summaryrefslogtreecommitdiffstats
path: root/crypto/heimdal/doc/standardisation/draft-brezak-win2k-krb-rc4-hmac-02.txt
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/heimdal/doc/standardisation/draft-brezak-win2k-krb-rc4-hmac-02.txt')
-rw-r--r--crypto/heimdal/doc/standardisation/draft-brezak-win2k-krb-rc4-hmac-02.txt592
1 files changed, 588 insertions, 4 deletions
diff --git a/crypto/heimdal/doc/standardisation/draft-brezak-win2k-krb-rc4-hmac-02.txt b/crypto/heimdal/doc/standardisation/draft-brezak-win2k-krb-rc4-hmac-02.txt
index 85d7456..1fc9927 100644
--- a/crypto/heimdal/doc/standardisation/draft-brezak-win2k-krb-rc4-hmac-02.txt
+++ b/crypto/heimdal/doc/standardisation/draft-brezak-win2k-krb-rc4-hmac-02.txt
@@ -1,5 +1,589 @@
-This Internet-Draft has expired and is no longer available.
-Unrevised documents placed in the Internet-Drafts directories have a
-maximum life of six months. After that time, they must be updated, or
-they will be deleted. This document was deleted on July 17, 2000.
+
+CAT working group M. Swift
+Internet Draft J. Brezak
+Document: draft-brezak-win2k-krb-rc4-hmac-02.txt Microsoft
+Category: Informational November 2000
+
+
+ The Windows 2000 RC4-HMAC Kerberos encryption type
+
+
+tatus of this Memo
+
+ This document is an Internet-Draft and is in full conformance with
+ all provisions of Section 10 of RFC2026 [1]. Internet-Drafts are
+ working documents of the Internet Engineering Task Force (IETF), its
+ areas, and its working groups. Note that other groups may also
+ distribute working documents as Internet-Drafts. Internet-Drafts are
+ draft documents valid for a maximum of six months and may be
+ updated, replaced, or obsoleted by other documents at any time. It
+ is inappropriate to use Internet- Drafts as reference material or to
+ cite them other than as "work in progress."
+
+ The list of current Internet-Drafts can be accessed at
+ http://www.ietf.org/ietf/1id-abstracts.txt
+ The list of Internet-Draft Shadow Directories can be accessed at
+ http://www.ietf.org/shadow.html.
+
+. Abstract
+
+ The Windows 2000 implementation of Kerberos introduces a new
+ encryption type based on the RC4 encryption algorithm and using an
+ MD5 HMAC for checksum. This is offered as an alternative to using
+ the existing DES based encryption types.
+
+ The RC4-HMAC encryption types are used to ease upgrade of existing
+ Windows NT environments, provide strong crypto (128-bit key
+ lengths), and provide exportable (meet United States government
+ export restriction requirements) encryption.
+
+ The Windows 2000 implementation of Kerberos contains new encryption
+ and checksum types for two reasons: for export reasons early in the
+ development process, 56 bit DES encryption could not be exported,
+ and because upon upgrade from Windows NT 4.0 to Windows 2000,
+ accounts will not have the appropriate DES keying material to do the
+ standard DES encryption. Furthermore, 3DES is not available for
+ export, and there was a desire to use a single flavor of encryption
+ in the product for both US and international products.
+
+ As a result, there are two new encryption types and one new checksum
+ type introduced in Windows 2000.
+
+
+. Conventions used in this document
+
+
+
+wift Category - Informational 1
+
+ Windows 2000 RC4-HMAC Kerberos E-Type June 2000
+
+
+ The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
+ "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
+ this document are to be interpreted as described in RFC-2119 [2].
+
+. Key Generation
+
+ On upgrade from existing Windows NT domains, the user accounts would
+ not have a DES based key available to enable the use of DES base
+ encryption types specified in RFC 1510. The key used for RC4-HMAC is
+ the same as the existing Windows NT key (NT Password Hash) for
+ compatibility reasons. Once the account password is changed, the DES
+ based keys are created and maintained. Once the DES keys are
+ available DES based encryption types can be used with Kerberos.
+
+ The RC4-HMAC String to key function is defined as follow:
+
+ String2Key(password)
+
+ K = MD4(UNICODE(password))
+
+ The RC4-HMAC keys are generated by using the Windows UNICODE version
+ of the password. Each Windows UNICODE character is encoded in
+ little-endian format of 2 octets each. Then performing an MD4 [6]
+ hash operation on just the UNICODE characters of the password (not
+ including the terminating zero octets).
+
+ For an account with a password of "foo", this String2Key("foo") will
+ return:
+
+ 0xac, 0x8e, 0x65, 0x7f, 0x83, 0xdf, 0x82, 0xbe,
+ 0xea, 0x5d, 0x43, 0xbd, 0xaf, 0x78, 0x00, 0xcc
+
+. Basic Operations
+
+ The MD5 HMAC function is defined in [3]. It is used in this
+ encryption type for checksum operations. Refer to [3] for details on
+ its operation. In this document this function is referred to as
+ HMAC(Key, Data) returning the checksum using the specified key on
+ the data.
+
+ The basic MD5 hash operation is used in this encryption type and
+ defined in [7]. In this document this function is referred to as
+ MD5(Data) returning the checksum of the data.
+
+ RC4 is a stream cipher licensed by RSA Data Security [RSADSI]. A
+ compatible cipher is described in [8]. In this document the function
+ is referred to as RC4(Key, Data) returning the encrypted data using
+ the specified key on the data.
+
+ These encryption types use key derivation as defined in [9] (RFC-
+ 1510BIS) in Section titled "Key Derivation". With each message, the
+ message type (T) is used as a component of the keying material. This
+ summarizes the different key derivation values used in the various
+
+wift Category - Informational 2
+
+ Windows 2000 RC4-HMAC Kerberos E-Type June 2000
+
+
+ operations. Note that these differ from the key derivations used in
+ other Kerberos encryption types.
+
+ T = 1 for TS-ENC-TS in the AS-Request
+ T = 8 for the AS-Reply
+ T = 7 for the Authenticator in the TGS-Request
+ T = 8 for the TGS-Reply
+ T = 2 for the Server Ticket in the AP-Request
+ T = 11 for the Authenticator in the AP-Request
+ T = 12 for the Server returned AP-Reply
+ T = 15 in the generation of checksum for the MIC token
+ T = 0 in the generation of sequence number for the MIC token
+ T = 13 in the generation of checksum for the WRAP token
+ T = 0 in the generation of sequence number for the WRAP token
+ T = 0 in the generation of encrypted data for the WRAPPED token
+
+ All strings in this document are ASCII unless otherwise specified.
+ The lengths of ASCII encoded character strings include the trailing
+ terminator character (0).
+
+ The concat(a,b,c,...) function will return the logical concatenation
+ (left to right) of the values of the arguments.
+
+ The nonce(n) function returns a pseudo-random number of "n" octets.
+
+. Checksum Types
+
+ There is one checksum type used in this encryption type. The
+ Kerberos constant for this type is:
+ #define KERB_CHECKSUM_HMAC_MD5 (-138)
+
+ The function is defined as follows:
+
+ K - is the Key
+ T - the message type, encoded as a little-endian four byte integer
+
+ CHKSUM(K, T, data)
+
+ Ksign = HMAC(K, "signaturekey") //includes zero octet at end
+ tmp = MD5(concat(T, data))
+ CHKSUM = HMAC(Ksign, tmp)
+
+
+. Encryption Types
+
+ There are two encryption types used in these encryption types. The
+ Kerberos constants for these types are:
+ #define KERB_ETYPE_RC4_HMAC 23
+ #define KERB_ETYPE_RC4_HMAC_EXP 24
+
+ The basic encryption function is defined as follow:
+
+ T = the message type, encoded as a little-endian four byte integer.
+
+wift Category - Informational 3
+
+ Windows 2000 RC4-HMAC Kerberos E-Type June 2000
+
+
+
+ BYTE L40[14] = "fortybits";
+ BYTE SK = "signaturekey";
+
+ ENCRYPT (K, fRC4_EXP, T, data, data_len, edata, edata_len)
+ {
+ if (fRC4_EXP){
+ *((DWORD *)(L40+10)) = T;
+ HMAC (K, L40, 10 + 4, K1);
+ }else{
+ HMAC (K, &T, 4, K1);
+ }
+ memcpy (K2, K1, 16);
+ if (fRC4_EXP) memset (K1+7, 0xAB, 9);
+ add_8_random_bytes(data, data_len, conf_plus_data);
+ HMAC (K2, conf_plus_data, 8 + data_len, checksum);
+ HMAC (K1, checksum, 16, K3);
+ RC4(K3, conf_plus_data, 8 + data_len, edata + 16);
+ memcpy (edata, checksum, 16);
+ edata_len = 16 + 8 + data_len;
+ }
+
+ DECRYPT (K, fRC4_EXP, T, edata, edata_len, data, data_len)
+ {
+ if (fRC4_EXP){
+ *((DWORD *)(L40+10)) = T;
+ HMAC (K, L40, 14, K1);
+ }else{
+ HMAC (K, &T, 4, K1);
+ }
+ memcpy (K2, K1, 16);
+ if (fRC4_EXP) memset (K1+7, 0xAB, 9);
+ HMAC (K1, edata, 16, K3); // checksum is at edata
+ RC4(K3, edata + 16, edata_len - 16, edata + 16);
+ data_len = edata_len - 16 - 8;
+ memcpy (data, edata + 16 + 8, data_len);
+
+ // verify generated and received checksums
+ HMAC (K2, edata + 16, edata_len - 16, checksum);
+ if (memcmp(edata, checksum, 16) != 0)
+ printf("CHECKSUM ERROR !!!!!!\n");
+ }
+
+ The header field on the encrypted data in KDC messages is:
+
+ typedef struct _RC4_MDx_HEADER {
+ UCHAR Checksum[16];
+ UCHAR Confounder[8];
+ } RC4_MDx_HEADER, *PRC4_MDx_HEADER;
+
+ The KDC message is encrypted using the ENCRYPT function not
+ including the Checksum in the RC4_MDx_HEADER.
+
+
+wift Category - Informational 4
+
+ Windows 2000 RC4-HMAC Kerberos E-Type June 2000
+
+
+ The character constant "fortybits" evolved from the time when a 40-
+ bit key length was all that was exportable from the United States.
+ It is now used to recognize that the key length is of "exportable"
+ length. In this description, the key size is actually 56-bits.
+
+. Key Strength Negotiation
+
+ A Kerberos client and server can negotiate over key length if they
+ are using mutual authentication. If the client is unable to perform
+ full strength encryption, it may propose a key in the "subkey" field
+ of the authenticator, using a weaker encryption type. The server
+ must then either return the same key or suggest its own key in the
+ subkey field of the AP reply message. The key used to encrypt data
+ is derived from the key returned by the server. If the client is
+ able to perform strong encryption but the server is not, it may
+ propose a subkey in the AP reply without first being sent a subkey
+ in the authenticator.
+
+. GSSAPI Kerberos V5 Mechanism Type
+
+.1 Mechanism Specific Changes
+
+ The GSSAPI per-message tokens also require new checksum and
+ encryption types. The GSS-API per-message tokens must be changed to
+ support these new encryption types (See [5] Section 1.2.2). The
+ sealing algorithm identifier (SEAL_ALG) for an RC4 based encryption
+ is:
+ Byte 4..5 SEAL_ALG 0x10 0x00 - RC4
+
+ The signing algorithm identifier (SGN_ALG) for MD5 HMAC is:
+ Byte 2..3 SGN ALG 0x11 0x00 - HMAC
+
+ The only support quality of protection is:
+ #define GSS_KRB5_INTEG_C_QOP_DEFAULT 0x0
+
+ In addition, when using an RC4 based encryption type, the sequence
+ number is sent in big-endian rather than little-endian order.
+
+ The Windows 2000 implementation also defines new GSSAPI flags in the
+ initial token passed when initializing a security context. These
+ flags are passed in the checksum field of the authenticator (See [5]
+ Section 1.1.1).
+
+ GSS_C_DCE_STYLE - This flag was added for use with MicrosoftÆs
+ implementation of DCE RPC, which initially expected three legs of
+ authentication. Setting this flag causes an extra AP reply to be
+ sent from the client back to the server after receiving the serverÆs
+ AP reply. In addition, the context negotiation tokens do not have
+ GSSAPI framing - they are raw AP message and do not include object
+ identifiers.
+ #define GSS_C_DCE_STYLE 0x1000
+
+
+
+wift Category - Informational 5
+
+ Windows 2000 RC4-HMAC Kerberos E-Type June 2000
+
+
+ GSS_C_IDENTIFY_FLAG - This flag allows the client to indicate to the
+ server that it should only allow the server application to identify
+ the client by name and ID, but not to impersonate the client.
+ #define GSS_C_IDENTIFY_FLAG 0x2000
+
+ GSS_C_EXTENDED_ERROR_FLAG - Setting this flag indicates that the
+ client wants to be informed of extended error information. In
+ particular, Windows 2000 status codes may be returned in the data
+ field of a Kerberos error message. This allows the client to
+ understand a server failure more precisely. In addition, the server
+ may return errors to the client that are normally handled at the
+ application layer in the server, in order to let the client try to
+ recover. After receiving an error message, the client may attempt to
+ resubmit an AP request.
+ #define GSS_C_EXTENDED_ERROR_FLAG 0x4000
+
+ These flags are only used if a client is aware of these conventions
+ when using the SSPI on the Windows platform, they are not generally
+ used by default.
+
+ When NetBIOS addresses are used in the GSSAPI, they are identified
+ by the GSS_C_AF_NETBIOS value. This value is defined as:
+ #define GSS_C_AF_NETBIOS 0x14
+ NetBios addresses are 16-octet addresses typically composed of 1 to th 15 characters, trailing blank (ascii char 20) filled, with a 16
+ octet of 0x0.
+
+.2 GSSAPI Checksum Type
+
+ The GSSAPI checksum type and algorithm is defined in Section 5. Only
+ the first 8 octets of the checksum are used. The resulting checksum
+ is stored in the SGN_CKSUM field (See [5] Section 1.2) for
+ GSS_GetMIC() and GSS_Wrap(conf_flag=FALSE).
+
+ MIC (K, fRC4_EXP, seq_num, MIC_hdr, msg, msg_len,
+ MIC_seq, MIC_checksum)
+ {
+ HMAC (K, SK, 13, K4);
+ T = 15;
+ memcpy (T_plus_hdr_plus_msg + 00, &T, 4);
+ memcpy (T_plus_hdr_plus_msg + 04, MIC_hdr, 8);
+ // 0101 1100 FFFFFFFF
+ memcpy (T_plus_hdr_plus_msg + 12, msg, msg_len);
+ MD5 (T_hdr_msg, 4 + 8 + msg_len, MD5_of_T_hdr_msg);
+ HMAC (K4, MD5_of_T_hdr_msg, CHKSUM);
+ memcpy (MIC_checksum, CHKSUM, 8); // use only first 8 bytes
+
+ T = 0;
+ if (fRC4_EXP){
+ *((DWORD *)(L40+10)) = T;
+ HMAC (K, L40, 14, K5);
+ }else{
+ HMAC (K, &T, 4, K5);
+
+wift Category - Informational 6
+
+ Windows 2000 RC4-HMAC Kerberos E-Type June 2000
+
+
+ }
+ if (fRC4_EXP) memset(K5+7, 0xAB, 9);
+ HMAC(K5, MIT_checksum, 8, K6);
+ copy_seq_num_in_big_endian(seq_num, seq_plus_direction);
+ //0x12345678
+ copy_direction_flag (direction_flag, seq_plus_direction +
+ 4); //0x12345678FFFFFFFF
+ RC4(K6, seq_plus_direction, 8, MIC_seq);
+ }
+
+.3 GSSAPI Encryption Types
+
+ There are two encryption types for GSSAPI message tokens, one that
+ is 128 bits in strength, and one that is 56 bits in strength as
+ defined in Section 6.
+
+ All padding is rounded up to 1 byte. One byte is needed to say that
+ there is 1 byte of padding. The DES based mechanism type uses 8 byte
+ padding. See [5] Section 1.2.2.3.
+
+ The encryption mechanism used for GSS wrap based messages is as
+ follow:
+
+
+ WRAP (K, fRC4_EXP, seq_num, WRAP_hdr, msg, msg_len,
+ WRAP_seq, WRAP_checksum, edata, edata_len)
+ {
+ HMAC (K, SK, 13, K7);
+ T = 13;
+ PAD = 1;
+ memcpy (T_hdr_conf_msg_pad + 00, &T, 4);
+ memcpy (T_hdr_conf_msg_pad + 04, WRAP_hdr, 8); // 0101 1100
+ FFFFFFFF
+ memcpy (T_hdr_conf_msg_pad + 12, msg, msg_len);
+ memcpy (T_hdr_conf_msg_pad + 12 + msg_len, &PAD, 1);
+ MD5 (T_hdr_conf_msg_pad,
+ 4 + 8 + 8 + msg_len + 1,
+ MD5_of_T_hdr_conf_msg_pad);
+ HMAC (K7, MD5_of_T_hdr_conf_msg_pad, CHKSUM);
+ memcpy (WRAP_checksum, CHKSUM, 8); // use only first 8
+ bytes
+
+ T = 0;
+ if (fRC4_EXP){
+ *((DWORD *)(L40+10)) = T;
+ HMAC (K, L40, 14, K8);
+ }else{
+ HMAC (K, &T, 4, K8);
+ }
+ if (fRC4_EXP) memset(K8+7, 0xAB, 9);
+ HMAC(K8, WRAP_checksum, 8, K9);
+ copy_seq_num_in_big_endian(seq_num, seq_plus_direction);
+ //0x12345678
+
+wift Category - Informational 7
+
+ Windows 2000 RC4-HMAC Kerberos E-Type June 2000
+
+
+ copy_direction_flag (direction_flag, seq_plus_direction +
+ 4); //0x12345678FFFFFFFF
+ RC4(K9, seq_plus_direction, 8, WRAP_seq);
+
+ for (i = 0; i < 16; i++) K10 [i] ^= 0xF0; // XOR each byte
+ of key with 0xF0
+ T = 0;
+ if (fRC4_EXP){
+ *(DWORD *)(L40+10) = T;
+ HMAC(K10, L40, 14, K11);
+ memset(K11+7, 0xAB, 9);
+ }else{
+ HMAC(K10, &T, 4, K11);
+ }
+ HMAC(K11, seq_num, 4, K12);
+ RC4(K12, T_hdr_conf_msg_pad + 4 + 8, 8 + msg_len + 1,
+ edata); /* skip T & hdr */
+ edata_len = 8 + msg_len + 1; // conf + msg_len + pad
+ }
+
+
+ The character constant "fortybits" evolved from the time when a 40-
+ bit key length was all that was exportable from the United States.
+ It is now used to recognize that the key length is of "exportable"
+ length. In this description, the key size is actually 56-bits.
+
+. Security Considerations
+
+ Care must be taken in implementing this encryption type because it
+ uses a stream cipher. If a different IV isnÆt used in each direction
+ when using a session key, the encryption is weak. By using the
+ sequence number as an IV, this is avoided.
+
+0. Acknowledgements
+
+ We would like to thank Salil Dangi for the valuable input in
+ refining the descriptions of the functions and review input.
+
+1. References
+
+ 1 Bradner, S., "The Internet Standards Process -- Revision 3", BCP
+ 9, RFC 2026, October 1996.
+
+ 2 Bradner, S., "Key words for use in RFCs to Indicate Requirement
+ Levels", BCP 14, RFC 2119, March 1997
+
+ 3 Krawczyk, H., Bellare, M., Canetti, R.,"HMAC: Keyed-Hashing for
+ Message Authentication", RFC 2104, February 1997
+
+ 4 Kohl, J., Neuman, C., "The Kerberos Network Authentication
+ Service (V5)", RFC 1510, September 1993
+
+
+
+wift Category - Informational 8
+
+ Windows 2000 RC4-HMAC Kerberos E-Type June 2000
+
+
+
+ 5 Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC-1964,
+ June 1996
+
+ 6 R. Rivest, "The MD4 Message-Digest Algorithm", RFC-1320, April
+ 1992
+
+ 7 R. Rivest, "The MD5 Message-Digest Algorithm", RFC-1321, April
+ 1992
+
+ 8 Thayer, R. and K. Kaukonen, "A Stream Cipher Encryption
+ Algorithm", Work in Progress.
+
+ 9 RC4 is a proprietary encryption algorithm available under license
+ from RSA Data Security Inc. For licensing information, contact:
+
+ RSA Data Security, Inc.
+ 100 Marine Parkway
+ Redwood City, CA 94065-1031
+
+ 10 Neuman, C., Kohl, J., Ts'o, T., "The Kerberos Network
+ Authentication Service (V5)", draft-ietf-cat-kerberos-revisions-
+ 04.txt, June 25, 1999
+
+
+2. Author's Addresses
+
+ Mike Swift
+ Dept. of Computer Science
+ Sieg Hall
+ University of Washington
+ Seattle, WA 98105
+ Email: mikesw@cs.washington.edu
+
+ John Brezak
+ Microsoft
+ One Microsoft Way
+ Redmond, Washington
+ Email: jbrezak@microsoft.com
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+wift Category - Informational 9
+
+ Windows 2000 RC4-HMAC Kerberos E-Type October 1999
+
+
+
+3. Full Copyright Statement
+
+ "Copyright (C) The Internet Society (2000). All Rights Reserved.
+
+ This document and translations of it may be copied and
+ furnished to others, and derivative works that comment on or
+ otherwise explain it or assist in its implementation may be
+ prepared, copied, published and distributed, in whole or in
+ part, without restriction of any kind, provided that the above
+ copyright notice and this paragraph are included on all such
+ copies and derivative works. However, this document itself may
+ not be modified in any way, such as by removing the copyright
+ notice or references to the Internet Society or other Internet
+ organizations, except as needed for the purpose of developing
+ Internet standards in which case the procedures for copyrights
+ defined in the Internet Standards process must be followed, or
+ as required to translate it into languages other than English.
+
+ The limited permissions granted above are perpetual and will
+ not be revoked by the Internet Society or its successors or
+ assigns.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+wift Category - Informational 10
+
OpenPOWER on IntegriCloud