summaryrefslogtreecommitdiffstats
path: root/contrib/perl5/lib/Math/Trig.pm
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/perl5/lib/Math/Trig.pm')
-rw-r--r--contrib/perl5/lib/Math/Trig.pm456
1 files changed, 0 insertions, 456 deletions
diff --git a/contrib/perl5/lib/Math/Trig.pm b/contrib/perl5/lib/Math/Trig.pm
deleted file mode 100644
index b28f150..0000000
--- a/contrib/perl5/lib/Math/Trig.pm
+++ /dev/null
@@ -1,456 +0,0 @@
-#
-# Trigonometric functions, mostly inherited from Math::Complex.
-# -- Jarkko Hietaniemi, since April 1997
-# -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex)
-#
-
-require Exporter;
-package Math::Trig;
-
-use 5.005_64;
-use strict;
-
-use Math::Complex qw(:trig);
-
-our($VERSION, $PACKAGE, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS);
-
-@ISA = qw(Exporter);
-
-$VERSION = 1.00;
-
-my @angcnv = qw(rad2deg rad2grad
- deg2rad deg2grad
- grad2rad grad2deg);
-
-@EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},
- @angcnv);
-
-my @rdlcnv = qw(cartesian_to_cylindrical
- cartesian_to_spherical
- cylindrical_to_cartesian
- cylindrical_to_spherical
- spherical_to_cartesian
- spherical_to_cylindrical);
-
-@EXPORT_OK = (@rdlcnv, 'great_circle_distance');
-
-%EXPORT_TAGS = ('radial' => [ @rdlcnv ]);
-
-sub pi2 () { 2 * pi }
-sub pip2 () { pi / 2 }
-
-sub DR () { pi2/360 }
-sub RD () { 360/pi2 }
-sub DG () { 400/360 }
-sub GD () { 360/400 }
-sub RG () { 400/pi2 }
-sub GR () { pi2/400 }
-
-#
-# Truncating remainder.
-#
-
-sub remt ($$) {
- # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available.
- $_[0] - $_[1] * int($_[0] / $_[1]);
-}
-
-#
-# Angle conversions.
-#
-
-sub rad2rad($) { remt($_[0], pi2) }
-
-sub deg2deg($) { remt($_[0], 360) }
-
-sub grad2grad($) { remt($_[0], 400) }
-
-sub rad2deg ($;$) { my $d = RD * $_[0]; $_[1] ? $d : deg2deg($d) }
-
-sub deg2rad ($;$) { my $d = DR * $_[0]; $_[1] ? $d : rad2rad($d) }
-
-sub grad2deg ($;$) { my $d = GD * $_[0]; $_[1] ? $d : deg2deg($d) }
-
-sub deg2grad ($;$) { my $d = DG * $_[0]; $_[1] ? $d : grad2grad($d) }
-
-sub rad2grad ($;$) { my $d = RG * $_[0]; $_[1] ? $d : grad2grad($d) }
-
-sub grad2rad ($;$) { my $d = GR * $_[0]; $_[1] ? $d : rad2rad($d) }
-
-sub cartesian_to_spherical {
- my ( $x, $y, $z ) = @_;
-
- my $rho = sqrt( $x * $x + $y * $y + $z * $z );
-
- return ( $rho,
- atan2( $y, $x ),
- $rho ? acos( $z / $rho ) : 0 );
-}
-
-sub spherical_to_cartesian {
- my ( $rho, $theta, $phi ) = @_;
-
- return ( $rho * cos( $theta ) * sin( $phi ),
- $rho * sin( $theta ) * sin( $phi ),
- $rho * cos( $phi ) );
-}
-
-sub spherical_to_cylindrical {
- my ( $x, $y, $z ) = spherical_to_cartesian( @_ );
-
- return ( sqrt( $x * $x + $y * $y ), $_[1], $z );
-}
-
-sub cartesian_to_cylindrical {
- my ( $x, $y, $z ) = @_;
-
- return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z );
-}
-
-sub cylindrical_to_cartesian {
- my ( $rho, $theta, $z ) = @_;
-
- return ( $rho * cos( $theta ), $rho * sin( $theta ), $z );
-}
-
-sub cylindrical_to_spherical {
- return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) );
-}
-
-sub great_circle_distance {
- my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_;
-
- $rho = 1 unless defined $rho; # Default to the unit sphere.
-
- my $lat0 = pip2 - $phi0;
- my $lat1 = pip2 - $phi1;
-
- return $rho *
- acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
- sin( $lat0 ) * sin( $lat1 ) );
-}
-
-=pod
-
-=head1 NAME
-
-Math::Trig - trigonometric functions
-
-=head1 SYNOPSIS
-
- use Math::Trig;
-
- $x = tan(0.9);
- $y = acos(3.7);
- $z = asin(2.4);
-
- $halfpi = pi/2;
-
- $rad = deg2rad(120);
-
-=head1 DESCRIPTION
-
-C<Math::Trig> defines many trigonometric functions not defined by the
-core Perl which defines only the C<sin()> and C<cos()>. The constant
-B<pi> is also defined as are a few convenience functions for angle
-conversions.
-
-=head1 TRIGONOMETRIC FUNCTIONS
-
-The tangent
-
-=over 4
-
-=item B<tan>
-
-=back
-
-The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot
-are aliases)
-
-B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan>
-
-The arcus (also known as the inverse) functions of the sine, cosine,
-and tangent
-
-B<asin>, B<acos>, B<atan>
-
-The principal value of the arc tangent of y/x
-
-B<atan2>(y, x)
-
-The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc
-and acotan/acot are aliases)
-
-B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan>
-
-The hyperbolic sine, cosine, and tangent
-
-B<sinh>, B<cosh>, B<tanh>
-
-The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch
-and cotanh/coth are aliases)
-
-B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh>
-
-The arcus (also known as the inverse) functions of the hyperbolic
-sine, cosine, and tangent
-
-B<asinh>, B<acosh>, B<atanh>
-
-The arcus cofunctions of the hyperbolic sine, cosine, and tangent
-(acsch/acosech and acoth/acotanh are aliases)
-
-B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh>
-
-The trigonometric constant B<pi> is also defined.
-
-$pi2 = 2 * B<pi>;
-
-=head2 ERRORS DUE TO DIVISION BY ZERO
-
-The following functions
-
- acoth
- acsc
- acsch
- asec
- asech
- atanh
- cot
- coth
- csc
- csch
- sec
- sech
- tan
- tanh
-
-cannot be computed for all arguments because that would mean dividing
-by zero or taking logarithm of zero. These situations cause fatal
-runtime errors looking like this
-
- cot(0): Division by zero.
- (Because in the definition of cot(0), the divisor sin(0) is 0)
- Died at ...
-
-or
-
- atanh(-1): Logarithm of zero.
- Died at...
-
-For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
-C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
-C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the
-C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the
-C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *
-pi>, where I<k> is any integer.
-
-=head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
-
-Please note that some of the trigonometric functions can break out
-from the B<real axis> into the B<complex plane>. For example
-C<asin(2)> has no definition for plain real numbers but it has
-definition for complex numbers.
-
-In Perl terms this means that supplying the usual Perl numbers (also
-known as scalars, please see L<perldata>) as input for the
-trigonometric functions might produce as output results that no more
-are simple real numbers: instead they are complex numbers.
-
-The C<Math::Trig> handles this by using the C<Math::Complex> package
-which knows how to handle complex numbers, please see L<Math::Complex>
-for more information. In practice you need not to worry about getting
-complex numbers as results because the C<Math::Complex> takes care of
-details like for example how to display complex numbers. For example:
-
- print asin(2), "\n";
-
-should produce something like this (take or leave few last decimals):
-
- 1.5707963267949-1.31695789692482i
-
-That is, a complex number with the real part of approximately C<1.571>
-and the imaginary part of approximately C<-1.317>.
-
-=head1 PLANE ANGLE CONVERSIONS
-
-(Plane, 2-dimensional) angles may be converted with the following functions.
-
- $radians = deg2rad($degrees);
- $radians = grad2rad($gradians);
-
- $degrees = rad2deg($radians);
- $degrees = grad2deg($gradians);
-
- $gradians = deg2grad($degrees);
- $gradians = rad2grad($radians);
-
-The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians.
-The result is by default wrapped to be inside the [0, {2pi,360,400}[ circle.
-If you don't want this, supply a true second argument:
-
- $zillions_of_radians = deg2rad($zillions_of_degrees, 1);
- $negative_degrees = rad2deg($negative_radians, 1);
-
-You can also do the wrapping explicitly by rad2rad(), deg2deg(), and
-grad2grad().
-
-=head1 RADIAL COORDINATE CONVERSIONS
-
-B<Radial coordinate systems> are the B<spherical> and the B<cylindrical>
-systems, explained shortly in more detail.
-
-You can import radial coordinate conversion functions by using the
-C<:radial> tag:
-
- use Math::Trig ':radial';
-
- ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
- ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
- ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
- ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
- ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
- ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
-
-B<All angles are in radians>.
-
-=head2 COORDINATE SYSTEMS
-
-B<Cartesian> coordinates are the usual rectangular I<(x, y,
-z)>-coordinates.
-
-Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional
-coordinates which define a point in three-dimensional space. They are
-based on a sphere surface. The radius of the sphere is B<rho>, also
-known as the I<radial> coordinate. The angle in the I<xy>-plane
-(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
-coordinate. The angle from the I<z>-axis is B<phi>, also known as the
-I<polar> coordinate. The `North Pole' is therefore I<0, 0, rho>, and
-the `Bay of Guinea' (think of the missing big chunk of Africa) I<0,
-pi/2, rho>. In geographical terms I<phi> is latitude (northward
-positive, southward negative) and I<theta> is longitude (eastward
-positive, westward negative).
-
-B<BEWARE>: some texts define I<theta> and I<phi> the other way round,
-some texts define the I<phi> to start from the horizontal plane, some
-texts use I<r> in place of I<rho>.
-
-Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional
-coordinates which define a point in three-dimensional space. They are
-based on a cylinder surface. The radius of the cylinder is B<rho>,
-also known as the I<radial> coordinate. The angle in the I<xy>-plane
-(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
-coordinate. The third coordinate is the I<z>, pointing up from the
-B<theta>-plane.
-
-=head2 3-D ANGLE CONVERSIONS
-
-Conversions to and from spherical and cylindrical coordinates are
-available. Please notice that the conversions are not necessarily
-reversible because of the equalities like I<pi> angles being equal to
-I<-pi> angles.
-
-=over 4
-
-=item cartesian_to_cylindrical
-
- ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
-
-=item cartesian_to_spherical
-
- ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
-
-=item cylindrical_to_cartesian
-
- ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
-
-=item cylindrical_to_spherical
-
- ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
-
-Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>.
-
-=item spherical_to_cartesian
-
- ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
-
-=item spherical_to_cylindrical
-
- ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
-
-Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.
-
-=back
-
-=head1 GREAT CIRCLE DISTANCES
-
-You can compute spherical distances, called B<great circle distances>,
-by importing the C<great_circle_distance> function:
-
- use Math::Trig 'great_circle_distance'
-
- $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]);
-
-The I<great circle distance> is the shortest distance between two
-points on a sphere. The distance is in C<$rho> units. The C<$rho> is
-optional, it defaults to 1 (the unit sphere), therefore the distance
-defaults to radians.
-
-If you think geographically the I<theta> are longitudes: zero at the
-Greenwhich meridian, eastward positive, westward negative--and the
-I<phi> are latitudes: zero at the North Pole, northward positive,
-southward negative. B<NOTE>: this formula thinks in mathematics, not
-geographically: the I<phi> zero is at the North Pole, not at the
-Equator on the west coast of Africa (Bay of Guinea). You need to
-subtract your geographical coordinates from I<pi/2> (also known as 90
-degrees).
-
- $distance = great_circle_distance($lon0, pi/2 - $lat0,
- $lon1, pi/2 - $lat1, $rho);
-
-=head1 EXAMPLES
-
-To calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N
-139.8E) in kilometers:
-
- use Math::Trig qw(great_circle_distance deg2rad);
-
- # Notice the 90 - latitude: phi zero is at the North Pole.
- @L = (deg2rad(-0.5), deg2rad(90 - 51.3));
- @T = (deg2rad(139.8),deg2rad(90 - 35.7));
-
- $km = great_circle_distance(@L, @T, 6378);
-
-The answer may be off by few percentages because of the irregular
-(slightly aspherical) form of the Earth. The used formula
-
- lat0 = 90 degrees - phi0
- lat1 = 90 degrees - phi1
- d = R * arccos(cos(lat0) * cos(lat1) * cos(lon1 - lon01) +
- sin(lat0) * sin(lat1))
-
-is also somewhat unreliable for small distances (for locations
-separated less than about five degrees) because it uses arc cosine
-which is rather ill-conditioned for values close to zero.
-
-=head1 BUGS
-
-Saying C<use Math::Trig;> exports many mathematical routines in the
-caller environment and even overrides some (C<sin>, C<cos>). This is
-construed as a feature by the Authors, actually... ;-)
-
-The code is not optimized for speed, especially because we use
-C<Math::Complex> and thus go quite near complex numbers while doing
-the computations even when the arguments are not. This, however,
-cannot be completely avoided if we want things like C<asin(2)> to give
-an answer instead of giving a fatal runtime error.
-
-=head1 AUTHORS
-
-Jarkko Hietaniemi <F<jhi@iki.fi>> and
-Raphael Manfredi <F<Raphael_Manfredi@pobox.com>>.
-
-=cut
-
-# eof
OpenPOWER on IntegriCloud