summaryrefslogtreecommitdiffstats
path: root/crypto/bn/bn_gf2m.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/bn/bn_gf2m.c')
-rw-r--r--crypto/bn/bn_gf2m.c250
1 files changed, 133 insertions, 117 deletions
diff --git a/crypto/bn/bn_gf2m.c b/crypto/bn/bn_gf2m.c
index 5d90f1e..8a4dc20 100644
--- a/crypto/bn/bn_gf2m.c
+++ b/crypto/bn/bn_gf2m.c
@@ -94,6 +94,8 @@
#include "cryptlib.h"
#include "bn_lcl.h"
+#ifndef OPENSSL_NO_EC2M
+
/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
#define MAX_ITERATIONS 50
@@ -121,74 +123,13 @@ static const BN_ULONG SQR_tb[16] =
SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
#endif
-#ifdef SIXTEEN_BIT
-#define SQR1(w) \
- SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF]
-#define SQR0(w) \
- SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
-#endif
-#ifdef EIGHT_BIT
-#define SQR1(w) \
- SQR_tb[(w) >> 4 & 0xF]
-#define SQR0(w) \
- SQR_tb[(w) & 15]
-#endif
+#if !defined(OPENSSL_BN_ASM_GF2m)
/* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
* result is a polynomial r with degree < 2 * BN_BITS - 1
* The caller MUST ensure that the variables have the right amount
* of space allocated.
*/
-#ifdef EIGHT_BIT
-static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
- {
- register BN_ULONG h, l, s;
- BN_ULONG tab[4], top1b = a >> 7;
- register BN_ULONG a1, a2;
-
- a1 = a & (0x7F); a2 = a1 << 1;
-
- tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
-
- s = tab[b & 0x3]; l = s;
- s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 6;
- s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
- s = tab[b >> 6 ]; l ^= s << 6; h ^= s >> 2;
-
- /* compensate for the top bit of a */
-
- if (top1b & 01) { l ^= b << 7; h ^= b >> 1; }
-
- *r1 = h; *r0 = l;
- }
-#endif
-#ifdef SIXTEEN_BIT
-static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
- {
- register BN_ULONG h, l, s;
- BN_ULONG tab[4], top1b = a >> 15;
- register BN_ULONG a1, a2;
-
- a1 = a & (0x7FFF); a2 = a1 << 1;
-
- tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
-
- s = tab[b & 0x3]; l = s;
- s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 14;
- s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 12;
- s = tab[b >> 6 & 0x3]; l ^= s << 6; h ^= s >> 10;
- s = tab[b >> 8 & 0x3]; l ^= s << 8; h ^= s >> 8;
- s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >> 6;
- s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >> 4;
- s = tab[b >>14 ]; l ^= s << 14; h ^= s >> 2;
-
- /* compensate for the top bit of a */
-
- if (top1b & 01) { l ^= b << 15; h ^= b >> 1; }
-
- *r1 = h; *r0 = l;
- }
-#endif
#ifdef THIRTY_TWO_BIT
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
{
@@ -278,7 +219,9 @@ static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, c
r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
}
-
+#else
+void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
+#endif
/* Add polynomials a and b and store result in r; r could be a or b, a and b
* could be equal; r is the bitwise XOR of a and b.
@@ -321,7 +264,7 @@ int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
/* Performs modular reduction of a and store result in r. r could be a. */
-int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
+int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
{
int j, k;
int n, dN, d0, d1;
@@ -422,21 +365,17 @@ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
{
int ret = 0;
- const int max = BN_num_bits(p);
- unsigned int *arr=NULL;
+ int arr[6];
bn_check_top(a);
bn_check_top(p);
- if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
- ret = BN_GF2m_poly2arr(p, arr, max);
- if (!ret || ret > max)
+ ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0]));
+ if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0])))
{
BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
- goto err;
+ return 0;
}
ret = BN_GF2m_mod_arr(r, a, arr);
bn_check_top(r);
-err:
- if (arr) OPENSSL_free(arr);
return ret;
}
@@ -444,7 +383,7 @@ err:
/* Compute the product of two polynomials a and b, reduce modulo p, and store
* the result in r. r could be a or b; a could be b.
*/
-int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
{
int zlen, i, j, k, ret = 0;
BIGNUM *s;
@@ -500,12 +439,12 @@ err:
int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
{
int ret = 0;
- const int max = BN_num_bits(p);
- unsigned int *arr=NULL;
+ const int max = BN_num_bits(p) + 1;
+ int *arr=NULL;
bn_check_top(a);
bn_check_top(b);
bn_check_top(p);
- if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+ if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
ret = BN_GF2m_poly2arr(p, arr, max);
if (!ret || ret > max)
{
@@ -521,7 +460,7 @@ err:
/* Square a, reduce the result mod p, and store it in a. r could be a. */
-int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
{
int i, ret = 0;
BIGNUM *s;
@@ -556,12 +495,12 @@ err:
int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
{
int ret = 0;
- const int max = BN_num_bits(p);
- unsigned int *arr=NULL;
+ const int max = BN_num_bits(p) + 1;
+ int *arr=NULL;
bn_check_top(a);
bn_check_top(p);
- if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+ if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
ret = BN_GF2m_poly2arr(p, arr, max);
if (!ret || ret > max)
{
@@ -583,7 +522,7 @@ err:
*/
int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
{
- BIGNUM *b, *c, *u, *v, *tmp;
+ BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
int ret = 0;
bn_check_top(a);
@@ -591,18 +530,18 @@ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
BN_CTX_start(ctx);
- b = BN_CTX_get(ctx);
- c = BN_CTX_get(ctx);
- u = BN_CTX_get(ctx);
- v = BN_CTX_get(ctx);
- if (v == NULL) goto err;
+ if ((b = BN_CTX_get(ctx))==NULL) goto err;
+ if ((c = BN_CTX_get(ctx))==NULL) goto err;
+ if ((u = BN_CTX_get(ctx))==NULL) goto err;
+ if ((v = BN_CTX_get(ctx))==NULL) goto err;
- if (!BN_one(b)) goto err;
if (!BN_GF2m_mod(u, a, p)) goto err;
- if (!BN_copy(v, p)) goto err;
-
if (BN_is_zero(u)) goto err;
+ if (!BN_copy(v, p)) goto err;
+#if 0
+ if (!BN_one(b)) goto err;
+
while (1)
{
while (!BN_is_odd(u))
@@ -627,13 +566,89 @@ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
if (!BN_GF2m_add(u, u, v)) goto err;
if (!BN_GF2m_add(b, b, c)) goto err;
}
+#else
+ {
+ int i, ubits = BN_num_bits(u),
+ vbits = BN_num_bits(v), /* v is copy of p */
+ top = p->top;
+ BN_ULONG *udp,*bdp,*vdp,*cdp;
+
+ bn_wexpand(u,top); udp = u->d;
+ for (i=u->top;i<top;i++) udp[i] = 0;
+ u->top = top;
+ bn_wexpand(b,top); bdp = b->d;
+ bdp[0] = 1;
+ for (i=1;i<top;i++) bdp[i] = 0;
+ b->top = top;
+ bn_wexpand(c,top); cdp = c->d;
+ for (i=0;i<top;i++) cdp[i] = 0;
+ c->top = top;
+ vdp = v->d; /* It pays off to "cache" *->d pointers, because
+ * it allows optimizer to be more aggressive.
+ * But we don't have to "cache" p->d, because *p
+ * is declared 'const'... */
+ while (1)
+ {
+ while (ubits && !(udp[0]&1))
+ {
+ BN_ULONG u0,u1,b0,b1,mask;
+
+ u0 = udp[0];
+ b0 = bdp[0];
+ mask = (BN_ULONG)0-(b0&1);
+ b0 ^= p->d[0]&mask;
+ for (i=0;i<top-1;i++)
+ {
+ u1 = udp[i+1];
+ udp[i] = ((u0>>1)|(u1<<(BN_BITS2-1)))&BN_MASK2;
+ u0 = u1;
+ b1 = bdp[i+1]^(p->d[i+1]&mask);
+ bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2;
+ b0 = b1;
+ }
+ udp[i] = u0>>1;
+ bdp[i] = b0>>1;
+ ubits--;
+ }
+
+ if (ubits<=BN_BITS2 && udp[0]==1) break;
+ if (ubits<vbits)
+ {
+ i = ubits; ubits = vbits; vbits = i;
+ tmp = u; u = v; v = tmp;
+ tmp = b; b = c; c = tmp;
+ udp = vdp; vdp = v->d;
+ bdp = cdp; cdp = c->d;
+ }
+ for(i=0;i<top;i++)
+ {
+ udp[i] ^= vdp[i];
+ bdp[i] ^= cdp[i];
+ }
+ if (ubits==vbits)
+ {
+ BN_ULONG ul;
+ int utop = (ubits-1)/BN_BITS2;
+
+ while ((ul=udp[utop])==0 && utop) utop--;
+ ubits = utop*BN_BITS2 + BN_num_bits_word(ul);
+ }
+ }
+ bn_correct_top(b);
+ }
+#endif
if (!BN_copy(r, b)) goto err;
bn_check_top(r);
ret = 1;
err:
+#ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
+ bn_correct_top(c);
+ bn_correct_top(u);
+ bn_correct_top(v);
+#endif
BN_CTX_end(ctx);
return ret;
}
@@ -644,7 +659,7 @@ err:
* function is only provided for convenience; for best performance, use the
* BN_GF2m_mod_inv function.
*/
-int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
{
BIGNUM *field;
int ret = 0;
@@ -770,7 +785,7 @@ err:
* function is only provided for convenience; for best performance, use the
* BN_GF2m_mod_div function.
*/
-int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
{
BIGNUM *field;
int ret = 0;
@@ -795,7 +810,7 @@ err:
* the result in r. r could be a.
* Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
*/
-int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
{
int ret = 0, i, n;
BIGNUM *u;
@@ -841,12 +856,12 @@ err:
int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
{
int ret = 0;
- const int max = BN_num_bits(p);
- unsigned int *arr=NULL;
+ const int max = BN_num_bits(p) + 1;
+ int *arr=NULL;
bn_check_top(a);
bn_check_top(b);
bn_check_top(p);
- if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+ if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
ret = BN_GF2m_poly2arr(p, arr, max);
if (!ret || ret > max)
{
@@ -864,7 +879,7 @@ err:
* the result in r. r could be a.
* Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
*/
-int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
{
int ret = 0;
BIGNUM *u;
@@ -900,11 +915,11 @@ err:
int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
{
int ret = 0;
- const int max = BN_num_bits(p);
- unsigned int *arr=NULL;
+ const int max = BN_num_bits(p) + 1;
+ int *arr=NULL;
bn_check_top(a);
bn_check_top(p);
- if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
+ if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
ret = BN_GF2m_poly2arr(p, arr, max);
if (!ret || ret > max)
{
@@ -921,10 +936,9 @@ err:
/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
* Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
*/
-int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
+int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
{
- int ret = 0, count = 0;
- unsigned int j;
+ int ret = 0, count = 0, j;
BIGNUM *a, *z, *rho, *w, *w2, *tmp;
bn_check_top(a_);
@@ -1019,11 +1033,11 @@ err:
int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
{
int ret = 0;
- const int max = BN_num_bits(p);
- unsigned int *arr=NULL;
+ const int max = BN_num_bits(p) + 1;
+ int *arr=NULL;
bn_check_top(a);
bn_check_top(p);
- if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) *
+ if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
max)) == NULL) goto err;
ret = BN_GF2m_poly2arr(p, arr, max);
if (!ret || ret > max)
@@ -1039,20 +1053,17 @@ err:
}
/* Convert the bit-string representation of a polynomial
- * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array
- * of integers corresponding to the bits with non-zero coefficient.
+ * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
+ * to the bits with non-zero coefficient. Array is terminated with -1.
* Up to max elements of the array will be filled. Return value is total
- * number of coefficients that would be extracted if array was large enough.
+ * number of array elements that would be filled if array was large enough.
*/
-int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
+int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
{
int i, j, k = 0;
BN_ULONG mask;
- if (BN_is_zero(a) || !BN_is_bit_set(a, 0))
- /* a_0 == 0 => return error (the unsigned int array
- * must be terminated by 0)
- */
+ if (BN_is_zero(a))
return 0;
for (i = a->top - 1; i >= 0; i--)
@@ -1072,26 +1083,31 @@ int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
}
}
+ if (k < max) {
+ p[k] = -1;
+ k++;
+ }
+
return k;
}
/* Convert the coefficient array representation of a polynomial to a
- * bit-string. The array must be terminated by 0.
+ * bit-string. The array must be terminated by -1.
*/
-int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
+int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
{
int i;
bn_check_top(a);
BN_zero(a);
- for (i = 0; p[i] != 0; i++)
+ for (i = 0; p[i] != -1; i++)
{
if (BN_set_bit(a, p[i]) == 0)
return 0;
}
- BN_set_bit(a, 0);
bn_check_top(a);
return 1;
}
+#endif
OpenPOWER on IntegriCloud