summaryrefslogtreecommitdiffstats
path: root/contrib/perl5/lib/Math/BigInt.pm
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/perl5/lib/Math/BigInt.pm')
-rw-r--r--contrib/perl5/lib/Math/BigInt.pm519
1 files changed, 0 insertions, 519 deletions
diff --git a/contrib/perl5/lib/Math/BigInt.pm b/contrib/perl5/lib/Math/BigInt.pm
deleted file mode 100644
index 066577d..0000000
--- a/contrib/perl5/lib/Math/BigInt.pm
+++ /dev/null
@@ -1,519 +0,0 @@
-package Math::BigInt;
-$VERSION='0.01';
-
-use overload
-'+' => sub {new Math::BigInt &badd},
-'-' => sub {new Math::BigInt
- $_[2]? bsub($_[1],${$_[0]}) : bsub(${$_[0]},$_[1])},
-'<=>' => sub {$_[2]? bcmp($_[1],${$_[0]}) : bcmp(${$_[0]},$_[1])},
-'cmp' => sub {$_[2]? ($_[1] cmp ${$_[0]}) : (${$_[0]} cmp $_[1])},
-'*' => sub {new Math::BigInt &bmul},
-'/' => sub {new Math::BigInt
- $_[2]? scalar bdiv($_[1],${$_[0]}) :
- scalar bdiv(${$_[0]},$_[1])},
-'%' => sub {new Math::BigInt
- $_[2]? bmod($_[1],${$_[0]}) : bmod(${$_[0]},$_[1])},
-'**' => sub {new Math::BigInt
- $_[2]? bpow($_[1],${$_[0]}) : bpow(${$_[0]},$_[1])},
-'neg' => sub {new Math::BigInt &bneg},
-'abs' => sub {new Math::BigInt &babs},
-'<<' => sub {new Math::BigInt
- $_[2]? blsft($_[1],${$_[0]}) : blsft(${$_[0]},$_[1])},
-'>>' => sub {new Math::BigInt
- $_[2]? brsft($_[1],${$_[0]}) : brsft(${$_[0]},$_[1])},
-'&' => sub {new Math::BigInt &band},
-'|' => sub {new Math::BigInt &bior},
-'^' => sub {new Math::BigInt &bxor},
-'~' => sub {new Math::BigInt &bnot},
-
-qw(
-"" stringify
-0+ numify) # Order of arguments unsignificant
-;
-
-$NaNOK=1;
-
-sub new {
- my($class) = shift;
- my($foo) = bnorm(shift);
- die "Not a number initialized to Math::BigInt" if !$NaNOK && $foo eq "NaN";
- bless \$foo, $class;
-}
-sub stringify { "${$_[0]}" }
-sub numify { 0 + "${$_[0]}" } # Not needed, additional overhead
- # comparing to direct compilation based on
- # stringify
-sub import {
- shift;
- return unless @_;
- die "unknown import: @_" unless @_ == 1 and $_[0] eq ':constant';
- overload::constant integer => sub {Math::BigInt->new(shift)};
-}
-
-$zero = 0;
-
-# overcome a floating point problem on certain osnames (posix-bc, os390)
-BEGIN {
- my $x = 100000.0;
- my $use_mult = int($x*1e-5)*1e5 == $x ? 1 : 0;
-}
-
-# normalize string form of number. Strip leading zeros. Strip any
-# white space and add a sign, if missing.
-# Strings that are not numbers result the value 'NaN'.
-
-sub bnorm { #(num_str) return num_str
- local($_) = @_;
- s/\s+//g; # strip white space
- if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number
- substr($_,$[,0) = '+' unless $1; # Add missing sign
- s/^-0/+0/;
- $_;
- } else {
- 'NaN';
- }
-}
-
-# Convert a number from string format to internal base 100000 format.
-# Assumes normalized value as input.
-sub internal { #(num_str) return int_num_array
- local($d) = @_;
- ($is,$il) = (substr($d,$[,1),length($d)-2);
- substr($d,$[,1) = '';
- ($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d)));
-}
-
-# Convert a number from internal base 100000 format to string format.
-# This routine scribbles all over input array.
-sub external { #(int_num_array) return num_str
- $es = shift;
- grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad
- &bnorm(join('', $es, reverse(@_))); # reverse concat and normalize
-}
-
-# Negate input value.
-sub bneg { #(num_str) return num_str
- local($_) = &bnorm(@_);
- return $_ if $_ eq '+0' or $_ eq 'NaN';
- vec($_,0,8) ^= ord('+') ^ ord('-');
- $_;
-}
-
-# Returns the absolute value of the input.
-sub babs { #(num_str) return num_str
- &abs(&bnorm(@_));
-}
-
-sub abs { # post-normalized abs for internal use
- local($_) = @_;
- s/^-/+/;
- $_;
-}
-
-# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
-sub bcmp { #(num_str, num_str) return cond_code
- local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
- if ($x eq 'NaN') {
- undef;
- } elsif ($y eq 'NaN') {
- undef;
- } else {
- &cmp($x,$y) <=> 0;
- }
-}
-
-sub cmp { # post-normalized compare for internal use
- local($cx, $cy) = @_;
-
- return 0 if ($cx eq $cy);
-
- local($sx, $sy) = (substr($cx, 0, 1), substr($cy, 0, 1));
- local($ld);
-
- if ($sx eq '+') {
- return 1 if ($sy eq '-' || $cy eq '+0');
- $ld = length($cx) - length($cy);
- return $ld if ($ld);
- return $cx cmp $cy;
- } else { # $sx eq '-'
- return -1 if ($sy eq '+');
- $ld = length($cy) - length($cx);
- return $ld if ($ld);
- return $cy cmp $cx;
- }
-}
-
-sub badd { #(num_str, num_str) return num_str
- local(*x, *y); ($x, $y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
- if ($x eq 'NaN') {
- 'NaN';
- } elsif ($y eq 'NaN') {
- 'NaN';
- } else {
- @x = &internal($x); # convert to internal form
- @y = &internal($y);
- local($sx, $sy) = (shift @x, shift @y); # get signs
- if ($sx eq $sy) {
- &external($sx, &add(*x, *y)); # if same sign add
- } else {
- ($x, $y) = (&abs($x),&abs($y)); # make abs
- if (&cmp($y,$x) > 0) {
- &external($sy, &sub(*y, *x));
- } else {
- &external($sx, &sub(*x, *y));
- }
- }
- }
-}
-
-sub bsub { #(num_str, num_str) return num_str
- &badd($_[$[],&bneg($_[$[+1]));
-}
-
-# GCD -- Euclids algorithm Knuth Vol 2 pg 296
-sub bgcd { #(num_str, num_str) return num_str
- local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
- if ($x eq 'NaN' || $y eq 'NaN') {
- 'NaN';
- } else {
- ($x, $y) = ($y,&bmod($x,$y)) while $y ne '+0';
- $x;
- }
-}
-
-# routine to add two base 1e5 numbers
-# stolen from Knuth Vol 2 Algorithm A pg 231
-# there are separate routines to add and sub as per Kunth pg 233
-sub add { #(int_num_array, int_num_array) return int_num_array
- local(*x, *y) = @_;
- $car = 0;
- for $x (@x) {
- last unless @y || $car;
- $x -= 1e5 if $car = (($x += (@y ? shift(@y) : 0) + $car) >= 1e5) ? 1 : 0;
- }
- for $y (@y) {
- last unless $car;
- $y -= 1e5 if $car = (($y += $car) >= 1e5) ? 1 : 0;
- }
- (@x, @y, $car);
-}
-
-# subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
-sub sub { #(int_num_array, int_num_array) return int_num_array
- local(*sx, *sy) = @_;
- $bar = 0;
- for $sx (@sx) {
- last unless @sy || $bar;
- $sx += 1e5 if $bar = (($sx -= (@sy ? shift(@sy) : 0) + $bar) < 0);
- }
- @sx;
-}
-
-# multiply two numbers -- stolen from Knuth Vol 2 pg 233
-sub bmul { #(num_str, num_str) return num_str
- local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
- if ($x eq 'NaN') {
- 'NaN';
- } elsif ($y eq 'NaN') {
- 'NaN';
- } else {
- @x = &internal($x);
- @y = &internal($y);
- &external(&mul(*x,*y));
- }
-}
-
-# multiply two numbers in internal representation
-# destroys the arguments, supposes that two arguments are different
-sub mul { #(*int_num_array, *int_num_array) return int_num_array
- local(*x, *y) = (shift, shift);
- local($signr) = (shift @x ne shift @y) ? '-' : '+';
- @prod = ();
- for $x (@x) {
- ($car, $cty) = (0, $[);
- for $y (@y) {
- $prod = $x * $y + ($prod[$cty] || 0) + $car;
- if ($use_mult) {
- $prod[$cty++] =
- $prod - ($car = int($prod * 1e-5)) * 1e5;
- }
- else {
- $prod[$cty++] =
- $prod - ($car = int($prod / 1e5)) * 1e5;
- }
- }
- $prod[$cty] += $car if $car;
- $x = shift @prod;
- }
- ($signr, @x, @prod);
-}
-
-# modulus
-sub bmod { #(num_str, num_str) return num_str
- (&bdiv(@_))[$[+1];
-}
-
-sub bdiv { #(dividend: num_str, divisor: num_str) return num_str
- local (*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
- return wantarray ? ('NaN','NaN') : 'NaN'
- if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0');
- return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0);
- @x = &internal($x); @y = &internal($y);
- $srem = $y[$[];
- $sr = (shift @x ne shift @y) ? '-' : '+';
- $car = $bar = $prd = 0;
- if (($dd = int(1e5/($y[$#y]+1))) != 1) {
- for $x (@x) {
- $x = $x * $dd + $car;
- if ($use_mult) {
- $x -= ($car = int($x * 1e-5)) * 1e5;
- }
- else {
- $x -= ($car = int($x / 1e5)) * 1e5;
- }
- }
- push(@x, $car); $car = 0;
- for $y (@y) {
- $y = $y * $dd + $car;
- if ($use_mult) {
- $y -= ($car = int($y * 1e-5)) * 1e5;
- }
- else {
- $y -= ($car = int($y / 1e5)) * 1e5;
- }
- }
- }
- else {
- push(@x, 0);
- }
- @q = (); ($v2,$v1) = @y[-2,-1];
- $v2 = 0 unless $v2;
- while ($#x > $#y) {
- ($u2,$u1,$u0) = @x[-3..-1];
- $u2 = 0 unless $u2;
- $q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1));
- --$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2);
- if ($q) {
- ($car, $bar) = (0,0);
- for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
- $prd = $q * $y[$y] + $car;
- if ($use_mult) {
- $prd -= ($car = int($prd * 1e-5)) * 1e5;
- }
- else {
- $prd -= ($car = int($prd / 1e5)) * 1e5;
- }
- $x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0));
- }
- if ($x[$#x] < $car + $bar) {
- $car = 0; --$q;
- for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
- $x[$x] -= 1e5
- if ($car = (($x[$x] += $y[$y] + $car) > 1e5));
- }
- }
- }
- pop(@x); unshift(@q, $q);
- }
- if (wantarray) {
- @d = ();
- if ($dd != 1) {
- $car = 0;
- for $x (reverse @x) {
- $prd = $car * 1e5 + $x;
- $car = $prd - ($tmp = int($prd / $dd)) * $dd;
- unshift(@d, $tmp);
- }
- }
- else {
- @d = @x;
- }
- (&external($sr, @q), &external($srem, @d, $zero));
- } else {
- &external($sr, @q);
- }
-}
-
-# compute power of two numbers -- stolen from Knuth Vol 2 pg 233
-sub bpow { #(num_str, num_str) return num_str
- local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
- if ($x eq 'NaN') {
- 'NaN';
- } elsif ($y eq 'NaN') {
- 'NaN';
- } elsif ($x eq '+1') {
- '+1';
- } elsif ($x eq '-1') {
- &bmod($x,2) ? '-1': '+1';
- } elsif ($y =~ /^-/) {
- 'NaN';
- } elsif ($x eq '+0' && $y eq '+0') {
- 'NaN';
- } else {
- @x = &internal($x);
- local(@pow2)=@x;
- local(@pow)=&internal("+1");
- local($y1,$res,@tmp1,@tmp2)=(1); # need tmp to send to mul
- while ($y ne '+0') {
- ($y,$res)=&bdiv($y,2);
- if ($res ne '+0') {@tmp=@pow2; @pow=&mul(*pow,*tmp);}
- if ($y ne '+0') {@tmp=@pow2;@pow2=&mul(*pow2,*tmp);}
- }
- &external(@pow);
- }
-}
-
-# compute x << y, y >= 0
-sub blsft { #(num_str, num_str) return num_str
- &bmul($_[$[], &bpow(2, $_[$[+1]));
-}
-
-# compute x >> y, y >= 0
-sub brsft { #(num_str, num_str) return num_str
- &bdiv($_[$[], &bpow(2, $_[$[+1]));
-}
-
-# compute x & y
-sub band { #(num_str, num_str) return num_str
- local($x,$y,$r,$m,$xr,$yr) = (&bnorm($_[$[]),&bnorm($_[$[+1]),0,1);
- if ($x eq 'NaN' || $y eq 'NaN') {
- 'NaN';
- } else {
- while ($x ne '+0' && $y ne '+0') {
- ($x, $xr) = &bdiv($x, 0x10000);
- ($y, $yr) = &bdiv($y, 0x10000);
- $r = &badd(&bmul(int $xr & $yr, $m), $r);
- $m = &bmul($m, 0x10000);
- }
- $r;
- }
-}
-
-# compute x | y
-sub bior { #(num_str, num_str) return num_str
- local($x,$y,$r,$m,$xr,$yr) = (&bnorm($_[$[]),&bnorm($_[$[+1]),0,1);
- if ($x eq 'NaN' || $y eq 'NaN') {
- 'NaN';
- } else {
- while ($x ne '+0' || $y ne '+0') {
- ($x, $xr) = &bdiv($x, 0x10000);
- ($y, $yr) = &bdiv($y, 0x10000);
- $r = &badd(&bmul(int $xr | $yr, $m), $r);
- $m = &bmul($m, 0x10000);
- }
- $r;
- }
-}
-
-# compute x ^ y
-sub bxor { #(num_str, num_str) return num_str
- local($x,$y,$r,$m,$xr,$yr) = (&bnorm($_[$[]),&bnorm($_[$[+1]),0,1);
- if ($x eq 'NaN' || $y eq 'NaN') {
- 'NaN';
- } else {
- while ($x ne '+0' || $y ne '+0') {
- ($x, $xr) = &bdiv($x, 0x10000);
- ($y, $yr) = &bdiv($y, 0x10000);
- $r = &badd(&bmul(int $xr ^ $yr, $m), $r);
- $m = &bmul($m, 0x10000);
- }
- $r;
- }
-}
-
-# represent ~x as twos-complement number
-sub bnot { #(num_str) return num_str
- &bsub(-1,$_[$[]);
-}
-
-1;
-__END__
-
-=head1 NAME
-
-Math::BigInt - Arbitrary size integer math package
-
-=head1 SYNOPSIS
-
- use Math::BigInt;
- $i = Math::BigInt->new($string);
-
- $i->bneg return BINT negation
- $i->babs return BINT absolute value
- $i->bcmp(BINT) return CODE compare numbers (undef,<0,=0,>0)
- $i->badd(BINT) return BINT addition
- $i->bsub(BINT) return BINT subtraction
- $i->bmul(BINT) return BINT multiplication
- $i->bdiv(BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
- $i->bmod(BINT) return BINT modulus
- $i->bgcd(BINT) return BINT greatest common divisor
- $i->bnorm return BINT normalization
- $i->blsft(BINT) return BINT left shift
- $i->brsft(BINT) return (BINT,BINT) right shift (quo,rem) just quo if scalar
- $i->band(BINT) return BINT bit-wise and
- $i->bior(BINT) return BINT bit-wise inclusive or
- $i->bxor(BINT) return BINT bit-wise exclusive or
- $i->bnot return BINT bit-wise not
-
-=head1 DESCRIPTION
-
-All basic math operations are overloaded if you declare your big
-integers as
-
- $i = new Math::BigInt '123 456 789 123 456 789';
-
-
-=over 2
-
-=item Canonical notation
-
-Big integer value are strings of the form C</^[+-]\d+$/> with leading
-zeros suppressed.
-
-=item Input
-
-Input values to these routines may be strings of the form
-C</^\s*[+-]?[\d\s]+$/>.
-
-=item Output
-
-Output values always always in canonical form
-
-=back
-
-Actual math is done in an internal format consisting of an array
-whose first element is the sign (/^[+-]$/) and whose remaining
-elements are base 100000 digits with the least significant digit first.
-The string 'NaN' is used to represent the result when input arguments
-are not numbers, as well as the result of dividing by zero.
-
-=head1 EXAMPLES
-
- '+0' canonical zero value
- ' -123 123 123' canonical value '-123123123'
- '1 23 456 7890' canonical value '+1234567890'
-
-
-=head1 Autocreating constants
-
-After C<use Math::BigInt ':constant'> all the integer decimal constants
-in the given scope are converted to C<Math::BigInt>. This conversion
-happens at compile time.
-
-In particular
-
- perl -MMath::BigInt=:constant -e 'print 2**100'
-
-print the integer value of C<2**100>. Note that without conversion of
-constants the expression 2**100 will be calculated as floating point number.
-
-=head1 BUGS
-
-The current version of this module is a preliminary version of the
-real thing that is currently (as of perl5.002) under development.
-
-=head1 AUTHOR
-
-Mark Biggar, overloaded interface by Ilya Zakharevich.
-
-=cut
OpenPOWER on IntegriCloud