summaryrefslogtreecommitdiffstats
path: root/contrib/perl5/lib/bigrat.pl
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/perl5/lib/bigrat.pl')
-rw-r--r--contrib/perl5/lib/bigrat.pl155
1 files changed, 0 insertions, 155 deletions
diff --git a/contrib/perl5/lib/bigrat.pl b/contrib/perl5/lib/bigrat.pl
deleted file mode 100644
index 2d3738f..0000000
--- a/contrib/perl5/lib/bigrat.pl
+++ /dev/null
@@ -1,155 +0,0 @@
-package bigrat;
-require "bigint.pl";
-#
-# This library is no longer being maintained, and is included for backward
-# compatibility with Perl 4 programs which may require it.
-#
-# In particular, this should not be used as an example of modern Perl
-# programming techniques.
-#
-# Arbitrary size rational math package
-#
-# by Mark Biggar
-#
-# Input values to these routines consist of strings of the form
-# m|^\s*[+-]?[\d\s]+(/[\d\s]+)?$|.
-# Examples:
-# "+0/1" canonical zero value
-# "3" canonical value "+3/1"
-# " -123/123 123" canonical value "-1/1001"
-# "123 456/7890" canonical value "+20576/1315"
-# Output values always include a sign and no leading zeros or
-# white space.
-# This package makes use of the bigint package.
-# The string 'NaN' is used to represent the result when input arguments
-# that are not numbers, as well as the result of dividing by zero and
-# the sqrt of a negative number.
-# Extreamly naive algorthims are used.
-#
-# Routines provided are:
-#
-# rneg(RAT) return RAT negation
-# rabs(RAT) return RAT absolute value
-# rcmp(RAT,RAT) return CODE compare numbers (undef,<0,=0,>0)
-# radd(RAT,RAT) return RAT addition
-# rsub(RAT,RAT) return RAT subtraction
-# rmul(RAT,RAT) return RAT multiplication
-# rdiv(RAT,RAT) return RAT division
-# rmod(RAT) return (RAT,RAT) integer and fractional parts
-# rnorm(RAT) return RAT normalization
-# rsqrt(RAT, cycles) return RAT square root
-
-# Convert a number to the canonical string form m|^[+-]\d+/\d+|.
-sub main'rnorm { #(string) return rat_num
- local($_) = @_;
- s/\s+//g;
- if (m#^([+-]?\d+)(/(\d*[1-9]0*))?$#) {
- &norm($1, $3 ? $3 : '+1');
- } else {
- 'NaN';
- }
-}
-
-# Normalize by reducing to lowest terms
-sub norm { #(bint, bint) return rat_num
- local($num,$dom) = @_;
- if ($num eq 'NaN') {
- 'NaN';
- } elsif ($dom eq 'NaN') {
- 'NaN';
- } elsif ($dom =~ /^[+-]?0+$/) {
- 'NaN';
- } else {
- local($gcd) = &'bgcd($num,$dom);
- $gcd =~ s/^-/+/;
- if ($gcd ne '+1') {
- $num = &'bdiv($num,$gcd);
- $dom = &'bdiv($dom,$gcd);
- } else {
- $num = &'bnorm($num);
- $dom = &'bnorm($dom);
- }
- substr($dom,$[,1) = '';
- "$num/$dom";
- }
-}
-
-# negation
-sub main'rneg { #(rat_num) return rat_num
- local($_) = &'rnorm(@_);
- tr/-+/+-/ if ($_ ne '+0/1');
- $_;
-}
-
-# absolute value
-sub main'rabs { #(rat_num) return $rat_num
- local($_) = &'rnorm(@_);
- substr($_,$[,1) = '+' unless $_ eq 'NaN';
- $_;
-}
-
-# multipication
-sub main'rmul { #(rat_num, rat_num) return rat_num
- local($xn,$xd) = split('/',&'rnorm($_[$[]));
- local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
- &norm(&'bmul($xn,$yn),&'bmul($xd,$yd));
-}
-
-# division
-sub main'rdiv { #(rat_num, rat_num) return rat_num
- local($xn,$xd) = split('/',&'rnorm($_[$[]));
- local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
- &norm(&'bmul($xn,$yd),&'bmul($xd,$yn));
-}
-
-# addition
-sub main'radd { #(rat_num, rat_num) return rat_num
- local($xn,$xd) = split('/',&'rnorm($_[$[]));
- local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
- &norm(&'badd(&'bmul($xn,$yd),&'bmul($yn,$xd)),&'bmul($xd,$yd));
-}
-
-# subtraction
-sub main'rsub { #(rat_num, rat_num) return rat_num
- local($xn,$xd) = split('/',&'rnorm($_[$[]));
- local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
- &norm(&'bsub(&'bmul($xn,$yd),&'bmul($yn,$xd)),&'bmul($xd,$yd));
-}
-
-# comparison
-sub main'rcmp { #(rat_num, rat_num) return cond_code
- local($xn,$xd) = split('/',&'rnorm($_[$[]));
- local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
- &bigint'cmp(&'bmul($xn,$yd),&'bmul($yn,$xd));
-}
-
-# int and frac parts
-sub main'rmod { #(rat_num) return (rat_num,rat_num)
- local($xn,$xd) = split('/',&'rnorm(@_));
- local($i,$f) = &'bdiv($xn,$xd);
- if (wantarray) {
- ("$i/1", "$f/$xd");
- } else {
- "$i/1";
- }
-}
-
-# square root by Newtons method.
-# cycles specifies the number of iterations default: 5
-sub main'rsqrt { #(fnum_str[, cycles]) return fnum_str
- local($x, $scale) = (&'rnorm($_[$[]), $_[$[+1]);
- if ($x eq 'NaN') {
- 'NaN';
- } elsif ($x =~ /^-/) {
- 'NaN';
- } else {
- local($gscale, $guess) = (0, '+1/1');
- $scale = 5 if (!$scale);
- while ($gscale++ < $scale) {
- $guess = &'rmul(&'radd($guess,&'rdiv($x,$guess)),"+1/2");
- }
- "$guess"; # quotes necessary due to perl bug
- }
-}
-
-1;
OpenPOWER on IntegriCloud