summaryrefslogtreecommitdiffstats
path: root/contrib/perl5/lib/Math/Trig.pm
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/perl5/lib/Math/Trig.pm')
-rw-r--r--contrib/perl5/lib/Math/Trig.pm419
1 files changed, 419 insertions, 0 deletions
diff --git a/contrib/perl5/lib/Math/Trig.pm b/contrib/perl5/lib/Math/Trig.pm
new file mode 100644
index 0000000..b7b5d5d
--- /dev/null
+++ b/contrib/perl5/lib/Math/Trig.pm
@@ -0,0 +1,419 @@
+#
+# Trigonometric functions, mostly inherited from Math::Complex.
+# -- Jarkko Hietaniemi, since April 1997
+# -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex)
+#
+
+require Exporter;
+package Math::Trig;
+
+use strict;
+
+use Math::Complex qw(:trig);
+
+use vars qw($VERSION $PACKAGE
+ @ISA
+ @EXPORT @EXPORT_OK %EXPORT_TAGS);
+
+@ISA = qw(Exporter);
+
+$VERSION = 1.00;
+
+my @angcnv = qw(rad2deg rad2grad
+ deg2rad deg2grad
+ grad2rad grad2deg);
+
+@EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},
+ @angcnv);
+
+my @rdlcnv = qw(cartesian_to_cylindrical
+ cartesian_to_spherical
+ cylindrical_to_cartesian
+ cylindrical_to_spherical
+ spherical_to_cartesian
+ spherical_to_cylindrical);
+
+@EXPORT_OK = (@rdlcnv, 'great_circle_distance');
+
+%EXPORT_TAGS = ('radial' => [ @rdlcnv ]);
+
+use constant pi2 => 2 * pi;
+use constant pip2 => pi / 2;
+use constant DR => pi2/360;
+use constant RD => 360/pi2;
+use constant DG => 400/360;
+use constant GD => 360/400;
+use constant RG => 400/pi2;
+use constant GR => pi2/400;
+
+#
+# Truncating remainder.
+#
+
+sub remt ($$) {
+ # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available.
+ $_[0] - $_[1] * int($_[0] / $_[1]);
+}
+
+#
+# Angle conversions.
+#
+
+sub rad2deg ($) { remt(RD * $_[0], 360) }
+
+sub deg2rad ($) { remt(DR * $_[0], pi2) }
+
+sub grad2deg ($) { remt(GD * $_[0], 360) }
+
+sub deg2grad ($) { remt(DG * $_[0], 400) }
+
+sub rad2grad ($) { remt(RG * $_[0], 400) }
+
+sub grad2rad ($) { remt(GR * $_[0], pi2) }
+
+sub cartesian_to_spherical {
+ my ( $x, $y, $z ) = @_;
+
+ my $rho = sqrt( $x * $x + $y * $y + $z * $z );
+
+ return ( $rho,
+ atan2( $y, $x ),
+ $rho ? acos( $z / $rho ) : 0 );
+}
+
+sub spherical_to_cartesian {
+ my ( $rho, $theta, $phi ) = @_;
+
+ return ( $rho * cos( $theta ) * sin( $phi ),
+ $rho * sin( $theta ) * sin( $phi ),
+ $rho * cos( $phi ) );
+}
+
+sub spherical_to_cylindrical {
+ my ( $x, $y, $z ) = spherical_to_cartesian( @_ );
+
+ return ( sqrt( $x * $x + $y * $y ), $_[1], $z );
+}
+
+sub cartesian_to_cylindrical {
+ my ( $x, $y, $z ) = @_;
+
+ return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z );
+}
+
+sub cylindrical_to_cartesian {
+ my ( $rho, $theta, $z ) = @_;
+
+ return ( $rho * cos( $theta ), $rho * sin( $theta ), $z );
+}
+
+sub cylindrical_to_spherical {
+ return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) );
+}
+
+sub great_circle_distance {
+ my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_;
+
+ $rho = 1 unless defined $rho; # Default to the unit sphere.
+
+ my $lat0 = pip2 - $phi0;
+ my $lat1 = pip2 - $phi1;
+
+ return $rho *
+ acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
+ sin( $lat0 ) * sin( $lat1 ) );
+}
+
+=pod
+
+=head1 NAME
+
+Math::Trig - trigonometric functions
+
+=head1 SYNOPSIS
+
+ use Math::Trig;
+
+ $x = tan(0.9);
+ $y = acos(3.7);
+ $z = asin(2.4);
+
+ $halfpi = pi/2;
+
+ $rad = deg2rad(120);
+
+=head1 DESCRIPTION
+
+C<Math::Trig> defines many trigonometric functions not defined by the
+core Perl which defines only the C<sin()> and C<cos()>. The constant
+B<pi> is also defined as are a few convenience functions for angle
+conversions.
+
+=head1 TRIGONOMETRIC FUNCTIONS
+
+The tangent
+
+=over 4
+
+=item B<tan>
+
+=back
+
+The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot
+are aliases)
+
+B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan>
+
+The arcus (also known as the inverse) functions of the sine, cosine,
+and tangent
+
+B<asin>, B<acos>, B<atan>
+
+The principal value of the arc tangent of y/x
+
+B<atan2>(y, x)
+
+The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc
+and acotan/acot are aliases)
+
+B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan>
+
+The hyperbolic sine, cosine, and tangent
+
+B<sinh>, B<cosh>, B<tanh>
+
+The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch
+and cotanh/coth are aliases)
+
+B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh>
+
+The arcus (also known as the inverse) functions of the hyperbolic
+sine, cosine, and tangent
+
+B<asinh>, B<acosh>, B<atanh>
+
+The arcus cofunctions of the hyperbolic sine, cosine, and tangent
+(acsch/acosech and acoth/acotanh are aliases)
+
+B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh>
+
+The trigonometric constant B<pi> is also defined.
+
+$pi2 = 2 * B<pi>;
+
+=head2 ERRORS DUE TO DIVISION BY ZERO
+
+The following functions
+
+ acoth
+ acsc
+ acsch
+ asec
+ asech
+ atanh
+ cot
+ coth
+ csc
+ csch
+ sec
+ sech
+ tan
+ tanh
+
+cannot be computed for all arguments because that would mean dividing
+by zero or taking logarithm of zero. These situations cause fatal
+runtime errors looking like this
+
+ cot(0): Division by zero.
+ (Because in the definition of cot(0), the divisor sin(0) is 0)
+ Died at ...
+
+or
+
+ atanh(-1): Logarithm of zero.
+ Died at...
+
+For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
+C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
+C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the
+C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the
+C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *
+pi>, where I<k> is any integer.
+
+=head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
+
+Please note that some of the trigonometric functions can break out
+from the B<real axis> into the B<complex plane>. For example
+C<asin(2)> has no definition for plain real numbers but it has
+definition for complex numbers.
+
+In Perl terms this means that supplying the usual Perl numbers (also
+known as scalars, please see L<perldata>) as input for the
+trigonometric functions might produce as output results that no more
+are simple real numbers: instead they are complex numbers.
+
+The C<Math::Trig> handles this by using the C<Math::Complex> package
+which knows how to handle complex numbers, please see L<Math::Complex>
+for more information. In practice you need not to worry about getting
+complex numbers as results because the C<Math::Complex> takes care of
+details like for example how to display complex numbers. For example:
+
+ print asin(2), "\n";
+
+should produce something like this (take or leave few last decimals):
+
+ 1.5707963267949-1.31695789692482i
+
+That is, a complex number with the real part of approximately C<1.571>
+and the imaginary part of approximately C<-1.317>.
+
+=head1 PLANE ANGLE CONVERSIONS
+
+(Plane, 2-dimensional) angles may be converted with the following functions.
+
+ $radians = deg2rad($degrees);
+ $radians = grad2rad($gradians);
+
+ $degrees = rad2deg($radians);
+ $degrees = grad2deg($gradians);
+
+ $gradians = deg2grad($degrees);
+ $gradians = rad2grad($radians);
+
+The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians.
+
+=head1 RADIAL COORDINATE CONVERSIONS
+
+B<Radial coordinate systems> are the B<spherical> and the B<cylindrical>
+systems, explained shortly in more detail.
+
+You can import radial coordinate conversion functions by using the
+C<:radial> tag:
+
+ use Math::Trig ':radial';
+
+ ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
+ ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
+ ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
+ ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
+ ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
+ ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
+
+B<All angles are in radians>.
+
+=head2 COORDINATE SYSTEMS
+
+B<Cartesian> coordinates are the usual rectangular I<(x, y,
+z)>-coordinates.
+
+Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional
+coordinates which define a point in three-dimensional space. They are
+based on a sphere surface. The radius of the sphere is B<rho>, also
+known as the I<radial> coordinate. The angle in the I<xy>-plane
+(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
+coordinate. The angle from the I<z>-axis is B<phi>, also known as the
+I<polar> coordinate. The `North Pole' is therefore I<0, 0, rho>, and
+the `Bay of Guinea' (think of the missing big chunk of Africa) I<0,
+pi/2, rho>.
+
+B<Beware>: some texts define I<theta> and I<phi> the other way round,
+some texts define the I<phi> to start from the horizontal plane, some
+texts use I<r> in place of I<rho>.
+
+Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional
+coordinates which define a point in three-dimensional space. They are
+based on a cylinder surface. The radius of the cylinder is B<rho>,
+also known as the I<radial> coordinate. The angle in the I<xy>-plane
+(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
+coordinate. The third coordinate is the I<z>, pointing up from the
+B<theta>-plane.
+
+=head2 3-D ANGLE CONVERSIONS
+
+Conversions to and from spherical and cylindrical coordinates are
+available. Please notice that the conversions are not necessarily
+reversible because of the equalities like I<pi> angles being equal to
+I<-pi> angles.
+
+=over 4
+
+=item cartesian_to_cylindrical
+
+ ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
+
+=item cartesian_to_spherical
+
+ ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
+
+=item cylindrical_to_cartesian
+
+ ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
+
+=item cylindrical_to_spherical
+
+ ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
+
+Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>.
+
+=item spherical_to_cartesian
+
+ ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
+
+=item spherical_to_cylindrical
+
+ ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
+
+Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.
+
+=back
+
+=head1 GREAT CIRCLE DISTANCES
+
+You can compute spherical distances, called B<great circle distances>,
+by importing the C<great_circle_distance> function:
+
+ use Math::Trig 'great_circle_distance'
+
+ $distance = great_circle_distance($theta0, $phi0, $theta1, $phi, [, $rho]);
+
+The I<great circle distance> is the shortest distance between two
+points on a sphere. The distance is in C<$rho> units. The C<$rho> is
+optional, it defaults to 1 (the unit sphere), therefore the distance
+defaults to radians.
+
+=head1 EXAMPLES
+
+To calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N
+139.8E) in kilometers:
+
+ use Math::Trig qw(great_circle_distance deg2rad);
+
+ # Notice the 90 - latitude: phi zero is at the North Pole.
+ @L = (deg2rad(-0.5), deg2rad(90 - 51.3));
+ @T = (deg2rad(139.8),deg2rad(90 - 35.7));
+
+ $km = great_circle_distance(@L, @T, 6378);
+
+The answer may be off by up to 0.3% because of the irregular (slightly
+aspherical) form of the Earth.
+
+=head1 BUGS
+
+Saying C<use Math::Trig;> exports many mathematical routines in the
+caller environment and even overrides some (C<sin>, C<cos>). This is
+construed as a feature by the Authors, actually... ;-)
+
+The code is not optimized for speed, especially because we use
+C<Math::Complex> and thus go quite near complex numbers while doing
+the computations even when the arguments are not. This, however,
+cannot be completely avoided if we want things like C<asin(2)> to give
+an answer instead of giving a fatal runtime error.
+
+=head1 AUTHORS
+
+Jarkko Hietaniemi <F<jhi@iki.fi>> and
+Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>>.
+
+=cut
+
+# eof
OpenPOWER on IntegriCloud