol.
-
- The motivations, goals, assumptions, and rationale behind most design
- decisions are treated cursorily; for Version 4 they are fully
- described in the Kerberos portion of the Athena Technical Plan [1].
- The protocols are under review, and are not being submitted for
- consideration as an Internet standard at this time. Comments are
- encouraged. Requests for addition to an electronic mailing list for
- discussion of Kerberos, kerberos@MIT.EDU, may be addressed to
- kerberos-request@MIT.EDU. This mailing list is gatewayed onto the
- Usenet as the group comp.protocols.kerberos. Requests for further
- information, including documents and code availability, may be sent
- to info-kerberos@MIT.EDU.
-
-
-
-
-
-Kohl & Neuman [Page 1]
-
-RFC 1510 Kerberos September 1993
-
-
-Background
-
- The Kerberos model is based in part on Needham and Schroeder's
- trusted third-party authentication protocol [3] and on modifications
- suggested by Denning and Sacco [4]. The original design and
- implementation of Kerberos Versions 1 through 4 was the work of two
- former Project Athena staff members, Steve Miller of Digital
- Equipment Corporation and Clifford Neuman (now at the Information
- Sciences Institute of the University of Southern California), along
- with Jerome Saltzer, Technical Director of Project Athena, and
- Jeffrey Schiller, MIT Campus Network Manager. Many other members of
- Project Athena have also contributed to the work on Kerberos.
- Version 4 is publicly available, and has seen wide use across the
- Internet.
-
- Version 5 (described in this document) has evolved from Version 4
- based on new requirements and desires for features not available in
- Version 4. Details on the differences between Kerberos Versions 4
- and 5 can be found in [5].
-
-Table of Contents
-
- 1. Introduction ....................................... 5
- 1.1. Cross-Realm Operation ............................ 7
- 1.2. Environmental assumptions ........................ 8
- 1.3. Glossary of terms ................................ 9
- 2. Ticket flag uses and requests ...................... 12
- 2.1. Initial and pre-authenticated tickets ............ 12
- 2.2. Invalid tickets .................................. 12
- 2.3. Renewable tickets ................................ 12
- 2.4. Postdated tickets ................................ 13
- 2.5. Proxiable and proxy tickets ...................... 14
- 2.6. Forwardable tickets .............................. 15
- 2.7. Other KDC options ................................ 15
- 3. Message Exchanges .................................. 16
- 3.1. The Authentication Service Exchange .............. 16
- 3.1.1. Generation of KRB_AS_REQ message ............... 17
- 3.1.2. Receipt of KRB_AS_REQ message .................. 17
- 3.1.3. Generation of KRB_AS_REP message ............... 17
- 3.1.4. Generation of KRB_ERROR message ................ 19
- 3.1.5. Receipt of KRB_AS_REP message .................. 19
- 3.1.6. Receipt of KRB_ERROR message ................... 20
- 3.2. The Client/Server Authentication Exchange ........ 20
- 3.2.1. The KRB_AP_REQ message ......................... 20
- 3.2.2. Generation of a KRB_AP_REQ message ............. 20
- 3.2.3. Receipt of KRB_AP_REQ message .................. 21
- 3.2.4. Generation of a KRB_AP_REP message ............. 23
- 3.2.5. Receipt of KRB_AP_REP message .................. 23
-
-
-
-Kohl & Neuman [Page 2]
-
-RFC 1510 Kerberos September 1993
-
-
- 3.2.6. Using the encryption key ....................... 24
- 3.3. The Ticket-Granting Service (TGS) Exchange ....... 24
- 3.3.1. Generation of KRB_TGS_REQ message .............. 25
- 3.3.2. Receipt of KRB_TGS_REQ message ................. 26
- 3.3.3. Generation of KRB_TGS_REP message .............. 27
- 3.3.3.1. Encoding the transited field ................. 29
- 3.3.4. Receipt of KRB_TGS_REP message ................. 31
- 3.4. The KRB_SAFE Exchange ............................ 31
- 3.4.1. Generation of a KRB_SAFE message ............... 31
- 3.4.2. Receipt of KRB_SAFE message .................... 32
- 3.5. The KRB_PRIV Exchange ............................ 33
- 3.5.1. Generation of a KRB_PRIV message ............... 33
- 3.5.2. Receipt of KRB_PRIV message .................... 33
- 3.6. The KRB_CRED Exchange ............................ 34
- 3.6.1. Generation of a KRB_CRED message ............... 34
- 3.6.2. Receipt of KRB_CRED message .................... 34
- 4. The Kerberos Database .............................. 35
- 4.1. Database contents ................................ 35
- 4.2. Additional fields ................................ 36
- 4.3. Frequently Changing Fields ....................... 37
- 4.4. Site Constants ................................... 37
- 5. Message Specifications ............................. 38
- 5.1. ASN.1 Distinguished Encoding Representation ...... 38
- 5.2. ASN.1 Base Definitions ........................... 38
- 5.3. Tickets and Authenticators ....................... 42
- 5.3.1. Tickets ........................................ 42
- 5.3.2. Authenticators ................................. 47
- 5.4. Specifications for the AS and TGS exchanges ...... 49
- 5.4.1. KRB_KDC_REQ definition ......................... 49
- 5.4.2. KRB_KDC_REP definition ......................... 56
- 5.5. Client/Server (CS) message specifications ........ 58
- 5.5.1. KRB_AP_REQ definition .......................... 58
- 5.5.2. KRB_AP_REP definition .......................... 60
- 5.5.3. Error message reply ............................ 61
- 5.6. KRB_SAFE message specification ................... 61
- 5.6.1. KRB_SAFE definition ............................ 61
- 5.7. KRB_PRIV message specification ................... 62
- 5.7.1. KRB_PRIV definition ............................ 62
- 5.8. KRB_CRED message specification ................... 63
- 5.8.1. KRB_CRED definition ............................ 63
- 5.9. Error message specification ...................... 65
- 5.9.1. KRB_ERROR definition ........................... 66
- 6. Encryption and Checksum Specifications ............. 67
- 6.1. Encryption Specifications ........................ 68
- 6.2. Encryption Keys .................................. 71
- 6.3. Encryption Systems ............................... 71
- 6.3.1. The NULL Encryption System (null) .............. 71
- 6.3.2. DES in CBC mode with a CRC-32 checksum (descbc-crc)71
-
-
-
-Kohl & Neuman [Page 3]
-
-RFC 1510 Kerberos September 1993
-
-
- 6.3.3. DES in CBC mode with an MD4 checksum (descbc-md4) 72
- 6.3.4. DES in CBC mode with an MD5 checksum (descbc-md5) 72
- 6.4. Checksums ........................................ 74
- 6.4.1. The CRC-32 Checksum (crc32) .................... 74
- 6.4.2. The RSA MD4 Checksum (rsa-md4) ................. 75
- 6.4.3. RSA MD4 Cryptographic Checksum Using DES
- (rsa-md4-des) ......................................... 75
- 6.4.4. The RSA MD5 Checksum (rsa-md5) ................. 76
- 6.4.5. RSA MD5 Cryptographic Checksum Using DES
- (rsa-md5-des) ......................................... 76
- 6.4.6. DES cipher-block chained checksum (des-mac)
- 6.4.7. RSA MD4 Cryptographic Checksum Using DES
- alternative (rsa-md4-des-k) ........................... 77
- 6.4.8. DES cipher-block chained checksum alternative
- (des-mac-k) ........................................... 77
- 7. Naming Constraints ................................. 78
- 7.1. Realm Names ...................................... 77
- 7.2. Principal Names .................................. 79
- 7.2.1. Name of server principals ...................... 80
- 8. Constants and other defined values ................. 80
- 8.1. Host address types ............................... 80
- 8.2. KDC messages ..................................... 81
- 8.2.1. IP transport ................................... 81
- 8.2.2. OSI transport .................................. 82
- 8.2.3. Name of the TGS ................................ 82
- 8.3. Protocol constants and associated values ......... 82
- 9. Interoperability requirements ...................... 86
- 9.1. Specification 1 .................................. 86
- 9.2. Recommended KDC values ........................... 88
- 10. Acknowledgments ................................... 88
- 11. References ........................................ 89
- 12. Security Considerations ........................... 90
- 13. Authors' Addresses ................................ 90
- A. Pseudo-code for protocol processing ................ 91
- A.1. KRB_AS_REQ generation ............................ 91
- A.2. KRB_AS_REQ verification and KRB_AS_REP generation 92
- A.3. KRB_AS_REP verification .......................... 95
- A.4. KRB_AS_REP and KRB_TGS_REP common checks ......... 96
- A.5. KRB_TGS_REQ generation ........................... 97
- A.6. KRB_TGS_REQ verification and KRB_TGS_REP generation 98
- A.7. KRB_TGS_REP verification ......................... 104
- A.8. Authenticator generation ......................... 104
- A.9. KRB_AP_REQ generation ............................ 105
- A.10. KRB_AP_REQ verification ......................... 105
- A.11. KRB_AP_REP generation ........................... 106
- A.12. KRB_AP_REP verification ......................... 107
- A.13. KRB_SAFE generation ............................. 107
- A.14. KRB_SAFE verification ........................... 108
-
-
-
-Kohl & Neuman [Page 4]
-
-RFC 1510 Kerberos September 1993
-
-
- A.15. KRB_SAFE and KRB_PRIV common checks ............. 108
- A.16. KRB_PRIV generation ............................. 109
- A.17. KRB_PRIV verification ........................... 110
- A.18. KRB_CRED generation ............................. 110
- A.19. KRB_CRED verification ........................... 111
- A.20. KRB_ERROR generation ............................ 112
-
-1. Introduction
-
- Kerberos provides a means of verifying the identities of principals,
- (e.g., a workstation user or a network server) on an open
- (unprotected) network. This is accomplished without relying on
- authentication by the host operating system, without basing trust on
- host addresses, without requiring physical security of all the hosts
- on the network, and under the assumption that packets traveling along
- the network can be read, modified, and inserted at will. (Note,
- however, that many applications use Kerberos' functions only upon the
- initiation of a stream-based network connection, and assume the
- absence of any "hijackers" who might subvert such a connection. Such
- use implicitly trusts the host addresses involved.) Kerberos
- performs authentication under these conditions as a trusted third-
- party authentication service by using conventional cryptography,
- i.e., shared secret key. (shared secret key - Secret and private are
- often used interchangeably in the literature. In our usage, it takes
- two (or more) to share a secret, thus a shared DES key is a secret
- key. Something is only private when no one but its owner knows it.
- Thus, in public key cryptosystems, one has a public and a private
- key.)
-
- The authentication process proceeds as follows: A client sends a
- request to the authentication server (AS) requesting "credentials"
- for a given server. The AS responds with these credentials,
- encrypted in the client's key. The credentials consist of 1) a
- "ticket" for the server and 2) a temporary encryption key (often
- called a "session key"). The client transmits the ticket (which
- contains the client's identity and a copy of the session key, all
- encrypted in the server's key) to the server. The session key (now
- shared by the client and server) is used to authenticate the client,
- and may optionally be used to authenticate the server. It may also
- be used to encrypt further communication between the two parties or
- to exchange a separate sub-session key to be used to encrypt further
- communication.
-
- The implementation consists of one or more authentication servers
- running on physically secure hosts. The authentication servers
- maintain a database of principals (i.e., users and servers) and their
- secret keys. Code libraries provide encryption and implement the
- Kerberos protocol. In order to add authentication to its
-
-
-
-Kohl & Neuman [Page 5]
-
-RFC 1510 Kerberos September 1993
-
-
- transactions, a typical network application adds one or two calls to
- the Kerberos library, which results in the transmission of the
- necessary messages to achieve authentication.
-
- The Kerberos protocol consists of several sub-protocols (or
- exchanges). There are two methods by which a client can ask a
- Kerberos server for credentials. In the first approach, the client
- sends a cleartext request for a ticket for the desired server to the
- AS. The reply is sent encrypted in the client's secret key. Usually
- this request is for a ticket-granting ticket (TGT) which can later be
- used with the ticket-granting server (TGS). In the second method,
- the client sends a request to the TGS. The client sends the TGT to
- the TGS in the same manner as if it were contacting any other
- application server which requires Kerberos credentials. The reply is
- encrypted in the session key from the TGT.
-
- Once obtained, credentials may be used to verify the identity of the
- principals in a transaction, to ensure the integrity of messages
- exchanged between them, or to preserve privacy of the messages. The
- application is free to choose whatever protection may be necessary.
-
- To verify the identities of the principals in a transaction, the
- client transmits the ticket to the server. Since the ticket is sent
- "in the clear" (parts of it are encrypted, but this encryption
- doesn't thwart replay) and might be intercepted and reused by an
- attacker, additional information is sent to prove that the message
- was originated by the principal to whom the ticket was issued. This
- information (called the authenticator) is encrypted in the session
- key, and includes a timestamp. The timestamp proves that the message
- was recently generated and is not a replay. Encrypting the
- authenticator in the session key proves that it was generated by a
- party possessing the session key. Since no one except the requesting
- principal and the server know the session key (it is never sent over
- the network in the clear) this guarantees the identity of the client.
-
- The integrity of the messages exchanged between principals can also
- be guaranteed using the session key (passed in the ticket and
- contained in the credentials). This approach provides detection of
- both replay attacks and message stream modification attacks. It is
- accomplished by generating and transmitting a collision-proof
- checksum (elsewhere called a hash or digest function) of the client's
- message, keyed with the session key. Privacy and integrity of the
- messages exchanged between principals can be secured by encrypting
- the data to be passed using the session key passed in the ticket, and
- contained in the credentials.
-
- The authentication exchanges mentioned above require read-only access
- to the Kerberos database. Sometimes, however, the entries in the
-
-
-
-Kohl & Neuman [Page 6]
-
-RFC 1510 Kerberos September 1993
-
-
- database must be modified, such as when adding new principals or
- changing a principal's key. This is done using a protocol between a
- client and a third Kerberos server, the Kerberos Administration
- Server (KADM). The administration protocol is not described in this
- document. There is also a protocol for maintaining multiple copies of
- the Kerberos database, but this can be considered an implementation
- detail and may vary to support different database technologies.
-
-1.1. Cross-Realm Operation
-
- The Kerberos protocol is designed to operate across organizational
- boundaries. A client in one organization can be authenticated to a
- server in another. Each organization wishing to run a Kerberos
- server establishes its own "realm". The name of the realm in which a
- client is registered is part of the client's name, and can be used by
- the end-service to decide whether to honor a request.
-
- By establishing "inter-realm" keys, the administrators of two realms
- can allow a client authenticated in the local realm to use its
- authentication remotely (Of course, with appropriate permission the
- client could arrange registration of a separately-named principal in
- a remote realm, and engage in normal exchanges with that realm's
- services. However, for even small numbers of clients this becomes
- cumbersome, and more automatic methods as described here are
- necessary). The exchange of inter-realm keys (a separate key may be
- used for each direction) registers the ticket-granting service of
- each realm as a principal in the other realm. A client is then able
- to obtain a ticket-granting ticket for the remote realm's ticket-
- granting service from its local realm. When that ticket-granting
- ticket is used, the remote ticket-granting service uses the inter-
- realm key (which usually differs from its own normal TGS key) to
- decrypt the ticket-granting ticket, and is thus certain that it was
- issued by the client's own TGS. Tickets issued by the remote ticket-
- granting service will indicate to the end-service that the client was
- authenticated from another realm.
-
- A realm is said to communicate with another realm if the two realms
- share an inter-realm key, or if the local realm shares an inter-realm
- key with an intermediate realm that communicates with the remote
- realm. An authentication path is the sequence of intermediate realms
- that are transited in communicating from one realm to another.
-
- Realms are typically organized hierarchically. Each realm shares a
- key with its parent and a different key with each child. If an
- inter-realm key is not directly shared by two realms, the
- hierarchical organization allows an authentication path to be easily
- constructed. If a hierarchical organization is not used, it may be
- necessary to consult some database in order to construct an
-
-
-
-Kohl & Neuman [Page 7]
-
-RFC 1510 Kerberos September 1993
-
-
- authentication path between realms.
-
- Although realms are typically hierarchical, intermediate realms may
- be bypassed to achieve cross-realm authentication through alternate
- authentication paths (these might be established to make
- communication between two realms more efficient). It is important
- for the end-service to know which realms were transited when deciding
- how much faith to place in the authentication process. To facilitate
- this decision, a field in each ticket contains the names of the
- realms that were involved in authenticating the client.
-
-1.2. Environmental assumptions
-
- Kerberos imposes a few assumptions on the environment in which it can
- properly function:
-
- + "Denial of service" attacks are not solved with Kerberos. There
- are places in these protocols where an intruder intruder can
- prevent an application from participating in the proper
- authentication steps. Detection and solution of such attacks
- (some of which can appear to be not-uncommon "normal" failure
- modes for the system) is usually best left to the human
- administrators and users.
-
- + Principals must keep their secret keys secret. If an intruder
- somehow steals a principal's key, it will be able to masquerade
- as that principal or impersonate any server to the legitimate
- principal.
-
- + "Password guessing" attacks are not solved by Kerberos. If a
- user chooses a poor password, it is possible for an attacker to
- successfully mount an offline dictionary attack by repeatedly
- attempting to decrypt, with successive entries from a
- dictionary, messages obtained which are encrypted under a key
- derived from the user's password.
-
- + Each host on the network must have a clock which is "loosely
- synchronized" to the time of the other hosts; this
- synchronization is used to reduce the bookkeeping needs of
- application servers when they do replay detection. The degree
- of "looseness" can be configured on a per-server basis. If the
- clocks are synchronized over the network, the clock
- synchronization protocol must itself be secured from network
- attackers.
-
- + Principal identifiers are not recycled on a short-term basis. A
- typical mode of access control will use access control lists
- (ACLs) to grant permissions to particular principals. If a
-
-
-
-Kohl & Neuman [Page 8]
-
-RFC 1510 Kerberos September 1993
-
-
- stale ACL entry remains for a deleted principal and the
- principal identifier is reused, the new principal will inherit
- rights specified in the stale ACL entry. By not re-using
- principal identifiers, the danger of inadvertent access is
- removed.
-
-1.3. Glossary of terms
-
- Below is a list of terms used throughout this document.
-
-
- Authentication Verifying the claimed identity of a
- principal.
-
-
- Authentication header A record containing a Ticket and an
- Authenticator to be presented to a
- server as part of the authentication
- process.
-
-
- Authentication path A sequence of intermediate realms transited
- in the authentication process when
- communicating from one realm to another.
-
- Authenticator A record containing information that can
- be shown to have been recently generated
- using the session key known only by the
- client and server.
-
-
- Authorization The process of determining whether a
- client may use a service, which objects
- the client is allowed to access, and the
- type of access allowed for each.
-
-
- Capability A token that grants the bearer permission
- to access an object or service. In
- Kerberos, this might be a ticket whose
- use is restricted by the contents of the
- authorization data field, but which
- lists no network addresses, together
- with the session key necessary to use
- the ticket.
-
-
-
-
-
-
-Kohl & Neuman [Page 9]
-
-RFC 1510 Kerberos September 1993
-
-
- Ciphertext The output of an encryption function.
- Encryption transforms plaintext into
- ciphertext.
-
-
- Client A process that makes use of a network
- service on behalf of a user. Note that
- in some cases a Server may itself be a
- client of some other server (e.g., a
- print server may be a client of a file
- server).
-
-
- Credentials A ticket plus the secret session key
- necessary to successfully use that
- ticket in an authentication exchange.
-
-
- KDC Key Distribution Center, a network service
- that supplies tickets and temporary
- session keys; or an instance of that
- service or the host on which it runs.
- The KDC services both initial ticket and
- ticket-granting ticket requests. The
- initial ticket portion is sometimes
- referred to as the Authentication Server
- (or service). The ticket-granting
- ticket portion is sometimes referred to
- as the ticket-granting server (or service).
-
- Kerberos Aside from the 3-headed dog guarding
- Hades, the name given to Project
- Athena's authentication service, the
- protocol used by that service, or the
- code used to implement the authentication
- service.
-
-
- Plaintext The input to an encryption function or
- the output of a decryption function.
- Decryption transforms ciphertext into
- plaintext.
-
-
- Principal A uniquely named client or server
- instance that participates in a network
- communication.
-
-
-
-
-Kohl & Neuman [Page 10]
-
-RFC 1510 Kerberos September 1993
-
-
- Principal identifier The name used to uniquely identify each
- different principal.
-
-
- Seal To encipher a record containing several
- fields in such a way that the fields
- cannot be individually replaced without
- either knowledge of the encryption key
- or leaving evidence of tampering.
-
-
- Secret key An encryption key shared by a principal
- and the KDC, distributed outside the
- bounds of the system, with a long lifetime.
- In the case of a human user's
- principal, the secret key is derived
- from a password.
-
-
- Server A particular Principal which provides a
- resource to network clients.
-
-
- Service A resource provided to network clients;
- often provided by more than one server
- (for example, remote file service).
-
-
- Session key A temporary encryption key used between
- two principals, with a lifetime limited
- to the duration of a single login "session".
-
-
- Sub-session key A temporary encryption key used between
- two principals, selected and exchanged
- by the principals using the session key,
- and with a lifetime limited to the duration
- of a single association.
-
-
- Ticket A record that helps a client authenticate
- itself to a server; it contains the
- client's identity, a session key, a
- timestamp, and other information, all
- sealed using the server's secret key.
- It only serves to authenticate a client
- when presented along with a fresh
- Authenticator.
-
-
-
-Kohl & Neuman [Page 11]
-
-RFC 1510 Kerberos September 1993
-
-
-2. Ticket flag uses and requests
-
- Each Kerberos ticket contains a set of flags which are used to
- indicate various attributes of that ticket. Most flags may be
- requested by a client when the ticket is obtained; some are
- automatically turned on and off by a Kerberos server as required.
- The following sections explain what the various flags mean, and gives
- examples of reasons to use such a flag.
-
-2.1. Initial and pre-authenticated tickets
-
- The INITIAL flag indicates that a ticket was issued using the AS
- protocol and not issued based on a ticket-granting ticket.
- Application servers that want to require the knowledge of a client's
- secret key (e.g., a passwordchanging program) can insist that this
- flag be set in any tickets they accept, and thus be assured that the
- client's key was recently presented to the application client.
-
- The PRE-AUTHENT and HW-AUTHENT flags provide addition information
- about the initial authentication, regardless of whether the current
- ticket was issued directly (in which case INITIAL will also be set)
- or issued on the basis of a ticket-granting ticket (in which case the
- INITIAL flag is clear, but the PRE-AUTHENT and HW-AUTHENT flags are
- carried forward from the ticket-granting ticket).
-
-2.2. Invalid tickets
-
- The INVALID flag indicates that a ticket is invalid. Application
- servers must reject tickets which have this flag set. A postdated
- ticket will usually be issued in this form. Invalid tickets must be
- validated by the KDC before use, by presenting them to the KDC in a
- TGS request with the VALIDATE option specified. The KDC will only
- validate tickets after their starttime has passed. The validation is
- required so that postdated tickets which have been stolen before
- their starttime can be rendered permanently invalid (through a hot-
- list mechanism).
-
-2.3. Renewable tickets
-
- Applications may desire to hold tickets which can be valid for long
- periods of time. However, this can expose their credentials to
- potential theft for equally long periods, and those stolen
- credentials would be valid until the expiration time of the
- ticket(s). Simply using shortlived tickets and obtaining new ones
- periodically would require the client to have long-term access to its
- secret key, an even greater risk. Renewable tickets can be used to
- mitigate the consequences of theft. Renewable tickets have two
- "expiration times": the first is when the current instance of the
-
-
-
-Kohl & Neuman [Page 12]
-
-RFC 1510 Kerberos September 1993
-
-
- ticket expires, and the second is the latest permissible value for an
- individual expiration time. An application client must periodically
- (i.e., before it expires) present a renewable ticket to the KDC, with
- the RENEW option set in the KDC request. The KDC will issue a new
- ticket with a new session key and a later expiration time. All other
- fields of the ticket are left unmodified by the renewal process.
- When the latest permissible expiration time arrives, the ticket
- expires permanently. At each renewal, the KDC may consult a hot-list
- to determine if the ticket had been reported stolen since its last
- renewal; it will refuse to renew such stolen tickets, and thus the
- usable lifetime of stolen tickets is reduced.
-
- The RENEWABLE flag in a ticket is normally only interpreted by the
- ticket-granting service (discussed below in section 3.3). It can
- usually be ignored by application servers. However, some
- particularly careful application servers may wish to disallow
- renewable tickets.
-
- If a renewable ticket is not renewed by its expiration time, the KDC
- will not renew the ticket. The RENEWABLE flag is reset by default,
- but a client may request it be set by setting the RENEWABLE option
- in the KRB_AS_REQ message. If it is set, then the renew-till field
- in the ticket contains the time after which the ticket may not be
- renewed.
-
-2.4. Postdated tickets
-
- Applications may occasionally need to obtain tickets for use much
- later, e.g., a batch submission system would need tickets to be valid
- at the time the batch job is serviced. However, it is dangerous to
- hold valid tickets in a batch queue, since they will be on-line
- longer and more prone to theft. Postdated tickets provide a way to
- obtain these tickets from the KDC at job submission time, but to
- leave them "dormant" until they are activated and validated by a
- further request of the KDC. If a ticket theft were reported in the
- interim, the KDC would refuse to validate the ticket, and the thief
- would be foiled.
-
- The MAY-POSTDATE flag in a ticket is normally only interpreted by the
- ticket-granting service. It can be ignored by application servers.
- This flag must be set in a ticket-granting ticket in order to issue a
- postdated ticket based on the presented ticket. It is reset by
- default; it may be requested by a client by setting the ALLOW-
- POSTDATE option in the KRB_AS_REQ message. This flag does not allow
- a client to obtain a postdated ticket-granting ticket; postdated
- ticket-granting tickets can only by obtained by requesting the
- postdating in the KRB_AS_REQ message. The life (endtime-starttime)
- of a postdated ticket will be the remaining life of the ticket-
-
-
-
-Kohl & Neuman [Page 13]
-
-RFC 1510 Kerberos September 1993
-
-
- granting ticket at the time of the request, unless the RENEWABLE
- option is also set, in which case it can be the full life (endtime-
- starttime) of the ticket-granting ticket. The KDC may limit how far
- in the future a ticket may be postdated.
-
- The POSTDATED flag indicates that a ticket has been postdated. The
- application server can check the authtime field in the ticket to see
- when the original authentication occurred. Some services may choose
- to reject postdated tickets, or they may only accept them within a
- certain period after the original authentication. When the KDC issues
- a POSTDATED ticket, it will also be marked as INVALID, so that the
- application client must present the ticket to the KDC to be validated
- before use.
-
-2.5. Proxiable and proxy tickets
-
- At times it may be necessary for a principal to allow a service to
- perform an operation on its behalf. The service must be able to take
- on the identity of the client, but only for a particular purpose. A
- principal can allow a service to take on the principal's identity for
- a particular purpose by granting it a proxy.
-
- The PROXIABLE flag in a ticket is normally only interpreted by the
- ticket-granting service. It can be ignored by application servers.
- When set, this flag tells the ticket-granting server that it is OK to
- issue a new ticket (but not a ticket-granting ticket) with a
- different network address based on this ticket. This flag is set by
- default.
-
- This flag allows a client to pass a proxy to a server to perform a
- remote request on its behalf, e.g., a print service client can give
- the print server a proxy to access the client's files on a particular
- file server in order to satisfy a print request.
-
- In order to complicate the use of stolen credentials, Kerberos
- tickets are usually valid from only those network addresses
- specifically included in the ticket (It is permissible to request or
- issue tickets with no network addresses specified, but we do not
- recommend it). For this reason, a client wishing to grant a proxy
- must request a new ticket valid for the network address of the
- service to be granted the proxy.
-
- The PROXY flag is set in a ticket by the TGS when it issues a
- proxy ticket. Application servers may check this flag and require
- additional authentication from the agent presenting the proxy in
- order to provide an audit trail.
-
-
-
-
-
-Kohl & Neuman [Page 14]
-
-RFC 1510 Kerberos September 1993
-
-
-2.6. Forwardable tickets
-
- Authentication forwarding is an instance of the proxy case where the
- service is granted complete use of the client's identity. An example
- where it might be used is when a user logs in to a remote system and
- wants authentication to work from that system as if the login were
- local.
-
- The FORWARDABLE flag in a ticket is normally only interpreted by the
- ticket-granting service. It can be ignored by application servers.
- The FORWARDABLE flag has an interpretation similar to that of the
- PROXIABLE flag, except ticket-granting tickets may also be issued
- with different network addresses. This flag is reset by default, but
- users may request that it be set by setting the FORWARDABLE option in
- the AS request when they request their initial ticket-granting
- ticket.
-
- This flag allows for authentication forwarding without requiring the
- user to enter a password again. If the flag is not set, then
- authentication forwarding is not permitted, but the same end result
- can still be achieved if the user engages in the AS exchange with the
- requested network addresses and supplies a password.
-
- The FORWARDED flag is set by the TGS when a client presents a ticket
- with the FORWARDABLE flag set and requests it be set by specifying
- the FORWARDED KDC option and supplying a set of addresses for the new
- ticket. It is also set in all tickets issued based on tickets with
- the FORWARDED flag set. Application servers may wish to process
- FORWARDED tickets differently than non-FORWARDED tickets.
-
-2.7. Other KDC options
-
- There are two additional options which may be set in a client's
- request of the KDC. The RENEWABLE-OK option indicates that the
- client will accept a renewable ticket if a ticket with the requested
- life cannot otherwise be provided. If a ticket with the requested
- life cannot be provided, then the KDC may issue a renewable ticket
- with a renew-till equal to the the requested endtime. The value of
- the renew-till field may still be adjusted by site-determined limits
- or limits imposed by the individual principal or server.
-
- The ENC-TKT-IN-SKEY option is honored only by the ticket-granting
- service. It indicates that the to-be-issued ticket for the end
- server is to be encrypted in the session key from the additional
- ticket-granting ticket provided with the request. See section 3.3.3
- for specific details.
-
-
-
-
-
-Kohl & Neuman [Page 15]
-
-RFC 1510 Kerberos September 1993
-
-
-3. Message Exchanges
-
- The following sections describe the interactions between network
- clients and servers and the messages involved in those exchanges.
-
-3.1. The Authentication Service Exchange
-
- Summary
-
- Message direction Message type Section
- 1. Client to Kerberos KRB_AS_REQ 5.4.1
- 2. Kerberos to client KRB_AS_REP or 5.4.2
- KRB_ERROR 5.9.1
-
- The Authentication Service (AS) Exchange between the client and the
- Kerberos Authentication Server is usually initiated by a client when
- it wishes to obtain authentication credentials for a given server but
- currently holds no credentials. The client's secret key is used for
- encryption and decryption. This exchange is typically used at the
- initiation of a login session, to obtain credentials for a Ticket-
- Granting Server, which will subsequently be used to obtain
- credentials for other servers (see section 3.3) without requiring
- further use of the client's secret key. This exchange is also used
- to request credentials for services which must not be mediated
- through the Ticket-Granting Service, but rather require a principal's
- secret key, such as the password-changing service. (The password-
- changing request must not be honored unless the requester can provide
- the old password (the user's current secret key). Otherwise, it
- would be possible for someone to walk up to an unattended session and
- change another user's password.) This exchange does not by itself
- provide any assurance of the the identity of the user. (To
- authenticate a user logging on to a local system, the credentials
- obtained in the AS exchange may first be used in a TGS exchange to
- obtain credentials for a local server. Those credentials must then
- be verified by the local server through successful completion of the
- Client/Server exchange.)
-
- The exchange consists of two messages: KRB_AS_REQ from the client to
- Kerberos, and KRB_AS_REP or KRB_ERROR in reply. The formats for these
- messages are described in sections 5.4.1, 5.4.2, and 5.9.1.
-
- In the request, the client sends (in cleartext) its own identity and
- the identity of the server for which it is requesting credentials.
- The response, KRB_AS_REP, contains a ticket for the client to present
- to the server, and a session key that will be shared by the client
- and the server. The session key and additional information are
- encrypted in the client's secret key. The KRB_AS_REP message
- contains information which can be used to detect replays, and to
-
-
-
-Kohl & Neuman [Page 16]
-
-RFC 1510 Kerberos September 1993
-
-
- associate it with the message to which it replies. Various errors
- can occur; these are indicated by an error response (KRB_ERROR)
- instead of the KRB_AS_REP response. The error message is not
- encrypted. The KRB_ERROR message also contains information which can
- be used to associate it with the message to which it replies. The
- lack of encryption in the KRB_ERROR message precludes the ability to
- detect replays or fabrications of such messages.
-
- In the normal case the authentication server does not know whether
- the client is actually the principal named in the request. It simply
- sends a reply without knowing or caring whether they are the same.
- This is acceptable because nobody but the principal whose identity
- was given in the request will be able to use the reply. Its critical
- information is encrypted in that principal's key. The initial
- request supports an optional field that can be used to pass
- additional information that might be needed for the initial exchange.
- This field may be used for preauthentication if desired, but the
- mechanism is not currently specified.
-
-3.1.1. Generation of KRB_AS_REQ message
-
- The client may specify a number of options in the initial request.
- Among these options are whether preauthentication is to be performed;
- whether the requested ticket is to be renewable, proxiable, or
- forwardable; whether it should be postdated or allow postdating of
- derivative tickets; and whether a renewable ticket will be accepted
- in lieu of a non-renewable ticket if the requested ticket expiration
- date cannot be satisfied by a nonrenewable ticket (due to
- configuration constraints; see section 4). See section A.1 for
- pseudocode.
-
- The client prepares the KRB_AS_REQ message and sends it to the KDC.
-
-3.1.2. Receipt of KRB_AS_REQ message
-
- If all goes well, processing the KRB_AS_REQ message will result in
- the creation of a ticket for the client to present to the server.
- The format for the ticket is described in section 5.3.1. The
- contents of the ticket are determined as follows.
-
-3.1.3. Generation of KRB_AS_REP message
-
- The authentication server looks up the client and server principals
- named in the KRB_AS_REQ in its database, extracting their respective
- keys. If required, the server pre-authenticates the request, and if
- the pre-authentication check fails, an error message with the code
- KDC_ERR_PREAUTH_FAILED is returned. If the server cannot accommodate
- the requested encryption type, an error message with code
-
-
-
-Kohl & Neuman [Page 17]
-
-RFC 1510 Kerberos September 1993
-
-
- KDC_ERR_ETYPE_NOSUPP is returned. Otherwise it generates a "random"
- session key ("Random" means that, among other things, it should be
- impossible to guess the next session key based on knowledge of past
- session keys. This can only be achieved in a pseudo-random number
- generator if it is based on cryptographic principles. It would be
- more desirable to use a truly random number generator, such as one
- based on measurements of random physical phenomena.).
-
- If the requested start time is absent or indicates a time in the
- past, then the start time of the ticket is set to the authentication
- server's current time. If it indicates a time in the future, but the
- POSTDATED option has not been specified, then the error
- KDC_ERR_CANNOT_POSTDATE is returned. Otherwise the requested start
- time is checked against the policy of the local realm (the
- administrator might decide to prohibit certain types or ranges of
- postdated tickets), and if acceptable, the ticket's start time is set
- as requested and the INVALID flag is set in the new ticket. The
- postdated ticket must be validated before use by presenting it to the
- KDC after the start time has been reached.
-
- The expiration time of the ticket will be set to the minimum of the
- following:
-
- +The expiration time (endtime) requested in the KRB_AS_REQ
- message.
-
- +The ticket's start time plus the maximum allowable lifetime
- associated with the client principal (the authentication
- server's database includes a maximum ticket lifetime field
- in each principal's record; see section 4).
-
- +The ticket's start time plus the maximum allowable lifetime
- associated with the server principal.
-
- +The ticket's start time plus the maximum lifetime set by
- the policy of the local realm.
-
- If the requested expiration time minus the start time (as determined
- above) is less than a site-determined minimum lifetime, an error
- message with code KDC_ERR_NEVER_VALID is returned. If the requested
- expiration time for the ticket exceeds what was determined as above,
- and if the "RENEWABLE-OK" option was requested, then the "RENEWABLE"
- flag is set in the new ticket, and the renew-till value is set as if
- the "RENEWABLE" option were requested (the field and option names are
- described fully in section 5.4.1). If the RENEWABLE option has been
- requested or if the RENEWABLE-OK option has been set and a renewable
- ticket is to be issued, then the renew-till field is set to the
- minimum of:
-
-
-
-Kohl & Neuman [Page 18]
-
-RFC 1510 Kerberos September 1993
-
-
- +Its requested value.
-
- +The start time of the ticket plus the minimum of the two
- maximum renewable lifetimes associated with the principals'
- database entries.
-
- +The start time of the ticket plus the maximum renewable
- lifetime set by the policy of the local realm.
-
- The flags field of the new ticket will have the following options set
- if they have been requested and if the policy of the local realm
- allows: FORWARDABLE, MAY-POSTDATE, POSTDATED, PROXIABLE, RENEWABLE.
- If the new ticket is postdated (the start time is in the future), its
- INVALID flag will also be set.
-
- If all of the above succeed, the server formats a KRB_AS_REP message
- (see section 5.4.2), copying the addresses in the request into the
- caddr of the response, placing any required pre-authentication data
- into the padata of the response, and encrypts the ciphertext part in
- the client's key using the requested encryption method, and sends it
- to the client. See section A.2 for pseudocode.
-
-3.1.4. Generation of KRB_ERROR message
-
- Several errors can occur, and the Authentication Server responds by
- returning an error message, KRB_ERROR, to the client, with the
- error-code and e-text fields set to appropriate values. The error
- message contents and details are described in Section 5.9.1.
-
-3.1.5. Receipt of KRB_AS_REP message
-
- If the reply message type is KRB_AS_REP, then the client verifies
- that the cname and crealm fields in the cleartext portion of the
- reply match what it requested. If any padata fields are present,
- they may be used to derive the proper secret key to decrypt the
- message. The client decrypts the encrypted part of the response
- using its secret key, verifies that the nonce in the encrypted part
- matches the nonce it supplied in its request (to detect replays). It
- also verifies that the sname and srealm in the response match those
- in the request, and that the host address field is also correct. It
- then stores the ticket, session key, start and expiration times, and
- other information for later use. The key-expiration field from the
- encrypted part of the response may be checked to notify the user of
- impending key expiration (the client program could then suggest
- remedial action, such as a password change). See section A.3 for
- pseudocode.
-
- Proper decryption of the KRB_AS_REP message is not sufficient to
-
-
-
-Kohl & Neuman [Page 19]
-
-RFC 1510 Kerberos September 1993
-
-
- verify the identity of the user; the user and an attacker could
- cooperate to generate a KRB_AS_REP format message which decrypts
- properly but is not from the proper KDC. If the host wishes to
- verify the identity of the user, it must require the user to present
- application credentials which can be verified using a securely-stored
- secret key. If those credentials can be verified, then the identity
- of the user can be assured.
-
-3.1.6. Receipt of KRB_ERROR message
-
- If the reply message type is KRB_ERROR, then the client interprets it
- as an error and performs whatever application-specific tasks are
- necessary to recover.
-
-3.2. The Client/Server Authentication Exchange
-
- Summary
-
- Message direction Message type Section
- Client to Application server KRB_AP_REQ 5.5.1
- [optional] Application server to client KRB_AP_REP or 5.5.2
- KRB_ERROR 5.9.1
-
- The client/server authentication (CS) exchange is used by network
- applications to authenticate the client to the server and vice versa.
- The client must have already acquired credentials for the server
- using the AS or TGS exchange.
-
-3.2.1. The KRB_AP_REQ message
-
- The KRB_AP_REQ contains authentication information which should be
- part of the first message in an authenticated transaction. It
- contains a ticket, an authenticator, and some additional bookkeeping
- information (see section 5.5.1 for the exact format). The ticket by
- itself is insufficient to authenticate a client, since tickets are
- passed across the network in cleartext(Tickets contain both an
- encrypted and unencrypted portion, so cleartext here refers to the
- entire unit, which can be copied from one message and replayed in
- another without any cryptographic skill.), so the authenticator is
- used to prevent invalid replay of tickets by proving to the server
- that the client knows the session key of the ticket and thus is
- entitled to use it. The KRB_AP_REQ message is referred to elsewhere
- as the "authentication header."
-
-3.2.2. Generation of a KRB_AP_REQ message
-
- When a client wishes to initiate authentication to a server, it
- obtains (either through a credentials cache, the AS exchange, or the
-
-
-
-Kohl & Neuman [Page 20]
-
-RFC 1510 Kerberos September 1993
-
-
- TGS exchange) a ticket and session key for the desired service. The
- client may re-use any tickets it holds until they expire. The client
- then constructs a new Authenticator from the the system time, its
- name, and optionally an application specific checksum, an initial
- sequence number to be used in KRB_SAFE or KRB_PRIV messages, and/or a
- session subkey to be used in negotiations for a session key unique to
- this particular session. Authenticators may not be re-used and will
- be rejected if replayed to a server (Note that this can make
- applications based on unreliable transports difficult to code
- correctly, if the transport might deliver duplicated messages. In
- such cases, a new authenticator must be generated for each retry.).
- If a sequence number is to be included, it should be randomly chosen
- so that even after many messages have been exchanged it is not likely
- to collide with other sequence numbers in use.
-
- The client may indicate a requirement of mutual authentication or the
- use of a session-key based ticket by setting the appropriate flag(s)
- in the ap-options field of the message.
-
- The Authenticator is encrypted in the session key and combined with
- the ticket to form the KRB_AP_REQ message which is then sent to the
- end server along with any additional application-specific
- information. See section A.9 for pseudocode.
-
-3.2.3. Receipt of KRB_AP_REQ message
-
- Authentication is based on the server's current time of day (clocks
- must be loosely synchronized), the authenticator, and the ticket.
- Several errors are possible. If an error occurs, the server is
- expected to reply to the client with a KRB_ERROR message. This
- message may be encapsulated in the application protocol if its "raw"
- form is not acceptable to the protocol. The format of error messages
- is described in section 5.9.1.
-
- The algorithm for verifying authentication information is as follows.
- If the message type is not KRB_AP_REQ, the server returns the
- KRB_AP_ERR_MSG_TYPE error. If the key version indicated by the Ticket
- in the KRB_AP_REQ is not one the server can use (e.g., it indicates
- an old key, and the server no longer possesses a copy of the old
- key), the KRB_AP_ERR_BADKEYVER error is returned. If the USE-
- SESSION-KEY flag is set in the ap-options field, it indicates to the
- server that the ticket is encrypted in the session key from the
- server's ticket-granting ticket rather than its secret key (This is
- used for user-to-user authentication as described in [6]). Since it
- is possible for the server to be registered in multiple realms, with
- different keys in each, the srealm field in the unencrypted portion
- of the ticket in the KRB_AP_REQ is used to specify which secret key
- the server should use to decrypt that ticket. The KRB_AP_ERR_NOKEY
-
-
-
-Kohl & Neuman [Page 21]
-
-RFC 1510 Kerberos September 1993
-
-
- error code is returned if the server doesn't have the proper key to
- decipher the ticket.
-
- The ticket is decrypted using the version of the server's key
- specified by the ticket. If the decryption routines detect a
- modification of the ticket (each encryption system must provide
- safeguards to detect modified ciphertext; see section 6), the
- KRB_AP_ERR_BAD_INTEGRITY error is returned (chances are good that
- different keys were used to encrypt and decrypt).
-
- The authenticator is decrypted using the session key extracted from
- the decrypted ticket. If decryption shows it to have been modified,
- the KRB_AP_ERR_BAD_INTEGRITY error is returned. The name and realm
- of the client from the ticket are compared against the same fields in
- the authenticator. If they don't match, the KRB_AP_ERR_BADMATCH
- error is returned (they might not match, for example, if the wrong
- session key was used to encrypt the authenticator). The addresses in
- the ticket (if any) are then searched for an address matching the
- operating-system reported address of the client. If no match is
- found or the server insists on ticket addresses but none are present
- in the ticket, the KRB_AP_ERR_BADADDR error is returned.
-
- If the local (server) time and the client time in the authenticator
- differ by more than the allowable clock skew (e.g., 5 minutes), the
- KRB_AP_ERR_SKEW error is returned. If the server name, along with
- the client name, time and microsecond fields from the Authenticator
- match any recently-seen such tuples, the KRB_AP_ERR_REPEAT error is
- returned (Note that the rejection here is restricted to
- authenticators from the same principal to the same server. Other
- client principals communicating with the same server principal should
- not be have their authenticators rejected if the time and microsecond
- fields happen to match some other client's authenticator.). The
- server must remember any authenticator presented within the allowable
- clock skew, so that a replay attempt is guaranteed to fail. If a
- server loses track of any authenticator presented within the
- allowable clock skew, it must reject all requests until the clock
- skew interval has passed. This assures that any lost or re-played
- authenticators will fall outside the allowable clock skew and can no
- longer be successfully replayed (If this is not done, an attacker
- could conceivably record the ticket and authenticator sent over the
- network to a server, then disable the client's host, pose as the
- disabled host, and replay the ticket and authenticator to subvert the
- authentication.). If a sequence number is provided in the
- authenticator, the server saves it for later use in processing
- KRB_SAFE and/or KRB_PRIV messages. If a subkey is present, the
- server either saves it for later use or uses it to help generate its
- own choice for a subkey to be returned in a KRB_AP_REP message.
-
-
-
-
-Kohl & Neuman [Page 22]
-
-RFC 1510 Kerberos September 1993
-
-
- The server computes the age of the ticket: local (server) time minus
- the start time inside the Ticket. If the start time is later than
- the current time by more than the allowable clock skew or if the
- INVALID flag is set in the ticket, the KRB_AP_ERR_TKT_NYV error is
- returned. Otherwise, if the current time is later than end time by
- more than the allowable clock skew, the KRB_AP_ERR_TKT_EXPIRED error
- is returned.
-
- If all these checks succeed without an error, the server is assured
- that the client possesses the credentials of the principal named in
- the ticket and thus, the client has been authenticated to the server.
- See section A.10 for pseudocode.
-
-3.2.4. Generation of a KRB_AP_REP message
-
- Typically, a client's request will include both the authentication
- information and its initial request in the same message, and the
- server need not explicitly reply to the KRB_AP_REQ. However, if
- mutual authentication (not only authenticating the client to the
- server, but also the server to the client) is being performed, the
- KRB_AP_REQ message will have MUTUAL-REQUIRED set in its ap-options
- field, and a KRB_AP_REP message is required in response. As with the
- error message, this message may be encapsulated in the application
- protocol if its "raw" form is not acceptable to the application's
- protocol. The timestamp and microsecond field used in the reply must
- be the client's timestamp and microsecond field (as provided in the
- authenticator). [Note: In the Kerberos version 4 protocol, the
- timestamp in the reply was the client's timestamp plus one. This is
- not necessary in version 5 because version 5 messages are formatted
- in such a way that it is not possible to create the reply by
- judicious message surgery (even in encrypted form) without knowledge
- of the appropriate encryption keys.] If a sequence number is to be
- included, it should be randomly chosen as described above for the
- authenticator. A subkey may be included if the server desires to
- negotiate a different subkey. The KRB_AP_REP message is encrypted in
- the session key extracted from the ticket. See section A.11 for
- pseudocode.
-
-3.2.5. Receipt of KRB_AP_REP message
-
- If a KRB_AP_REP message is returned, the client uses the session key
- from the credentials obtained for the server (Note that for
- encrypting the KRB_AP_REP message, the sub-session key is not used,
- even if present in the Authenticator.) to decrypt the message, and
- verifies that the timestamp and microsecond fields match those in the
- Authenticator it sent to the server. If they match, then the client
- is assured that the server is genuine. The sequence number and subkey
- (if present) are retained for later use. See section A.12 for
-
-
-
-Kohl & Neuman [Page 23]
-
-RFC 1510 Kerberos September 1993
-
-
- pseudocode.
-
-3.2.6. Using the encryption key
-
- After the KRB_AP_REQ/KRB_AP_REP exchange has occurred, the client and
- server share an encryption key which can be used by the application.
- The "true session key" to be used for KRB_PRIV, KRB_SAFE, or other
- application-specific uses may be chosen by the application based on
- the subkeys in the KRB_AP_REP message and the authenticator
- (Implementations of the protocol may wish to provide routines to
- choose subkeys based on session keys and random numbers and to
- orchestrate a negotiated key to be returned in the KRB_AP_REP
- message.). In some cases, the use of this session key will be
- implicit in the protocol; in others the method of use must be chosen
- from a several alternatives. We leave the protocol negotiations of
- how to use the key (e.g., selecting an encryption or checksum type)
- to the application programmer; the Kerberos protocol does not
- constrain the implementation options.
-
- With both the one-way and mutual authentication exchanges, the peers
- should take care not to send sensitive information to each other
- without proper assurances. In particular, applications that require
- privacy or integrity should use the KRB_AP_REP or KRB_ERROR responses
- from the server to client to assure both client and server of their
- peer's identity. If an application protocol requires privacy of its
- messages, it can use the KRB_PRIV message (section 3.5). The KRB_SAFE
- message (section 3.4) can be used to assure integrity.
-
-3.3. The Ticket-Granting Service (TGS) Exchange
-
- Summary
-
- Message direction Message type Section
- 1. Client to Kerberos KRB_TGS_REQ 5.4.1
- 2. Kerberos to client KRB_TGS_REP or 5.4.2
- KRB_ERROR 5.9.1
-
- The TGS exchange between a client and the Kerberos Ticket-Granting
- Server is initiated by a client when it wishes to obtain
- authentication credentials for a given server (which might be
- registered in a remote realm), when it wishes to renew or validate an
- existing ticket, or when it wishes to obtain a proxy ticket. In the
- first case, the client must already have acquired a ticket for the
- Ticket-Granting Service using the AS exchange (the ticket-granting
- ticket is usually obtained when a client initially authenticates to
- the system, such as when a user logs in). The message format for the
- TGS exchange is almost identical to that for the AS exchange. The
- primary difference is that encryption and decryption in the TGS
-
-
-
-Kohl & Neuman [Page 24]
-
-RFC 1510 Kerberos September 1993
-
-
- exchange does not take place under the client's key. Instead, the
- session key from the ticket-granting ticket or renewable ticket, or
- sub-session key from an Authenticator is used. As is the case for
- all application servers, expired tickets are not accepted by the TGS,
- so once a renewable or ticket-granting ticket expires, the client
- must use a separate exchange to obtain valid tickets.
-
- The TGS exchange consists of two messages: A request (KRB_TGS_REQ)
- from the client to the Kerberos Ticket-Granting Server, and a reply
- (KRB_TGS_REP or KRB_ERROR). The KRB_TGS_REQ message includes
- information authenticating the client plus a request for credentials.
- The authentication information consists of the authentication header
- (KRB_AP_REQ) which includes the client's previously obtained ticket-
- granting, renewable, or invalid ticket. In the ticket-granting
- ticket and proxy cases, the request may include one or more of: a
- list of network addresses, a collection of typed authorization data
- to be sealed in the ticket for authorization use by the application
- server, or additional tickets (the use of which are described later).
- The TGS reply (KRB_TGS_REP) contains the requested credentials,
- encrypted in the session key from the ticket-granting ticket or
- renewable ticket, or if present, in the subsession key from the
- Authenticator (part of the authentication header). The KRB_ERROR
- message contains an error code and text explaining what went wrong.
- The KRB_ERROR message is not encrypted. The KRB_TGS_REP message
- contains information which can be used to detect replays, and to
- associate it with the message to which it replies. The KRB_ERROR
- message also contains information which can be used to associate it
- with the message to which it replies, but the lack of encryption in
- the KRB_ERROR message precludes the ability to detect replays or
- fabrications of such messages.
-
-3.3.1. Generation of KRB_TGS_REQ message
-
- Before sending a request to the ticket-granting service, the client
- must determine in which realm the application server is registered
- [Note: This can be accomplished in several ways. It might be known
- beforehand (since the realm is part of the principal identifier), or
- it might be stored in a nameserver. Presently, however, this
- information is obtained from a configuration file. If the realm to
- be used is obtained from a nameserver, there is a danger of being
- spoofed if the nameservice providing the realm name is not
- authenticated. This might result in the use of a realm which has
- been compromised, and would result in an attacker's ability to
- compromise the authentication of the application server to the
- client.]. If the client does not already possess a ticket-granting
- ticket for the appropriate realm, then one must be obtained. This is
- first attempted by requesting a ticket-granting ticket for the
- destination realm from the local Kerberos server (using the
-
-
-
-Kohl & Neuman [Page 25]
-
-RFC 1510 Kerberos September 1993
-
-
- KRB_TGS_REQ message recursively). The Kerberos server may return a
- TGT for the desired realm in which case one can proceed.
- Alternatively, the Kerberos server may return a TGT for a realm which
- is "closer" to the desired realm (further along the standard
- hierarchical path), in which case this step must be repeated with a
- Kerberos server in the realm specified in the returned TGT. If
- neither are returned, then the request must be retried with a
- Kerberos server for a realm higher in the hierarchy. This request
- will itself require a ticket-granting ticket for the higher realm
- which must be obtained by recursively applying these directions.
-
- Once the client obtains a ticket-granting ticket for the appropriate
- realm, it determines which Kerberos servers serve that realm, and
- contacts one. The list might be obtained through a configuration file
- or network service; as long as the secret keys exchanged by realms
- are kept secret, only denial of service results from a false Kerberos
- server.
-
- As in the AS exchange, the client may specify a number of options in
- the KRB_TGS_REQ message. The client prepares the KRB_TGS_REQ
- message, providing an authentication header as an element of the
- padata field, and including the same fields as used in the KRB_AS_REQ
- message along with several optional fields: the enc-authorization-
- data field for application server use and additional tickets required
- by some options.
-
- In preparing the authentication header, the client can select a sub-
- session key under which the response from the Kerberos server will be
- encrypted (If the client selects a sub-session key, care must be
- taken to ensure the randomness of the selected subsession key. One
- approach would be to generate a random number and XOR it with the
- session key from the ticket-granting ticket.). If the sub-session key
- is not specified, the session key from the ticket-granting ticket
- will be used. If the enc-authorization-data is present, it must be
- encrypted in the sub-session key, if present, from the authenticator
- portion of the authentication header, or if not present in the
- session key from the ticket-granting ticket.
-
- Once prepared, the message is sent to a Kerberos server for the
- destination realm. See section A.5 for pseudocode.
-
-3.3.2. Receipt of KRB_TGS_REQ message
-
- The KRB_TGS_REQ message is processed in a manner similar to the
- KRB_AS_REQ message, but there are many additional checks to be
- performed. First, the Kerberos server must determine which server
- the accompanying ticket is for and it must select the appropriate key
- to decrypt it. For a normal KRB_TGS_REQ message, it will be for the
-
-
-
-Kohl & Neuman [Page 26]
-
-RFC 1510 Kerberos September 1993
-
-
- ticket granting service, and the TGS's key will be used. If the TGT
- was issued by another realm, then the appropriate inter-realm key
- must be used. If the accompanying ticket is not a ticket granting
- ticket for the current realm, but is for an application server in the
- current realm, the RENEW, VALIDATE, or PROXY options are specified in
- the request, and the server for which a ticket is requested is the
- server named in the accompanying ticket, then the KDC will decrypt
- the ticket in the authentication header using the key of the server
- for which it was issued. If no ticket can be found in the padata
- field, the KDC_ERR_PADATA_TYPE_NOSUPP error is returned.
-
- Once the accompanying ticket has been decrypted, the user-supplied
- checksum in the Authenticator must be verified against the contents
- of the request, and the message rejected if the checksums do not
- match (with an error code of KRB_AP_ERR_MODIFIED) or if the checksum
- is not keyed or not collision-proof (with an error code of
- KRB_AP_ERR_INAPP_CKSUM). If the checksum type is not supported, the
- KDC_ERR_SUMTYPE_NOSUPP error is returned. If the authorization-data
- are present, they are decrypted using the sub-session key from the
- Authenticator.
-
- If any of the decryptions indicate failed integrity checks, the
- KRB_AP_ERR_BAD_INTEGRITY error is returned.
-
-3.3.3. Generation of KRB_TGS_REP message
-
- The KRB_TGS_REP message shares its format with the KRB_AS_REP
- (KRB_KDC_REP), but with its type field set to KRB_TGS_REP. The
- detailed specification is in section 5.4.2.
-
- The response will include a ticket for the requested server. The
- Kerberos database is queried to retrieve the record for the requested
- server (including the key with which the ticket will be encrypted).
- If the request is for a ticket granting ticket for a remote realm,
- and if no key is shared with the requested realm, then the Kerberos
- server will select the realm "closest" to the requested realm with
- which it does share a key, and use that realm instead. This is the
- only case where the response from the KDC will be for a different
- server than that requested by the client.
-
- By default, the address field, the client's name and realm, the list
- of transited realms, the time of initial authentication, the
- expiration time, and the authorization data of the newly-issued
- ticket will be copied from the ticket-granting ticket (TGT) or
- renewable ticket. If the transited field needs to be updated, but
- the transited type is not supported, the KDC_ERR_TRTYPE_NOSUPP error
- is returned.
-
-
-
-
-Kohl & Neuman [Page 27]
-
-RFC 1510 Kerberos September 1993
-
-
- If the request specifies an endtime, then the endtime of the new
- ticket is set to the minimum of (a) that request, (b) the endtime
- from the TGT, and (c) the starttime of the TGT plus the minimum of
- the maximum life for the application server and the maximum life for
- the local realm (the maximum life for the requesting principal was
- already applied when the TGT was issued). If the new ticket is to be
- a renewal, then the endtime above is replaced by the minimum of (a)
- the value of the renew_till field of the ticket and (b) the starttime
- for the new ticket plus the life (endtimestarttime) of the old
- ticket.
-
- If the FORWARDED option has been requested, then the resulting ticket
- will contain the addresses specified by the client. This option will
- only be honored if the FORWARDABLE flag is set in the TGT. The PROXY
- option is similar; the resulting ticket will contain the addresses
- specified by the client. It will be honored only if the PROXIABLE
- flag in the TGT is set. The PROXY option will not be honored on
- requests for additional ticket-granting tickets.
-
- If the requested start time is absent or indicates a time in the
- past, then the start time of the ticket is set to the authentication
- server's current time. If it indicates a time in the future, but the
- POSTDATED option has not been specified or the MAY-POSTDATE flag is
- not set in the TGT, then the error KDC_ERR_CANNOT_POSTDATE is
- returned. Otherwise, if the ticket-granting ticket has the
- MAYPOSTDATE flag set, then the resulting ticket will be postdated and
- the requested starttime is checked against the policy of the local
- realm. If acceptable, the ticket's start time is set as requested,
- and the INVALID flag is set. The postdated ticket must be validated
- before use by presenting it to the KDC after the starttime has been
- reached. However, in no case may the starttime, endtime, or renew-
- till time of a newly-issued postdated ticket extend beyond the
- renew-till time of the ticket-granting ticket.
-
- If the ENC-TKT-IN-SKEY option has been specified and an additional
- ticket has been included in the request, the KDC will decrypt the
- additional ticket using the key for the server to which the
- additional ticket was issued and verify that it is a ticket-granting
- ticket. If the name of the requested server is missing from the
- request, the name of the client in the additional ticket will be
- used. Otherwise the name of the requested server will be compared to
- the name of the client in the additional ticket and if different, the
- request will be rejected. If the request succeeds, the session key
- from the additional ticket will be used to encrypt the new ticket
- that is issued instead of using the key of the server for which the
- new ticket will be used (This allows easy implementation of user-to-
- user authentication [6], which uses ticket-granting ticket session
- keys in lieu of secret server keys in situations where such secret
-
-
-
-Kohl & Neuman [Page 28]
-
-RFC 1510 Kerberos September 1993
-
-
- keys could be easily compromised.).
-
- If the name of the server in the ticket that is presented to the KDC
- as part of the authentication header is not that of the ticket-
- granting server itself, and the server is registered in the realm of
- the KDC, If the RENEW option is requested, then the KDC will verify
- that the RENEWABLE flag is set in the ticket and that the renew_till
- time is still in the future. If the VALIDATE option is rqeuested,
- the KDC will check that the starttime has passed and the INVALID flag
- is set. If the PROXY option is requested, then the KDC will check
- that the PROXIABLE flag is set in the ticket. If the tests succeed,
- the KDC will issue the appropriate new ticket.
-
- Whenever a request is made to the ticket-granting server, the
- presented ticket(s) is(are) checked against a hot-list of tickets
- which have been canceled. This hot-list might be implemented by
- storing a range of issue dates for "suspect tickets"; if a presented
- ticket had an authtime in that range, it would be rejected. In this
- way, a stolen ticket-granting ticket or renewable ticket cannot be
- used to gain additional tickets (renewals or otherwise) once the
- theft has been reported. Any normal ticket obtained before it was
- reported stolen will still be valid (because they require no
- interaction with the KDC), but only until their normal expiration
- time.
-
- The ciphertext part of the response in the KRB_TGS_REP message is
- encrypted in the sub-session key from the Authenticator, if present,
- or the session key key from the ticket-granting ticket. It is not
- encrypted using the client's secret key. Furthermore, the client's
- key's expiration date and the key version number fields are left out
- since these values are stored along with the client's database
- record, and that record is not needed to satisfy a request based on a
- ticket-granting ticket. See section A.6 for pseudocode.
-
-3.3.3.1. Encoding the transited field
-
- If the identity of the server in the TGT that is presented to the KDC
- as part of the authentication header is that of the ticket-granting
- service, but the TGT was issued from another realm, the KDC will look
- up the inter-realm key shared with that realm and use that key to
- decrypt the ticket. If the ticket is valid, then the KDC will honor
- the request, subject to the constraints outlined above in the section
- describing the AS exchange. The realm part of the client's identity
- will be taken from the ticket-granting ticket. The name of the realm
- that issued the ticket-granting ticket will be added to the transited
- field of the ticket to be issued. This is accomplished by reading
- the transited field from the ticket-granting ticket (which is treated
- as an unordered set of realm names), adding the new realm to the set,
-
-
-
-Kohl & Neuman [Page 29]
-
-RFC 1510 Kerberos September 1993
-
-
- then constructing and writing out its encoded (shorthand) form (this
- may involve a rearrangement of the existing encoding).
-
- Note that the ticket-granting service does not add the name of its
- own realm. Instead, its responsibility is to add the name of the
- previous realm. This prevents a malicious Kerberos server from
- intentionally leaving out its own name (it could, however, omit other
- realms' names).
-
- The names of neither the local realm nor the principal's realm are to
- be included in the transited field. They appear elsewhere in the
- ticket and both are known to have taken part in authenticating the
- principal. Since the endpoints are not included, both local and
- single-hop inter-realm authentication result in a transited field
- that is empty.
-
- Because the name of each realm transited is added to this field,
- it might potentially be very long. To decrease the length of this
- field, its contents are encoded. The initially supported encoding is
- optimized for the normal case of inter-realm communication: a
- hierarchical arrangement of realms using either domain or X.500 style
- realm names. This encoding (called DOMAIN-X500-COMPRESS) is now
- described.
-
- Realm names in the transited field are separated by a ",". The ",",
- "\", trailing "."s, and leading spaces (" ") are special characters,
- and if they are part of a realm name, they must be quoted in the
- transited field by preceding them with a "\".
-
- A realm name ending with a "." is interpreted as being prepended to
- the previous realm. For example, we can encode traversal of EDU,
- MIT.EDU, ATHENA.MIT.EDU, WASHINGTON.EDU, and CS.WASHINGTON.EDU as:
-
- "EDU,MIT.,ATHENA.,WASHINGTON.EDU,CS.".
-
- Note that if ATHENA.MIT.EDU, or CS.WASHINGTON.EDU were endpoints,
- that they would not be included in this field, and we would have:
-
- "EDU,MIT.,WASHINGTON.EDU"
-
- A realm name beginning with a "/" is interpreted as being appended to
- the previous realm (For the purpose of appending, the realm preceding
- the first listed realm is considered to be the null realm ("")). If
- it is to stand by itself, then it should be preceded by a space ("
- "). For example, we can encode traversal of /COM/HP/APOLLO, /COM/HP,
- /COM, and /COM/DEC as:
-
- "/COM,/HP,/APOLLO, /COM/DEC".
-
-
-
-Kohl & Neuman [Page 30]
-
-RFC 1510 Kerberos September 1993
-
-
- Like the example above, if /COM/HP/APOLLO and /COM/DEC are endpoints,
- they they would not be included in this field, and we would have:
-
- "/COM,/HP"
-
- A null subfield preceding or following a "," indicates that all
- realms between the previous realm and the next realm have been
- traversed (For the purpose of interpreting null subfields, the
- client's realm is considered to precede those in the transited field,
- and the server's realm is considered to follow them.). Thus, ","
- means that all realms along the path between the client and the
- server have been traversed. ",EDU, /COM," means that that all realms
- from the client's realm up to EDU (in a domain style hierarchy) have
- been traversed, and that everything from /COM down to the server's
- realm in an X.500 style has also been traversed. This could occur if
- the EDU realm in one hierarchy shares an inter-realm key directly
- with the /COM realm in another hierarchy.
-
-3.3.4. Receipt of KRB_TGS_REP message
-
- When the KRB_TGS_REP is received by the client, it is processed in
- the same manner as the KRB_AS_REP processing described above. The
- primary difference is that the ciphertext part of the response must
- be decrypted using the session key from the ticket-granting ticket
- rather than the client's secret key. See section A.7 for pseudocode.
-
-3.4. The KRB_SAFE Exchange
-
- The KRB_SAFE message may be used by clients requiring the ability to
- detect modifications of messages they exchange. It achieves this by
- including a keyed collisionproof checksum of the user data and some
- control information. The checksum is keyed with an encryption key
- (usually the last key negotiated via subkeys, or the session key if
- no negotiation has occured).
-
-3.4.1. Generation of a KRB_SAFE message
-
- When an application wishes to send a KRB_SAFE message, it collects
- its data and the appropriate control information and computes a
- checksum over them. The checksum algorithm should be some sort of
- keyed one-way hash function (such as the RSA-MD5-DES checksum
- algorithm specified in section 6.4.5, or the DES MAC), generated
- using the sub-session key if present, or the session key. Different
- algorithms may be selected by changing the checksum type in the
- message. Unkeyed or non-collision-proof checksums are not suitable
- for this use.
-
- The control information for the KRB_SAFE message includes both a
-
-
-
-Kohl & Neuman [Page 31]
-
-RFC 1510 Kerberos September 1993
-
-
- timestamp and a sequence number. The designer of an application
- using the KRB_SAFE message must choose at least one of the two
- mechanisms. This choice should be based on the needs of the
- application protocol.
-
- Sequence numbers are useful when all messages sent will be received
- by one's peer. Connection state is presently required to maintain
- the session key, so maintaining the next sequence number should not
- present an additional problem.
-
- If the application protocol is expected to tolerate lost messages
- without them being resent, the use of the timestamp is the
- appropriate replay detection mechanism. Using timestamps is also the
- appropriate mechanism for multi-cast protocols where all of one's
- peers share a common sub-session key, but some messages will be sent
- to a subset of one's peers.
-
- After computing the checksum, the client then transmits the
- information and checksum to the recipient in the message format
- specified in section 5.6.1.
-
-3.4.2. Receipt of KRB_SAFE message
-
- When an application receives a KRB_SAFE message, it verifies it as
- follows. If any error occurs, an error code is reported for use by
- the application.
-
- The message is first checked by verifying that the protocol version
- and type fields match the current version and KRB_SAFE, respectively.
- A mismatch generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE
- error. The application verifies that the checksum used is a
- collisionproof keyed checksum, and if it is not, a
- KRB_AP_ERR_INAPP_CKSUM error is generated. The recipient verifies
- that the operating system's report of the sender's address matches
- the sender's address in the message, and (if a recipient address is
- specified or the recipient requires an address) that one of the
- recipient's addresses appears as the recipient's address in the
- message. A failed match for either case generates a
- KRB_AP_ERR_BADADDR error. Then the timestamp and usec and/or the
- sequence number fields are checked. If timestamp and usec are
- expected and not present, or they are present but not current, the
- KRB_AP_ERR_SKEW error is generated. If the server name, along with
- the client name, time and microsecond fields from the Authenticator
- match any recently-seen such tuples, the KRB_AP_ERR_REPEAT error is
- generated. If an incorrect sequence number is included, or a
- sequence number is expected but not present, the KRB_AP_ERR_BADORDER
- error is generated. If neither a timestamp and usec or a sequence
- number is present, a KRB_AP_ERR_MODIFIED error is generated.
-
-
-
-Kohl & Neuman [Page 32]
-
-RFC 1510 Kerberos September 1993
-
-
- Finally, the checksum is computed over the data and control
- information, and if it doesn't match the received checksum, a
- KRB_AP_ERR_MODIFIED error is generated.
-
- If all the checks succeed, the application is assured that the
- message was generated by its peer and was not modified in transit.
-
-3.5. The KRB_PRIV Exchange
-
- The KRB_PRIV message may be used by clients requiring confidentiality
- and the ability to detect modifications of exchanged messages. It
- achieves this by encrypting the messages and adding control
- information.
-
-3.5.1. Generation of a KRB_PRIV message
-
- When an application wishes to send a KRB_PRIV message, it collects
- its data and the appropriate control information (specified in
- section 5.7.1) and encrypts them under an encryption key (usually the
- last key negotiated via subkeys, or the session key if no negotiation
- has occured). As part of the control information, the client must
- choose to use either a timestamp or a sequence number (or both); see
- the discussion in section 3.4.1 for guidelines on which to use.
- After the user data and control information are encrypted, the client
- transmits the ciphertext and some "envelope" information to the
- recipient.
-
-3.5.2. Receipt of KRB_PRIV message
-
- When an application receives a KRB_PRIV message, it verifies it as
- follows. If any error occurs, an error code is reported for use by
- the application.
-
- The message is first checked by verifying that the protocol version
- and type fields match the current version and KRB_PRIV, respectively.
- A mismatch generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE
- error. The application then decrypts the ciphertext and processes
- the resultant plaintext. If decryption shows the data to have been
- modified, a KRB_AP_ERR_BAD_INTEGRITY error is generated. The
- recipient verifies that the operating system's report of the sender's
- address matches the sender's address in the message, and (if a
- recipient address is specified or the recipient requires an address)
- that one of the recipient's addresses appears as the recipient's
- address in the message. A failed match for either case generates a
- KRB_AP_ERR_BADADDR error. Then the timestamp and usec and/or the
- sequence number fields are checked. If timestamp and usec are
- expected and not present, or they are present but not current, the
- KRB_AP_ERR_SKEW error is generated. If the server name, along with
-
-
-
-Kohl & Neuman [Page 33]
-
-RFC 1510 Kerberos September 1993
-
-
- the client name, time and microsecond fields from the Authenticator
- match any recently-seen such tuples, the KRB_AP_ERR_REPEAT error is
- generated. If an incorrect sequence number is included, or a
- sequence number is expected but not present, the KRB_AP_ERR_BADORDER
- error is generated. If neither a timestamp and usec or a sequence
- number is present, a KRB_AP_ERR_MODIFIED error is generated.
-
- If all the checks succeed, the application can assume the message was
- generated by its peer, and was securely transmitted (without
- intruders able to see the unencrypted contents).
-
-3.6. The KRB_CRED Exchange
-
- The KRB_CRED message may be used by clients requiring the ability to
- send Kerberos credentials from one host to another. It achieves this
- by sending the tickets together with encrypted data containing the
- session keys and other information associated with the tickets.
-
-3.6.1. Generation of a KRB_CRED message
-
- When an application wishes to send a KRB_CRED message it first (using
- the KRB_TGS exchange) obtains credentials to be sent to the remote
- host. It then constructs a KRB_CRED message using the ticket or
- tickets so obtained, placing the session key needed to use each
- ticket in the key field of the corresponding KrbCredInfo sequence of
- the encrypted part of the the KRB_CRED message.
-
- Other information associated with each ticket and obtained during the
- KRB_TGS exchange is also placed in the corresponding KrbCredInfo
- sequence in the encrypted part of the KRB_CRED message. The current
- time and, if specifically required by the application the nonce, s-
- address, and raddress fields, are placed in the encrypted part of the
- KRB_CRED message which is then encrypted under an encryption key
- previosuly exchanged in the KRB_AP exchange (usually the last key
- negotiated via subkeys, or the session key if no negotiation has
- occured).
-
-3.6.2. Receipt of KRB_CRED message
-
- When an application receives a KRB_CRED message, it verifies it. If
- any error occurs, an error code is reported for use by the
- application. The message is verified by checking that the protocol
- version and type fields match the current version and KRB_CRED,
- respectively. A mismatch generates a KRB_AP_ERR_BADVERSION or
- KRB_AP_ERR_MSG_TYPE error. The application then decrypts the
- ciphertext and processes the resultant plaintext. If decryption shows
- the data to have been modified, a KRB_AP_ERR_BAD_INTEGRITY error is
- generated.
-
-
-
-Kohl & Neuman [Page 34]
-
-RFC 1510 Kerberos September 1993
-
-
- If present or required, the recipient verifies that the operating
- system's report of the sender's address matches the sender's address
- in the message, and that one of the recipient's addresses appears as
- the recipient's address in the message. A failed match for either
- case generates a KRB_AP_ERR_BADADDR error. The timestamp and usec
- fields (and the nonce field if required) are checked next. If the
- timestamp and usec are not present, or they are present but not
- current, the KRB_AP_ERR_SKEW error is generated.
-
- If all the checks succeed, the application stores each of the new
- tickets in its ticket cache together with the session key and other
- information in the corresponding KrbCredInfo sequence from the
- encrypted part of the KRB_CRED message.
-
-4. The Kerberos Database
-
- The Kerberos server must have access to a database containing the
- principal identifiers and secret keys of principals to be
- authenticated (The implementation of the Kerberos server need not
- combine the database and the server on the same machine; it is
- feasible to store the principal database in, say, a network name
- service, as long as the entries stored therein are protected from
- disclosure to and modification by unauthorized parties. However, we
- recommend against such strategies, as they can make system management
- and threat analysis quite complex.).
-
-4.1. Database contents
-
- A database entry should contain at least the following fields:
-
- Field Value
-
- name Principal's identifier
- key Principal's secret key
- p_kvno Principal's key version
- max_life Maximum lifetime for Tickets
- max_renewable_life Maximum total lifetime for renewable
- Tickets
-
- The name field is an encoding of the principal's identifier. The key
- field contains an encryption key. This key is the principal's secret
- key. (The key can be encrypted before storage under a Kerberos
- "master key" to protect it in case the database is compromised but
- the master key is not. In that case, an extra field must be added to
- indicate the master key version used, see below.) The p_kvno field is
- the key version number of the principal's secret key. The max_life
- field contains the maximum allowable lifetime (endtime - starttime)
- for any Ticket issued for this principal. The max_renewable_life
-
-
-
-Kohl & Neuman [Page 35]
-
-RFC 1510 Kerberos September 1993
-
-
- field contains the maximum allowable total lifetime for any renewable
- Ticket issued for this principal. (See section 3.1 for a description
- of how these lifetimes are used in determining the lifetime of a
- given Ticket.)
-
- A server may provide KDC service to several realms, as long as the
- database representation provides a mechanism to distinguish between
- principal records with identifiers which differ only in the realm
- name.
-
- When an application server's key changes, if the change is routine
- (i.e., not the result of disclosure of the old key), the old key
- should be retained by the server until all tickets that had been
- issued using that key have expired. Because of this, it is possible
- for several keys to be active for a single principal. Ciphertext
- encrypted in a principal's key is always tagged with the version of
- the key that was used for encryption, to help the recipient find the
- proper key for decryption.
-
- When more than one key is active for a particular principal, the
- principal will have more than one record in the Kerberos database.
- The keys and key version numbers will differ between the records (the
- rest of the fields may or may not be the same). Whenever Kerberos
- issues a ticket, or responds to a request for initial authentication,
- the most recent key (known by the Kerberos server) will be used for
- encryption. This is the key with the highest key version number.
-
-4.2. Additional fields
-
- Project Athena's KDC implementation uses additional fields in its
- database:
-
- Field Value
-
- K_kvno Kerberos' key version
- expiration Expiration date for entry
- attributes Bit field of attributes
- mod_date Timestamp of last modification
- mod_name Modifying principal's identifier
-
- The K_kvno field indicates the key version of the Kerberos master key
- under which the principal's secret key is encrypted.
-
- After an entry's expiration date has passed, the KDC will return an
- error to any client attempting to gain tickets as or for the
- principal. (A database may want to maintain two expiration dates:
- one for the principal, and one for the principal's current key. This
- allows password aging to work independently of the principal's
-
-
-
-Kohl & Neuman [Page 36]
-
-RFC 1510 Kerberos September 1993
-
-
- expiration date. However, due to the limited space in the responses,
- the KDC must combine the key expiration and principal expiration date
- into a single value called "key_exp", which is used as a hint to the
- user to take administrative action.)
-
- The attributes field is a bitfield used to govern the operations
- involving the principal. This field might be useful in conjunction
- with user registration procedures, for site-specific policy
- implementations (Project Athena currently uses it for their user
- registration process controlled by the system-wide database service,
- Moira [7]), or to identify the "string to key" conversion algorithm
- used for a principal's key. (See the discussion of the padata field
- in section 5.4.2 for details on why this can be useful.) Other bits
- are used to indicate that certain ticket options should not be
- allowed in tickets encrypted under a principal's key (one bit each):
- Disallow issuing postdated tickets, disallow issuing forwardable
- tickets, disallow issuing tickets based on TGT authentication,
- disallow issuing renewable tickets, disallow issuing proxiable
- tickets, and disallow issuing tickets for which the principal is the
- server.
-
- The mod_date field contains the time of last modification of the
- entry, and the mod_name field contains the name of the principal
- which last modified the entry.
-
-4.3. Frequently Changing Fields
-
- Some KDC implementations may wish to maintain the last time that a
- request was made by a particular principal. Information that might
- be maintained includes the time of the last request, the time of the
- last request for a ticket-granting ticket, the time of the last use
- of a ticket-granting ticket, or other times. This information can
- then be returned to the user in the last-req field (see section 5.2).
-
- Other frequently changing information that can be maintained is the
- latest expiration time for any tickets that have been issued using
- each key. This field would be used to indicate how long old keys
- must remain valid to allow the continued use of outstanding tickets.
-
-4.4. Site Constants
-
- The KDC implementation should have the following configurable
- constants or options, to allow an administrator to make and enforce
- policy decisions:
-
- + The minimum supported lifetime (used to determine whether the
- KDC_ERR_NEVER_VALID error should be returned). This constant
- should reflect reasonable expectations of round-trip time to the
-
-
-
-Kohl & Neuman [Page 37]
-
-RFC 1510 Kerberos September 1993
-
-
- KDC, encryption/decryption time, and processing time by the client
- and target server, and it should allow for a minimum "useful"
- lifetime.
-
- + The maximum allowable total (renewable) lifetime of a ticket
- (renew_till - starttime).
-
- + The maximum allowable lifetime of a ticket (endtime - starttime).
-
- + Whether to allow the issue of tickets with empty address fields
- (including the ability to specify that such tickets may only be
- issued if the request specifies some authorization_data).
-
- + Whether proxiable, forwardable, renewable or post-datable tickets
- are to be issued.
-
-5. Message Specifications
-
- The following sections describe the exact contents and encoding of
- protocol messages and objects. The ASN.1 base definitions are
- presented in the first subsection. The remaining subsections specify
- the protocol objects (tickets and authenticators) and messages.
- Specification of encryption and checksum techniques, and the fields
- related to them, appear in section 6.
-
-5.1. ASN.1 Distinguished Encoding Representation
-
- All uses of ASN.1 in Kerberos shall use the Distinguished Encoding
- Representation of the data elements as described in the X.509
- specification, section 8.7 [8].
-
-5.2. ASN.1 Base Definitions
-
- The following ASN.1 base definitions are used in the rest of this
- section. Note that since the underscore character (_) is not
- permitted in ASN.1 names, the hyphen (-) is used in its place for the
- purposes of ASN.1 names.
-
- Realm ::= GeneralString
- PrincipalName ::= SEQUENCE {
- name-type[0] INTEGER,
- name-string[1] SEQUENCE OF GeneralString
- }
-
- Kerberos realms are encoded as GeneralStrings. Realms shall not
- contain a character with the code 0 (the ASCII NUL). Most realms
- will usually consist of several components separated by periods (.),
- in the style of Internet Domain Names, or separated by slashes (/) in
-
-
-
-Kohl & Neuman [Page 38]
-
-RFC 1510 Kerberos September 1993
-
-
- the style of X.500 names. Acceptable forms for realm names are
- specified in section 7. A PrincipalName is a typed sequence of
- components consisting of the following sub-fields:
-
- name-type This field specifies the type of name that follows.
- Pre-defined values for this field are
- specified in section 7.2. The name-type should be
- treated as a hint. Ignoring the name type, no two
- names can be the same (i.e., at least one of the
- components, or the realm, must be different).
- This constraint may be eliminated in the future.
-
- name-string This field encodes a sequence of components that
- form a name, each component encoded as a General
- String. Taken together, a PrincipalName and a Realm
- form a principal identifier. Most PrincipalNames
- will have only a few components (typically one or two).
-
- KerberosTime ::= GeneralizedTime
- -- Specifying UTC time zone (Z)
-
- The timestamps used in Kerberos are encoded as GeneralizedTimes. An
- encoding shall specify the UTC time zone (Z) and shall not include
- any fractional portions of the seconds. It further shall not include
- any separators. Example: The only valid format for UTC time 6
- minutes, 27 seconds after 9 pm on 6 November 1985 is 19851106210627Z.
-
- HostAddress ::= SEQUENCE {
- addr-type[0] INTEGER,
- address[1] OCTET STRING
- }
-
- HostAddresses ::= SEQUENCE OF SEQUENCE {
- addr-type[0] INTEGER,
- address[1] OCTET STRING
- }
-
-
- The host adddress encodings consists of two fields:
-
- addr-type This field specifies the type of address that
- follows. Pre-defined values for this field are
- specified in section 8.1.
-
-
- address This field encodes a single address of type addr-type.
-
- The two forms differ slightly. HostAddress contains exactly one
-
-
-
-Kohl & Neuman [Page 39]
-
-RFC 1510 Kerberos September 1993
-
-
- address; HostAddresses contains a sequence of possibly many
- addresses.
-
- AuthorizationData ::= SEQUENCE OF SEQUENCE {
- ad-type[0] INTEGER,
- ad-data[1] OCTET STRING
- }
-
-
- ad-data This field contains authorization data to be
- interpreted according to the value of the
- corresponding ad-type field.
-
- ad-type This field specifies the format for the ad-data
- subfield. All negative values are reserved for
- local use. Non-negative values are reserved for
- registered use.
-
- APOptions ::= BIT STRING {
- reserved(0),
- use-session-key(1),
- mutual-required(2)
- }
-
-
- TicketFlags ::= BIT STRING {
- reserved(0),
- forwardable(1),
- forwarded(2),
- proxiable(3),
- proxy(4),
- may-postdate(5),
- postdated(6),
- invalid(7),
- renewable(8),
- initial(9),
- pre-authent(10),
- hw-authent(11)
- }
-
- KDCOptions ::= BIT STRING {
- reserved(0),
- forwardable(1),
- forwarded(2),
- proxiable(3),
- proxy(4),
- allow-postdate(5),
- postdated(6),
-
-
-
-Kohl & Neuman [Page 40]
-
-RFC 1510 Kerberos September 1993
-
-
- unused7(7),
- renewable(8),
- unused9(9),
- unused10(10),
- unused11(11),
- renewable-ok(27),
- enc-tkt-in-skey(28),
- renew(30),
- validate(31)
- }
-
-
- LastReq ::= SEQUENCE OF SEQUENCE {
- lr-type[0] INTEGER,
- lr-value[1] KerberosTime
- }
-
- lr-type This field indicates how the following lr-value
- field is to be interpreted. Negative values indicate
- that the information pertains only to the
- responding server. Non-negative values pertain to
- all servers for the realm.
-
- If the lr-type field is zero (0), then no information
- is conveyed by the lr-value subfield. If the
- absolute value of the lr-type field is one (1),
- then the lr-value subfield is the time of last
- initial request for a TGT. If it is two (2), then
- the lr-value subfield is the time of last initial
- request. If it is three (3), then the lr-value
- subfield is the time of issue for the newest
- ticket-granting ticket used. If it is four (4),
- then the lr-value subfield is the time of the last
- renewal. If it is five (5), then the lr-value
- subfield is the time of last request (of any
- type).
-
- lr-value This field contains the time of the last request.
- The time must be interpreted according to the contents
- of the accompanying lr-type subfield.
-
- See section 6 for the definitions of Checksum, ChecksumType,
- EncryptedData, EncryptionKey, EncryptionType, and KeyType.
-
-
-
-
-
-
-
-
-Kohl & Neuman [Page 41]
-
-RFC 1510 Kerberos September 1993
-
-
-5.3. Tickets and Authenticators
-
- This section describes the format and encryption parameters for
- tickets and authenticators. When a ticket or authenticator is
- included in a protocol message it is treated as an opaque object.
-
-5.3.1. Tickets
-
- A ticket is a record that helps a client authenticate to a service.
- A Ticket contains the following information:
-
-Ticket ::= [APPLICATION 1] SEQUENCE {
- tkt-vno[0] INTEGER,
- realm[1] Realm,
- sname[2] PrincipalName,
- enc-part[3] EncryptedData
-}
--- Encrypted part of ticket
-EncTicketPart ::= [APPLICATION 3] SEQUENCE {
- flags[0] TicketFlags,
- key[1] EncryptionKey,
- crealm[2] Realm,
- cname[3] PrincipalName,
- transited[4] TransitedEncoding,
- authtime[5] KerberosTime,
- starttime[6] KerberosTime OPTIONAL,
- endtime[7] KerberosTime,
- renew-till[8] KerberosTime OPTIONAL,
- caddr[9] HostAddresses OPTIONAL,
- authorization-data[10] AuthorizationData OPTIONAL
-}
--- encoded Transited field
-TransitedEncoding ::= SEQUENCE {
- tr-type[0] INTEGER, -- must be registered
- contents[1] OCTET STRING
-}
-
- The encoding of EncTicketPart is encrypted in the key shared by
- Kerberos and the end server (the server's secret key). See section 6
- for the format of the ciphertext.
-
- tkt-vno This field specifies the version number for the ticket
- format. This document describes version number 5.
-
- realm This field specifies the realm that issued a ticket. It
- also serves to identify the realm part of the server's
- principal identifier. Since a Kerberos server can only
- issue tickets for servers within its realm, the two will
-
-
-
-Kohl & Neuman [Page 42]
-
-RFC 1510 Kerberos September 1993
-
-
- always be identical.
-
- sname This field specifies the name part of the server's
- identity.
-
- enc-part This field holds the encrypted encoding of the
- EncTicketPart sequence.
-
- flags This field indicates which of various options were used or
- requested when the ticket was issued. It is a bit-field,
- where the selected options are indicated by the bit being
- set (1), and the unselected options and reserved fields
- being reset (0). Bit 0 is the most significant bit. The
- encoding of the bits is specified in section 5.2. The
- flags are described in more detail above in section 2. The
- meanings of the flags are:
-
- Bit(s) Name Description
-
- 0 RESERVED Reserved for future expansion of this
- field.
-
- 1 FORWARDABLE The FORWARDABLE flag is normally only
- interpreted by the TGS, and can be
- ignored by end servers. When set,
- this flag tells the ticket-granting
- server that it is OK to issue a new
- ticket- granting ticket with a
- different network address based on
- the presented ticket.
-
- 2 FORWARDED When set, this flag indicates that
- the ticket has either been forwarded
- or was issued based on authentication
- involving a forwarded ticket-granting
- ticket.
-
- 3 PROXIABLE The PROXIABLE flag is normally only
- interpreted by the TGS, and can be
- ignored by end servers. The PROXIABLE
- flag has an interpretation identical
- to that of the FORWARDABLE flag,
- except that the PROXIABLE flag tells
- the ticket-granting server that only
- non- ticket-granting tickets may be
- issued with different network
- addresses.
-
-
-
-
-Kohl & Neuman [Page 43]
-
-RFC 1510 Kerberos September 1993
-
-
- 4 PROXY When set, this flag indicates that a
- ticket is a proxy.
-
- 5 MAY-POSTDATE The MAY-POSTDATE flag is normally
- only interpreted by the TGS, and can
- be ignored by end servers. This flag
- tells the ticket-granting server that
- a post- dated ticket may be issued
- based on this ticket-granting ticket.
-
- 6 POSTDATED This flag indicates that this ticket
- has been postdated. The end-service
- can check the authtime field to see
- when the original authentication
- occurred.
-
- 7 INVALID This flag indicates that a ticket is
- invalid, and it must be validated by
- the KDC before use. Application
- servers must reject tickets which
- have this flag set.
-
- 8 RENEWABLE The RENEWABLE flag is normally only
- interpreted by the TGS, and can
- usually be ignored by end servers
- (some particularly careful servers
- may wish to disallow renewable
- tickets). A renewable ticket can be
- used to obtain a replacement ticket
- that expires at a later date.
-
- 9 INITIAL This flag indicates that this ticket
- was issued using the AS protocol, and
- not issued based on a ticket-granting
- ticket.
-
- 10 PRE-AUTHENT This flag indicates that during
- initial authentication, the client
- was authenticated by the KDC before a
- ticket was issued. The strength of
- the preauthentication method is not
- indicated, but is acceptable to the
- KDC.
-
- 11 HW-AUTHENT This flag indicates that the protocol
- employed for initial authentication
- required the use of hardware expected
- to be possessed solely by the named
-
-
-
-Kohl & Neuman [Page 44]
-
-RFC 1510 Kerberos September 1993
-
-
- client. The hardware authentication
- method is selected by the KDC and the
- strength of the method is not
- indicated.
-
- 12-31 RESERVED Reserved for future use.
-
- key This field exists in the ticket and the KDC response and is
- used to pass the session key from Kerberos to the
- application server and the client. The field's encoding is
- described in section 6.2.
-
- crealm This field contains the name of the realm in which the
- client is registered and in which initial authentication
- took place.
-
- cname This field contains the name part of the client's principal
- identifier.
-
- transited This field lists the names of the Kerberos realms that took
- part in authenticating the user to whom this ticket was
- issued. It does not specify the order in which the realms
- were transited. See section 3.3.3.1 for details on how
- this field encodes the traversed realms.
-
- authtime This field indicates the time of initial authentication for
- the named principal. It is the time of issue for the
- original ticket on which this ticket is based. It is
- included in the ticket to provide additional information to
- the end service, and to provide the necessary information
- for implementation of a `hot list' service at the KDC. An
- end service that is particularly paranoid could refuse to
- accept tickets for which the initial authentication
- occurred "too far" in the past.
-
- This field is also returned as part of the response from
- the KDC. When returned as part of the response to initial
- authentication (KRB_AS_REP), this is the current time on
- the Kerberos server (It is NOT recommended that this time
- value be used to adjust the workstation's clock since the
- workstation cannot reliably determine that such a
- KRB_AS_REP actually came from the proper KDC in a timely
- manner.).
-
- starttime This field in the ticket specifies the time after which the
- ticket is valid. Together with endtime, this field
- specifies the life of the ticket. If it is absent from
- the ticket, its value should be treated as that of the
-
-
-
-Kohl & Neuman [Page 45]
-
-RFC 1510 Kerberos September 1993
-
-
- authtime field.
-
- endtime This field contains the time after which the ticket will
- not be honored (its expiration time). Note that individual
- services may place their own limits on the life of a ticket
- and may reject tickets which have not yet expired. As
- such, this is really an upper bound on the expiration time
- for the ticket.
-
- renew-till This field is only present in tickets that have the
- RENEWABLE flag set in the flags field. It indicates the
- maximum endtime that may be included in a renewal. It can
- be thought of as the absolute expiration time for the
- ticket, including all renewals.
-
- caddr This field in a ticket contains zero (if omitted) or more
- (if present) host addresses. These are the addresses from
- which the ticket can be used. If there are no addresses,
- the ticket can be used from any location. The decision
- by the KDC to issue or by the end server to accept zero-
- address tickets is a policy decision and is left to the
- Kerberos and end-service administrators; they may refuse to
- issue or accept such tickets. The suggested and default
- policy, however, is that such tickets will only be issued
- or accepted when additional information that can be used to
- restrict the use of the ticket is included in the
- authorization_data field. Such a ticket is a capability.
-
- Network addresses are included in the ticket to make it
- harder for an attacker to use stolen credentials. Because
- the session key is not sent over the network in cleartext,
- credentials can't be stolen simply by listening to the
- network; an attacker has to gain access to the session key
- (perhaps through operating system security breaches or a
- careless user's unattended session) to make use of stolen
- tickets.
-
- It is important to note that the network address from which
- a connection is received cannot be reliably determined.
- Even if it could be, an attacker who has compromised the
- client's workstation could use the credentials from there.
- Including the network addresses only makes it more
- difficult, not impossible, for an attacker to walk off with
- stolen credentials and then use them from a "safe"
- location.
-
-
-
-
-
-
-Kohl & Neuman [Page 46]
-
-RFC 1510 Kerberos September 1993
-
-
- authorization-data The authorization-data field is used to pass
- authorization data from the principal on whose behalf a
- ticket was issued to the application service. If no
- authorization data is included, this field will be left
- out. The data in this field are specific to the end
- service. It is expected that the field will contain the
- names of service specific objects, and the rights to those
- objects. The format for this field is described in section
- 5.2. Although Kerberos is not concerned with the format of
- the contents of the subfields, it does carry type
- information (ad-type).
-
- By using the authorization_data field, a principal is able
- to issue a proxy that is valid for a specific purpose. For
- example, a client wishing to print a file can obtain a file
- server proxy to be passed to the print server. By
- specifying the name of the file in the authorization_data
- field, the file server knows that the print server can only
- use the client's rights when accessing the particular file
- to be printed.
-
- It is interesting to note that if one specifies the
- authorization-data field of a proxy and leaves the host
- addresses blank, the resulting ticket and session key can
- be treated as a capability. See [9] for some suggested
- uses of this field.
-
- The authorization-data field is optional and does not have
- to be included in a ticket.
-
-5.3.2. Authenticators
-
- An authenticator is a record sent with a ticket to a server to
- certify the client's knowledge of the encryption key in the ticket,
- to help the server detect replays, and to help choose a "true session
- key" to use with the particular session. The encoding is encrypted
- in the ticket's session key shared by the client and the server:
-
--- Unencrypted authenticator
-Authenticator ::= [APPLICATION 2] SEQUENCE {
- authenticator-vno[0] INTEGER,
- crealm[1] Realm,
- cname[2] PrincipalName,
- cksum[3] Checksum OPTIONAL,
- cusec[4] INTEGER,
- ctime[5] KerberosTime,
- subkey[6] EncryptionKey OPTIONAL,
- seq-number[7] INTEGER OPTIONAL,
-
-
-
-Kohl & Neuman [Page 47]
-
-RFC 1510 Kerberos September 1993
-
-
- authorization-data[8] AuthorizationData OPTIONAL
- }
-
- authenticator-vno This field specifies the version number for the
- format of the authenticator. This document specifies
- version 5.
-
- crealm and cname These fields are the same as those described for the
- ticket in section 5.3.1.
-
- cksum This field contains a checksum of the the application data
- that accompanies the KRB_AP_REQ.
-
- cusec This field contains the microsecond part of the client's
- timestamp. Its value (before encryption) ranges from 0 to
- 999999. It often appears along with ctime. The two fields
- are used together to specify a reasonably accurate
- timestamp.
-
- ctime This field contains the current time on the client's host.
-
- subkey This field contains the client's choice for an encryption
- key which is to be used to protect this specific
- application session. Unless an application specifies
- otherwise, if this field is left out the session key from
- the ticket will be used.
-
- seq-number This optional field includes the initial sequence number
- to be used by the KRB_PRIV or KRB_SAFE messages when
- sequence numbers are used to detect replays (It may also be
- used by application specific messages). When included in
- the authenticator this field specifies the initial sequence
- number for messages from the client to the server. When
- included in the AP-REP message, the initial sequence number
- is that for messages from the server to the client. When
- used in KRB_PRIV or KRB_SAFE messages, it is incremented by
- one after each message is sent.
-
- For sequence numbers to adequately support the detection of
- replays they should be non-repeating, even across
- connection boundaries. The initial sequence number should
- be random and uniformly distributed across the full space
- of possible sequence numbers, so that it cannot be guessed
- by an attacker and so that it and the successive sequence
- numbers do not repeat other sequences.
-
-
-
-
-
-
-Kohl & Neuman [Page 48]
-
-RFC 1510 Kerberos September 1993
-
-
- authorization-data This field is the same as described for the ticket
- in section 5.3.1. It is optional and will only appear when
- additional restrictions are to be placed on the use of a
- ticket, beyond those carried in the ticket itself.
-
-5.4. Specifications for the AS and TGS exchanges
-
- This section specifies the format of the messages used in exchange
- between the client and the Kerberos server. The format of possible
- error messages appears in section 5.9.1.
-
-5.4.1. KRB_KDC_REQ definition
-
- The KRB_KDC_REQ message has no type of its own. Instead, its type is
- one of KRB_AS_REQ or KRB_TGS_REQ depending on whether the request is
- for an initial ticket or an additional ticket. In either case, the
- message is sent from the client to the Authentication Server to
- request credentials for a service.
-
-The message fields are:
-
-AS-REQ ::= [APPLICATION 10] KDC-REQ
-TGS-REQ ::= [APPLICATION 12] KDC-REQ
-
-KDC-REQ ::= SEQUENCE {
- pvno[1] INTEGER,
- msg-type[2] INTEGER,
- padata[3] SEQUENCE OF PA-DATA OPTIONAL,
- req-body[4] KDC-REQ-BODY
-}
-
-PA-DATA ::= SEQUENCE {
- padata-type[1] INTEGER,
- padata-value[2] OCTET STRING,
- -- might be encoded AP-REQ
-}
-
-KDC-REQ-BODY ::= SEQUENCE {
- kdc-options[0] KDCOptions,
- cname[1] PrincipalName OPTIONAL,
- -- Used only in AS-REQ
- realm[2] Realm, -- Server's realm
- -- Also client's in AS-REQ
- sname[3] PrincipalName OPTIONAL,
- from[4] KerberosTime OPTIONAL,
- till[5] KerberosTime,
- rtime[6] KerberosTime OPTIONAL,
- nonce[7] INTEGER,
-
-
-
-Kohl & Neuman [Page 49]
-
-RFC 1510 Kerberos September 1993
-
-
- etype[8] SEQUENCE OF INTEGER, -- EncryptionType,
- -- in preference order
- addresses[9] HostAddresses OPTIONAL,
- enc-authorization-data[10] EncryptedData OPTIONAL,
- -- Encrypted AuthorizationData encoding
- additional-tickets[11] SEQUENCE OF Ticket OPTIONAL
-}
-
- The fields in this message are:
-
- pvno This field is included in each message, and specifies the
- protocol version number. This document specifies protocol
- version 5.
-
- msg-type This field indicates the type of a protocol message. It
- will almost always be the same as the application
- identifier associated with a message. It is included to
- make the identifier more readily accessible to the
- application. For the KDC-REQ message, this type will be
- KRB_AS_REQ or KRB_TGS_REQ.
-
- padata The padata (pre-authentication data) field contains a of
- authentication information which may be needed before
- credentials can be issued or decrypted. In the case of
- requests for additional tickets (KRB_TGS_REQ), this field
- will include an element with padata-type of PA-TGS-REQ and
- data of an authentication header (ticket-granting ticket
- and authenticator). The checksum in the authenticator
- (which must be collisionproof) is to be computed over the
- KDC-REQ-BODY encoding. In most requests for initial
- authentication (KRB_AS_REQ) and most replies (KDC-REP), the
- padata field will be left out.
-
- This field may also contain information needed by certain
- extensions to the Kerberos protocol. For example, it might
- be used to initially verify the identity of a client before
- any response is returned. This is accomplished with a
- padata field with padata-type equal to PA-ENC-TIMESTAMP and
- padata-value defined as follows:
-
- padata-type ::= PA-ENC-TIMESTAMP
- padata-value ::= EncryptedData -- PA-ENC-TS-ENC
-
- PA-ENC-TS-ENC ::= SEQUENCE {
- patimestamp[0] KerberosTime, -- client's time
- pausec[1] INTEGER OPTIONAL
- }
-
-
-
-
-Kohl & Neuman [Page 50]
-
-RFC 1510 Kerberos September 1993
-
-
- with patimestamp containing the client's time and pausec
- containing the microseconds which may be omitted if a
- client will not generate more than one request per second.
- The ciphertext (padata-value) consists of the PA-ENC-TS-ENC
- sequence, encrypted using the client's secret key.
-
- The padata field can also contain information needed to
- help the KDC or the client select the key needed for
- generating or decrypting the response. This form of the
- padata is useful for supporting the use of certain
- "smartcards" with Kerberos. The details of such extensions
- are beyond the scope of this specification. See [10] for
- additional uses of this field.
-
- padata-type The padata-type element of the padata field indicates the
- way that the padata-value element is to be interpreted.
- Negative values of padata-type are reserved for
- unregistered use; non-negative values are used for a
- registered interpretation of the element type.
-
- req-body This field is a placeholder delimiting the extent of the
- remaining fields. If a checksum is to be calculated over
- the request, it is calculated over an encoding of the KDC-
- REQ-BODY sequence which is enclosed within the req-body
- field.
-
- kdc-options This field appears in the KRB_AS_REQ and KRB_TGS_REQ
- requests to the KDC and indicates the flags that the client
- wants set on the tickets as well as other information that
- is to modify the behavior of the KDC. Where appropriate,
- the name of an option may be the same as the flag that is
- set by that option. Although in most case, the bit in the
- options field will be the same as that in the flags field,
- this is not guaranteed, so it is not acceptable to simply
- copy the options field to the flags field. There are
- various checks that must be made before honoring an option
- anyway.
-
- The kdc_options field is a bit-field, where the selected
- options are indicated by the bit being set (1), and the
- unselected options and reserved fields being reset (0).
- The encoding of the bits is specified in section 5.2. The
- options are described in more detail above in section 2.
- The meanings of the options are:
-
-
-
-
-
-
-
-Kohl & Neuman [Page 51]
-
-RFC 1510 Kerberos September 1993
-
-
- Bit(s) Name Description
-
- 0 RESERVED Reserved for future expansion of this
- field.
-
- 1 FORWARDABLE The FORWARDABLE option indicates that
- the ticket to be issued is to have its
- forwardable flag set. It may only be
- set on the initial request, or in a
- subsequent request if the ticket-
- granting ticket on which it is based
- is also forwardable.
-
- 2 FORWARDED The FORWARDED option is only specified
- in a request to the ticket-granting
- server and will only be honored if the
- ticket-granting ticket in the request
- has its FORWARDABLE bit set. This
- option indicates that this is a
- request for forwarding. The
- address(es) of the host from which the
- resulting ticket is to be valid are
- included in the addresses field of the
- request.
-
-
- 3 PROXIABLE The PROXIABLE option indicates that
- the ticket to be issued is to have its
- proxiable flag set. It may only be set
- on the initial request, or in a
- subsequent request if the ticket-
- granting ticket on which it is based
- is also proxiable.
-
- 4 PROXY The PROXY option indicates that this
- is a request for a proxy. This option
- will only be honored if the ticket-
- granting ticket in the request has its
- PROXIABLE bit set. The address(es) of
- the host from which the resulting
- ticket is to be valid are included in
- the addresses field of the request.
-
- 5 ALLOW-POSTDATE The ALLOW-POSTDATE option indicates
- that the ticket to be issued is to
- have its MAY-POSTDATE flag set. It
- may only be set on the initial
- request, or in a subsequent request if
-
-
-
-Kohl & Neuman [Page 52]
-
-RFC 1510 Kerberos September 1993
-
-
- the ticket-granting ticket on which it
- is based also has its MAY-POSTDATE
- flag set.
-
- 6 POSTDATED The POSTDATED option indicates that
- this is a request for a postdated
- ticket. This option will only be
- honored if the ticket-granting ticket
- on which it is based has its MAY-
- POSTDATE flag set. The resulting
- ticket will also have its INVALID flag
- set, and that flag may be reset by a
- subsequent request to the KDC after
- the starttime in the ticket has been
- reached.
-
- 7 UNUSED This option is presently unused.
-
- 8 RENEWABLE The RENEWABLE option indicates that
- the ticket to be issued is to have its
- RENEWABLE flag set. It may only be
- set on the initial request, or when
- the ticket-granting ticket on which
- the request is based is also
- renewable. If this option is
- requested, then the rtime field in the
- request contains the desired absolute
- expiration time for the ticket.
-
- 9-26 RESERVED Reserved for future use.
-
- 27 RENEWABLE-OK The RENEWABLE-OK option indicates that
- a renewable ticket will be acceptable
- if a ticket with the requested life
- cannot otherwise be provided. If a
- ticket with the requested life cannot
- be provided, then a renewable ticket
- may be issued with a renew-till equal
- to the the requested endtime. The
- value of the renew-till field may
- still be limited by local limits, or
- limits selected by the individual
- principal or server.
-
- 28 ENC-TKT-IN-SKEY This option is used only by the
- ticket-granting service. The ENC-
- TKT-IN-SKEY option indicates that the
- ticket for the end server is to be
-
-
-
-Kohl & Neuman [Page 53]
-
-RFC 1510 Kerberos September 1993
-
-
- encrypted in the session key from the
- additional ticket-granting ticket
- provided.
-
- 29 RESERVED Reserved for future use.
-
- 30 RENEW This option is used only by the
- ticket-granting service. The RENEW
- option indicates that the present
- request is for a renewal. The ticket
- provided is encrypted in the secret
- key for the server on which it is
- valid. This option will only be
- honored if the ticket to be renewed
- has its RENEWABLE flag set and if the
- time in its renew till field has not
- passed. The ticket to be renewed is
- passed in the padata field as part of
- the authentication header.
-
- 31 VALIDATE This option is used only by the
- ticket-granting service. The VALIDATE
- option indicates that the request is
- to validate a postdated ticket. It
- will only be honored if the ticket
- presented is postdated, presently has
- its INVALID flag set, and would be
- otherwise usable at this time. A
- ticket cannot be validated before its
- starttime. The ticket presented for
- validation is encrypted in the key of
- the server for which it is valid and
- is passed in the padata field as part
- of the authentication header.
-
- cname and sname These fields are the same as those described for the
- ticket in section 5.3.1. sname may only be absent when the
- ENC-TKT-IN-SKEY option is specified. If absent, the name
- of the server is taken from the name of the client in the
- ticket passed as additional-tickets.
-
- enc-authorization-data The enc-authorization-data, if present (and it
- can only be present in the TGS_REQ form), is an encoding of
- the desired authorization-data encrypted under the sub-
- session key if present in the Authenticator, or
- alternatively from the session key in the ticket-granting
- ticket, both from the padata field in the KRB_AP_REQ.
-
-
-
-
-Kohl & Neuman [Page 54]
-
-RFC 1510 Kerberos September 1993
-
-
- realm This field specifies the realm part of the server's
- principal identifier. In the AS exchange, this is also the
- realm part of the client's principal identifier.
-
- from This field is included in the KRB_AS_REQ and KRB_TGS_REQ
- ticket requests when the requested ticket is to be
- postdated. It specifies the desired start time for the
- requested ticket.
-
- till This field contains the expiration date requested by the
- client in a ticket request.
-
- rtime This field is the requested renew-till time sent from a
- client to the KDC in a ticket request. It is optional.
-
- nonce This field is part of the KDC request and response. It it
- intended to hold a random number generated by the client.
- If the same number is included in the encrypted response
- from the KDC, it provides evidence that the response is
- fresh and has not been replayed by an attacker. Nonces
- must never be re-used. Ideally, it should be gen erated
- randomly, but if the correct time is known, it may suffice
- (Note, however, that if the time is used as the nonce, one
- must make sure that the workstation time is monotonically
- increasing. If the time is ever reset backwards, there is
- a small, but finite, probability that a nonce will be
- reused.).
-
- etype This field specifies the desired encryption algorithm to be
- used in the response.
-
- addresses This field is included in the initial request for tickets,
- and optionally included in requests for additional tickets
- from the ticket-granting server. It specifies the
- addresses from which the requested ticket is to be valid.
- Normally it includes the addresses for the client's host.
- If a proxy is requested, this field will contain other
- addresses. The contents of this field are usually copied
- by the KDC into the caddr field of the resulting ticket.
-
- additional-tickets Additional tickets may be optionally included in a
- request to the ticket-granting server. If the ENC-TKT-IN-
- SKEY option has been specified, then the session key from
- the additional ticket will be used in place of the server's
- key to encrypt the new ticket. If more than one option
- which requires additional tickets has been specified, then
- the additional tickets are used in the order specified by
- the ordering of the options bits (see kdc-options, above).
-
-
-
-Kohl & Neuman [Page 55]
-
-RFC 1510 Kerberos September 1993
-
-
- The application code will be either ten (10) or twelve (12) depending
- on whether the request is for an initial ticket (AS-REQ) or for an
- additional ticket (TGS-REQ).
-
- The optional fields (addresses, authorization-data and additional-
- tickets) are only included if necessary to perform the operation
- specified in the kdc-options field.
-
- It should be noted that in KRB_TGS_REQ, the protocol version number
- appears twice and two different message types appear: the KRB_TGS_REQ
- message contains these fields as does the authentication header
- (KRB_AP_REQ) that is passed in the padata field.
-
-5.4.2. KRB_KDC_REP definition
-
- The KRB_KDC_REP message format is used for the reply from the KDC for
- either an initial (AS) request or a subsequent (TGS) request. There
- is no message type for KRB_KDC_REP. Instead, the type will be either
- KRB_AS_REP or KRB_TGS_REP. The key used to encrypt the ciphertext
- part of the reply depends on the message type. For KRB_AS_REP, the
- ciphertext is encrypted in the client's secret key, and the client's
- key version number is included in the key version number for the
- encrypted data. For KRB_TGS_REP, the ciphertext is encrypted in the
- sub-session key from the Authenticator, or if absent, the session key
- from the ticket-granting ticket used in the request. In that case,
- no version number will be present in the EncryptedData sequence.
-
- The KRB_KDC_REP message contains the following fields:
-
- AS-REP ::= [APPLICATION 11] KDC-REP
- TGS-REP ::= [APPLICATION 13] KDC-REP
-
- KDC-REP ::= SEQUENCE {
- pvno[0] INTEGER,
- msg-type[1] INTEGER,
- padata[2] SEQUENCE OF PA-DATA OPTIONAL,
- crealm[3] Realm,
- cname[4] PrincipalName,
- ticket[5] Ticket,
- enc-part[6] EncryptedData
- }
-
- EncASRepPart ::= [APPLICATION 25[25]] EncKDCRepPart
- EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart
-
- EncKDCRepPart ::= SEQUENCE {
- key[0] EncryptionKey,
- last-req[1] LastReq,
-
-
-
-Kohl & Neuman [Page 56]
-
-RFC 1510 Kerberos September 1993
-
-
- nonce[2] INTEGER,
- key-expiration[3] KerberosTime OPTIONAL,
- flags[4] TicketFlags,
- authtime[5] KerberosTime,
- starttime[6] KerberosTime OPTIONAL,
- endtime[7] KerberosTime,
- renew-till[8] KerberosTime OPTIONAL,
- srealm[9] Realm,
- sname[10] PrincipalName,
- caddr[11] HostAddresses OPTIONAL
- }
-
- NOTE: In EncASRepPart, the application code in the encrypted
- part of a message provides an additional check that
- the message was decrypted properly.
-
- pvno and msg-type These fields are described above in section 5.4.1.
- msg-type is either KRB_AS_REP or KRB_TGS_REP.
-
- padata This field is described in detail in section 5.4.1. One
- possible use for this field is to encode an alternate
- "mix-in" string to be used with a string-to-key algorithm
- (such as is described in section 6.3.2). This ability is
- useful to ease transitions if a realm name needs to change
- (e.g., when a company is acquired); in such a case all
- existing password-derived entries in the KDC database would
- be flagged as needing a special mix-in string until the
- next password change.
-
- crealm, cname, srealm and sname These fields are the same as those
- described for the ticket in section 5.3.1.
-
- ticket The newly-issued ticket, from section 5.3.1.
-
- enc-part This field is a place holder for the ciphertext and related
- information that forms the encrypted part of a message.
- The description of the encrypted part of the message
- follows each appearance of this field. The encrypted part
- is encoded as described in section 6.1.
-
- key This field is the same as described for the ticket in
- section 5.3.1.
-
- last-req This field is returned by the KDC and specifies the time(s)
- of the last request by a principal. Depending on what
- information is available, this might be the last time that
- a request for a ticket-granting ticket was made, or the
- last time that a request based on a ticket-granting ticket
-
-
-
-Kohl & Neuman [Page 57]
-
-RFC 1510 Kerberos September 1993
-
-
- was successful. It also might cover all servers for a
- realm, or just the particular server. Some implementations
- may display this information to the user to aid in
- discovering unauthorized use of one's identity. It is
- similar in spirit to the last login time displayed when
- logging into timesharing systems.
-
- nonce This field is described above in section 5.4.1.
-
- key-expiration The key-expiration field is part of the response from
- the KDC and specifies the time that the client's secret key
- is due to expire. The expiration might be the result of
- password aging or an account expiration. This field will
- usually be left out of the TGS reply since the response to
- the TGS request is encrypted in a session key and no client
- information need be retrieved from the KDC database. It is
- up to the application client (usually the login program) to
- take appropriate action (such as notifying the user) if the
- expira tion time is imminent.
-
- flags, authtime, starttime, endtime, renew-till and caddr These
- fields are duplicates of those found in the encrypted
- portion of the attached ticket (see section 5.3.1),
- provided so the client may verify they match the intended
- request and to assist in proper ticket caching. If the
- message is of type KRB_TGS_REP, the caddr field will only
- be filled in if the request was for a proxy or forwarded
- ticket, or if the user is substituting a subset of the
- addresses from the ticket granting ticket. If the client-
- requested addresses are not present or not used, then the
- addresses contained in the ticket will be the same as those
- included in the ticket-granting ticket.
-
-5.5. Client/Server (CS) message specifications
-
- This section specifies the format of the messages used for the
- authentication of the client to the application server.
-
-5.5.1. KRB_AP_REQ definition
-
- The KRB_AP_REQ message contains the Kerberos protocol version number,
- the message type KRB_AP_REQ, an options field to indicate any options
- in use, and the ticket and authenticator themselves. The KRB_AP_REQ
- message is often referred to as the "authentication header".
-
- AP-REQ ::= [APPLICATION 14] SEQUENCE {
- pvno[0] INTEGER,
- msg-type[1] INTEGER,
-
-
-
-Kohl & Neuman [Page 58]
-
-RFC 1510 Kerberos September 1993
-
-
- ap-options[2] APOptions,
- ticket[3] Ticket,
- authenticator[4] EncryptedData
- }
-
- APOptions ::= BIT STRING {
- reserved(0),
- use-session-key(1),
- mutual-required(2)
- }
-
- pvno and msg-type These fields are described above in section 5.4.1.
- msg-type is KRB_AP_REQ.
-
- ap-options This field appears in the application request (KRB_AP_REQ)
- and affects the way the request is processed. It is a
- bit-field, where the selected options are indicated by the
- bit being set (1), and the unselected options and reserved
- fields being reset (0). The encoding of the bits is
- specified in section 5.2. The meanings of the options are:
-
- Bit(s) Name Description
-
- 0 RESERVED Reserved for future expansion of
- this field.
-
- 1 USE-SESSION-KEYThe USE-SESSION-KEY option indicates
- that the ticket the client is
- presenting to a server is encrypted in
- the session key from the server's
- ticket-granting ticket. When this
- option is not specified, the ticket is
- encrypted in the server's secret key.
-
- 2 MUTUAL-REQUIREDThe MUTUAL-REQUIRED option tells the
- server that the client requires mutual
- authentication, and that it must
- respond with a KRB_AP_REP message.
-
- 3-31 RESERVED Reserved for future use.
-
- ticket This field is a ticket authenticating the client to the
- server.
-
- authenticator This contains the authenticator, which includes the
- client's choice of a subkey. Its encoding is described in
- section 5.3.2.
-
-
-
-
-Kohl & Neuman [Page 59]
-
-RFC 1510 Kerberos September 1993
-
-
-5.5.2. KRB_AP_REP definition
-
- The KRB_AP_REP message contains the Kerberos protocol version number,
- the message type, and an encrypted timestamp. The message is sent in
- in response to an application request (KRB_AP_REQ) where the mutual
- authentication option has been selected in the ap-options field.
-
- AP-REP ::= [APPLICATION 15] SEQUENCE {
- pvno[0] INTEGER,
- msg-type[1] INTEGER,
- enc-part[2] EncryptedData
- }
-
- EncAPRepPart ::= [APPLICATION 27] SEQUENCE {
- ctime[0] KerberosTime,
- cusec[1] INTEGER,
- subkey[2] EncryptionKey OPTIONAL,
- seq-number[3] INTEGER OPTIONAL
- }
-
- NOTE: in EncAPRepPart, the application code in the encrypted part of
- a message provides an additional check that the message was decrypted
- properly.
-
- The encoded EncAPRepPart is encrypted in the shared session key of
- the ticket. The optional subkey field can be used in an
- application-arranged negotiation to choose a per association session
- key.
-
- pvno and msg-type These fields are described above in section 5.4.1.
- msg-type is KRB_AP_REP.
-
- enc-part This field is described above in section 5.4.2.
-
- ctime This field contains the current time on the client's host.
-
- cusec This field contains the microsecond part of the client's
- timestamp.
-
- subkey This field contains an encryption key which is to be used
- to protect this specific application session. See section
- 3.2.6 for specifics on how this field is used to negotiate
- a key. Unless an application specifies otherwise, if this
- field is left out, the sub-session key from the
- authenticator, or if also left out, the session key from
- the ticket will be used.
-
-
-
-
-
-Kohl & Neuman [Page 60]
-
-RFC 1510 Kerberos September 1993
-
-
-5.5.3. Error message reply
-
- If an error occurs while processing the application request, the
- KRB_ERROR message will be sent in response. See section 5.9.1 for
- the format of the error message. The cname and crealm fields may be
- left out if the server cannot determine their appropriate values from
- the corresponding KRB_AP_REQ message. If the authenticator was
- decipherable, the ctime and cusec fields will contain the values from
- it.
-
-5.6. KRB_SAFE message specification
-
- This section specifies the format of a message that can be used by
- either side (client or server) of an application to send a tamper-
- proof message to its peer. It presumes that a session key has
- previously been exchanged (for example, by using the
- KRB_AP_REQ/KRB_AP_REP messages).
-
-5.6.1. KRB_SAFE definition
-
- The KRB_SAFE message contains user data along with a collision-proof
- checksum keyed with the session key. The message fields are:
-
- KRB-SAFE ::= [APPLICATION 20] SEQUENCE {
- pvno[0] INTEGER,
- msg-type[1] INTEGER,
- safe-body[2] KRB-SAFE-BODY,
- cksum[3] Checksum
- }
-
- KRB-SAFE-BODY ::= SEQUENCE {
- user-data[0] OCTET STRING,
- timestamp[1] KerberosTime OPTIONAL,
- usec[2] INTEGER OPTIONAL,
- seq-number[3] INTEGER OPTIONAL,
- s-address[4] HostAddress,
- r-address[5] HostAddress OPTIONAL
- }
-
- pvno and msg-type These fields are described above in section 5.4.1.
- msg-type is KRB_SAFE.
-
- safe-body This field is a placeholder for the body of the KRB-SAFE
- message. It is to be encoded separately and then have the
- checksum computed over it, for use in the cksum field.
-
- cksum This field contains the checksum of the application data.
- Checksum details are described in section 6.4. The
-
-
-
-Kohl & Neuman [Page 61]
-
-RFC 1510 Kerberos September 1993
-
-
- checksum is computed over the encoding of the KRB-SAFE-BODY
- sequence.
-
- user-data This field is part of the KRB_SAFE and KRB_PRIV messages
- and contain the application specific data that is being
- passed from the sender to the recipient.
-
- timestamp This field is part of the KRB_SAFE and KRB_PRIV messages.
- Its contents are the current time as known by the sender of
- the message. By checking the timestamp, the recipient of
- the message is able to make sure that it was recently
- generated, and is not a replay.
-
- usec This field is part of the KRB_SAFE and KRB_PRIV headers.
- It contains the microsecond part of the timestamp.
-
- seq-number This field is described above in section 5.3.2.
-
- s-address This field specifies the address in use by the sender of
- the message.
-
- r-address This field specifies the address in use by the recipient of
- the message. It may be omitted for some uses (such as
- broadcast protocols), but the recipient may arbitrarily
- reject such messages. This field along with s-address can
- be used to help detect messages which have been incorrectly
- or maliciously delivered to the wrong recipient.
-
-5.7. KRB_PRIV message specification
-
- This section specifies the format of a message that can be used by
- either side (client or server) of an application to securely and
- privately send a message to its peer. It presumes that a session key
- has previously been exchanged (for example, by using the
- KRB_AP_REQ/KRB_AP_REP messages).
-
-5.7.1. KRB_PRIV definition
-
- The KRB_PRIV message contains user data encrypted in the Session Key.
- The message fields are:
-
- KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
- pvno[0] INTEGER,
- msg-type[1] INTEGER,
- enc-part[3] EncryptedData
- }
-
-
-
-
-
-Kohl & Neuman [Page 62]
-
-RFC 1510 Kerberos September 1993
-
-
- EncKrbPrivPart ::= [APPLICATION 28] SEQUENCE {
- user-data[0] OCTET STRING,
- timestamp[1] KerberosTime OPTIONAL,
- usec[2] INTEGER OPTIONAL,
- seq-number[3] INTEGER OPTIONAL,
- s-address[4] HostAddress, -- sender's addr
- r-address[5] HostAddress OPTIONAL
- -- recip's addr
- }
-
- NOTE: In EncKrbPrivPart, the application code in the encrypted part
- of a message provides an additional check that the message was
- decrypted properly.
-
- pvno and msg-type These fields are described above in section 5.4.1.
- msg-type is KRB_PRIV.
-
- enc-part This field holds an encoding of the EncKrbPrivPart sequence
- encrypted under the session key (If supported by the
- encryption method in use, an initialization vector may be
- passed to the encryption procedure, in order to achieve
- proper cipher chaining. The initialization vector might
- come from the last block of the ciphertext from the
- previous KRB_PRIV message, but it is the application's
- choice whether or not to use such an initialization vector.
- If left out, the default initialization vector for the
- encryption algorithm will be used.). This encrypted
- encoding is used for the enc-part field of the KRB-PRIV
- message. See section 6 for the format of the ciphertext.
-
- user-data, timestamp, usec, s-address and r-address These fields are
- described above in section 5.6.1.
-
- seq-number This field is described above in section 5.3.2.
-
-5.8. KRB_CRED message specification
-
- This section specifies the format of a message that can be used to
- send Kerberos credentials from one principal to another. It is
- presented here to encourage a common mechanism to be used by
- applications when forwarding tickets or providing proxies to
- subordinate servers. It presumes that a session key has already been
- exchanged perhaps by using the KRB_AP_REQ/KRB_AP_REP messages.
-
-5.8.1. KRB_CRED definition
-
- The KRB_CRED message contains a sequence of tickets to be sent and
- information needed to use the tickets, including the session key from
-
-
-
-Kohl & Neuman [Page 63]
-
-RFC 1510 Kerberos September 1993
-
-
- each. The information needed to use the tickets is encryped under an
- encryption key previously exchanged. The message fields are:
-
- KRB-CRED ::= [APPLICATION 22] SEQUENCE {
- pvno[0] INTEGER,
- msg-type[1] INTEGER, -- KRB_CRED
- tickets[2] SEQUENCE OF Ticket,
- enc-part[3] EncryptedData
- }
-
- EncKrbCredPart ::= [APPLICATION 29] SEQUENCE {
- ticket-info[0] SEQUENCE OF KrbCredInfo,
- nonce[1] INTEGER OPTIONAL,
- timestamp[2] KerberosTime OPTIONAL,
- usec[3] INTEGER OPTIONAL,
- s-address[4] HostAddress OPTIONAL,
- r-address[5] HostAddress OPTIONAL
- }
-
- KrbCredInfo ::= SEQUENCE {
- key[0] EncryptionKey,
- prealm[1] Realm OPTIONAL,
- pname[2] PrincipalName OPTIONAL,
- flags[3] TicketFlags OPTIONAL,
- authtime[4] KerberosTime OPTIONAL,
- starttime[5] KerberosTime OPTIONAL,
- endtime[6] KerberosTime OPTIONAL
- renew-till[7] KerberosTime OPTIONAL,
- srealm[8] Realm OPTIONAL,
- sname[9] PrincipalName OPTIONAL,
- caddr[10] HostAddresses OPTIONAL
- }
-
-
- pvno and msg-type These fields are described above in section 5.4.1.
- msg-type is KRB_CRED.
-
- tickets
- These are the tickets obtained from the KDC specifically
- for use by the intended recipient. Successive tickets are
- paired with the corresponding KrbCredInfo sequence from the
- enc-part of the KRB-CRED message.
-
- enc-part This field holds an encoding of the EncKrbCredPart sequence
- encrypted under the session key shared between the sender
- and the intended recipient. This encrypted encoding is
- used for the enc-part field of the KRB-CRED message. See
- section 6 for the format of the ciphertext.
-
-
-
-Kohl & Neuman [Page 64]
-
-RFC 1510 Kerberos September 1993
-
-
- nonce If practical, an application may require the inclusion of a
- nonce generated by the recipient of the message. If the
- same value is included as the nonce in the message, it
- provides evidence that the message is fresh and has not
- been replayed by an attacker. A nonce must never be re-
- used; it should be generated randomly by the recipient of
- the message and provided to the sender of the mes sage in
- an application specific manner.
-
- timestamp and usec These fields specify the time that the KRB-CRED
- message was generated. The time is used to provide
- assurance that the message is fresh.
-
- s-address and r-address These fields are described above in section
- 5.6.1. They are used optionally to provide additional
- assurance of the integrity of the KRB-CRED message.
-
- key This field exists in the corresponding ticket passed by the
- KRB-CRED message and is used to pass the session key from
- the sender to the intended recipient. The field's encoding
- is described in section 6.2.
-
- The following fields are optional. If present, they can be
- associated with the credentials in the remote ticket file. If left
- out, then it is assumed that the recipient of the credentials already
- knows their value.
-
- prealm and pname The name and realm of the delegated principal
- identity.
-
- flags, authtime, starttime, endtime, renew-till, srealm, sname,
- and caddr These fields contain the values of the
- corresponding fields from the ticket found in the ticket
- field. Descriptions of the fields are identical to the
- descriptions in the KDC-REP message.
-
-5.9. Error message specification
-
- This section specifies the format for the KRB_ERROR message. The
- fields included in the message are intended to return as much
- information as possible about an error. It is not expected that all
- the information required by the fields will be available for all
- types of errors. If the appropriate information is not available
- when the message is composed, the corresponding field will be left
- out of the message.
-
- Note that since the KRB_ERROR message is not protected by any
- encryption, it is quite possible for an intruder to synthesize or
-
-
-
-Kohl & Neuman [Page 65]
-
-RFC 1510 Kerberos September 1993
-
-
- modify such a message. In particular, this means that the client
- should not use any fields in this message for security-critical
- purposes, such as setting a system clock or generating a fresh
- authenticator. The message can be useful, however, for advising a
- user on the reason for some failure.
-
-5.9.1. KRB_ERROR definition
-
- The KRB_ERROR message consists of the following fields:
-
- KRB-ERROR ::= [APPLICATION 30] SEQUENCE {
- pvno[0] INTEGER,
- msg-type[1] INTEGER,
- ctime[2] KerberosTime OPTIONAL,
- cusec[3] INTEGER OPTIONAL,
- stime[4] KerberosTime,
- susec[5] INTEGER,
- error-code[6] INTEGER,
- crealm[7] Realm OPTIONAL,
- cname[8] PrincipalName OPTIONAL,
- realm[9] Realm, -- Correct realm
- sname[10] PrincipalName, -- Correct name
- e-text[11] GeneralString OPTIONAL,
- e-data[12] OCTET STRING OPTIONAL
- }
-
- pvno and msg-type These fields are described above in section 5.4.1.
- msg-type is KRB_ERROR.
-
- ctime This field is described above in section 5.4.1.
-
- cusec This field is described above in section 5.5.2.
-
- stime This field contains the current time on the server. It is
- of type KerberosTime.
-
- susec This field contains the microsecond part of the server's
- timestamp. Its value ranges from 0 to 999. It appears
- along with stime. The two fields are used in conjunction to
- specify a reasonably accurate timestamp.
-
- error-code This field contains the error code returned by Kerberos or
- the server when a request fails. To interpret the value of
- this field see the list of error codes in section 8.
- Implementations are encouraged to provide for national
- language support in the display of error messages.
-
- crealm, cname, srealm and sname These fields are described above in
-
-
-
-Kohl & Neuman [Page 66]
-
-RFC 1510 Kerberos September 1993
-
-
- section 5.3.1.
-
- e-text This field contains additional text to help explain the
- error code associated with the failed request (for example,
- it might include a principal name which was unknown).
-
- e-data This field contains additional data about the error for use
- by the application to help it recover from or handle the
- error. If the errorcode is KDC_ERR_PREAUTH_REQUIRED, then
- the e-data field will contain an encoding of a sequence of
- padata fields, each corresponding to an acceptable pre-
- authentication method and optionally containing data for
- the method:
-
- METHOD-DATA ::= SEQUENCE of PA-DATA
-
- If the error-code is KRB_AP_ERR_METHOD, then the e-data field will
- contain an encoding of the following sequence:
-
- METHOD-DATA ::= SEQUENCE {
- method-type[0] INTEGER,
- method-data[1] OCTET STRING OPTIONAL
- }
-
- method-type will indicate the required alternate method; method-data
- will contain any required additional information.
-
-6. Encryption and Checksum Specifications
-
- The Kerberos protocols described in this document are designed to use
- stream encryption ciphers, which can be simulated using commonly
- available block encryption ciphers, such as the Data Encryption
- Standard [11], in conjunction with block chaining and checksum
- methods [12]. Encryption is used to prove the identities of the
- network entities participating in message exchanges. The Key
- Distribution Center for each realm is trusted by all principals
- registered in that realm to store a secret key in confidence. Proof
- of knowledge of this secret key is used to verify the authenticity of
- a principal.
-
- The KDC uses the principal's secret key (in the AS exchange) or a
- shared session key (in the TGS exchange) to encrypt responses to
- ticket requests; the ability to obtain the secret key or session key
- implies the knowledge of the appropriate keys and the identity of the
- KDC. The ability of a principal to decrypt the KDC response and
- present a Ticket and a properly formed Authenticator (generated with
- the session key from the KDC response) to a service verifies the
- identity of the principal; likewise the ability of the service to
-
-
-
-Kohl & Neuman [Page 67]
-
-RFC 1510 Kerberos September 1993
-
-
- extract the session key from the Ticket and prove its knowledge
- thereof in a response verifies the identity of the service.
-
- The Kerberos protocols generally assume that the encryption used is
- secure from cryptanalysis; however, in some cases, the order of
- fields in the encrypted portions of messages are arranged to minimize
- the effects of poorly chosen keys. It is still important to choose
- good keys. If keys are derived from user-typed passwords, those
- passwords need to be well chosen to make brute force attacks more
- difficult. Poorly chosen keys still make easy targets for intruders.
-
- The following sections specify the encryption and checksum mechanisms
- currently defined for Kerberos. The encodings, chaining, and padding
- requirements for each are described. For encryption methods, it is
- often desirable to place random information (often referred to as a
- confounder) at the start of the message. The requirements for a
- confounder are specified with each encryption mechanism.
-
- Some encryption systems use a block-chaining method to improve the
- the security characteristics of the ciphertext. However, these
- chaining methods often don't provide an integrity check upon
- decryption. Such systems (such as DES in CBC mode) must be augmented
- with a checksum of the plaintext which can be verified at decryption
- and used to detect any tampering or damage. Such checksums should be
- good at detecting burst errors in the input. If any damage is
- detected, the decryption routine is expected to return an error
- indicating the failure of an integrity check. Each encryption type is
- expected to provide and verify an appropriate checksum. The
- specification of each encryption method sets out its checksum
- requirements.
-
- Finally, where a key is to be derived from a user's password, an
- algorithm for converting the password to a key of the appropriate
- type is included. It is desirable for the string to key function to
- be one-way, and for the mapping to be different in different realms.
- This is important because users who are registered in more than one
- realm will often use the same password in each, and it is desirable
- that an attacker compromising the Kerberos server in one realm not
- obtain or derive the user's key in another.
-
- For a discussion of the integrity characteristics of the candidate
- encryption and checksum methods considered for Kerberos, the the
- reader is referred to [13].
-
-6.1. Encryption Specifications
-
- The following ASN.1 definition describes all encrypted messages. The
- enc-part field which appears in the unencrypted part of messages in
-
-
-
-Kohl & Neuman [Page 68]
-
-RFC 1510 Kerberos September 1993
-
-
- section 5 is a sequence consisting of an encryption type, an optional
- key version number, and the ciphertext.
-
- EncryptedData ::= SEQUENCE {
- etype[0] INTEGER, -- EncryptionType
- kvno[1] INTEGER OPTIONAL,
- cipher[2] OCTET STRING -- ciphertext
- }
-
- etype This field identifies which encryption algorithm was used
- to encipher the cipher. Detailed specifications for
- selected encryption types appear later in this section.
-
- kvno This field contains the version number of the key under
- which data is encrypted. It is only present in messages
- encrypted under long lasting keys, such as principals'
- secret keys.
-
- cipher This field contains the enciphered text, encoded as an
- OCTET STRING.
-
- The cipher field is generated by applying the specified encryption
- algorithm to data composed of the message and algorithm-specific
- inputs. Encryption mechanisms defined for use with Kerberos must
- take sufficient measures to guarantee the integrity of the plaintext,
- and we recommend they also take measures to protect against
- precomputed dictionary attacks. If the encryption algorithm is not
- itself capable of doing so, the protections can often be enhanced by
- adding a checksum and a confounder.
-
- The suggested format for the data to be encrypted includes a
- confounder, a checksum, the encoded plaintext, and any necessary
- padding. The msg-seq field contains the part of the protocol message
- described in section 5 which is to be encrypted. The confounder,
- checksum, and padding are all untagged and untyped, and their length
- is exactly sufficient to hold the appropriate item. The type and
- length is implicit and specified by the particular encryption type
- being used (etype). The format for the data to be encrypted is
- described in the following diagram:
-
- +-----------+----------+-------------+-----+
- |confounder | check | msg-seq | pad |
- +-----------+----------+-------------+-----+
-
- The format cannot be described in ASN.1, but for those who prefer an
- ASN.1-like notation:
-
-
-
-
-
-Kohl & Neuman [Page 69]
-
-RFC 1510 Kerberos September 1993
-
-
-CipherText ::= ENCRYPTED SEQUENCE {
- confounder[0] UNTAGGED OCTET STRING(conf_length) OPTIONAL,
- check[1] UNTAGGED OCTET STRING(checksum_length) OPTIONAL,
- msg-seq[2] MsgSequence,
- pad UNTAGGED OCTET STRING(pad_length) OPTIONAL
-}
-
- In the above specification, UNTAGGED OCTET STRING(length) is the
- notation for an octet string with its tag and length removed. It is
- not a valid ASN.1 type. The tag bits and length must be removed from
- the confounder since the purpose of the confounder is so that the
- message starts with random data, but the tag and its length are
- fixed. For other fields, the length and tag would be redundant if
- they were included because they are specified by the encryption type.
-
- One generates a random confounder of the appropriate length, placing
- it in confounder; zeroes out check; calculates the appropriate
- checksum over confounder, check, and msg-seq, placing the result in
- check; adds the necessary padding; then encrypts using the specified
- encryption type and the appropriate key.
-
- Unless otherwise specified, a definition of an encryption algorithm
- that specifies a checksum, a length for the confounder field, or an
- octet boundary for padding uses this ciphertext format (The ordering
- of the fields in the CipherText is important. Additionally, messages
- encoded in this format must include a length as part of the msg-seq
- field. This allows the recipient to verify that the message has not
- been truncated. Without a length, an attacker could use a chosen
- plaintext attack to generate a message which could be truncated,
- while leaving the checksum intact. Note that if the msg-seq is an
- encoding of an ASN.1 SEQUENCE or OCTET STRING, then the length is
- part of that encoding.). Those fields which are not specified will be
- omitted.
-
- In the interest of allowing all implementations using a particular
- encryption type to communicate with all others using that type, the
- specification of an encryption type defines any checksum that is
- needed as part of the encryption process. If an alternative checksum
- is to be used, a new encryption type must be defined.
-
- Some cryptosystems require additional information beyond the key and
- the data to be encrypted. For example, DES, when used in cipher-
- block-chaining mode, requires an initialization vector. If required,
- the description for each encryption type must specify the source of
- such additional information.
-
-
-
-
-
-
-Kohl & Neuman [Page 70]
-
-RFC 1510 Kerberos September 1993
-
-
-6.2. Encryption Keys
-
- The sequence below shows the encoding of an encryption key:
-
- EncryptionKey ::= SEQUENCE {
- keytype[0] INTEGER,
- keyvalue[1] OCTET STRING
- }
-
- keytype This field specifies the type of encryption key that
- follows in the keyvalue field. It will almost always
- correspond to the encryption algorithm used to generate the
- EncryptedData, though more than one algorithm may use the
- same type of key (the mapping is many to one). This might
- happen, for example, if the encryption algorithm uses an
- alternate checksum algorithm for an integrity check, or a
- different chaining mechanism.
-
- keyvalue This field contains the key itself, encoded as an octet
- string.
-
- All negative values for the encryption key type are reserved for
- local use. All non-negative values are reserved for officially
- assigned type fields and interpretations.
-
-6.3. Encryption Systems
-
-6.3.1. The NULL Encryption System (null)
-
- If no encryption is in use, the encryption system is said to be the
- NULL encryption system. In the NULL encryption system there is no
- checksum, confounder or padding. The ciphertext is simply the
- plaintext. The NULL Key is used by the null encryption system and is
- zero octets in length, with keytype zero (0).
-
-6.3.2. DES in CBC mode with a CRC-32 checksum (des-cbc-crc)
-
- The des-cbc-crc encryption mode encrypts information under the Data
- Encryption Standard [11] using the cipher block chaining mode [12].
- A CRC-32 checksum (described in ISO 3309 [14]) is applied to the
- confounder and message sequence (msg-seq) and placed in the cksum
- field. DES blocks are 8 bytes. As a result, the data to be
- encrypted (the concatenation of confounder, checksum, and message)
- must be padded to an 8 byte boundary before encryption. The details
- of the encryption of this data are identical to those for the des-
- cbc-md5 encryption mode.
-
- Note that, since the CRC-32 checksum is not collisionproof, an
-
-
-
-Kohl & Neuman [Page 71]
-
-RFC 1510 Kerberos September 1993
-
-
- attacker could use a probabilistic chosenplaintext attack to generate
- a valid message even if a confounder is used [13]. The use of
- collision-proof checksums is recommended for environments where such
- attacks represent a significant threat. The use of the CRC-32 as the
- checksum for ticket or authenticator is no longer mandated as an
- interoperability requirement for Kerberos Version 5 Specification 1
- (See section 9.1 for specific details).
-
-6.3.3. DES in CBC mode with an MD4 checksum (des-cbc-md4)
-
- The des-cbc-md4 encryption mode encrypts information under the Data
- Encryption Standard [11] using the cipher block chaining mode [12].
- An MD4 checksum (described in [15]) is applied to the confounder and
- message sequence (msg-seq) and placed in the cksum field. DES blocks
- are 8 bytes. As a result, the data to be encrypted (the
- concatenation of confounder, checksum, and message) must be padded to
- an 8 byte boundary before encryption. The details of the encryption
- of this data are identical to those for the descbc-md5 encryption
- mode.
-
-6.3.4. DES in CBC mode with an MD5 checksum (des-cbc-md5)
-
- The des-cbc-md5 encryption mode encrypts information under the Data
- Encryption Standard [11] using the cipher block chaining mode [12].
- An MD5 checksum (described in [16]) is applied to the confounder and
- message sequence (msg-seq) and placed in the cksum field. DES blocks
- are 8 bytes. As a result, the data to be encrypted (the
- concatenation of confounder, checksum, and message) must be padded to
- an 8 byte boundary before encryption.
-
- Plaintext and DES ciphtertext are encoded as 8-octet blocks which are
- concatenated to make the 64-bit inputs for the DES algorithms. The
- first octet supplies the 8 most significant bits (with the octet's
- MSbit used as the DES input block's MSbit, etc.), the second octet
- the next 8 bits, ..., and the eighth octet supplies the 8 least
- significant bits.
-
- Encryption under DES using cipher block chaining requires an
- additional input in the form of an initialization vector. Unless
- otherwise specified, zero should be used as the initialization
- vector. Kerberos' use of DES requires an 8-octet confounder.
-
- The DES specifications identify some "weak" and "semiweak" keys;
- those keys shall not be used for encrypting messages for use in
- Kerberos. Additionally, because of the way that keys are derived for
- the encryption of checksums, keys shall not be used that yield "weak"
- or "semi-weak" keys when eXclusive-ORed with the constant
- F0F0F0F0F0F0F0F0.
-
-
-
-Kohl & Neuman [Page 72]
-
-RFC 1510 Kerberos September 1993
-
-
- A DES key is 8 octets of data, with keytype one (1). This consists
- of 56 bits of key, and 8 parity bits (one per octet). The key is
- encoded as a series of 8 octets written in MSB-first order. The bits
- within the key are also encoded in MSB order. For example, if the
- encryption key is:
- (B1,B2,...,B7,P1,B8,...,B14,P2,B15,...,B49,P7,B50,...,B56,P8) where
- B1,B2,...,B56 are the key bits in MSB order, and P1,P2,...,P8 are the
- parity bits, the first octet of the key would be B1,B2,...,B7,P1
- (with B1 as the MSbit). [See the FIPS 81 introduction for
- reference.]
-
- To generate a DES key from a text string (password), the text string
- normally must have the realm and each component of the principal's
- name appended(In some cases, it may be necessary to use a different
- "mix-in" string for compatibility reasons; see the discussion of
- padata in section 5.4.2.), then padded with ASCII nulls to an 8 byte
- boundary. This string is then fan-folded and eXclusive-ORed with
- itself to form an 8 byte DES key. The parity is corrected on the
- key, and it is used to generate a DES CBC checksum on the initial
- string (with the realm and name appended). Next, parity is corrected
- on the CBC checksum. If the result matches a "weak" or "semiweak"
- key as described in the DES specification, it is eXclusive-ORed with
- the constant 00000000000000F0. Finally, the result is returned as
- the key. Pseudocode follows:
-
- string_to_key(string,realm,name) {
- odd = 1;
- s = string + realm;
- for(each component in name) {
- s = s + component;
- }
- tempkey = NULL;
- pad(s); /* with nulls to 8 byte boundary */
- for(8byteblock in s) {
- if(odd == 0) {
- odd = 1;
- reverse(8byteblock)
- }
- else odd = 0;
- tempkey = tempkey XOR 8byteblock;
- }
- fixparity(tempkey);
- key = DES-CBC-check(s,tempkey);
- fixparity(key);
- if(is_weak_key_key(key))
- key = key XOR 0xF0;
- return(key);
- }
-
-
-
-Kohl & Neuman [Page 73]
-
-RFC 1510 Kerberos September 1993
-
-
-6.4. Checksums
-
- The following is the ASN.1 definition used for a checksum:
-
- Checksum ::= SEQUENCE {
- cksumtype[0] INTEGER,
- checksum[1] OCTET STRING
- }
-
- cksumtype This field indicates the algorithm used to generate the
- accompanying checksum.
-
- checksum This field contains the checksum itself, encoded
- as an octet string.
-
- Detailed specification of selected checksum types appear later in
- this section. Negative values for the checksum type are reserved for
- local use. All non-negative values are reserved for officially
- assigned type fields and interpretations.
-
- Checksums used by Kerberos can be classified by two properties:
- whether they are collision-proof, and whether they are keyed. It is
- infeasible to find two plaintexts which generate the same checksum
- value for a collision-proof checksum. A key is required to perturb
- or initialize the algorithm in a keyed checksum. To prevent
- message-stream modification by an active attacker, unkeyed checksums
- should only be used when the checksum and message will be
- subsequently encrypted (e.g., the checksums defined as part of the
- encryption algorithms covered earlier in this section). Collision-
- proof checksums can be made tamper-proof as well if the checksum
- value is encrypted before inclusion in a message. In such cases, the
- composition of the checksum and the encryption algorithm must be
- considered a separate checksum algorithm (e.g., RSA-MD5 encrypted
- using DES is a new checksum algorithm of type RSA-MD5-DES). For most
- keyed checksums, as well as for the encrypted forms of collisionproof
- checksums, Kerberos prepends a confounder before the checksum is
- calculated.
-
-6.4.1. The CRC-32 Checksum (crc32)
-
- The CRC-32 checksum calculates a checksum based on a cyclic
- redundancy check as described in ISO 3309 [14]. The resulting
- checksum is four (4) octets in length. The CRC-32 is neither keyed
- nor collision-proof. The use of this checksum is not recommended.
- An attacker using a probabilistic chosen-plaintext attack as
- described in [13] might be able to generate an alternative message
- that satisfies the checksum. The use of collision-proof checksums is
- recommended for environments where such attacks represent a
-
-
-
-Kohl & Neuman [Page 74]
-
-RFC 1510 Kerberos September 1993
-
-
- significant threat.
-
-6.4.2. The RSA MD4 Checksum (rsa-md4)
-
- The RSA-MD4 checksum calculates a checksum using the RSA MD4
- algorithm [15]. The algorithm takes as input an input message of
- arbitrary length and produces as output a 128-bit (16 octet)
- checksum. RSA-MD4 is believed to be collision-proof.
-
-6.4.3. RSA MD4 Cryptographic Checksum Using DES (rsa-md4des)
-
- The RSA-MD4-DES checksum calculates a keyed collisionproof checksum
- by prepending an 8 octet confounder before the text, applying the RSA
- MD4 checksum algorithm, and encrypting the confounder and the
- checksum using DES in cipher-block-chaining (CBC) mode using a
- variant of the key, where the variant is computed by eXclusive-ORing
- the key with the constant F0F0F0F0F0F0F0F0 (A variant of the key is
- used to limit the use of a key to a particular function, separating
- the functions of generating a checksum from other encryption
- performed using the session key. The constant F0F0F0F0F0F0F0F0 was
- chosen because it maintains key parity. The properties of DES
- precluded the use of the complement. The same constant is used for
- similar purpose in the Message Integrity Check in the Privacy
- Enhanced Mail standard.). The initialization vector should be zero.
- The resulting checksum is 24 octets long (8 octets of which are
- redundant). This checksum is tamper-proof and believed to be
- collision-proof.
-
- The DES specifications identify some "weak keys"; those keys shall
- not be used for generating RSA-MD4 checksums for use in Kerberos.
-
- The format for the checksum is described in the following diagram:
-
- +--+--+--+--+--+--+--+--
- | des-cbc(confounder
- +--+--+--+--+--+--+--+--
-
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- rsa-md4(confounder+msg),key=var(key),iv=0) |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
-
- The format cannot be described in ASN.1, but for those who prefer an
- ASN.1-like notation:
-
- rsa-md4-des-checksum ::= ENCRYPTED UNTAGGED SEQUENCE {
- confounder[0] UNTAGGED OCTET STRING(8),
- check[1] UNTAGGED OCTET STRING(16)
- }
-
-
-
-Kohl & Neuman [Page 75]
-
-RFC 1510 Kerberos September 1993
-
-
-6.4.4. The RSA MD5 Checksum (rsa-md5)
-
- The RSA-MD5 checksum calculates a checksum using the RSA MD5
- algorithm [16]. The algorithm takes as input an input message of
- arbitrary length and produces as output a 128-bit (16 octet)
- checksum. RSA-MD5 is believed to be collision-proof.
-
-6.4.5. RSA MD5 Cryptographic Checksum Using DES (rsa-md5des)
-
- The RSA-MD5-DES checksum calculates a keyed collisionproof checksum
- by prepending an 8 octet confounder before the text, applying the RSA
- MD5 checksum algorithm, and encrypting the confounder and the
- checksum using DES in cipher-block-chaining (CBC) mode using a
- variant of the key, where the variant is computed by eXclusive-ORing
- the key with the constant F0F0F0F0F0F0F0F0. The initialization
- vector should be zero. The resulting checksum is 24 octets long (8
- octets of which are redundant). This checksum is tamper-proof and
- believed to be collision-proof.
-
- The DES specifications identify some "weak keys"; those keys shall
- not be used for encrypting RSA-MD5 checksums for use in Kerberos.
-
- The format for the checksum is described in the following diagram:
-
- +--+--+--+--+--+--+--+--
- | des-cbc(confounder
- +--+--+--+--+--+--+--+--
-
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- rsa-md5(confounder+msg),key=var(key),iv=0) |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
-
- The format cannot be described in ASN.1, but for those who prefer an
- ASN.1-like notation:
-
- rsa-md5-des-checksum ::= ENCRYPTED UNTAGGED SEQUENCE {
- confounder[0] UNTAGGED OCTET STRING(8),
- check[1] UNTAGGED OCTET STRING(16)
- }
-
-6.4.6. DES cipher-block chained checksum (des-mac)
-
- The DES-MAC checksum is computed by prepending an 8 octet confounder
- to the plaintext, performing a DES CBC-mode encryption on the result
- using the key and an initialization vector of zero, taking the last
- block of the ciphertext, prepending the same confounder and
- encrypting the pair using DES in cipher-block-chaining (CBC) mode
- using a a variant of the key, where the variant is computed by
-
-
-
-Kohl & Neuman [Page 76]
-
-RFC 1510 Kerberos September 1993
-
-
- eXclusive-ORing the key with the constant F0F0F0F0F0F0F0F0. The
- initialization vector should be zero. The resulting checksum is 128
- bits (16 octets) long, 64 bits of which are redundant. This checksum
- is tamper-proof and collision-proof.
-
- The format for the checksum is described in the following diagram:
-
- +--+--+--+--+--+--+--+--
- | des-cbc(confounder
- +--+--+--+--+--+--+--+--
-
- +-----+-----+-----+-----+-----+-----+-----+-----+
- des-mac(conf+msg,iv=0,key),key=var(key),iv=0) |
- +-----+-----+-----+-----+-----+-----+-----+-----+
-
- The format cannot be described in ASN.1, but for those who prefer an
- ASN.1-like notation:
-
- des-mac-checksum ::= ENCRYPTED UNTAGGED SEQUENCE {
- confounder[0] UNTAGGED OCTET STRING(8),
- check[1] UNTAGGED OCTET STRING(8)
- }
-
- The DES specifications identify some "weak" and "semiweak" keys;
- those keys shall not be used for generating DES-MAC checksums for use
- in Kerberos, nor shall a key be used whose veriant is "weak" or
- "semi-weak".
-
-6.4.7. RSA MD4 Cryptographic Checksum Using DES alternative
- (rsa-md4-des-k)
-
- The RSA-MD4-DES-K checksum calculates a keyed collision-proof
- checksum by applying the RSA MD4 checksum algorithm and encrypting
- the results using DES in cipherblock-chaining (CBC) mode using a DES
- key as both key and initialization vector. The resulting checksum is
- 16 octets long. This checksum is tamper-proof and believed to be
- collision-proof. Note that this checksum type is the old method for
- encoding the RSA-MD4-DES checksum and it is no longer recommended.
-
-6.4.8. DES cipher-block chained checksum alternative (desmac-k)
-
- The DES-MAC-K checksum is computed by performing a DES CBC-mode
- encryption of the plaintext, and using the last block of the
- ciphertext as the checksum value. It is keyed with an encryption key
- and an initialization vector; any uses which do not specify an
- additional initialization vector will use the key as both key and
- initialization vector. The resulting checksum is 64 bits (8 octets)
- long. This checksum is tamper-proof and collision-proof. Note that
-
-
-
-Kohl & Neuman [Page 77]
-
-RFC 1510 Kerberos September 1993
-
-
- this checksum type is the old method for encoding the DESMAC checksum
- and it is no longer recommended.
-
- The DES specifications identify some "weak keys"; those keys shall
- not be used for generating DES-MAC checksums for use in Kerberos.
-
-7. Naming Constraints
-
-7.1. Realm Names
-
- Although realm names are encoded as GeneralStrings and although a
- realm can technically select any name it chooses, interoperability
- across realm boundaries requires agreement on how realm names are to
- be assigned, and what information they imply.
-
- To enforce these conventions, each realm must conform to the
- conventions itself, and it must require that any realms with which
- inter-realm keys are shared also conform to the conventions and
- require the same from its neighbors.
-
- There are presently four styles of realm names: domain, X500, other,
- and reserved. Examples of each style follow:
-
- domain: host.subdomain.domain (example)
- X500: C=US/O=OSF (example)
- other: NAMETYPE:rest/of.name=without-restrictions (example)
- reserved: reserved, but will not conflict with above
-
- Domain names must look like domain names: they consist of components
- separated by periods (.) and they contain neither colons (:) nor
- slashes (/).
-
- X.500 names contain an equal (=) and cannot contain a colon (:)
- before the equal. The realm names for X.500 names will be string
- representations of the names with components separated by slashes.
- Leading and trailing slashes will not be included.
-
- Names that fall into the other category must begin with a prefix that
- contains no equal (=) or period (.) and the prefix must be followed
- by a colon (:) and the rest of the name. All prefixes must be
- assigned before they may be used. Presently none are assigned.
-
- The reserved category includes strings which do not fall into the
- first three categories. All names in this category are reserved. It
- is unlikely that names will be assigned to this category unless there
- is a very strong argument for not using the "other" category.
-
- These rules guarantee that there will be no conflicts between the
-
-
-
-Kohl & Neuman [Page 78]
-
-RFC 1510 Kerberos September 1993
-
-
- various name styles. The following additional constraints apply to
- the assignment of realm names in the domain and X.500 categories: the
- name of a realm for the domain or X.500 formats must either be used
- by the organization owning (to whom it was assigned) an Internet
- domain name or X.500 name, or in the case that no such names are
- registered, authority to use a realm name may be derived from the
- authority of the parent realm. For example, if there is no domain
- name for E40.MIT.EDU, then the administrator of the MIT.EDU realm can
- authorize the creation of a realm with that name.
-
- This is acceptable because the organization to which the parent is
- assigned is presumably the organization authorized to assign names to
- its children in the X.500 and domain name systems as well. If the
- parent assigns a realm name without also registering it in the domain
- name or X.500 hierarchy, it is the parent's responsibility to make
- sure that there will not in the future exists a name identical to the
- realm name of the child unless it is assigned to the same entity as
- the realm name.
-
-7.2. Principal Names
-
- As was the case for realm names, conventions are needed to ensure
- that all agree on what information is implied by a principal name.
- The name-type field that is part of the principal name indicates the
- kind of information implied by the name. The name-type should be
- treated as a hint. Ignoring the name type, no two names can be the
- same (i.e., at least one of the components, or the realm, must be
- different). This constraint may be eliminated in the future. The
- following name types are defined:
-
- name-type value meaning
- NT-UNKNOWN 0 Name type not known
- NT-PRINCIPAL 1 Just the name of the principal as in
- DCE, or for users
- NT-SRV-INST 2 Service and other unique instance (krbtgt)
- NT-SRV-HST 3 Service with host name as instance
- (telnet, rcommands)
- NT-SRV-XHST 4 Service with host as remaining components
- NT-UID 5 Unique ID
-
- When a name implies no information other than its uniqueness at a
- particular time the name type PRINCIPAL should be used. The
- principal name type should be used for users, and it might also be
- used for a unique server. If the name is a unique machine generated
- ID that is guaranteed never to be reassigned then the name type of
- UID should be used (note that it is generally a bad idea to reassign
- names of any type since stale entries might remain in access control
- lists).
-
-
-
-Kohl & Neuman [Page 79]
-
-RFC 1510 Kerberos September 1993
-
-
- If the first component of a name identifies a service and the
- remaining components identify an instance of the service in a server
- specified manner, then the name type of SRV-INST should be used. An
- example of this name type is the Kerberos ticket-granting ticket
- which has a first component of krbtgt and a second component
- identifying the realm for which the ticket is valid.
-
- If instance is a single component following the service name and the
- instance identifies the host on which the server is running, then the
- name type SRV-HST should be used. This type is typically used for
- Internet services such as telnet and the Berkeley R commands. If the
- separate components of the host name appear as successive components
- following the name of the service, then the name type SRVXHST should
- be used. This type might be used to identify servers on hosts with
- X.500 names where the slash (/) might otherwise be ambiguous.
-
- A name type of UNKNOWN should be used when the form of the name is
- not known. When comparing names, a name of type UNKNOWN will match
- principals authenticated with names of any type. A principal
- authenticated with a name of type UNKNOWN, however, will only match
- other names of type UNKNOWN.
-
- Names of any type with an initial component of "krbtgt" are reserved
- for the Kerberos ticket granting service. See section 8.2.3 for the
- form of such names.
-
-7.2.1. Name of server principals
-
- The principal identifier for a server on a host will generally be
- composed of two parts: (1) the realm of the KDC with which the server
- is registered, and (2) a two-component name of type NT-SRV-HST if the
- host name is an Internet domain name or a multi-component name of
- type NT-SRV-XHST if the name of the host is of a form such as X.500
- that allows slash (/) separators. The first component of the two- or
- multi-component name will identify the service and the latter
- components will identify the host. Where the name of the host is not
- case sensitive (for example, with Internet domain names) the name of
- the host must be lower case. For services such as telnet and the
- Berkeley R commands which run with system privileges, the first
- component will be the string "host" instead of a service specific
- identifier.
-
-8. Constants and other defined values
-
-8.1. Host address types
-
- All negative values for the host address type are reserved for local
- use. All non-negative values are reserved for officially assigned
-
-
-
-Kohl & Neuman [Page 80]
-
-RFC 1510 Kerberos September 1993
-
-
- type fields and interpretations.
-
- The values of the types for the following addresses are chosen to
- match the defined address family constants in the Berkeley Standard
- Distributions of Unix. They can be found in <sys/socket.h> with
- symbolic names AF_xxx (where xxx is an abbreviation of the address
- family name).
-
-
- Internet addresses
-
- Internet addresses are 32-bit (4-octet) quantities, encoded in MSB
- order. The type of internet addresses is two (2).
-
- CHAOSnet addresses
-
- CHAOSnet addresses are 16-bit (2-octet) quantities, encoded in MSB
- order. The type of CHAOSnet addresses is five (5).
-
- ISO addresses
-
- ISO addresses are variable-length. The type of ISO addresses is
- seven (7).
-
- Xerox Network Services (XNS) addresses
-
- XNS addresses are 48-bit (6-octet) quantities, encoded in MSB
- order. The type of XNS addresses is six (6).
-
- AppleTalk Datagram Delivery Protocol (DDP) addresses
-
- AppleTalk DDP addresses consist of an 8-bit node number and a 16-
- bit network number. The first octet of the address is the node
- number; the remaining two octets encode the network number in MSB
- order. The type of AppleTalk DDP addresses is sixteen (16).
-
- DECnet Phase IV addresses
-
- DECnet Phase IV addresses are 16-bit addresses, encoded in LSB
- order. The type of DECnet Phase IV addresses is twelve (12).
-
-8.2. KDC messages
-
-8.2.1. IP transport
-
- When contacting a Kerberos server (KDC) for a KRB_KDC_REQ request
- using IP transport, the client shall send a UDP datagram containing
- only an encoding of the request to port 88 (decimal) at the KDC's IP
-
-
-
-Kohl & Neuman [Page 81]
-
-RFC 1510 Kerberos September 1993
-
-
- address; the KDC will respond with a reply datagram containing only
- an encoding of the reply message (either a KRB_ERROR or a
- KRB_KDC_REP) to the sending port at the sender's IP address.
-
-8.2.2. OSI transport
-
- During authentication of an OSI client to and OSI server, the mutual
- authentication of an OSI server to an OSI client, the transfer of
- credentials from an OSI client to an OSI server, or during exchange
- of private or integrity checked messages, Kerberos protocol messages
- may be treated as opaque objects and the type of the authentication
- mechanism will be:
-
- OBJECT IDENTIFIER ::= {iso (1), org(3), dod(5),internet(1),
- security(5), kerberosv5(2)}
-
- Depending on the situation, the opaque object will be an
- authentication header (KRB_AP_REQ), an authentication reply
- (KRB_AP_REP), a safe message (KRB_SAFE), a private message
- (KRB_PRIV), or a credentials message (KRB_CRED). The opaque data
- contains an application code as specified in the ASN.1 description
- for each message. The application code may be used by Kerberos to
- determine the message type.
-
-8.2.3. Name of the TGS
-
- The principal identifier of the ticket-granting service shall be
- composed of three parts: (1) the realm of the KDC issuing the TGS
- ticket (2) a two-part name of type NT-SRVINST, with the first part
- "krbtgt" and the second part the name of the realm which will accept
- the ticket-granting ticket. For example, a ticket-granting ticket
- issued by the ATHENA.MIT.EDU realm to be used to get tickets from the
- ATHENA.MIT.EDU KDC has a principal identifier of "ATHENA.MIT.EDU"
- (realm), ("krbtgt", "ATHENA.MIT.EDU") (name). A ticket-granting
- ticket issued by the ATHENA.MIT.EDU realm to be used to get tickets
- from the MIT.EDU realm has a principal identifier of "ATHENA.MIT.EDU"
- (realm), ("krbtgt", "MIT.EDU") (name).
-
-8.3. Protocol constants and associated values
-
- The following tables list constants used in the protocol and defines
- their meanings.
-
-
-
-
-
-
-
-
-
-Kohl & Neuman [Page 82]
-
-RFC 1510 Kerberos September 1993
-
-
----------------+-----------+----------+----------------+---------------
-Encryption type|etype value|block size|minimum pad size|confounder size
----------------+-----------+----------+----------------+---------------
-NULL 0 1 0 0
-des-cbc-crc 1 8 4 8
-des-cbc-md4 2 8 0 8
-des-cbc-md5 3 8 0 8
-
--------------------------------+-------------------+-------------
-Checksum type |sumtype value |checksum size
--------------------------------+-------------------+-------------
-CRC32 1 4
-rsa-md4 2 16
-rsa-md4-des 3 24
-des-mac 4 16
-des-mac-k 5 8
-rsa-md4-des-k 6 16
-rsa-md5 7 16
-rsa-md5-des 8 24
-
--------------------------------+-----------------
-padata type |padata-type value
--------------------------------+-----------------
-PA-TGS-REQ 1
-PA-ENC-TIMESTAMP 2
-PA-PW-SALT 3
-
--------------------------------+-------------
-authorization data type |ad-type value
--------------------------------+-------------
-reserved values 0-63
-OSF-DCE 64
-SESAME 65
-
--------------------------------+-----------------
-alternate authentication type |method-type value
--------------------------------+-----------------
-reserved values 0-63
-ATT-CHALLENGE-RESPONSE 64
-
--------------------------------+-------------
-transited encoding type |tr-type value
--------------------------------+-------------
-DOMAIN-X500-COMPRESS 1
-reserved values all others
-
-
-
-
-
-
-Kohl & Neuman [Page 83]
-
-RFC 1510 Kerberos September 1993
-
-
---------------+-------+-----------------------------------------
-Label |Value |Meaning or MIT code
---------------+-------+-----------------------------------------
-
-pvno 5 current Kerberos protocol version number
-
-message types
-
-KRB_AS_REQ 10 Request for initial authentication
-KRB_AS_REP 11 Response to KRB_AS_REQ request
-KRB_TGS_REQ 12 Request for authentication based on TGT
-KRB_TGS_REP 13 Response to KRB_TGS_REQ request
-KRB_AP_REQ 14 application request to server
-KRB_AP_REP 15 Response to KRB_AP_REQ_MUTUAL
-KRB_SAFE 20 Safe (checksummed) application message
-KRB_PRIV 21 Private (encrypted) application message
-KRB_CRED 22 Private (encrypted) message to forward
- credentials
-KRB_ERROR 30 Error response
-
-name types
-
-KRB_NT_UNKNOWN 0 Name type not known
-KRB_NT_PRINCIPAL 1 Just the name of the principal as in DCE, or
- for users
-KRB_NT_SRV_INST 2 Service and other unique instance (krbtgt)
-KRB_NT_SRV_HST 3 Service with host name as instance (telnet,
- rcommands)
-KRB_NT_SRV_XHST 4 Service with host as remaining components
-KRB_NT_UID 5 Unique ID
-
-error codes
-
-KDC_ERR_NONE 0 No error
-KDC_ERR_NAME_EXP 1 Client's entry in database has
- expired
-KDC_ERR_SERVICE_EXP 2 Server's entry in database has
- expired
-KDC_ERR_BAD_PVNO 3 Requested protocol version number
- not supported
-KDC_ERR_C_OLD_MAST_KVNO 4 Client's key encrypted in old
- master key
-KDC_ERR_S_OLD_MAST_KVNO 5 Server's key encrypted in old
- master key
-KDC_ERR_C_PRINCIPAL_UNKNOWN 6 Client not found in Kerberos database
-KDC_ERR_S_PRINCIPAL_UNKNOWN 7 Server not found in Kerberos database
-KDC_ERR_PRINCIPAL_NOT_UNIQUE 8 Multiple principal entries in
- database
-
-
-
-Kohl & Neuman [Page 84]
-
-RFC 1510 Kerberos September 1993
-
-
-KDC_ERR_NULL_KEY 9 The client or server has a null key
-KDC_ERR_CANNOT_POSTDATE 10 Ticket not eligible for postdating
-KDC_ERR_NEVER_VALID 11 Requested start time is later than
- end time
-KDC_ERR_POLICY 12 KDC policy rejects request
-KDC_ERR_BADOPTION 13 KDC cannot accommodate requested
- option
-KDC_ERR_ETYPE_NOSUPP 14 KDC has no support for encryption
- type
-KDC_ERR_SUMTYPE_NOSUPP 15 KDC has no support for checksum type
-KDC_ERR_PADATA_TYPE_NOSUPP 16 KDC has no support for padata type
-KDC_ERR_TRTYPE_NOSUPP 17 KDC has no support for transited type
-KDC_ERR_CLIENT_REVOKED 18 Clients credentials have been revoked
-KDC_ERR_SERVICE_REVOKED 19 Credentials for server have been
- revoked
-KDC_ERR_TGT_REVOKED 20 TGT has been revoked
-KDC_ERR_CLIENT_NOTYET 21 Client not yet valid - try again
- later
-KDC_ERR_SERVICE_NOTYET 22 Server not yet valid - try again
- later
-KDC_ERR_KEY_EXPIRED 23 Password has expired - change
- password to reset
-KDC_ERR_PREAUTH_FAILED 24 Pre-authentication information
- was invalid
-KDC_ERR_PREAUTH_REQUIRED 25 Additional pre-authentication
- required*
-KRB_AP_ERR_BAD_INTEGRITY 31 Integrity check on decrypted field
- failed
-KRB_AP_ERR_TKT_EXPIRED 32 Ticket expired
-KRB_AP_ERR_TKT_NYV 33 Ticket not yet valid
-KRB_AP_ERR_REPEAT 34 Request is a replay
-KRB_AP_ERR_NOT_US 35 The ticket isn't for us
-KRB_AP_ERR_BADMATCH 36 Ticket and authenticator don't match
-KRB_AP_ERR_SKEW 37 Clock skew too great
-KRB_AP_ERR_BADADDR 38 Incorrect net address
-KRB_AP_ERR_BADVERSION 39 Protocol version mismatch
-KRB_AP_ERR_MSG_TYPE 40 Invalid msg type
-KRB_AP_ERR_MODIFIED 41 Message stream modified
-KRB_AP_ERR_BADORDER 42 Message out of order
-KRB_AP_ERR_BADKEYVER 44 Specified version of key is not
- available
-KRB_AP_ERR_NOKEY 45 Service key not available
-KRB_AP_ERR_MUT_FAIL 46 Mutual authentication failed
-KRB_AP_ERR_BADDIRECTION 47 Incorrect message direction
-KRB_AP_ERR_METHOD 48 Alternative authentication method
- required*
-KRB_AP_ERR_BADSEQ 49 Incorrect sequence number in message
-KRB_AP_ERR_INAPP_CKSUM 50 Inappropriate type of checksum in
-
-
-
-Kohl & Neuman [Page 85]
-
-RFC 1510 Kerberos September 1993
-
-
- message
-KRB_ERR_GENERIC 60 Generic error (description in e-text)
-KRB_ERR_FIELD_TOOLONG 61 Field is too long for this
- implementation
-
- *This error carries additional information in the e-data field. The
- contents of the e-data field for this message is described in section
- 5.9.1.
-
-9. Interoperability requirements
-
- Version 5 of the Kerberos protocol supports a myriad of options.
- Among these are multiple encryption and checksum types, alternative
- encoding schemes for the transited field, optional mechanisms for
- pre-authentication, the handling of tickets with no addresses,
- options for mutual authentication, user to user authentication,
- support for proxies, forwarding, postdating, and renewing tickets,
- the format of realm names, and the handling of authorization data.
-
- In order to ensure the interoperability of realms, it is necessary to
- define a minimal configuration which must be supported by all
- implementations. This minimal configuration is subject to change as
- technology does. For example, if at some later date it is discovered
- that one of the required encryption or checksum algorithms is not
- secure, it will be replaced.
-
-9.1. Specification 1
-
- This section defines the first specification of these options.
- Implementations which are configured in this way can be said to
- support Kerberos Version 5 Specification 1 (5.1).
-
- Encryption and checksum methods
-
- The following encryption and checksum mechanisms must be supported.
- Implementations may support other mechanisms as well, but the
- additional mechanisms may only be used when communicating with
- principals known to also support them: Encryption: DES-CBC-MD5
- Checksums: CRC-32, DES-MAC, DES-MAC-K, and DES-MD5
-
- Realm Names
-
- All implementations must understand hierarchical realms in both the
- Internet Domain and the X.500 style. When a ticket granting ticket
- for an unknown realm is requested, the KDC must be able to determine
- the names of the intermediate realms between the KDCs realm and the
- requested realm.
-
-
-
-
-Kohl & Neuman [Page 86]
-
-RFC 1510 Kerberos September 1993
-
-
- Transited field encoding
-
- DOMAIN-X500-COMPRESS (described in section 3.3.3.1) must be
- supported. Alternative encodings may be supported, but they may be
- used only when that encoding is supported by ALL intermediate realms.
-
- Pre-authentication methods
-
- The TGS-REQ method must be supported. The TGS-REQ method is not used
- on the initial request. The PA-ENC-TIMESTAMP method must be supported
- by clients but whether it is enabled by default may be determined on
- a realm by realm basis. If not used in the initial request and the
- error KDC_ERR_PREAUTH_REQUIRED is returned specifying PA-ENCTIMESTAMP
- as an acceptable method, the client should retry the initial request
- using the PA-ENC-TIMESTAMP preauthentication method. Servers need not
- support the PAENC-TIMESTAMP method, but if not supported the server
- should ignore the presence of PA-ENC-TIMESTAMP pre-authentication in
- a request.
-
- Mutual authentication
-
- Mutual authentication (via the KRB_AP_REP message) must be supported.
-
- Ticket addresses and flags
-
- All KDC's must pass on tickets that carry no addresses (i.e., if a
- TGT contains no addresses, the KDC will return derivative tickets),
- but each realm may set its own policy for issuing such tickets, and
- each application server will set its own policy with respect to
- accepting them. By default, servers should not accept them.
-
- Proxies and forwarded tickets must be supported. Individual realms
- and application servers can set their own policy on when such tickets
- will be accepted.
-
- All implementations must recognize renewable and postdated tickets,
- but need not actually implement them. If these options are not
- supported, the starttime and endtime in the ticket shall specify a
- ticket's entire useful life. When a postdated ticket is decoded by a
- server, all implementations shall make the presence of the postdated
- flag visible to the calling server.
-
- User-to-user authentication
-
- Support for user to user authentication (via the ENC-TKTIN-SKEY KDC
- option) must be provided by implementations, but individual realms
- may decide as a matter of policy to reject such requests on a per-
- principal or realm-wide basis.
-
-
-
-Kohl & Neuman [Page 87]
-
-RFC 1510 Kerberos September 1993
-
-
- Authorization data
-
- Implementations must pass all authorization data subfields from
- ticket-granting tickets to any derivative tickets unless directed to
- suppress a subfield as part of the definition of that registered
- subfield type (it is never incorrect to pass on a subfield, and no
- registered subfield types presently specify suppression at the KDC).
-
- Implementations must make the contents of any authorization data
- subfields available to the server when a ticket is used.
- Implementations are not required to allow clients to specify the
- contents of the authorization data fields.
-
-9.2. Recommended KDC values
-
- Following is a list of recommended values for a KDC implementation,
- based on the list of suggested configuration constants (see section
- 4.4).
-
- minimum lifetime 5 minutes
-
- maximum renewable lifetime 1 week
-
- maximum ticket lifetime 1 day
-
- empty addresses only when suitable restrictions appear
- in authorization data
-
- proxiable, etc. Allowed.
-
-10. Acknowledgments
-
- Early versions of this document, describing version 4 of the
- protocol, were written by Jennifer Steiner (formerly at Project
- Athena); these drafts provided an excellent starting point for this
- current version 5 specification. Many people in the Internet
- community have contributed ideas and suggested protocol changes for
- version 5. Notable contributions came from Ted Anderson, Steve
- Bellovin and Michael Merritt [17], Daniel Bernstein, Mike Burrows,
- Donald Davis, Ravi Ganesan, Morrie Gasser, Virgil Gligor, Bill
- Griffeth, Mark Lillibridge, Mark Lomas, Steve Lunt, Piers McMahon,
- Joe Pato, William Sommerfeld, Stuart Stubblebine, Ralph Swick, Ted
- T'so, and Stanley Zanarotti. Many others commented and helped shape
- this specification into its current form.
-
-
-
-
-
-
-
-Kohl & Neuman [Page 88]
-
-RFC 1510 Kerberos September 1993
-
-
-11. References
-
- [1] Miller, S., Neuman, C., Schiller, J., and J. Saltzer, "Section
- E.2.1: Kerberos Authentication and Authorization System",
- M.I.T. Project Athena, Cambridge, Massachusetts, December 21,
- 1987.
-
- [2] Steiner, J., Neuman, C., and J. Schiller, "Kerberos: An
- Authentication Service for Open Network Systems", pp. 191-202 in
- Usenix Conference Proceedings, Dallas, Texas, February, 1988.
-
- [3] Needham, R., and M. Schroeder, "Using Encryption for
- Authentication in Large Networks of Computers", Communications
- of the ACM, Vol. 21 (12), pp. 993-999, December 1978.
-
- [4] Denning, D., and G. Sacco, "Time stamps in Key Distribution
- Protocols", Communications of the ACM, Vol. 24 (8), pp. 533-536,
- August 1981.
-
- [5] Kohl, J., Neuman, C., and T. Ts'o, "The Evolution of the
- Kerberos Authentication Service", in an IEEE Computer Society
- Text soon to be published, June 1992.
-
- [6] Davis, D., and R. Swick, "Workstation Services and Kerberos
- Authentication at Project Athena", Technical Memorandum TM-424,
- MIT Laboratory for Computer Science, February 1990.
-
- [7] Levine, P., Gretzinger, M, Diaz, J., Sommerfeld, W., and K.
- Raeburn, "Section E.1: Service Management System, M.I.T.
- Project Athena, Cambridge, Mas sachusetts (1987).
-
- [8] CCITT, Recommendation X.509: The Directory Authentication
- Framework, December 1988.
-
- [9] Neuman, C., "Proxy-Based Authorization and Accounting for
- Distributed Systems," in Proceedings of the 13th International
- Conference on Distributed Computing Systems", Pittsburgh, PA,
- May 1993.
-
- [10] Pato, J., "Using Pre-Authentication to Avoid Password Guessing
- Attacks", Open Software Foundation DCE Request for Comments 26,
- December 1992.
-
- [11] National Bureau of Standards, U.S. Department of Commerce, "Data
- Encryption Standard", Federal Information Processing Standards
- Publication 46, Washington, DC (1977).
-
-
-
-
-
-Kohl & Neuman [Page 89]
-
-RFC 1510 Kerberos September 1993
-
-
- [12] National Bureau of Standards, U.S. Department of Commerce, "DES
- Modes of Operation", Federal Information Processing Standards
- Publication 81, Springfield, VA, December 1980.
-
- [13] Stubblebine S., and V. Gligor, "On Message Integrity in
- Cryptographic Protocols", in Proceedings of the IEEE Symposium
- on Research in Security and Privacy, Oakland, California, May
- 1992.
-
- [14] International Organization for Standardization, "ISO Information
- Processing Systems - Data Communication High-Level Data Link
- Control Procedure - Frame Structure", IS 3309, October 1984, 3rd
- Edition.
-
- [15] Rivest, R., "The MD4 Message Digest Algorithm", RFC 1320, MIT
- Laboratory for Computer Science, April 1992.
-
- [16] Rivest, R., "The MD5 Message Digest Algorithm", RFC 1321, MIT
- Laboratory for Computer Science, April 1992.
-
- [17] Bellovin S., and M. Merritt, "Limitations of the Kerberos
- Authentication System", Computer Communications Review, Vol.
- 20(5), pp. 119-132, October 1990.
-
-12. Security Considerations
-
- Security issues are discussed throughout this memo.
-
-13. Authors' Addresses
-
- John Kohl
- Digital Equipment Corporation
- 110 Spit Brook Road, M/S ZKO3-3/U14
- Nashua, NH 03062
-
- Phone: 603-881-2481
- EMail: jtkohl@zk3.dec.com
-
-
- B. Clifford Neuman
- USC/Information Sciences Institute
- 4676 Admiralty Way #1001
- Marina del Rey, CA 90292-6695
-
- Phone: 310-822-1511
- EMail: bcn@isi.edu
-
-
-
-
-
-Kohl & Neuman [Page 90]
-
-RFC 1510 Kerberos September 1993
-
-
-A. Pseudo-code for protocol processing
-
- This appendix provides pseudo-code describing how the messages are to
- be constructed and interpreted by clients and servers.
-
-A.1. KRB_AS_REQ generation
- request.pvno := protocol version; /* pvno = 5 */
- request.msg-type := message type; /* type = KRB_AS_REQ */
-
- if(pa_enc_timestamp_required) then
- request.padata.padata-type = PA-ENC-TIMESTAMP;
- get system_time;
- padata-body.patimestamp,pausec = system_time;
- encrypt padata-body into request.padata.padata-value
- using client.key; /* derived from password */
- endif
-
- body.kdc-options := users's preferences;
- body.cname := user's name;
- body.realm := user's realm;
- body.sname := service's name; /* usually "krbtgt",
- "localrealm" */
- if (body.kdc-options.POSTDATED is set) then
- body.from := requested starting time;
- else
- omit body.from;
- endif
- body.till := requested end time;
- if (body.kdc-options.RENEWABLE is set) then
- body.rtime := requested final renewal time;
- endif
- body.nonce := random_nonce();
- body.etype := requested etypes;
- if (user supplied addresses) then
- body.addresses := user's addresses;
- else
- omit body.addresses;
- endif
- omit body.enc-authorization-data;
- request.req-body := body;
-
- kerberos := lookup(name of local kerberos server (or servers));
- send(packet,kerberos);
-
- wait(for response);
- if (timed_out) then
- retry or use alternate server;
- endif
-
-
-
-Kohl & Neuman [Page 91]
-
-RFC 1510 Kerberos September 1993
-
-
-A.2. KRB_AS_REQ verification and KRB_AS_REP generation
- decode message into req;
-
- client := lookup(req.cname,req.realm);
- server := lookup(req.sname,req.realm);
- get system_time;
- kdc_time := system_time.seconds;
-
- if (!client) then
- /* no client in Database */
- error_out(KDC_ERR_C_PRINCIPAL_UNKNOWN);
- endif
- if (!server) then
- /* no server in Database */
- error_out(KDC_ERR_S_PRINCIPAL_UNKNOWN);
- endif
-
- if(client.pa_enc_timestamp_required and
- pa_enc_timestamp not present) then
- error_out(KDC_ERR_PREAUTH_REQUIRED(PA_ENC_TIMESTAMP));
- endif
-
- if(pa_enc_timestamp present) then
- decrypt req.padata-value into decrypted_enc_timestamp
- using client.key;
- using auth_hdr.authenticator.subkey;
- if (decrypt_error()) then
- error_out(KRB_AP_ERR_BAD_INTEGRITY);
- if(decrypted_enc_timestamp is not within allowable
- skew) then error_out(KDC_ERR_PREAUTH_FAILED);
- endif
- if(decrypted_enc_timestamp and usec is replay)
- error_out(KDC_ERR_PREAUTH_FAILED);
- endif
- add decrypted_enc_timestamp and usec to replay cache;
- endif
-
- use_etype := first supported etype in req.etypes;
-
- if (no support for req.etypes) then
- error_out(KDC_ERR_ETYPE_NOSUPP);
- endif
-
- new_tkt.vno := ticket version; /* = 5 */
- new_tkt.sname := req.sname;
- new_tkt.srealm := req.srealm;
- reset all flags in new_tkt.flags;
-
-
-
-
-Kohl & Neuman [Page 92]
-
-RFC 1510 Kerberos September 1993
-
-
- /* It should be noted that local policy may affect the */
- /* processing of any of these flags. For example, some */
- /* realms may refuse to issue renewable tickets */
-
- if (req.kdc-options.FORWARDABLE is set) then
- set new_tkt.flags.FORWARDABLE;
- endif
- if (req.kdc-options.PROXIABLE is set) then
- set new_tkt.flags.PROXIABLE;
- endif
- if (req.kdc-options.ALLOW-POSTDATE is set) then
- set new_tkt.flags.ALLOW-POSTDATE;
- endif
- if ((req.kdc-options.RENEW is set) or
- (req.kdc-options.VALIDATE is set) or
- (req.kdc-options.PROXY is set) or
- (req.kdc-options.FORWARDED is set) or
- (req.kdc-options.ENC-TKT-IN-SKEY is set)) then
- error_out(KDC_ERR_BADOPTION);
- endif
-
- new_tkt.session := random_session_key();
- new_tkt.cname := req.cname;
- new_tkt.crealm := req.crealm;
- new_tkt.transited := empty_transited_field();
-
- new_tkt.authtime := kdc_time;
-
- if (req.kdc-options.POSTDATED is set) then
- if (against_postdate_policy(req.from)) then
- error_out(KDC_ERR_POLICY);
- endif
- set new_tkt.flags.INVALID;
- new_tkt.starttime := req.from;
- else
- omit new_tkt.starttime; /* treated as authtime when
- omitted */
- endif
- if (req.till = 0) then
- till := infinity;
- else
- till := req.till;
- endif
-
- new_tkt.endtime := min(till,
- new_tkt.starttime+client.max_life,
- new_tkt.starttime+server.max_life,
- new_tkt.starttime+max_life_for_realm);
-
-
-
-Kohl & Neuman [Page 93]
-
-RFC 1510 Kerberos September 1993
-
-
- if ((req.kdc-options.RENEWABLE-OK is set) and
- (new_tkt.endtime < req.till)) then
- /* we set the RENEWABLE option for later processing */
- set req.kdc-options.RENEWABLE;
- req.rtime := req.till;
- endif
-
- if (req.rtime = 0) then
- rtime := infinity;
- else
- rtime := req.rtime;
- endif
-
- if (req.kdc-options.RENEWABLE is set) then
- set new_tkt.flags.RENEWABLE;
- new_tkt.renew-till := min(rtime,
- new_tkt.starttime+client.max_rlife,
- new_tkt.starttime+server.max_rlife,
- new_tkt.starttime+max_rlife_for_realm);
- else
- omit new_tkt.renew-till; /* only present if RENEWABLE */
- endif
-
- if (req.addresses) then
- new_tkt.caddr := req.addresses;
- else
- omit new_tkt.caddr;
- endif
-
- new_tkt.authorization_data := empty_authorization_data();
-
- encode to-be-encrypted part of ticket into OCTET STRING;
- new_tkt.enc-part := encrypt OCTET STRING
- using etype_for_key(server.key), server.key, server.p_kvno;
-
-
- /* Start processing the response */
-
- resp.pvno := 5;
- resp.msg-type := KRB_AS_REP;
- resp.cname := req.cname;
- resp.crealm := req.realm;
- resp.ticket := new_tkt;
-
- resp.key := new_tkt.session;
- resp.last-req := fetch_last_request_info(client);
- resp.nonce := req.nonce;
- resp.key-expiration := client.expiration;
-
-
-
-Kohl & Neuman [Page 94]
-
-RFC 1510 Kerberos September 1993
-
-
- resp.flags := new_tkt.flags;
-
- resp.authtime := new_tkt.authtime;
- resp.starttime := new_tkt.starttime;
- resp.endtime := new_tkt.endtime;
-
- if (new_tkt.flags.RENEWABLE) then
- resp.renew-till := new_tkt.renew-till;
- endif
-
- resp.realm := new_tkt.realm;
- resp.sname := new_tkt.sname;
-
- resp.caddr := new_tkt.caddr;
-
- encode body of reply into OCTET STRING;
-
- resp.enc-part := encrypt OCTET STRING
- using use_etype, client.key, client.p_kvno;
- send(resp);
-
-A.3. KRB_AS_REP verification
- decode response into resp;
-
- if (resp.msg-type = KRB_ERROR) then
- if(error = KDC_ERR_PREAUTH_REQUIRED(PA_ENC_TIMESTAMP))
- then set pa_enc_timestamp_required;
- goto KRB_AS_REQ;
- endif
- process_error(resp);
- return;
- endif
-
- /* On error, discard the response, and zero the session key */
- /* from the response immediately */
-
- key = get_decryption_key(resp.enc-part.kvno, resp.enc-part.etype,
- resp.padata);
- unencrypted part of resp := decode of decrypt of resp.enc-part
- using resp.enc-part.etype and key;
- zero(key);
-
- if (common_as_rep_tgs_rep_checks fail) then
- destroy resp.key;
- return error;
- endif
-
- if near(resp.princ_exp) then
-
-
-
-Kohl & Neuman [Page 95]
-
-RFC 1510 Kerberos September 1993
-
-
- print(warning message);
- endif
- save_for_later(ticket,session,client,server,times,flags);
-
-A.4. KRB_AS_REP and KRB_TGS_REP common checks
- if (decryption_error() or
- (req.cname != resp.cname) or
- (req.realm != resp.crealm) or
- (req.sname != resp.sname) or
- (req.realm != resp.realm) or
- (req.nonce != resp.nonce) or
- (req.addresses != resp.caddr)) then
- destroy resp.key;
- return KRB_AP_ERR_MODIFIED;
- endif
-
- /* make sure no flags are set that shouldn't be, and that */
- /* all that should be are set */
- if (!check_flags_for_compatability(req.kdc-options,resp.flags))
- then destroy resp.key;
- return KRB_AP_ERR_MODIFIED;
- endif
-
- if ((req.from = 0) and
- (resp.starttime is not within allowable skew)) then
- destroy resp.key;
- return KRB_AP_ERR_SKEW;
- endif
- if ((req.from != 0) and (req.from != resp.starttime)) then
- destroy resp.key;
- return KRB_AP_ERR_MODIFIED;
- endif
- if ((req.till != 0) and (resp.endtime > req.till)) then
- destroy resp.key;
- return KRB_AP_ERR_MODIFIED;
- endif
-
- if ((req.kdc-options.RENEWABLE is set) and
- (req.rtime != 0) and (resp.renew-till > req.rtime)) then
- destroy resp.key;
- return KRB_AP_ERR_MODIFIED;
- endif
- if ((req.kdc-options.RENEWABLE-OK is set) and
- (resp.flags.RENEWABLE) and
- (req.till != 0) and
- (resp.renew-till > req.till)) then
- destroy resp.key;
- return KRB_AP_ERR_MODIFIED;
-
-
-
-Kohl & Neuman [Page 96]
-
-RFC 1510 Kerberos September 1993
-
-
- endif
-
-A.5. KRB_TGS_REQ generation
- /* Note that make_application_request might have to */
- /* recursivly call this routine to get the appropriate */
- /* ticket-granting ticket */
-
- request.pvno := protocol version; /* pvno = 5 */
- request.msg-type := message type; /* type = KRB_TGS_REQ */
-
- body.kdc-options := users's preferences;
- /* If the TGT is not for the realm of the end-server */
- /* then the sname will be for a TGT for the end-realm */
- /* and the realm of the requested ticket (body.realm) */
- /* will be that of the TGS to which the TGT we are */
- /* sending applies */
- body.sname := service's name;
- body.realm := service's realm;
-
- if (body.kdc-options.POSTDATED is set) then
- body.from := requested starting time;
- else
- omit body.from;
- endif
- body.till := requested end time;
- if (body.kdc-options.RENEWABLE is set) then
- body.rtime := requested final renewal time;
- endif
- body.nonce := random_nonce();
- body.etype := requested etypes;
- if (user supplied addresses) then
- body.addresses := user's addresses;
- else
- omit body.addresses;
- endif
-
- body.enc-authorization-data := user-supplied data;
- if (body.kdc-options.ENC-TKT-IN-SKEY) then
- body.additional-tickets_ticket := second TGT;
- endif
-
- request.req-body := body;
- check := generate_checksum (req.body,checksumtype);
-
- request.padata[0].padata-type := PA-TGS-REQ;
- request.padata[0].padata-value := create a KRB_AP_REQ using
- the TGT and checksum
-
-
-
-
-Kohl & Neuman [Page 97]
-
-RFC 1510 Kerberos September 1993
-
-
- /* add in any other padata as required/supplied */
-
- kerberos := lookup(name of local kerberose server (or servers));
- send(packet,kerberos);
-
- wait(for response);
- if (timed_out) then
- retry or use alternate server;
- endif
-
-A.6. KRB_TGS_REQ verification and KRB_TGS_REP generation
- /* note that reading the application request requires first
- determining the server for which a ticket was issued, and
- choosing the correct key for decryption. The name of the
- server appears in the plaintext part of the ticket. */
-
- if (no KRB_AP_REQ in req.padata) then
- error_out(KDC_ERR_PADATA_TYPE_NOSUPP);
- endif
- verify KRB_AP_REQ in req.padata;
-
- /* Note that the realm in which the Kerberos server is
- operating is determined by the instance from the
- ticket-granting ticket. The realm in the ticket-granting
- ticket is the realm under which the ticket granting ticket was
- issued. It is possible for a single Kerberos server to
- support more than one realm. */
-
- auth_hdr := KRB_AP_REQ;
- tgt := auth_hdr.ticket;
-
- if (tgt.sname is not a TGT for local realm and is not
- req.sname) then error_out(KRB_AP_ERR_NOT_US);
-
- realm := realm_tgt_is_for(tgt);
-
- decode remainder of request;
-
- if (auth_hdr.authenticator.cksum is missing) then
- error_out(KRB_AP_ERR_INAPP_CKSUM);
- endif
- if (auth_hdr.authenticator.cksum type is not supported) then
- error_out(KDC_ERR_SUMTYPE_NOSUPP);
- endif
- if (auth_hdr.authenticator.cksum is not both collision-proof
- and keyed) then
- error_out(KRB_AP_ERR_INAPP_CKSUM);
- endif
-
-
-
-Kohl & Neuman [Page 98]
-
-RFC 1510 Kerberos September 1993
-
-
- set computed_checksum := checksum(req);
- if (computed_checksum != auth_hdr.authenticatory.cksum) then
- error_out(KRB_AP_ERR_MODIFIED);
- endif
-
- server := lookup(req.sname,realm);
-
- if (!server) then
- if (is_foreign_tgt_name(server)) then
- server := best_intermediate_tgs(server);
- else
- /* no server in Database */
- error_out(KDC_ERR_S_PRINCIPAL_UNKNOWN);
- endif
- endif
-
- session := generate_random_session_key();
-
-
- use_etype := first supported etype in req.etypes;
-
- if (no support for req.etypes) then
- error_out(KDC_ERR_ETYPE_NOSUPP);
- endif
-
- new_tkt.vno := ticket version; /* = 5 */
- new_tkt.sname := req.sname;
- new_tkt.srealm := realm;
- reset all flags in new_tkt.flags;
-
- /* It should be noted that local policy may affect the */
- /* processing of any of these flags. For example, some */
- /* realms may refuse to issue renewable tickets */
-
- new_tkt.caddr := tgt.caddr;
- resp.caddr := NULL; /* We only include this if they change */
- if (req.kdc-options.FORWARDABLE is set) then
- if (tgt.flags.FORWARDABLE is reset) then
- error_out(KDC_ERR_BADOPTION);
- endif
- set new_tkt.flags.FORWARDABLE;
- endif
- if (req.kdc-options.FORWARDED is set) then
- if (tgt.flags.FORWARDABLE is reset) then
- error_out(KDC_ERR_BADOPTION);
- endif
- set new_tkt.flags.FORWARDED;
- new_tkt.caddr := req.addresses;
-
-
-
-Kohl & Neuman [Page 99]
-
-RFC 1510 Kerberos September 1993
-
-
- resp.caddr := req.addresses;
- endif
- if (tgt.flags.FORWARDED is set) then
- set new_tkt.flags.FORWARDED;
- endif
-
- if (req.kdc-options.PROXIABLE is set) then
- if (tgt.flags.PROXIABLE is reset)
- error_out(KDC_ERR_BADOPTION);
- endif
- set new_tkt.flags.PROXIABLE;
- endif
- if (req.kdc-options.PROXY is set) then
- if (tgt.flags.PROXIABLE is reset) then
- error_out(KDC_ERR_BADOPTION);
- endif
- set new_tkt.flags.PROXY;
- new_tkt.caddr := req.addresses;
- resp.caddr := req.addresses;
- endif
-
- if (req.kdc-options.POSTDATE is set) then
- if (tgt.flags.POSTDATE is reset)
- error_out(KDC_ERR_BADOPTION);
- endif
- set new_tkt.flags.POSTDATE;
- endif
- if (req.kdc-options.POSTDATED is set) then
- if (tgt.flags.POSTDATE is reset) then
- error_out(KDC_ERR_BADOPTION);
- endif
- set new_tkt.flags.POSTDATED;
- set new_tkt.flags.INVALID;
- if (against_postdate_policy(req.from)) then
- error_out(KDC_ERR_POLICY);
- endif
- new_tkt.starttime := req.from;
- endif
-
-
- if (req.kdc-options.VALIDATE is set) then
- if (tgt.flags.INVALID is reset) then
- error_out(KDC_ERR_POLICY);
- endif
- if (tgt.starttime > kdc_time) then
- error_out(KRB_AP_ERR_NYV);
- endif
- if (check_hot_list(tgt)) then
-
-
-
-Kohl & Neuman [Page 100]
-
-RFC 1510 Kerberos September 1993
-
-
- error_out(KRB_AP_ERR_REPEAT);
- endif
- tkt := tgt;
- reset new_tkt.flags.INVALID;
- endif
-
- if (req.kdc-options.(any flag except ENC-TKT-IN-SKEY, RENEW,
- and those already processed) is set) then
- error_out(KDC_ERR_BADOPTION);
- endif
-
- new_tkt.authtime := tgt.authtime;
-
- if (req.kdc-options.RENEW is set) then
- /* Note that if the endtime has already passed, the ticket */
- /* would have been rejected in the initial authentication */
- /* stage, so there is no need to check again here */
- if (tgt.flags.RENEWABLE is reset) then
- error_out(KDC_ERR_BADOPTION);
- endif
- if (tgt.renew-till >= kdc_time) then
- error_out(KRB_AP_ERR_TKT_EXPIRED);
- endif
- tkt := tgt;
- new_tkt.starttime := kdc_time;
- old_life := tgt.endttime - tgt.starttime;
- new_tkt.endtime := min(tgt.renew-till,
- new_tkt.starttime + old_life);
- else
- new_tkt.starttime := kdc_time;
- if (req.till = 0) then
- till := infinity;
- else
- till := req.till;
- endif
- new_tkt.endtime := min(till,
- new_tkt.starttime+client.max_life,
- new_tkt.starttime+server.max_life,
- new_tkt.starttime+max_life_for_realm,
- tgt.endtime);
-
- if ((req.kdc-options.RENEWABLE-OK is set) and
- (new_tkt.endtime < req.till) and
- (tgt.flags.RENEWABLE is set) then
- /* we set the RENEWABLE option for later */
- /* processing */
- set req.kdc-options.RENEWABLE;
- req.rtime := min(req.till, tgt.renew-till);
-
-
-
-Kohl & Neuman [Page 101]
-
-RFC 1510 Kerberos September 1993
-
-
- endif
- endif
-
- if (req.rtime = 0) then
- rtime := infinity;
- else
- rtime := req.rtime;
- endif
-
- if ((req.kdc-options.RENEWABLE is set) and
- (tgt.flags.RENEWABLE is set)) then
- set new_tkt.flags.RENEWABLE;
- new_tkt.renew-till := min(rtime,
- new_tkt.starttime+client.max_rlife,
- new_tkt.starttime+server.max_rlife,
- new_tkt.starttime+max_rlife_for_realm,
- tgt.renew-till);
- else
- new_tkt.renew-till := OMIT;
- /* leave the renew-till field out */
- endif
- if (req.enc-authorization-data is present) then
- decrypt req.enc-authorization-data
- into decrypted_authorization_data
- using auth_hdr.authenticator.subkey;
- if (decrypt_error()) then
- error_out(KRB_AP_ERR_BAD_INTEGRITY);
- endif
- endif
- new_tkt.authorization_data :=
- req.auth_hdr.ticket.authorization_data +
- decrypted_authorization_data;
-
- new_tkt.key := session;
- new_tkt.crealm := tgt.crealm;
- new_tkt.cname := req.auth_hdr.ticket.cname;
-
- if (realm_tgt_is_for(tgt) := tgt.realm) then
- /* tgt issued by local realm */
- new_tkt.transited := tgt.transited;
- else
- /* was issued for this realm by some other realm */
- if (tgt.transited.tr-type not supported) then
- error_out(KDC_ERR_TRTYPE_NOSUPP);
- endif
- new_tkt.transited
- := compress_transited(tgt.transited + tgt.realm)
- endif
-
-
-
-Kohl & Neuman [Page 102]
-
-RFC 1510 Kerberos September 1993
-
-
- encode encrypted part of new_tkt into OCTET STRING;
- if (req.kdc-options.ENC-TKT-IN-SKEY is set) then
- if (server not specified) then
- server = req.second_ticket.client;
- endif
- if ((req.second_ticket is not a TGT) or
- (req.second_ticket.client != server)) then
- error_out(KDC_ERR_POLICY);
- endif
-
- new_tkt.enc-part := encrypt OCTET STRING using
- using etype_for_key(second-ticket.key),
- second-ticket.key;
- else
- new_tkt.enc-part := encrypt OCTET STRING
- using etype_for_key(server.key), server.key,
- server.p_kvno;
- endif
-
- resp.pvno := 5;
- resp.msg-type := KRB_TGS_REP;
- resp.crealm := tgt.crealm;
- resp.cname := tgt.cname;
- resp.ticket := new_tkt;
-
- resp.key := session;
- resp.nonce := req.nonce;
- resp.last-req := fetch_last_request_info(client);
- resp.flags := new_tkt.flags;
-
- resp.authtime := new_tkt.authtime;
- resp.starttime := new_tkt.starttime;
- resp.endtime := new_tkt.endtime;
-
- omit resp.key-expiration;
-
- resp.sname := new_tkt.sname;
- resp.realm := new_tkt.realm;
-
- if (new_tkt.flags.RENEWABLE) then
- resp.renew-till := new_tkt.renew-till;
- endif
-
-
- encode body of reply into OCTET STRING;
-
- if (req.padata.authenticator.subkey)
- resp.enc-part := encrypt OCTET STRING using use_etype,
-
-
-
-Kohl & Neuman [Page 103]
-
-RFC 1510 Kerberos September 1993
-
-
- req.padata.authenticator.subkey;
- else resp.enc-part := encrypt OCTET STRING
- using use_etype, tgt.key;
-
- send(resp);
-
-A.7. KRB_TGS_REP verification
- decode response into resp;
-
- if (resp.msg-type = KRB_ERROR) then
- process_error(resp);
- return;
- endif
-
- /* On error, discard the response, and zero the session key from
- the response immediately */
-
- if (req.padata.authenticator.subkey)
- unencrypted part of resp :=
- decode of decrypt of resp.enc-part
- using resp.enc-part.etype and subkey;
- else unencrypted part of resp :=
- decode of decrypt of resp.enc-part
- using resp.enc-part.etype and tgt's session key;
- if (common_as_rep_tgs_rep_checks fail) then
- destroy resp.key;
- return error;
- endif
-
- check authorization_data as necessary;
- save_for_later(ticket,session,client,server,times,flags);
-
-A.8. Authenticator generation
- body.authenticator-vno := authenticator vno; /* = 5 */
- body.cname, body.crealm := client name;
- if (supplying checksum) then
- body.cksum := checksum;
- endif
- get system_time;
- body.ctime, body.cusec := system_time;
- if (selecting sub-session key) then
- select sub-session key;
- body.subkey := sub-session key;
- endif
- if (using sequence numbers) then
- select initial sequence number;
- body.seq-number := initial sequence;
- endif
-
-
-
-Kohl & Neuman [Page 104]
-
-RFC 1510 Kerberos September 1993
-
-
-A.9. KRB_AP_REQ generation
- obtain ticket and session_key from cache;
-
- packet.pvno := protocol version; /* 5 */
- packet.msg-type := message type; /* KRB_AP_REQ */
-
- if (desired(MUTUAL_AUTHENTICATION)) then
- set packet.ap-options.MUTUAL-REQUIRED;
- else
- reset packet.ap-options.MUTUAL-REQUIRED;
- endif
- if (using session key for ticket) then
- set packet.ap-options.USE-SESSION-KEY;
- else
- reset packet.ap-options.USE-SESSION-KEY;
- endif
- packet.ticket := ticket; /* ticket */
- generate authenticator;
- encode authenticator into OCTET STRING;
- encrypt OCTET STRING into packet.authenticator
- using session_key;
-
-A.10. KRB_AP_REQ verification
- receive packet;
- if (packet.pvno != 5) then
- either process using other protocol spec
- or error_out(KRB_AP_ERR_BADVERSION);
- endif
- if (packet.msg-type != KRB_AP_REQ) then
- error_out(KRB_AP_ERR_MSG_TYPE);
- endif
- if (packet.ticket.tkt_vno != 5) then
- either process using other protocol spec
- or error_out(KRB_AP_ERR_BADVERSION);
- endif
- if (packet.ap_options.USE-SESSION-KEY is set) then
- retrieve session key from ticket-granting ticket for
- packet.ticket.{sname,srealm,enc-part.etype};
- else
- retrieve service key for
- packet.ticket.{sname,srealm,enc-part.etype,enc-part.skvno};
- endif
- if (no_key_available) then
- if (cannot_find_specified_skvno) then
- error_out(KRB_AP_ERR_BADKEYVER);
- else
- error_out(KRB_AP_ERR_NOKEY);
- endif
-
-
-
-Kohl & Neuman [Page 105]
-
-RFC 1510 Kerberos September 1993
-
-
- endif
- decrypt packet.ticket.enc-part into decr_ticket
- using retrieved key;
- if (decryption_error()) then
- error_out(KRB_AP_ERR_BAD_INTEGRITY);
- endif
- decrypt packet.authenticator into decr_authenticator
- using decr_ticket.key;
- if (decryption_error()) then
- error_out(KRB_AP_ERR_BAD_INTEGRITY);
- endif
- if (decr_authenticator.{cname,crealm} !=
- decr_ticket.{cname,crealm}) then
- error_out(KRB_AP_ERR_BADMATCH);
- endif
- if (decr_ticket.caddr is present) then
- if (sender_address(packet) is not in decr_ticket.caddr)
- then error_out(KRB_AP_ERR_BADADDR);
- endif
- elseif (application requires addresses) then
- error_out(KRB_AP_ERR_BADADDR);
- endif
- if (not in_clock_skew(decr_authenticator.ctime,
- decr_authenticator.cusec)) then
- error_out(KRB_AP_ERR_SKEW);
- endif
- if (repeated(decr_authenticator.{ctime,cusec,cname,crealm}))
- then error_out(KRB_AP_ERR_REPEAT);
- endif
- save_identifier(decr_authenticator.{ctime,cusec,cname,crealm});
- get system_time;
- if ((decr_ticket.starttime-system_time > CLOCK_SKEW) or
- (decr_ticket.flags.INVALID is set)) then
- /* it hasn't yet become valid */
- error_out(KRB_AP_ERR_TKT_NYV);
- endif
- if (system_time-decr_ticket.endtime > CLOCK_SKEW) then
- error_out(KRB_AP_ERR_TKT_EXPIRED);
- endif
- /* caller must check decr_ticket.flags for any pertinent */
- /* details */
- return(OK, decr_ticket, packet.ap_options.MUTUAL-REQUIRED);
-
-A.11. KRB_AP_REP generation
- packet.pvno := protocol version; /* 5 */
- packet.msg-type := message type; /* KRB_AP_REP */
- body.ctime := packet.ctime;
- body.cusec := packet.cusec;
-
-
-
-Kohl & Neuman [Page 106]
-
-RFC 1510 Kerberos September 1993
-
-
- if (selecting sub-session key) then
- select sub-session key;
- body.subkey := sub-session key;
- endif
- if (using sequence numbers) then
- select initial sequence number;
- body.seq-number := initial sequence;
- endif
-
- encode body into OCTET STRING;
-
- select encryption type;
- encrypt OCTET STRING into packet.enc-part;
-
-A.12. KRB_AP_REP verification
- receive packet;
- if (packet.pvno != 5) then
- either process using other protocol spec
- or error_out(KRB_AP_ERR_BADVERSION);
- endif
- if (packet.msg-type != KRB_AP_REP) then
- error_out(KRB_AP_ERR_MSG_TYPE);
- endif
- cleartext := decrypt(packet.enc-part)
- using ticket's session key;
- if (decryption_error()) then
- error_out(KRB_AP_ERR_BAD_INTEGRITY);
- endif
- if (cleartext.ctime != authenticator.ctime) then
- error_out(KRB_AP_ERR_MUT_FAIL);
- endif
- if (cleartext.cusec != authenticator.cusec) then
- error_out(KRB_AP_ERR_MUT_FAIL);
- endif
- if (cleartext.subkey is present) then
- save cleartext.subkey for future use;
- endif
- if (cleartext.seq-number is present) then
- save cleartext.seq-number for future verifications;
- endif
- return(AUTHENTICATION_SUCCEEDED);
-
-A.13. KRB_SAFE generation
- collect user data in buffer;
-
- /* assemble packet: */
- packet.pvno := protocol version; /* 5 */
- packet.msg-type := message type; /* KRB_SAFE */
-
-
-
-Kohl & Neuman [Page 107]
-
-RFC 1510 Kerberos September 1993
-
-
- body.user-data := buffer; /* DATA */
- if (using timestamp) then
- get system_time;
- body.timestamp, body.usec := system_time;
- endif
- if (using sequence numbers) then
- body.seq-number := sequence number;
- endif
- body.s-address := sender host addresses;
- if (only one recipient) then
- body.r-address := recipient host address;
- endif
- checksum.cksumtype := checksum type;
- compute checksum over body;
- checksum.checksum := checksum value; /* checksum.checksum */
- packet.cksum := checksum;
- packet.safe-body := body;
-
-A.14. KRB_SAFE verification
- receive packet;
- if (packet.pvno != 5) then
- either process using other protocol spec
- or error_out(KRB_AP_ERR_BADVERSION);
- endif
- if (packet.msg-type != KRB_SAFE) then
- error_out(KRB_AP_ERR_MSG_TYPE);
- endif
- if (packet.checksum.cksumtype is not both collision-proof
- and keyed) then
- error_out(KRB_AP_ERR_INAPP_CKSUM);
- endif
- if (safe_priv_common_checks_ok(packet)) then
- set computed_checksum := checksum(packet.body);
- if (computed_checksum != packet.checksum) then
- error_out(KRB_AP_ERR_MODIFIED);
- endif
- return (packet, PACKET_IS_GENUINE);
- else
- return common_checks_error;
- endif
-
-A.15. KRB_SAFE and KRB_PRIV common checks
- if (packet.s-address != O/S_sender(packet)) then
- /* O/S report of sender not who claims to have sent it */
- error_out(KRB_AP_ERR_BADADDR);
- endif
- if ((packet.r-address is present) and
- (packet.r-address != local_host_address)) then
-
-
-
-Kohl & Neuman [Page 108]
-
-RFC 1510 Kerberos September 1993
-
-
- /* was not sent to proper place */
- error_out(KRB_AP_ERR_BADADDR);
- endif
- if (((packet.timestamp is present) and
- (not in_clock_skew(packet.timestamp,packet.usec))) or
- (packet.timestamp is not present and timestamp expected))
- then error_out(KRB_AP_ERR_SKEW);
- endif
- if (repeated(packet.timestamp,packet.usec,packet.s-address))
- then error_out(KRB_AP_ERR_REPEAT);
- endif
- if (((packet.seq-number is present) and
- ((not in_sequence(packet.seq-number)))) or
- (packet.seq-number is not present and sequence expected))
- then error_out(KRB_AP_ERR_BADORDER);
- endif
- if (packet.timestamp not present and
- packet.seq-number not present) then
- error_out(KRB_AP_ERR_MODIFIED);
- endif
-
- save_identifier(packet.{timestamp,usec,s-address},
- sender_principal(packet));
-
- return PACKET_IS_OK;
-
-A.16. KRB_PRIV generation
- collect user data in buffer;
-
- /* assemble packet: */
- packet.pvno := protocol version; /* 5 */
- packet.msg-type := message type; /* KRB_PRIV */
-
- packet.enc-part.etype := encryption type;
-
- body.user-data := buffer;
- if (using timestamp) then
- get system_time;
- body.timestamp, body.usec := system_time;
- endif
- if (using sequence numbers) then
- body.seq-number := sequence number;
- endif
- body.s-address := sender host addresses;
- if (only one recipient) then
- body.r-address := recipient host address;
- endif
-
-
-
-
-Kohl & Neuman [Page 109]
-
-RFC 1510 Kerberos September 1993
-
-
- encode body into OCTET STRING;
-
- select encryption type;
- encrypt OCTET STRING into packet.enc-part.cipher;
-
-A.17. KRB_PRIV verification
- receive packet;
- if (packet.pvno != 5) then
- either process using other protocol spec
- or error_out(KRB_AP_ERR_BADVERSION);
- endif
- if (packet.msg-type != KRB_PRIV) then
- error_out(KRB_AP_ERR_MSG_TYPE);
- endif
-
- cleartext := decrypt(packet.enc-part) using negotiated key;
- if (decryption_error()) then
- error_out(KRB_AP_ERR_BAD_INTEGRITY);
- endif
-
- if (safe_priv_common_checks_ok(cleartext)) then
- return(cleartext.DATA, PACKET_IS_GENUINE_AND_UNMODIFIED);
- else
- return common_checks_error;
- endif
-
-A.18. KRB_CRED generation
- invoke KRB_TGS; /* obtain tickets to be provided to peer */
-
- /* assemble packet: */
- packet.pvno := protocol version; /* 5 */
- packet.msg-type := message type; /* KRB_CRED */
-
- for (tickets[n] in tickets to be forwarded) do
- packet.tickets[n] = tickets[n].ticket;
- done
-
- packet.enc-part.etype := encryption type;
-
- for (ticket[n] in tickets to be forwarded) do
- body.ticket-info[n].key = tickets[n].session;
- body.ticket-info[n].prealm = tickets[n].crealm;
- body.ticket-info[n].pname = tickets[n].cname;
- body.ticket-info[n].flags = tickets[n].flags;
- body.ticket-info[n].authtime = tickets[n].authtime;
- body.ticket-info[n].starttime = tickets[n].starttime;
- body.ticket-info[n].endtime = tickets[n].endtime;
- body.ticket-info[n].renew-till = tickets[n].renew-till;
-
-
-
-Kohl & Neuman [Page 110]
-
-RFC 1510 Kerberos September 1993
-
-
- body.ticket-info[n].srealm = tickets[n].srealm;
- body.ticket-info[n].sname = tickets[n].sname;
- body.ticket-info[n].caddr = tickets[n].caddr;
- done
-
- get system_time;
- body.timestamp, body.usec := system_time;
-
- if (using nonce) then
- body.nonce := nonce;
- endif
-
- if (using s-address) then
- body.s-address := sender host addresses;
- endif
- if (limited recipients) then
- body.r-address := recipient host address;
- endif
-
- encode body into OCTET STRING;
-
- select encryption type;
- encrypt OCTET STRING into packet.enc-part.cipher
- using negotiated encryption key;
-
-A.19. KRB_CRED verification
- receive packet;
- if (packet.pvno != 5) then
- either process using other protocol spec
- or error_out(KRB_AP_ERR_BADVERSION);
- endif
- if (packet.msg-type != KRB_CRED) then
- error_out(KRB_AP_ERR_MSG_TYPE);
- endif
-
- cleartext := decrypt(packet.enc-part) using negotiated key;
- if (decryption_error()) then
- error_out(KRB_AP_ERR_BAD_INTEGRITY);
- endif
- if ((packet.r-address is present or required) and
- (packet.s-address != O/S_sender(packet)) then
- /* O/S report of sender not who claims to have sent it */
- error_out(KRB_AP_ERR_BADADDR);
- endif
- if ((packet.r-address is present) and
- (packet.r-address != local_host_address)) then
- /* was not sent to proper place */
- error_out(KRB_AP_ERR_BADADDR);
-
-
-
-Kohl & Neuman [Page 111]
-
-RFC 1510 Kerberos September 1993
-
-
- endif
- if (not in_clock_skew(packet.timestamp,packet.usec)) then
- error_out(KRB_AP_ERR_SKEW);
- endif
- if (repeated(packet.timestamp,packet.usec,packet.s-address))
- then error_out(KRB_AP_ERR_REPEAT);
- endif
- if (packet.nonce is required or present) and
- (packet.nonce != expected-nonce) then
- error_out(KRB_AP_ERR_MODIFIED);
- endif
-
- for (ticket[n] in tickets that were forwarded) do
- save_for_later(ticket[n],key[n],principal[n],
- server[n],times[n],flags[n]);
- return
-
-A.20. KRB_ERROR generation
-
- /* assemble packet: */
- packet.pvno := protocol version; /* 5 */
- packet.msg-type := message type; /* KRB_ERROR */
-
- get system_time;
- packet.stime, packet.susec := system_time;
- packet.realm, packet.sname := server name;
-
- if (client time available) then
- packet.ctime, packet.cusec := client_time;
- endif
- packet.error-code := error code;
- if (client name available) then
- packet.cname, packet.crealm := client name;
- endif
- if (error text available) then
- packet.e-text := error text;
- endif
- if (error data available) then
- packet.e-data := error data;
- endif
-
-
-
-
-
-
-
-
-
-
-
-Kohl & Neuman [Page 112]
- \ No newline at end of file
OpenPOWER on IntegriCloud