summaryrefslogtreecommitdiffstats
path: root/contrib/perl5/pod/perlhack.pod
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/perl5/pod/perlhack.pod')
-rw-r--r--contrib/perl5/pod/perlhack.pod1722
1 files changed, 0 insertions, 1722 deletions
diff --git a/contrib/perl5/pod/perlhack.pod b/contrib/perl5/pod/perlhack.pod
deleted file mode 100644
index d524fe5..0000000
--- a/contrib/perl5/pod/perlhack.pod
+++ /dev/null
@@ -1,1722 +0,0 @@
-=head1 NAME
-
-perlhack - How to hack at the Perl internals
-
-=head1 DESCRIPTION
-
-This document attempts to explain how Perl development takes place,
-and ends with some suggestions for people wanting to become bona fide
-porters.
-
-The perl5-porters mailing list is where the Perl standard distribution
-is maintained and developed. The list can get anywhere from 10 to 150
-messages a day, depending on the heatedness of the debate. Most days
-there are two or three patches, extensions, features, or bugs being
-discussed at a time.
-
-A searchable archive of the list is at:
-
- http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/
-
-The list is also archived under the usenet group name
-C<perl.porters-gw> at:
-
- http://www.deja.com/
-
-List subscribers (the porters themselves) come in several flavours.
-Some are quiet curious lurkers, who rarely pitch in and instead watch
-the ongoing development to ensure they're forewarned of new changes or
-features in Perl. Some are representatives of vendors, who are there
-to make sure that Perl continues to compile and work on their
-platforms. Some patch any reported bug that they know how to fix,
-some are actively patching their pet area (threads, Win32, the regexp
-engine), while others seem to do nothing but complain. In other
-words, it's your usual mix of technical people.
-
-Over this group of porters presides Larry Wall. He has the final word
-in what does and does not change in the Perl language. Various
-releases of Perl are shepherded by a ``pumpking'', a porter
-responsible for gathering patches, deciding on a patch-by-patch
-feature-by-feature basis what will and will not go into the release.
-For instance, Gurusamy Sarathy is the pumpking for the 5.6 release of
-Perl.
-
-In addition, various people are pumpkings for different things. For
-instance, Andy Dougherty and Jarkko Hietaniemi share the I<Configure>
-pumpkin, and Tom Christiansen is the documentation pumpking.
-
-Larry sees Perl development along the lines of the US government:
-there's the Legislature (the porters), the Executive branch (the
-pumpkings), and the Supreme Court (Larry). The legislature can
-discuss and submit patches to the executive branch all they like, but
-the executive branch is free to veto them. Rarely, the Supreme Court
-will side with the executive branch over the legislature, or the
-legislature over the executive branch. Mostly, however, the
-legislature and the executive branch are supposed to get along and
-work out their differences without impeachment or court cases.
-
-You might sometimes see reference to Rule 1 and Rule 2. Larry's power
-as Supreme Court is expressed in The Rules:
-
-=over 4
-
-=item 1
-
-Larry is always by definition right about how Perl should behave.
-This means he has final veto power on the core functionality.
-
-=item 2
-
-Larry is allowed to change his mind about any matter at a later date,
-regardless of whether he previously invoked Rule 1.
-
-=back
-
-Got that? Larry is always right, even when he was wrong. It's rare
-to see either Rule exercised, but they are often alluded to.
-
-New features and extensions to the language are contentious, because
-the criteria used by the pumpkings, Larry, and other porters to decide
-which features should be implemented and incorporated are not codified
-in a few small design goals as with some other languages. Instead,
-the heuristics are flexible and often difficult to fathom. Here is
-one person's list, roughly in decreasing order of importance, of
-heuristics that new features have to be weighed against:
-
-=over 4
-
-=item Does concept match the general goals of Perl?
-
-These haven't been written anywhere in stone, but one approximation
-is:
-
- 1. Keep it fast, simple, and useful.
- 2. Keep features/concepts as orthogonal as possible.
- 3. No arbitrary limits (platforms, data sizes, cultures).
- 4. Keep it open and exciting to use/patch/advocate Perl everywhere.
- 5. Either assimilate new technologies, or build bridges to them.
-
-=item Where is the implementation?
-
-All the talk in the world is useless without an implementation. In
-almost every case, the person or people who argue for a new feature
-will be expected to be the ones who implement it. Porters capable
-of coding new features have their own agendas, and are not available
-to implement your (possibly good) idea.
-
-=item Backwards compatibility
-
-It's a cardinal sin to break existing Perl programs. New warnings are
-contentious--some say that a program that emits warnings is not
-broken, while others say it is. Adding keywords has the potential to
-break programs, changing the meaning of existing token sequences or
-functions might break programs.
-
-=item Could it be a module instead?
-
-Perl 5 has extension mechanisms, modules and XS, specifically to avoid
-the need to keep changing the Perl interpreter. You can write modules
-that export functions, you can give those functions prototypes so they
-can be called like built-in functions, you can even write XS code to
-mess with the runtime data structures of the Perl interpreter if you
-want to implement really complicated things. If it can be done in a
-module instead of in the core, it's highly unlikely to be added.
-
-=item Is the feature generic enough?
-
-Is this something that only the submitter wants added to the language,
-or would it be broadly useful? Sometimes, instead of adding a feature
-with a tight focus, the porters might decide to wait until someone
-implements the more generalized feature. For instance, instead of
-implementing a ``delayed evaluation'' feature, the porters are waiting
-for a macro system that would permit delayed evaluation and much more.
-
-=item Does it potentially introduce new bugs?
-
-Radical rewrites of large chunks of the Perl interpreter have the
-potential to introduce new bugs. The smaller and more localized the
-change, the better.
-
-=item Does it preclude other desirable features?
-
-A patch is likely to be rejected if it closes off future avenues of
-development. For instance, a patch that placed a true and final
-interpretation on prototypes is likely to be rejected because there
-are still options for the future of prototypes that haven't been
-addressed.
-
-=item Is the implementation robust?
-
-Good patches (tight code, complete, correct) stand more chance of
-going in. Sloppy or incorrect patches might be placed on the back
-burner until the pumpking has time to fix, or might be discarded
-altogether without further notice.
-
-=item Is the implementation generic enough to be portable?
-
-The worst patches make use of a system-specific features. It's highly
-unlikely that nonportable additions to the Perl language will be
-accepted.
-
-=item Is there enough documentation?
-
-Patches without documentation are probably ill-thought out or
-incomplete. Nothing can be added without documentation, so submitting
-a patch for the appropriate manpages as well as the source code is
-always a good idea. If appropriate, patches should add to the test
-suite as well.
-
-=item Is there another way to do it?
-
-Larry said ``Although the Perl Slogan is I<There's More Than One Way
-to Do It>, I hesitate to make 10 ways to do something''. This is a
-tricky heuristic to navigate, though--one man's essential addition is
-another man's pointless cruft.
-
-=item Does it create too much work?
-
-Work for the pumpking, work for Perl programmers, work for module
-authors, ... Perl is supposed to be easy.
-
-=item Patches speak louder than words
-
-Working code is always preferred to pie-in-the-sky ideas. A patch to
-add a feature stands a much higher chance of making it to the language
-than does a random feature request, no matter how fervently argued the
-request might be. This ties into ``Will it be useful?'', as the fact
-that someone took the time to make the patch demonstrates a strong
-desire for the feature.
-
-=back
-
-If you're on the list, you might hear the word ``core'' bandied
-around. It refers to the standard distribution. ``Hacking on the
-core'' means you're changing the C source code to the Perl
-interpreter. ``A core module'' is one that ships with Perl.
-
-=head2 Keeping in sync
-
-The source code to the Perl interpreter, in its different versions, is
-kept in a repository managed by a revision control system (which is
-currently the Perforce program, see http://perforce.com/). The
-pumpkings and a few others have access to the repository to check in
-changes. Periodically the pumpking for the development version of Perl
-will release a new version, so the rest of the porters can see what's
-changed. The current state of the main trunk of repository, and patches
-that describe the individual changes that have happened since the last
-public release are available at this location:
-
- ftp://ftp.linux.activestate.com/pub/staff/gsar/APC/
-
-If you are a member of the perl5-porters mailing list, it is a good
-thing to keep in touch with the most recent changes. If not only to
-verify if what you would have posted as a bug report isn't already
-solved in the most recent available perl development branch, also
-known as perl-current, bleading edge perl, bleedperl or bleadperl.
-
-Needless to say, the source code in perl-current is usually in a perpetual
-state of evolution. You should expect it to be very buggy. Do B<not> use
-it for any purpose other than testing and development.
-
-Keeping in sync with the most recent branch can be done in several ways,
-but the most convenient and reliable way is using B<rsync>, available at
-ftp://rsync.samba.org/pub/rsync/ . (You can also get the most recent
-branch by FTP.)
-
-If you choose to keep in sync using rsync, there are two approaches
-to doing so:
-
-=over 4
-
-=item rsync'ing the source tree
-
-Presuming you are in the directory where your perl source resides
-and you have rsync installed and available, you can `upgrade' to
-the bleadperl using:
-
- # rsync -avz rsync://ftp.linux.activestate.com/perl-current/ .
-
-This takes care of updating every single item in the source tree to
-the latest applied patch level, creating files that are new (to your
-distribution) and setting date/time stamps of existing files to
-reflect the bleadperl status.
-
-You can than check what patch was the latest that was applied by
-looking in the file B<.patch>, which will show the number of the
-latest patch.
-
-If you have more than one machine to keep in sync, and not all of
-them have access to the WAN (so you are not able to rsync all the
-source trees to the real source), there are some ways to get around
-this problem.
-
-=over 4
-
-=item Using rsync over the LAN
-
-Set up a local rsync server which makes the rsynced source tree
-available to the LAN and sync the other machines against this
-directory.
-
-From http://rsync.samba.org/README.html:
-
- "Rsync uses rsh or ssh for communication. It does not need to be
- setuid and requires no special privileges for installation. It
- does not require a inetd entry or a deamon. You must, however,
- have a working rsh or ssh system. Using ssh is recommended for
- its security features."
-
-=item Using pushing over the NFS
-
-Having the other systems mounted over the NFS, you can take an
-active pushing approach by checking the just updated tree against
-the other not-yet synced trees. An example would be
-
- #!/usr/bin/perl -w
-
- use strict;
- use File::Copy;
-
- my %MF = map {
- m/(\S+)/;
- $1 => [ (stat $1)[2, 7, 9] ]; # mode, size, mtime
- } `cat MANIFEST`;
-
- my %remote = map { $_ => "/$_/pro/3gl/CPAN/perl-5.7.1" } qw(host1 host2);
-
- foreach my $host (keys %remote) {
- unless (-d $remote{$host}) {
- print STDERR "Cannot Xsync for host $host\n";
- next;
- }
- foreach my $file (keys %MF) {
- my $rfile = "$remote{$host}/$file";
- my ($mode, $size, $mtime) = (stat $rfile)[2, 7, 9];
- defined $size or ($mode, $size, $mtime) = (0, 0, 0);
- $size == $MF{$file}[1] && $mtime == $MF{$file}[2] and next;
- printf "%4s %-34s %8d %9d %8d %9d\n",
- $host, $file, $MF{$file}[1], $MF{$file}[2], $size, $mtime;
- unlink $rfile;
- copy ($file, $rfile);
- utime time, $MF{$file}[2], $rfile;
- chmod $MF{$file}[0], $rfile;
- }
- }
-
-though this is not perfect. It could be improved with checking
-file checksums before updating. Not all NFS systems support
-reliable utime support (when used over the NFS).
-
-=back
-
-=item rsync'ing the patches
-
-The source tree is maintained by the pumpking who applies patches to
-the files in the tree. These patches are either created by the
-pumpking himself using C<diff -c> after updating the file manually or
-by applying patches sent in by posters on the perl5-porters list.
-These patches are also saved and rsync'able, so you can apply them
-yourself to the source files.
-
-Presuming you are in a directory where your patches reside, you can
-get them in sync with
-
- # rsync -avz rsync://ftp.linux.activestate.com/perl-current-diffs/ .
-
-This makes sure the latest available patch is downloaded to your
-patch directory.
-
-It's then up to you to apply these patches, using something like
-
- # last=`ls -rt1 *.gz | tail -1`
- # rsync -avz rsync://ftp.linux.activestate.com/perl-current-diffs/ .
- # find . -name '*.gz' -newer $last -exec gzcat {} \; >blead.patch
- # cd ../perl-current
- # patch -p1 -N <../perl-current-diffs/blead.patch
-
-or, since this is only a hint towards how it works, use CPAN-patchaperl
-from Andreas König to have better control over the patching process.
-
-=back
-
-=head2 Why rsync the source tree
-
-=over 4
-
-=item It's easier
-
-Since you don't have to apply the patches yourself, you are sure all
-files in the source tree are in the right state.
-
-=item It's more recent
-
-According to Gurusamy Sarathy:
-
- "... The rsync mirror is automatic and syncs with the repository
- every five minutes.
-
- "Updating the patch area still requires manual intervention
- (with all the goofiness that implies, which you've noted) and
- is typically on a daily cycle. Making this process automatic
- is on my tuit list, but don't ask me when."
-
-=item It's more reliable
-
-Well, since the patches are updated by hand, I don't have to say any
-more ... (see Sarathy's remark).
-
-=back
-
-=head2 Why rsync the patches
-
-=over 4
-
-=item It's easier
-
-If you have more than one machine that you want to keep in track with
-bleadperl, it's easier to rsync the patches only once and then apply
-them to all the source trees on the different machines.
-
-In case you try to keep in pace on 5 different machines, for which
-only one of them has access to the WAN, rsync'ing all the source
-trees should than be done 5 times over the NFS. Having
-rsync'ed the patches only once, I can apply them to all the source
-trees automatically. Need you say more ;-)
-
-=item It's a good reference
-
-If you do not only like to have the most recent development branch,
-but also like to B<fix> bugs, or extend features, you want to dive
-into the sources. If you are a seasoned perl core diver, you don't
-need no manuals, tips, roadmaps, perlguts.pod or other aids to find
-your way around. But if you are a starter, the patches may help you
-in finding where you should start and how to change the bits that
-bug you.
-
-The file B<Changes> is updated on occasions the pumpking sees as his
-own little sync points. On those occasions, he releases a tar-ball of
-the current source tree (i.e. perl@7582.tar.gz), which will be an
-excellent point to start with when choosing to use the 'rsync the
-patches' scheme. Starting with perl@7582, which means a set of source
-files on which the latest applied patch is number 7582, you apply all
-succeeding patches available from then on (7583, 7584, ...).
-
-You can use the patches later as a kind of search archive.
-
-=over 4
-
-=item Finding a start point
-
-If you want to fix/change the behaviour of function/feature Foo, just
-scan the patches for patches that mention Foo either in the subject,
-the comments, or the body of the fix. A good chance the patch shows
-you the files that are affected by that patch which are very likely
-to be the starting point of your journey into the guts of perl.
-
-=item Finding how to fix a bug
-
-If you've found I<where> the function/feature Foo misbehaves, but you
-don't know how to fix it (but you do know the change you want to
-make), you can, again, peruse the patches for similar changes and
-look how others apply the fix.
-
-=item Finding the source of misbehaviour
-
-When you keep in sync with bleadperl, the pumpking would love to
-I<see> that the community efforts realy work. So after each of his
-sync points, you are to 'make test' to check if everything is still
-in working order. If it is, you do 'make ok', which will send an OK
-report to perlbug@perl.org. (If you do not have access to a mailer
-from the system you just finished successfully 'make test', you can
-do 'make okfile', which creates the file C<perl.ok>, which you can
-than take to your favourite mailer and mail yourself).
-
-But of course, as always, things will not allways lead to a success
-path, and one or more test do not pass the 'make test'. Before
-sending in a bug report (using 'make nok' or 'make nokfile'), check
-the mailing list if someone else has reported the bug already and if
-so, confirm it by replying to that message. If not, you might want to
-trace the source of that misbehaviour B<before> sending in the bug,
-which will help all the other porters in finding the solution.
-
-Here the saved patches come in very handy. You can check the list of
-patches to see which patch changed what file and what change caused
-the misbehaviour. If you note that in the bug report, it saves the
-one trying to solve it, looking for that point.
-
-=back
-
-If searching the patches is too bothersome, you might consider using
-perl's bugtron to find more information about discussions and
-ramblings on posted bugs.
-
-=back
-
-If you want to get the best of both worlds, rsync both the source
-tree for convenience, reliability and ease and rsync the patches
-for reference.
-
-=head2 Submitting patches
-
-Always submit patches to I<perl5-porters@perl.org>. This lets other
-porters review your patch, which catches a surprising number of errors
-in patches. Either use the diff program (available in source code
-form from I<ftp://ftp.gnu.org/pub/gnu/>), or use Johan Vromans'
-I<makepatch> (available from I<CPAN/authors/id/JV/>). Unified diffs
-are preferred, but context diffs are accepted. Do not send RCS-style
-diffs or diffs without context lines. More information is given in
-the I<Porting/patching.pod> file in the Perl source distribution.
-Please patch against the latest B<development> version (e.g., if
-you're fixing a bug in the 5.005 track, patch against the latest
-5.005_5x version). Only patches that survive the heat of the
-development branch get applied to maintenance versions.
-
-Your patch should update the documentation and test suite.
-
-To report a bug in Perl, use the program I<perlbug> which comes with
-Perl (if you can't get Perl to work, send mail to the address
-I<perlbug@perl.org> or I<perlbug@perl.com>). Reporting bugs through
-I<perlbug> feeds into the automated bug-tracking system, access to
-which is provided through the web at I<http://bugs.perl.org/>. It
-often pays to check the archives of the perl5-porters mailing list to
-see whether the bug you're reporting has been reported before, and if
-so whether it was considered a bug. See above for the location of
-the searchable archives.
-
-The CPAN testers (I<http://testers.cpan.org/>) are a group of
-volunteers who test CPAN modules on a variety of platforms. Perl Labs
-(I<http://labs.perl.org/>) automatically tests Perl source releases on
-platforms and gives feedback to the CPAN testers mailing list. Both
-efforts welcome volunteers.
-
-It's a good idea to read and lurk for a while before chipping in.
-That way you'll get to see the dynamic of the conversations, learn the
-personalities of the players, and hopefully be better prepared to make
-a useful contribution when do you speak up.
-
-If after all this you still think you want to join the perl5-porters
-mailing list, send mail to I<perl5-porters-subscribe@perl.org>. To
-unsubscribe, send mail to I<perl5-porters-unsubscribe@perl.org>.
-
-To hack on the Perl guts, you'll need to read the following things:
-
-=over 3
-
-=item L<perlguts>
-
-This is of paramount importance, since it's the documentation of what
-goes where in the Perl source. Read it over a couple of times and it
-might start to make sense - don't worry if it doesn't yet, because the
-best way to study it is to read it in conjunction with poking at Perl
-source, and we'll do that later on.
-
-You might also want to look at Gisle Aas's illustrated perlguts -
-there's no guarantee that this will be absolutely up-to-date with the
-latest documentation in the Perl core, but the fundamentals will be
-right. (http://gisle.aas.no/perl/illguts/)
-
-=item L<perlxstut> and L<perlxs>
-
-A working knowledge of XSUB programming is incredibly useful for core
-hacking; XSUBs use techniques drawn from the PP code, the portion of the
-guts that actually executes a Perl program. It's a lot gentler to learn
-those techniques from simple examples and explanation than from the core
-itself.
-
-=item L<perlapi>
-
-The documentation for the Perl API explains what some of the internal
-functions do, as well as the many macros used in the source.
-
-=item F<Porting/pumpkin.pod>
-
-This is a collection of words of wisdom for a Perl porter; some of it is
-only useful to the pumpkin holder, but most of it applies to anyone
-wanting to go about Perl development.
-
-=item The perl5-porters FAQ
-
-This is posted to perl5-porters at the beginning on every month, and
-should be available from http://perlhacker.org/p5p-faq; alternatively,
-you can get the FAQ emailed to you by sending mail to
-C<perl5-porters-faq@perl.org>. It contains hints on reading
-perl5-porters, information on how perl5-porters works and how Perl
-development in general works.
-
-=back
-
-=head2 Finding Your Way Around
-
-Perl maintenance can be split into a number of areas, and certain people
-(pumpkins) will have responsibility for each area. These areas sometimes
-correspond to files or directories in the source kit. Among the areas are:
-
-=over 3
-
-=item Core modules
-
-Modules shipped as part of the Perl core live in the F<lib/> and F<ext/>
-subdirectories: F<lib/> is for the pure-Perl modules, and F<ext/>
-contains the core XS modules.
-
-=item Documentation
-
-Documentation maintenance includes looking after everything in the
-F<pod/> directory, (as well as contributing new documentation) and
-the documentation to the modules in core.
-
-=item Configure
-
-The configure process is the way we make Perl portable across the
-myriad of operating systems it supports. Responsibility for the
-configure, build and installation process, as well as the overall
-portability of the core code rests with the configure pumpkin - others
-help out with individual operating systems.
-
-The files involved are the operating system directories, (F<win32/>,
-F<os2/>, F<vms/> and so on) the shell scripts which generate F<config.h>
-and F<Makefile>, as well as the metaconfig files which generate
-F<Configure>. (metaconfig isn't included in the core distribution.)
-
-=item Interpreter
-
-And of course, there's the core of the Perl interpreter itself. Let's
-have a look at that in a little more detail.
-
-=back
-
-Before we leave looking at the layout, though, don't forget that
-F<MANIFEST> contains not only the file names in the Perl distribution,
-but short descriptions of what's in them, too. For an overview of the
-important files, try this:
-
- perl -lne 'print if /^[^\/]+\.[ch]\s+/' MANIFEST
-
-=head2 Elements of the interpreter
-
-The work of the interpreter has two main stages: compiling the code
-into the internal representation, or bytecode, and then executing it.
-L<perlguts/Compiled code> explains exactly how the compilation stage
-happens.
-
-Here is a short breakdown of perl's operation:
-
-=over 3
-
-=item Startup
-
-The action begins in F<perlmain.c>. (or F<miniperlmain.c> for miniperl)
-This is very high-level code, enough to fit on a single screen, and it
-resembles the code found in L<perlembed>; most of the real action takes
-place in F<perl.c>
-
-First, F<perlmain.c> allocates some memory and constructs a Perl
-interpreter:
-
- 1 PERL_SYS_INIT3(&argc,&argv,&env);
- 2
- 3 if (!PL_do_undump) {
- 4 my_perl = perl_alloc();
- 5 if (!my_perl)
- 6 exit(1);
- 7 perl_construct(my_perl);
- 8 PL_perl_destruct_level = 0;
- 9 }
-
-Line 1 is a macro, and its definition is dependent on your operating
-system. Line 3 references C<PL_do_undump>, a global variable - all
-global variables in Perl start with C<PL_>. This tells you whether the
-current running program was created with the C<-u> flag to perl and then
-F<undump>, which means it's going to be false in any sane context.
-
-Line 4 calls a function in F<perl.c> to allocate memory for a Perl
-interpreter. It's quite a simple function, and the guts of it looks like
-this:
-
- my_perl = (PerlInterpreter*)PerlMem_malloc(sizeof(PerlInterpreter));
-
-Here you see an example of Perl's system abstraction, which we'll see
-later: C<PerlMem_malloc> is either your system's C<malloc>, or Perl's
-own C<malloc> as defined in F<malloc.c> if you selected that option at
-configure time.
-
-Next, in line 7, we construct the interpreter; this sets up all the
-special variables that Perl needs, the stacks, and so on.
-
-Now we pass Perl the command line options, and tell it to go:
-
- exitstatus = perl_parse(my_perl, xs_init, argc, argv, (char **)NULL);
- if (!exitstatus) {
- exitstatus = perl_run(my_perl);
- }
-
-
-C<perl_parse> is actually a wrapper around C<S_parse_body>, as defined
-in F<perl.c>, which processes the command line options, sets up any
-statically linked XS modules, opens the program and calls C<yyparse> to
-parse it.
-
-=item Parsing
-
-The aim of this stage is to take the Perl source, and turn it into an op
-tree. We'll see what one of those looks like later. Strictly speaking,
-there's three things going on here.
-
-C<yyparse>, the parser, lives in F<perly.c>, although you're better off
-reading the original YACC input in F<perly.y>. (Yes, Virginia, there
-B<is> a YACC grammar for Perl!) The job of the parser is to take your
-code and `understand' it, splitting it into sentences, deciding which
-operands go with which operators and so on.
-
-The parser is nobly assisted by the lexer, which chunks up your input
-into tokens, and decides what type of thing each token is: a variable
-name, an operator, a bareword, a subroutine, a core function, and so on.
-The main point of entry to the lexer is C<yylex>, and that and its
-associated routines can be found in F<toke.c>. Perl isn't much like
-other computer languages; it's highly context sensitive at times, it can
-be tricky to work out what sort of token something is, or where a token
-ends. As such, there's a lot of interplay between the tokeniser and the
-parser, which can get pretty frightening if you're not used to it.
-
-As the parser understands a Perl program, it builds up a tree of
-operations for the interpreter to perform during execution. The routines
-which construct and link together the various operations are to be found
-in F<op.c>, and will be examined later.
-
-=item Optimization
-
-Now the parsing stage is complete, and the finished tree represents
-the operations that the Perl interpreter needs to perform to execute our
-program. Next, Perl does a dry run over the tree looking for
-optimisations: constant expressions such as C<3 + 4> will be computed
-now, and the optimizer will also see if any multiple operations can be
-replaced with a single one. For instance, to fetch the variable C<$foo>,
-instead of grabbing the glob C<*foo> and looking at the scalar
-component, the optimizer fiddles the op tree to use a function which
-directly looks up the scalar in question. The main optimizer is C<peep>
-in F<op.c>, and many ops have their own optimizing functions.
-
-=item Running
-
-Now we're finally ready to go: we have compiled Perl byte code, and all
-that's left to do is run it. The actual execution is done by the
-C<runops_standard> function in F<run.c>; more specifically, it's done by
-these three innocent looking lines:
-
- while ((PL_op = CALL_FPTR(PL_op->op_ppaddr)(aTHX))) {
- PERL_ASYNC_CHECK();
- }
-
-You may be more comfortable with the Perl version of that:
-
- PERL_ASYNC_CHECK() while $Perl::op = &{$Perl::op->{function}};
-
-Well, maybe not. Anyway, each op contains a function pointer, which
-stipulates the function which will actually carry out the operation.
-This function will return the next op in the sequence - this allows for
-things like C<if> which choose the next op dynamically at run time.
-The C<PERL_ASYNC_CHECK> makes sure that things like signals interrupt
-execution if required.
-
-The actual functions called are known as PP code, and they're spread
-between four files: F<pp_hot.c> contains the `hot' code, which is most
-often used and highly optimized, F<pp_sys.c> contains all the
-system-specific functions, F<pp_ctl.c> contains the functions which
-implement control structures (C<if>, C<while> and the like) and F<pp.c>
-contains everything else. These are, if you like, the C code for Perl's
-built-in functions and operators.
-
-=back
-
-=head2 Internal Variable Types
-
-You should by now have had a look at L<perlguts>, which tells you about
-Perl's internal variable types: SVs, HVs, AVs and the rest. If not, do
-that now.
-
-These variables are used not only to represent Perl-space variables, but
-also any constants in the code, as well as some structures completely
-internal to Perl. The symbol table, for instance, is an ordinary Perl
-hash. Your code is represented by an SV as it's read into the parser;
-any program files you call are opened via ordinary Perl filehandles, and
-so on.
-
-The core L<Devel::Peek|Devel::Peek> module lets us examine SVs from a
-Perl program. Let's see, for instance, how Perl treats the constant
-C<"hello">.
-
- % perl -MDevel::Peek -e 'Dump("hello")'
- 1 SV = PV(0xa041450) at 0xa04ecbc
- 2 REFCNT = 1
- 3 FLAGS = (POK,READONLY,pPOK)
- 4 PV = 0xa0484e0 "hello"\0
- 5 CUR = 5
- 6 LEN = 6
-
-Reading C<Devel::Peek> output takes a bit of practise, so let's go
-through it line by line.
-
-Line 1 tells us we're looking at an SV which lives at C<0xa04ecbc> in
-memory. SVs themselves are very simple structures, but they contain a
-pointer to a more complex structure. In this case, it's a PV, a
-structure which holds a string value, at location C<0xa041450>. Line 2
-is the reference count; there are no other references to this data, so
-it's 1.
-
-Line 3 are the flags for this SV - it's OK to use it as a PV, it's a
-read-only SV (because it's a constant) and the data is a PV internally.
-Next we've got the contents of the string, starting at location
-C<0xa0484e0>.
-
-Line 5 gives us the current length of the string - note that this does
-B<not> include the null terminator. Line 6 is not the length of the
-string, but the length of the currently allocated buffer; as the string
-grows, Perl automatically extends the available storage via a routine
-called C<SvGROW>.
-
-You can get at any of these quantities from C very easily; just add
-C<Sv> to the name of the field shown in the snippet, and you've got a
-macro which will return the value: C<SvCUR(sv)> returns the current
-length of the string, C<SvREFCOUNT(sv)> returns the reference count,
-C<SvPV(sv, len)> returns the string itself with its length, and so on.
-More macros to manipulate these properties can be found in L<perlguts>.
-
-Let's take an example of manipulating a PV, from C<sv_catpvn>, in F<sv.c>
-
- 1 void
- 2 Perl_sv_catpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
- 3 {
- 4 STRLEN tlen;
- 5 char *junk;
-
- 6 junk = SvPV_force(sv, tlen);
- 7 SvGROW(sv, tlen + len + 1);
- 8 if (ptr == junk)
- 9 ptr = SvPVX(sv);
- 10 Move(ptr,SvPVX(sv)+tlen,len,char);
- 11 SvCUR(sv) += len;
- 12 *SvEND(sv) = '\0';
- 13 (void)SvPOK_only_UTF8(sv); /* validate pointer */
- 14 SvTAINT(sv);
- 15 }
-
-This is a function which adds a string, C<ptr>, of length C<len> onto
-the end of the PV stored in C<sv>. The first thing we do in line 6 is
-make sure that the SV B<has> a valid PV, by calling the C<SvPV_force>
-macro to force a PV. As a side effect, C<tlen> gets set to the current
-value of the PV, and the PV itself is returned to C<junk>.
-
-In line 7, we make sure that the SV will have enough room to accommodate
-the old string, the new string and the null terminator. If C<LEN> isn't
-big enough, C<SvGROW> will reallocate space for us.
-
-Now, if C<junk> is the same as the string we're trying to add, we can
-grab the string directly from the SV; C<SvPVX> is the address of the PV
-in the SV.
-
-Line 10 does the actual catenation: the C<Move> macro moves a chunk of
-memory around: we move the string C<ptr> to the end of the PV - that's
-the start of the PV plus its current length. We're moving C<len> bytes
-of type C<char>. After doing so, we need to tell Perl we've extended the
-string, by altering C<CUR> to reflect the new length. C<SvEND> is a
-macro which gives us the end of the string, so that needs to be a
-C<"\0">.
-
-Line 13 manipulates the flags; since we've changed the PV, any IV or NV
-values will no longer be valid: if we have C<$a=10; $a.="6";> we don't
-want to use the old IV of 10. C<SvPOK_only_utf8> is a special UTF8-aware
-version of C<SvPOK_only>, a macro which turns off the IOK and NOK flags
-and turns on POK. The final C<SvTAINT> is a macro which launders tainted
-data if taint mode is turned on.
-
-AVs and HVs are more complicated, but SVs are by far the most common
-variable type being thrown around. Having seen something of how we
-manipulate these, let's go on and look at how the op tree is
-constructed.
-
-=head2 Op Trees
-
-First, what is the op tree, anyway? The op tree is the parsed
-representation of your program, as we saw in our section on parsing, and
-it's the sequence of operations that Perl goes through to execute your
-program, as we saw in L</Running>.
-
-An op is a fundamental operation that Perl can perform: all the built-in
-functions and operators are ops, and there are a series of ops which
-deal with concepts the interpreter needs internally - entering and
-leaving a block, ending a statement, fetching a variable, and so on.
-
-The op tree is connected in two ways: you can imagine that there are two
-"routes" through it, two orders in which you can traverse the tree.
-First, parse order reflects how the parser understood the code, and
-secondly, execution order tells perl what order to perform the
-operations in.
-
-The easiest way to examine the op tree is to stop Perl after it has
-finished parsing, and get it to dump out the tree. This is exactly what
-the compiler backends L<B::Terse|B::Terse> and L<B::Debug|B::Debug> do.
-
-Let's have a look at how Perl sees C<$a = $b + $c>:
-
- % perl -MO=Terse -e '$a=$b+$c'
- 1 LISTOP (0x8179888) leave
- 2 OP (0x81798b0) enter
- 3 COP (0x8179850) nextstate
- 4 BINOP (0x8179828) sassign
- 5 BINOP (0x8179800) add [1]
- 6 UNOP (0x81796e0) null [15]
- 7 SVOP (0x80fafe0) gvsv GV (0x80fa4cc) *b
- 8 UNOP (0x81797e0) null [15]
- 9 SVOP (0x8179700) gvsv GV (0x80efeb0) *c
- 10 UNOP (0x816b4f0) null [15]
- 11 SVOP (0x816dcf0) gvsv GV (0x80fa460) *a
-
-Let's start in the middle, at line 4. This is a BINOP, a binary
-operator, which is at location C<0x8179828>. The specific operator in
-question is C<sassign> - scalar assignment - and you can find the code
-which implements it in the function C<pp_sassign> in F<pp_hot.c>. As a
-binary operator, it has two children: the add operator, providing the
-result of C<$b+$c>, is uppermost on line 5, and the left hand side is on
-line 10.
-
-Line 10 is the null op: this does exactly nothing. What is that doing
-there? If you see the null op, it's a sign that something has been
-optimized away after parsing. As we mentioned in L</Optimization>,
-the optimization stage sometimes converts two operations into one, for
-example when fetching a scalar variable. When this happens, instead of
-rewriting the op tree and cleaning up the dangling pointers, it's easier
-just to replace the redundant operation with the null op. Originally,
-the tree would have looked like this:
-
- 10 SVOP (0x816b4f0) rv2sv [15]
- 11 SVOP (0x816dcf0) gv GV (0x80fa460) *a
-
-That is, fetch the C<a> entry from the main symbol table, and then look
-at the scalar component of it: C<gvsv> (C<pp_gvsv> into F<pp_hot.c>)
-happens to do both these things.
-
-The right hand side, starting at line 5 is similar to what we've just
-seen: we have the C<add> op (C<pp_add> also in F<pp_hot.c>) add together
-two C<gvsv>s.
-
-Now, what's this about?
-
- 1 LISTOP (0x8179888) leave
- 2 OP (0x81798b0) enter
- 3 COP (0x8179850) nextstate
-
-C<enter> and C<leave> are scoping ops, and their job is to perform any
-housekeeping every time you enter and leave a block: lexical variables
-are tidied up, unreferenced variables are destroyed, and so on. Every
-program will have those first three lines: C<leave> is a list, and its
-children are all the statements in the block. Statements are delimited
-by C<nextstate>, so a block is a collection of C<nextstate> ops, with
-the ops to be performed for each statement being the children of
-C<nextstate>. C<enter> is a single op which functions as a marker.
-
-That's how Perl parsed the program, from top to bottom:
-
- Program
- |
- Statement
- |
- =
- / \
- / \
- $a +
- / \
- $b $c
-
-However, it's impossible to B<perform> the operations in this order:
-you have to find the values of C<$b> and C<$c> before you add them
-together, for instance. So, the other thread that runs through the op
-tree is the execution order: each op has a field C<op_next> which points
-to the next op to be run, so following these pointers tells us how perl
-executes the code. We can traverse the tree in this order using
-the C<exec> option to C<B::Terse>:
-
- % perl -MO=Terse,exec -e '$a=$b+$c'
- 1 OP (0x8179928) enter
- 2 COP (0x81798c8) nextstate
- 3 SVOP (0x81796c8) gvsv GV (0x80fa4d4) *b
- 4 SVOP (0x8179798) gvsv GV (0x80efeb0) *c
- 5 BINOP (0x8179878) add [1]
- 6 SVOP (0x816dd38) gvsv GV (0x80fa468) *a
- 7 BINOP (0x81798a0) sassign
- 8 LISTOP (0x8179900) leave
-
-This probably makes more sense for a human: enter a block, start a
-statement. Get the values of C<$b> and C<$c>, and add them together.
-Find C<$a>, and assign one to the other. Then leave.
-
-The way Perl builds up these op trees in the parsing process can be
-unravelled by examining F<perly.y>, the YACC grammar. Let's take the
-piece we need to construct the tree for C<$a = $b + $c>
-
- 1 term : term ASSIGNOP term
- 2 { $$ = newASSIGNOP(OPf_STACKED, $1, $2, $3); }
- 3 | term ADDOP term
- 4 { $$ = newBINOP($2, 0, scalar($1), scalar($3)); }
-
-If you're not used to reading BNF grammars, this is how it works: You're
-fed certain things by the tokeniser, which generally end up in upper
-case. Here, C<ADDOP>, is provided when the tokeniser sees C<+> in your
-code. C<ASSIGNOP> is provided when C<=> is used for assigning. These are
-`terminal symbols', because you can't get any simpler than them.
-
-The grammar, lines one and three of the snippet above, tells you how to
-build up more complex forms. These complex forms, `non-terminal symbols'
-are generally placed in lower case. C<term> here is a non-terminal
-symbol, representing a single expression.
-
-The grammar gives you the following rule: you can make the thing on the
-left of the colon if you see all the things on the right in sequence.
-This is called a "reduction", and the aim of parsing is to completely
-reduce the input. There are several different ways you can perform a
-reduction, separated by vertical bars: so, C<term> followed by C<=>
-followed by C<term> makes a C<term>, and C<term> followed by C<+>
-followed by C<term> can also make a C<term>.
-
-So, if you see two terms with an C<=> or C<+>, between them, you can
-turn them into a single expression. When you do this, you execute the
-code in the block on the next line: if you see C<=>, you'll do the code
-in line 2. If you see C<+>, you'll do the code in line 4. It's this code
-which contributes to the op tree.
-
- | term ADDOP term
- { $$ = newBINOP($2, 0, scalar($1), scalar($3)); }
-
-What this does is creates a new binary op, and feeds it a number of
-variables. The variables refer to the tokens: C<$1> is the first token in
-the input, C<$2> the second, and so on - think regular expression
-backreferences. C<$$> is the op returned from this reduction. So, we
-call C<newBINOP> to create a new binary operator. The first parameter to
-C<newBINOP>, a function in F<op.c>, is the op type. It's an addition
-operator, so we want the type to be C<ADDOP>. We could specify this
-directly, but it's right there as the second token in the input, so we
-use C<$2>. The second parameter is the op's flags: 0 means `nothing
-special'. Then the things to add: the left and right hand side of our
-expression, in scalar context.
-
-=head2 Stacks
-
-When perl executes something like C<addop>, how does it pass on its
-results to the next op? The answer is, through the use of stacks. Perl
-has a number of stacks to store things it's currently working on, and
-we'll look at the three most important ones here.
-
-=over 3
-
-=item Argument stack
-
-Arguments are passed to PP code and returned from PP code using the
-argument stack, C<ST>. The typical way to handle arguments is to pop
-them off the stack, deal with them how you wish, and then push the result
-back onto the stack. This is how, for instance, the cosine operator
-works:
-
- NV value;
- value = POPn;
- value = Perl_cos(value);
- XPUSHn(value);
-
-We'll see a more tricky example of this when we consider Perl's macros
-below. C<POPn> gives you the NV (floating point value) of the top SV on
-the stack: the C<$x> in C<cos($x)>. Then we compute the cosine, and push
-the result back as an NV. The C<X> in C<XPUSHn> means that the stack
-should be extended if necessary - it can't be necessary here, because we
-know there's room for one more item on the stack, since we've just
-removed one! The C<XPUSH*> macros at least guarantee safety.
-
-Alternatively, you can fiddle with the stack directly: C<SP> gives you
-the first element in your portion of the stack, and C<TOP*> gives you
-the top SV/IV/NV/etc. on the stack. So, for instance, to do unary
-negation of an integer:
-
- SETi(-TOPi);
-
-Just set the integer value of the top stack entry to its negation.
-
-Argument stack manipulation in the core is exactly the same as it is in
-XSUBs - see L<perlxstut>, L<perlxs> and L<perlguts> for a longer
-description of the macros used in stack manipulation.
-
-=item Mark stack
-
-I say `your portion of the stack' above because PP code doesn't
-necessarily get the whole stack to itself: if your function calls
-another function, you'll only want to expose the arguments aimed for the
-called function, and not (necessarily) let it get at your own data. The
-way we do this is to have a `virtual' bottom-of-stack, exposed to each
-function. The mark stack keeps bookmarks to locations in the argument
-stack usable by each function. For instance, when dealing with a tied
-variable, (internally, something with `P' magic) Perl has to call
-methods for accesses to the tied variables. However, we need to separate
-the arguments exposed to the method to the argument exposed to the
-original function - the store or fetch or whatever it may be. Here's how
-the tied C<push> is implemented; see C<av_push> in F<av.c>:
-
- 1 PUSHMARK(SP);
- 2 EXTEND(SP,2);
- 3 PUSHs(SvTIED_obj((SV*)av, mg));
- 4 PUSHs(val);
- 5 PUTBACK;
- 6 ENTER;
- 7 call_method("PUSH", G_SCALAR|G_DISCARD);
- 8 LEAVE;
- 9 POPSTACK;
-
-The lines which concern the mark stack are the first, fifth and last
-lines: they save away, restore and remove the current position of the
-argument stack.
-
-Let's examine the whole implementation, for practice:
-
- 1 PUSHMARK(SP);
-
-Push the current state of the stack pointer onto the mark stack. This is
-so that when we've finished adding items to the argument stack, Perl
-knows how many things we've added recently.
-
- 2 EXTEND(SP,2);
- 3 PUSHs(SvTIED_obj((SV*)av, mg));
- 4 PUSHs(val);
-
-We're going to add two more items onto the argument stack: when you have
-a tied array, the C<PUSH> subroutine receives the object and the value
-to be pushed, and that's exactly what we have here - the tied object,
-retrieved with C<SvTIED_obj>, and the value, the SV C<val>.
-
- 5 PUTBACK;
-
-Next we tell Perl to make the change to the global stack pointer: C<dSP>
-only gave us a local copy, not a reference to the global.
-
- 6 ENTER;
- 7 call_method("PUSH", G_SCALAR|G_DISCARD);
- 8 LEAVE;
-
-C<ENTER> and C<LEAVE> localise a block of code - they make sure that all
-variables are tidied up, everything that has been localised gets
-its previous value returned, and so on. Think of them as the C<{> and
-C<}> of a Perl block.
-
-To actually do the magic method call, we have to call a subroutine in
-Perl space: C<call_method> takes care of that, and it's described in
-L<perlcall>. We call the C<PUSH> method in scalar context, and we're
-going to discard its return value.
-
- 9 POPSTACK;
-
-Finally, we remove the value we placed on the mark stack, since we
-don't need it any more.
-
-=item Save stack
-
-C doesn't have a concept of local scope, so perl provides one. We've
-seen that C<ENTER> and C<LEAVE> are used as scoping braces; the save
-stack implements the C equivalent of, for example:
-
- {
- local $foo = 42;
- ...
- }
-
-See L<perlguts/Localising Changes> for how to use the save stack.
-
-=back
-
-=head2 Millions of Macros
-
-One thing you'll notice about the Perl source is that it's full of
-macros. Some have called the pervasive use of macros the hardest thing
-to understand, others find it adds to clarity. Let's take an example,
-the code which implements the addition operator:
-
- 1 PP(pp_add)
- 2 {
- 3 dSP; dATARGET; tryAMAGICbin(add,opASSIGN);
- 4 {
- 5 dPOPTOPnnrl_ul;
- 6 SETn( left + right );
- 7 RETURN;
- 8 }
- 9 }
-
-Every line here (apart from the braces, of course) contains a macro. The
-first line sets up the function declaration as Perl expects for PP code;
-line 3 sets up variable declarations for the argument stack and the
-target, the return value of the operation. Finally, it tries to see if
-the addition operation is overloaded; if so, the appropriate subroutine
-is called.
-
-Line 5 is another variable declaration - all variable declarations start
-with C<d> - which pops from the top of the argument stack two NVs (hence
-C<nn>) and puts them into the variables C<right> and C<left>, hence the
-C<rl>. These are the two operands to the addition operator. Next, we
-call C<SETn> to set the NV of the return value to the result of adding
-the two values. This done, we return - the C<RETURN> macro makes sure
-that our return value is properly handled, and we pass the next operator
-to run back to the main run loop.
-
-Most of these macros are explained in L<perlapi>, and some of the more
-important ones are explained in L<perlxs> as well. Pay special attention
-to L<perlguts/Background and PERL_IMPLICIT_CONTEXT> for information on
-the C<[pad]THX_?> macros.
-
-
-=head2 Poking at Perl
-
-To really poke around with Perl, you'll probably want to build Perl for
-debugging, like this:
-
- ./Configure -d -D optimize=-g
- make
-
-C<-g> is a flag to the C compiler to have it produce debugging
-information which will allow us to step through a running program.
-F<Configure> will also turn on the C<DEBUGGING> compilation symbol which
-enables all the internal debugging code in Perl. There are a whole bunch
-of things you can debug with this: L<perlrun> lists them all, and the
-best way to find out about them is to play about with them. The most
-useful options are probably
-
- l Context (loop) stack processing
- t Trace execution
- o Method and overloading resolution
- c String/numeric conversions
-
-Some of the functionality of the debugging code can be achieved using XS
-modules.
-
- -Dr => use re 'debug'
- -Dx => use O 'Debug'
-
-=head2 Using a source-level debugger
-
-If the debugging output of C<-D> doesn't help you, it's time to step
-through perl's execution with a source-level debugger.
-
-=over 3
-
-=item *
-
-We'll use C<gdb> for our examples here; the principles will apply to any
-debugger, but check the manual of the one you're using.
-
-=back
-
-To fire up the debugger, type
-
- gdb ./perl
-
-You'll want to do that in your Perl source tree so the debugger can read
-the source code. You should see the copyright message, followed by the
-prompt.
-
- (gdb)
-
-C<help> will get you into the documentation, but here are the most
-useful commands:
-
-=over 3
-
-=item run [args]
-
-Run the program with the given arguments.
-
-=item break function_name
-
-=item break source.c:xxx
-
-Tells the debugger that we'll want to pause execution when we reach
-either the named function (but see L<perlguts/Internal Functions>!) or the given
-line in the named source file.
-
-=item step
-
-Steps through the program a line at a time.
-
-=item next
-
-Steps through the program a line at a time, without descending into
-functions.
-
-=item continue
-
-Run until the next breakpoint.
-
-=item finish
-
-Run until the end of the current function, then stop again.
-
-=item 'enter'
-
-Just pressing Enter will do the most recent operation again - it's a
-blessing when stepping through miles of source code.
-
-=item print
-
-Execute the given C code and print its results. B<WARNING>: Perl makes
-heavy use of macros, and F<gdb> is not aware of macros. You'll have to
-substitute them yourself. So, for instance, you can't say
-
- print SvPV_nolen(sv)
-
-but you have to say
-
- print Perl_sv_2pv_nolen(sv)
-
-You may find it helpful to have a "macro dictionary", which you can
-produce by saying C<cpp -dM perl.c | sort>. Even then, F<cpp> won't
-recursively apply the macros for you.
-
-=back
-
-=head2 Dumping Perl Data Structures
-
-One way to get around this macro hell is to use the dumping functions in
-F<dump.c>; these work a little like an internal
-L<Devel::Peek|Devel::Peek>, but they also cover OPs and other structures
-that you can't get at from Perl. Let's take an example. We'll use the
-C<$a = $b + $c> we used before, but give it a bit of context:
-C<$b = "6XXXX"; $c = 2.3;>. Where's a good place to stop and poke around?
-
-What about C<pp_add>, the function we examined earlier to implement the
-C<+> operator:
-
- (gdb) break Perl_pp_add
- Breakpoint 1 at 0x46249f: file pp_hot.c, line 309.
-
-Notice we use C<Perl_pp_add> and not C<pp_add> - see L<perlguts/Internal Functions>.
-With the breakpoint in place, we can run our program:
-
- (gdb) run -e '$b = "6XXXX"; $c = 2.3; $a = $b + $c'
-
-Lots of junk will go past as gdb reads in the relevant source files and
-libraries, and then:
-
- Breakpoint 1, Perl_pp_add () at pp_hot.c:309
- 309 dSP; dATARGET; tryAMAGICbin(add,opASSIGN);
- (gdb) step
- 311 dPOPTOPnnrl_ul;
- (gdb)
-
-We looked at this bit of code before, and we said that C<dPOPTOPnnrl_ul>
-arranges for two C<NV>s to be placed into C<left> and C<right> - let's
-slightly expand it:
-
- #define dPOPTOPnnrl_ul NV right = POPn; \
- SV *leftsv = TOPs; \
- NV left = USE_LEFT(leftsv) ? SvNV(leftsv) : 0.0
-
-C<POPn> takes the SV from the top of the stack and obtains its NV either
-directly (if C<SvNOK> is set) or by calling the C<sv_2nv> function.
-C<TOPs> takes the next SV from the top of the stack - yes, C<POPn> uses
-C<TOPs> - but doesn't remove it. We then use C<SvNV> to get the NV from
-C<leftsv> in the same way as before - yes, C<POPn> uses C<SvNV>.
-
-Since we don't have an NV for C<$b>, we'll have to use C<sv_2nv> to
-convert it. If we step again, we'll find ourselves there:
-
- Perl_sv_2nv (sv=0xa0675d0) at sv.c:1669
- 1669 if (!sv)
- (gdb)
-
-We can now use C<Perl_sv_dump> to investigate the SV:
-
- SV = PV(0xa057cc0) at 0xa0675d0
- REFCNT = 1
- FLAGS = (POK,pPOK)
- PV = 0xa06a510 "6XXXX"\0
- CUR = 5
- LEN = 6
- $1 = void
-
-We know we're going to get C<6> from this, so let's finish the
-subroutine:
-
- (gdb) finish
- Run till exit from #0 Perl_sv_2nv (sv=0xa0675d0) at sv.c:1671
- 0x462669 in Perl_pp_add () at pp_hot.c:311
- 311 dPOPTOPnnrl_ul;
-
-We can also dump out this op: the current op is always stored in
-C<PL_op>, and we can dump it with C<Perl_op_dump>. This'll give us
-similar output to L<B::Debug|B::Debug>.
-
- {
- 13 TYPE = add ===> 14
- TARG = 1
- FLAGS = (SCALAR,KIDS)
- {
- TYPE = null ===> (12)
- (was rv2sv)
- FLAGS = (SCALAR,KIDS)
- {
- 11 TYPE = gvsv ===> 12
- FLAGS = (SCALAR)
- GV = main::b
- }
- }
-
-< finish this later >
-
-=head2 Patching
-
-All right, we've now had a look at how to navigate the Perl sources and
-some things you'll need to know when fiddling with them. Let's now get
-on and create a simple patch. Here's something Larry suggested: if a
-C<U> is the first active format during a C<pack>, (for example,
-C<pack "U3C8", @stuff>) then the resulting string should be treated as
-UTF8 encoded.
-
-How do we prepare to fix this up? First we locate the code in question -
-the C<pack> happens at runtime, so it's going to be in one of the F<pp>
-files. Sure enough, C<pp_pack> is in F<pp.c>. Since we're going to be
-altering this file, let's copy it to F<pp.c~>.
-
-Now let's look over C<pp_pack>: we take a pattern into C<pat>, and then
-loop over the pattern, taking each format character in turn into
-C<datum_type>. Then for each possible format character, we swallow up
-the other arguments in the pattern (a field width, an asterisk, and so
-on) and convert the next chunk input into the specified format, adding
-it onto the output SV C<cat>.
-
-How do we know if the C<U> is the first format in the C<pat>? Well, if
-we have a pointer to the start of C<pat> then, if we see a C<U> we can
-test whether we're still at the start of the string. So, here's where
-C<pat> is set up:
-
- STRLEN fromlen;
- register char *pat = SvPVx(*++MARK, fromlen);
- register char *patend = pat + fromlen;
- register I32 len;
- I32 datumtype;
- SV *fromstr;
-
-We'll have another string pointer in there:
-
- STRLEN fromlen;
- register char *pat = SvPVx(*++MARK, fromlen);
- register char *patend = pat + fromlen;
- + char *patcopy;
- register I32 len;
- I32 datumtype;
- SV *fromstr;
-
-And just before we start the loop, we'll set C<patcopy> to be the start
-of C<pat>:
-
- items = SP - MARK;
- MARK++;
- sv_setpvn(cat, "", 0);
- + patcopy = pat;
- while (pat < patend) {
-
-Now if we see a C<U> which was at the start of the string, we turn on
-the UTF8 flag for the output SV, C<cat>:
-
- + if (datumtype == 'U' && pat==patcopy+1)
- + SvUTF8_on(cat);
- if (datumtype == '#') {
- while (pat < patend && *pat != '\n')
- pat++;
-
-Remember that it has to be C<patcopy+1> because the first character of
-the string is the C<U> which has been swallowed into C<datumtype!>
-
-Oops, we forgot one thing: what if there are spaces at the start of the
-pattern? C<pack(" U*", @stuff)> will have C<U> as the first active
-character, even though it's not the first thing in the pattern. In this
-case, we have to advance C<patcopy> along with C<pat> when we see spaces:
-
- if (isSPACE(datumtype))
- continue;
-
-needs to become
-
- if (isSPACE(datumtype)) {
- patcopy++;
- continue;
- }
-
-OK. That's the C part done. Now we must do two additional things before
-this patch is ready to go: we've changed the behaviour of Perl, and so
-we must document that change. We must also provide some more regression
-tests to make sure our patch works and doesn't create a bug somewhere
-else along the line.
-
-The regression tests for each operator live in F<t/op/>, and so we make
-a copy of F<t/op/pack.t> to F<t/op/pack.t~>. Now we can add our tests
-to the end. First, we'll test that the C<U> does indeed create Unicode
-strings:
-
- print 'not ' unless "1.20.300.4000" eq sprintf "%vd", pack("U*",1,20,300,4000);
- print "ok $test\n"; $test++;
-
-Now we'll test that we got that space-at-the-beginning business right:
-
- print 'not ' unless "1.20.300.4000" eq
- sprintf "%vd", pack(" U*",1,20,300,4000);
- print "ok $test\n"; $test++;
-
-And finally we'll test that we don't make Unicode strings if C<U> is B<not>
-the first active format:
-
- print 'not ' unless v1.20.300.4000 ne
- sprintf "%vd", pack("C0U*",1,20,300,4000);
- print "ok $test\n"; $test++;
-
-Mustn't forget to change the number of tests which appears at the top, or
-else the automated tester will get confused:
-
- -print "1..156\n";
- +print "1..159\n";
-
-We now compile up Perl, and run it through the test suite. Our new
-tests pass, hooray!
-
-Finally, the documentation. The job is never done until the paperwork is
-over, so let's describe the change we've just made. The relevant place
-is F<pod/perlfunc.pod>; again, we make a copy, and then we'll insert
-this text in the description of C<pack>:
-
- =item *
-
- If the pattern begins with a C<U>, the resulting string will be treated
- as Unicode-encoded. You can force UTF8 encoding on in a string with an
- initial C<U0>, and the bytes that follow will be interpreted as Unicode
- characters. If you don't want this to happen, you can begin your pattern
- with C<C0> (or anything else) to force Perl not to UTF8 encode your
- string, and then follow this with a C<U*> somewhere in your pattern.
-
-All done. Now let's create the patch. F<Porting/patching.pod> tells us
-that if we're making major changes, we should copy the entire directory
-to somewhere safe before we begin fiddling, and then do
-
- diff -ruN old new > patch
-
-However, we know which files we've changed, and we can simply do this:
-
- diff -u pp.c~ pp.c > patch
- diff -u t/op/pack.t~ t/op/pack.t >> patch
- diff -u pod/perlfunc.pod~ pod/perlfunc.pod >> patch
-
-We end up with a patch looking a little like this:
-
- --- pp.c~ Fri Jun 02 04:34:10 2000
- +++ pp.c Fri Jun 16 11:37:25 2000
- @@ -4375,6 +4375,7 @@
- register I32 items;
- STRLEN fromlen;
- register char *pat = SvPVx(*++MARK, fromlen);
- + char *patcopy;
- register char *patend = pat + fromlen;
- register I32 len;
- I32 datumtype;
- @@ -4405,6 +4406,7 @@
- ...
-
-And finally, we submit it, with our rationale, to perl5-porters. Job
-done!
-
-=head1 EXTERNAL TOOLS FOR DEBUGGING PERL
-
-Sometimes it helps to use external tools while debugging and
-testing Perl. This section tries to guide you through using
-some common testing and debugging tools with Perl. This is
-meant as a guide to interfacing these tools with Perl, not
-as any kind of guide to the use of the tools themselves.
-
-=head2 Rational Software's Purify
-
-Purify is a commercial tool that is helpful in identifying
-memory overruns, wild pointers, memory leaks and other such
-badness. Perl must be compiled in a specific way for
-optimal testing with Purify. Purify is available under
-Windows NT, Solaris, HP-UX, SGI, and Siemens Unix.
-
-The only currently known leaks happen when there are
-compile-time errors within eval or require. (Fixing these
-is non-trivial, unfortunately, but they must be fixed
-eventually.)
-
-=head2 Purify on Unix
-
-On Unix, Purify creates a new Perl binary. To get the most
-benefit out of Purify, you should create the perl to Purify
-using:
-
- sh Configure -Accflags=-DPURIFY -Doptimize='-g' \
- -Uusemymalloc -Dusemultiplicity
-
-where these arguments mean:
-
-=over 4
-
-=item -Accflags=-DPURIFY
-
-Disables Perl's arena memory allocation functions, as well as
-forcing use of memory allocation functions derived from the
-system malloc.
-
-=item -Doptimize='-g'
-
-Adds debugging information so that you see the exact source
-statements where the problem occurs. Without this flag, all
-you will see is the source filename of where the error occurred.
-
-=item -Uusemymalloc
-
-Disable Perl's malloc so that Purify can more closely monitor
-allocations and leaks. Using Perl's malloc will make Purify
-report most leaks in the "potential" leaks category.
-
-=item -Dusemultiplicity
-
-Enabling the multiplicity option allows perl to clean up
-thoroughly when the interpreter shuts down, which reduces the
-number of bogus leak reports from Purify.
-
-=back
-
-Once you've compiled a perl suitable for Purify'ing, then you
-can just:
-
- make pureperl
-
-which creates a binary named 'pureperl' that has been Purify'ed.
-This binary is used in place of the standard 'perl' binary
-when you want to debug Perl memory problems.
-
-As an example, to show any memory leaks produced during the
-standard Perl testset you would create and run the Purify'ed
-perl as:
-
- make pureperl
- cd t
- ../pureperl -I../lib harness
-
-which would run Perl on test.pl and report any memory problems.
-
-Purify outputs messages in "Viewer" windows by default. If
-you don't have a windowing environment or if you simply
-want the Purify output to unobtrusively go to a log file
-instead of to the interactive window, use these following
-options to output to the log file "perl.log":
-
- setenv PURIFYOPTIONS "-chain-length=25 -windows=no \
- -log-file=perl.log -append-logfile=yes"
-
-If you plan to use the "Viewer" windows, then you only need this option:
-
- setenv PURIFYOPTIONS "-chain-length=25"
-
-=head2 Purify on NT
-
-Purify on Windows NT instruments the Perl binary 'perl.exe'
-on the fly. There are several options in the makefile you
-should change to get the most use out of Purify:
-
-=over 4
-
-=item DEFINES
-
-You should add -DPURIFY to the DEFINES line so the DEFINES
-line looks something like:
-
- DEFINES = -DWIN32 -D_CONSOLE -DNO_STRICT $(CRYPT_FLAG) -DPURIFY=1
-
-to disable Perl's arena memory allocation functions, as
-well as to force use of memory allocation functions derived
-from the system malloc.
-
-=item USE_MULTI = define
-
-Enabling the multiplicity option allows perl to clean up
-thoroughly when the interpreter shuts down, which reduces the
-number of bogus leak reports from Purify.
-
-=item #PERL_MALLOC = define
-
-Disable Perl's malloc so that Purify can more closely monitor
-allocations and leaks. Using Perl's malloc will make Purify
-report most leaks in the "potential" leaks category.
-
-=item CFG = Debug
-
-Adds debugging information so that you see the exact source
-statements where the problem occurs. Without this flag, all
-you will see is the source filename of where the error occurred.
-
-=back
-
-As an example, to show any memory leaks produced during the
-standard Perl testset you would create and run Purify as:
-
- cd win32
- make
- cd ../t
- purify ../perl -I../lib harness
-
-which would instrument Perl in memory, run Perl on test.pl,
-then finally report any memory problems.
-
-=head2 CONCLUSION
-
-We've had a brief look around the Perl source, an overview of the stages
-F<perl> goes through when it's running your code, and how to use a
-debugger to poke at the Perl guts. We took a very simple problem and
-demonstrated how to solve it fully - with documentation, regression
-tests, and finally a patch for submission to p5p. Finally, we talked
-about how to use external tools to debug and test Perl.
-
-I'd now suggest you read over those references again, and then, as soon
-as possible, get your hands dirty. The best way to learn is by doing,
-so:
-
-=over 3
-
-=item *
-
-Subscribe to perl5-porters, follow the patches and try and understand
-them; don't be afraid to ask if there's a portion you're not clear on -
-who knows, you may unearth a bug in the patch...
-
-=item *
-
-Keep up to date with the bleeding edge Perl distributions and get
-familiar with the changes. Try and get an idea of what areas people are
-working on and the changes they're making.
-
-=item *
-
-Do read the README associated with your operating system, e.g. README.aix
-on the IBM AIX OS. Don't hesitate to supply patches to that README if
-you find anything missing or changed over a new OS release.
-
-=item *
-
-Find an area of Perl that seems interesting to you, and see if you can
-work out how it works. Scan through the source, and step over it in the
-debugger. Play, poke, investigate, fiddle! You'll probably get to
-understand not just your chosen area but a much wider range of F<perl>'s
-activity as well, and probably sooner than you'd think.
-
-=back
-
-=over 3
-
-=item I<The Road goes ever on and on, down from the door where it began.>
-
-=back
-
-If you can do these things, you've started on the long road to Perl porting.
-Thanks for wanting to help make Perl better - and happy hacking!
-
-=head1 AUTHOR
-
-This document was written by Nathan Torkington, and is maintained by
-the perl5-porters mailing list.
-
OpenPOWER on IntegriCloud