diff options
Diffstat (limited to 'contrib/perl5/lib/Math/BigInt.pm')
-rw-r--r-- | contrib/perl5/lib/Math/BigInt.pm | 519 |
1 files changed, 0 insertions, 519 deletions
diff --git a/contrib/perl5/lib/Math/BigInt.pm b/contrib/perl5/lib/Math/BigInt.pm deleted file mode 100644 index 066577d..0000000 --- a/contrib/perl5/lib/Math/BigInt.pm +++ /dev/null @@ -1,519 +0,0 @@ -package Math::BigInt; -$VERSION='0.01'; - -use overload -'+' => sub {new Math::BigInt &badd}, -'-' => sub {new Math::BigInt - $_[2]? bsub($_[1],${$_[0]}) : bsub(${$_[0]},$_[1])}, -'<=>' => sub {$_[2]? bcmp($_[1],${$_[0]}) : bcmp(${$_[0]},$_[1])}, -'cmp' => sub {$_[2]? ($_[1] cmp ${$_[0]}) : (${$_[0]} cmp $_[1])}, -'*' => sub {new Math::BigInt &bmul}, -'/' => sub {new Math::BigInt - $_[2]? scalar bdiv($_[1],${$_[0]}) : - scalar bdiv(${$_[0]},$_[1])}, -'%' => sub {new Math::BigInt - $_[2]? bmod($_[1],${$_[0]}) : bmod(${$_[0]},$_[1])}, -'**' => sub {new Math::BigInt - $_[2]? bpow($_[1],${$_[0]}) : bpow(${$_[0]},$_[1])}, -'neg' => sub {new Math::BigInt &bneg}, -'abs' => sub {new Math::BigInt &babs}, -'<<' => sub {new Math::BigInt - $_[2]? blsft($_[1],${$_[0]}) : blsft(${$_[0]},$_[1])}, -'>>' => sub {new Math::BigInt - $_[2]? brsft($_[1],${$_[0]}) : brsft(${$_[0]},$_[1])}, -'&' => sub {new Math::BigInt &band}, -'|' => sub {new Math::BigInt &bior}, -'^' => sub {new Math::BigInt &bxor}, -'~' => sub {new Math::BigInt &bnot}, - -qw( -"" stringify -0+ numify) # Order of arguments unsignificant -; - -$NaNOK=1; - -sub new { - my($class) = shift; - my($foo) = bnorm(shift); - die "Not a number initialized to Math::BigInt" if !$NaNOK && $foo eq "NaN"; - bless \$foo, $class; -} -sub stringify { "${$_[0]}" } -sub numify { 0 + "${$_[0]}" } # Not needed, additional overhead - # comparing to direct compilation based on - # stringify -sub import { - shift; - return unless @_; - die "unknown import: @_" unless @_ == 1 and $_[0] eq ':constant'; - overload::constant integer => sub {Math::BigInt->new(shift)}; -} - -$zero = 0; - -# overcome a floating point problem on certain osnames (posix-bc, os390) -BEGIN { - my $x = 100000.0; - my $use_mult = int($x*1e-5)*1e5 == $x ? 1 : 0; -} - -# normalize string form of number. Strip leading zeros. Strip any -# white space and add a sign, if missing. -# Strings that are not numbers result the value 'NaN'. - -sub bnorm { #(num_str) return num_str - local($_) = @_; - s/\s+//g; # strip white space - if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number - substr($_,$[,0) = '+' unless $1; # Add missing sign - s/^-0/+0/; - $_; - } else { - 'NaN'; - } -} - -# Convert a number from string format to internal base 100000 format. -# Assumes normalized value as input. -sub internal { #(num_str) return int_num_array - local($d) = @_; - ($is,$il) = (substr($d,$[,1),length($d)-2); - substr($d,$[,1) = ''; - ($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d))); -} - -# Convert a number from internal base 100000 format to string format. -# This routine scribbles all over input array. -sub external { #(int_num_array) return num_str - $es = shift; - grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad - &bnorm(join('', $es, reverse(@_))); # reverse concat and normalize -} - -# Negate input value. -sub bneg { #(num_str) return num_str - local($_) = &bnorm(@_); - return $_ if $_ eq '+0' or $_ eq 'NaN'; - vec($_,0,8) ^= ord('+') ^ ord('-'); - $_; -} - -# Returns the absolute value of the input. -sub babs { #(num_str) return num_str - &abs(&bnorm(@_)); -} - -sub abs { # post-normalized abs for internal use - local($_) = @_; - s/^-/+/; - $_; -} - -# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort) -sub bcmp { #(num_str, num_str) return cond_code - local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1])); - if ($x eq 'NaN') { - undef; - } elsif ($y eq 'NaN') { - undef; - } else { - &cmp($x,$y) <=> 0; - } -} - -sub cmp { # post-normalized compare for internal use - local($cx, $cy) = @_; - - return 0 if ($cx eq $cy); - - local($sx, $sy) = (substr($cx, 0, 1), substr($cy, 0, 1)); - local($ld); - - if ($sx eq '+') { - return 1 if ($sy eq '-' || $cy eq '+0'); - $ld = length($cx) - length($cy); - return $ld if ($ld); - return $cx cmp $cy; - } else { # $sx eq '-' - return -1 if ($sy eq '+'); - $ld = length($cy) - length($cx); - return $ld if ($ld); - return $cy cmp $cx; - } -} - -sub badd { #(num_str, num_str) return num_str - local(*x, *y); ($x, $y) = (&bnorm($_[$[]),&bnorm($_[$[+1])); - if ($x eq 'NaN') { - 'NaN'; - } elsif ($y eq 'NaN') { - 'NaN'; - } else { - @x = &internal($x); # convert to internal form - @y = &internal($y); - local($sx, $sy) = (shift @x, shift @y); # get signs - if ($sx eq $sy) { - &external($sx, &add(*x, *y)); # if same sign add - } else { - ($x, $y) = (&abs($x),&abs($y)); # make abs - if (&cmp($y,$x) > 0) { - &external($sy, &sub(*y, *x)); - } else { - &external($sx, &sub(*x, *y)); - } - } - } -} - -sub bsub { #(num_str, num_str) return num_str - &badd($_[$[],&bneg($_[$[+1])); -} - -# GCD -- Euclids algorithm Knuth Vol 2 pg 296 -sub bgcd { #(num_str, num_str) return num_str - local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1])); - if ($x eq 'NaN' || $y eq 'NaN') { - 'NaN'; - } else { - ($x, $y) = ($y,&bmod($x,$y)) while $y ne '+0'; - $x; - } -} - -# routine to add two base 1e5 numbers -# stolen from Knuth Vol 2 Algorithm A pg 231 -# there are separate routines to add and sub as per Kunth pg 233 -sub add { #(int_num_array, int_num_array) return int_num_array - local(*x, *y) = @_; - $car = 0; - for $x (@x) { - last unless @y || $car; - $x -= 1e5 if $car = (($x += (@y ? shift(@y) : 0) + $car) >= 1e5) ? 1 : 0; - } - for $y (@y) { - last unless $car; - $y -= 1e5 if $car = (($y += $car) >= 1e5) ? 1 : 0; - } - (@x, @y, $car); -} - -# subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y -sub sub { #(int_num_array, int_num_array) return int_num_array - local(*sx, *sy) = @_; - $bar = 0; - for $sx (@sx) { - last unless @sy || $bar; - $sx += 1e5 if $bar = (($sx -= (@sy ? shift(@sy) : 0) + $bar) < 0); - } - @sx; -} - -# multiply two numbers -- stolen from Knuth Vol 2 pg 233 -sub bmul { #(num_str, num_str) return num_str - local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1])); - if ($x eq 'NaN') { - 'NaN'; - } elsif ($y eq 'NaN') { - 'NaN'; - } else { - @x = &internal($x); - @y = &internal($y); - &external(&mul(*x,*y)); - } -} - -# multiply two numbers in internal representation -# destroys the arguments, supposes that two arguments are different -sub mul { #(*int_num_array, *int_num_array) return int_num_array - local(*x, *y) = (shift, shift); - local($signr) = (shift @x ne shift @y) ? '-' : '+'; - @prod = (); - for $x (@x) { - ($car, $cty) = (0, $[); - for $y (@y) { - $prod = $x * $y + ($prod[$cty] || 0) + $car; - if ($use_mult) { - $prod[$cty++] = - $prod - ($car = int($prod * 1e-5)) * 1e5; - } - else { - $prod[$cty++] = - $prod - ($car = int($prod / 1e5)) * 1e5; - } - } - $prod[$cty] += $car if $car; - $x = shift @prod; - } - ($signr, @x, @prod); -} - -# modulus -sub bmod { #(num_str, num_str) return num_str - (&bdiv(@_))[$[+1]; -} - -sub bdiv { #(dividend: num_str, divisor: num_str) return num_str - local (*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1])); - return wantarray ? ('NaN','NaN') : 'NaN' - if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0'); - return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0); - @x = &internal($x); @y = &internal($y); - $srem = $y[$[]; - $sr = (shift @x ne shift @y) ? '-' : '+'; - $car = $bar = $prd = 0; - if (($dd = int(1e5/($y[$#y]+1))) != 1) { - for $x (@x) { - $x = $x * $dd + $car; - if ($use_mult) { - $x -= ($car = int($x * 1e-5)) * 1e5; - } - else { - $x -= ($car = int($x / 1e5)) * 1e5; - } - } - push(@x, $car); $car = 0; - for $y (@y) { - $y = $y * $dd + $car; - if ($use_mult) { - $y -= ($car = int($y * 1e-5)) * 1e5; - } - else { - $y -= ($car = int($y / 1e5)) * 1e5; - } - } - } - else { - push(@x, 0); - } - @q = (); ($v2,$v1) = @y[-2,-1]; - $v2 = 0 unless $v2; - while ($#x > $#y) { - ($u2,$u1,$u0) = @x[-3..-1]; - $u2 = 0 unless $u2; - $q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1)); - --$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2); - if ($q) { - ($car, $bar) = (0,0); - for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) { - $prd = $q * $y[$y] + $car; - if ($use_mult) { - $prd -= ($car = int($prd * 1e-5)) * 1e5; - } - else { - $prd -= ($car = int($prd / 1e5)) * 1e5; - } - $x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0)); - } - if ($x[$#x] < $car + $bar) { - $car = 0; --$q; - for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) { - $x[$x] -= 1e5 - if ($car = (($x[$x] += $y[$y] + $car) > 1e5)); - } - } - } - pop(@x); unshift(@q, $q); - } - if (wantarray) { - @d = (); - if ($dd != 1) { - $car = 0; - for $x (reverse @x) { - $prd = $car * 1e5 + $x; - $car = $prd - ($tmp = int($prd / $dd)) * $dd; - unshift(@d, $tmp); - } - } - else { - @d = @x; - } - (&external($sr, @q), &external($srem, @d, $zero)); - } else { - &external($sr, @q); - } -} - -# compute power of two numbers -- stolen from Knuth Vol 2 pg 233 -sub bpow { #(num_str, num_str) return num_str - local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1])); - if ($x eq 'NaN') { - 'NaN'; - } elsif ($y eq 'NaN') { - 'NaN'; - } elsif ($x eq '+1') { - '+1'; - } elsif ($x eq '-1') { - &bmod($x,2) ? '-1': '+1'; - } elsif ($y =~ /^-/) { - 'NaN'; - } elsif ($x eq '+0' && $y eq '+0') { - 'NaN'; - } else { - @x = &internal($x); - local(@pow2)=@x; - local(@pow)=&internal("+1"); - local($y1,$res,@tmp1,@tmp2)=(1); # need tmp to send to mul - while ($y ne '+0') { - ($y,$res)=&bdiv($y,2); - if ($res ne '+0') {@tmp=@pow2; @pow=&mul(*pow,*tmp);} - if ($y ne '+0') {@tmp=@pow2;@pow2=&mul(*pow2,*tmp);} - } - &external(@pow); - } -} - -# compute x << y, y >= 0 -sub blsft { #(num_str, num_str) return num_str - &bmul($_[$[], &bpow(2, $_[$[+1])); -} - -# compute x >> y, y >= 0 -sub brsft { #(num_str, num_str) return num_str - &bdiv($_[$[], &bpow(2, $_[$[+1])); -} - -# compute x & y -sub band { #(num_str, num_str) return num_str - local($x,$y,$r,$m,$xr,$yr) = (&bnorm($_[$[]),&bnorm($_[$[+1]),0,1); - if ($x eq 'NaN' || $y eq 'NaN') { - 'NaN'; - } else { - while ($x ne '+0' && $y ne '+0') { - ($x, $xr) = &bdiv($x, 0x10000); - ($y, $yr) = &bdiv($y, 0x10000); - $r = &badd(&bmul(int $xr & $yr, $m), $r); - $m = &bmul($m, 0x10000); - } - $r; - } -} - -# compute x | y -sub bior { #(num_str, num_str) return num_str - local($x,$y,$r,$m,$xr,$yr) = (&bnorm($_[$[]),&bnorm($_[$[+1]),0,1); - if ($x eq 'NaN' || $y eq 'NaN') { - 'NaN'; - } else { - while ($x ne '+0' || $y ne '+0') { - ($x, $xr) = &bdiv($x, 0x10000); - ($y, $yr) = &bdiv($y, 0x10000); - $r = &badd(&bmul(int $xr | $yr, $m), $r); - $m = &bmul($m, 0x10000); - } - $r; - } -} - -# compute x ^ y -sub bxor { #(num_str, num_str) return num_str - local($x,$y,$r,$m,$xr,$yr) = (&bnorm($_[$[]),&bnorm($_[$[+1]),0,1); - if ($x eq 'NaN' || $y eq 'NaN') { - 'NaN'; - } else { - while ($x ne '+0' || $y ne '+0') { - ($x, $xr) = &bdiv($x, 0x10000); - ($y, $yr) = &bdiv($y, 0x10000); - $r = &badd(&bmul(int $xr ^ $yr, $m), $r); - $m = &bmul($m, 0x10000); - } - $r; - } -} - -# represent ~x as twos-complement number -sub bnot { #(num_str) return num_str - &bsub(-1,$_[$[]); -} - -1; -__END__ - -=head1 NAME - -Math::BigInt - Arbitrary size integer math package - -=head1 SYNOPSIS - - use Math::BigInt; - $i = Math::BigInt->new($string); - - $i->bneg return BINT negation - $i->babs return BINT absolute value - $i->bcmp(BINT) return CODE compare numbers (undef,<0,=0,>0) - $i->badd(BINT) return BINT addition - $i->bsub(BINT) return BINT subtraction - $i->bmul(BINT) return BINT multiplication - $i->bdiv(BINT) return (BINT,BINT) division (quo,rem) just quo if scalar - $i->bmod(BINT) return BINT modulus - $i->bgcd(BINT) return BINT greatest common divisor - $i->bnorm return BINT normalization - $i->blsft(BINT) return BINT left shift - $i->brsft(BINT) return (BINT,BINT) right shift (quo,rem) just quo if scalar - $i->band(BINT) return BINT bit-wise and - $i->bior(BINT) return BINT bit-wise inclusive or - $i->bxor(BINT) return BINT bit-wise exclusive or - $i->bnot return BINT bit-wise not - -=head1 DESCRIPTION - -All basic math operations are overloaded if you declare your big -integers as - - $i = new Math::BigInt '123 456 789 123 456 789'; - - -=over 2 - -=item Canonical notation - -Big integer value are strings of the form C</^[+-]\d+$/> with leading -zeros suppressed. - -=item Input - -Input values to these routines may be strings of the form -C</^\s*[+-]?[\d\s]+$/>. - -=item Output - -Output values always always in canonical form - -=back - -Actual math is done in an internal format consisting of an array -whose first element is the sign (/^[+-]$/) and whose remaining -elements are base 100000 digits with the least significant digit first. -The string 'NaN' is used to represent the result when input arguments -are not numbers, as well as the result of dividing by zero. - -=head1 EXAMPLES - - '+0' canonical zero value - ' -123 123 123' canonical value '-123123123' - '1 23 456 7890' canonical value '+1234567890' - - -=head1 Autocreating constants - -After C<use Math::BigInt ':constant'> all the integer decimal constants -in the given scope are converted to C<Math::BigInt>. This conversion -happens at compile time. - -In particular - - perl -MMath::BigInt=:constant -e 'print 2**100' - -print the integer value of C<2**100>. Note that without conversion of -constants the expression 2**100 will be calculated as floating point number. - -=head1 BUGS - -The current version of this module is a preliminary version of the -real thing that is currently (as of perl5.002) under development. - -=head1 AUTHOR - -Mark Biggar, overloaded interface by Ilya Zakharevich. - -=cut |