summaryrefslogtreecommitdiffstats
path: root/contrib/ntp/ntpd/refclock_wwv.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ntp/ntpd/refclock_wwv.c')
-rw-r--r--contrib/ntp/ntpd/refclock_wwv.c2859
1 files changed, 0 insertions, 2859 deletions
diff --git a/contrib/ntp/ntpd/refclock_wwv.c b/contrib/ntp/ntpd/refclock_wwv.c
deleted file mode 100644
index 11aae7f..0000000
--- a/contrib/ntp/ntpd/refclock_wwv.c
+++ /dev/null
@@ -1,2859 +0,0 @@
-/*
- * refclock_wwv - clock driver for NIST WWV/H time/frequency station
- */
-#ifdef HAVE_CONFIG_H
-#include <config.h>
-#endif
-
-#if defined(REFCLOCK) && defined(CLOCK_WWV)
-
-#include "ntpd.h"
-#include "ntp_io.h"
-#include "ntp_refclock.h"
-#include "ntp_calendar.h"
-#include "ntp_stdlib.h"
-#include "audio.h"
-
-#include <stdio.h>
-#include <ctype.h>
-#include <math.h>
-#ifdef HAVE_SYS_IOCTL_H
-# include <sys/ioctl.h>
-#endif /* HAVE_SYS_IOCTL_H */
-
-#define ICOM 1
-
-#ifdef ICOM
-#include "icom.h"
-#endif /* ICOM */
-
-/*
- * Audio WWV/H demodulator/decoder
- *
- * This driver synchronizes the computer time using data encoded in
- * radio transmissions from NIST time/frequency stations WWV in Boulder,
- * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
- * 2.5, 5, 10, 15 and 20 MHz in AM mode. An ordinary shortwave receiver
- * can be tuned manually to one of these frequencies or, in the case of
- * ICOM receivers, the receiver can be tuned automatically using this
- * program as propagation conditions change throughout the day and
- * night.
- *
- * The driver receives, demodulates and decodes the radio signals when
- * connected to the audio codec of a workstation running Solaris, SunOS
- * FreeBSD or Linux, and with a little help, other workstations with
- * similar codecs or sound cards. In this implementation, only one audio
- * driver and codec can be supported on a single machine.
- *
- * The demodulation and decoding algorithms used in this driver are
- * based on those developed for the TAPR DSP93 development board and the
- * TI 320C25 digital signal processor described in: Mills, D.L. A
- * precision radio clock for WWV transmissions. Electrical Engineering
- * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
- * from www.eecis.udel.edu/~mills/reports.htm. The algorithms described
- * in this report have been modified somewhat to improve performance
- * under weak signal conditions and to provide an automatic station
- * identification feature.
- *
- * The ICOM code is normally compiled in the driver. It isn't used,
- * unless the mode keyword on the server configuration command specifies
- * a nonzero ICOM ID select code. The C-IV trace is turned on if the
- * debug level is greater than one.
- */
-/*
- * Interface definitions
- */
-#define DEVICE_AUDIO "/dev/audio" /* audio device name */
-#define AUDIO_BUFSIZ 320 /* audio buffer size (50 ms) */
-#define PRECISION (-10) /* precision assumed (about 1 ms) */
-#define DESCRIPTION "WWV/H Audio Demodulator/Decoder" /* WRU */
-#define SECOND 8000 /* second epoch (sample rate) (Hz) */
-#define MINUTE (SECOND * 60) /* minute epoch */
-#define OFFSET 128 /* companded sample offset */
-#define SIZE 256 /* decompanding table size */
-#define MAXSIG 6000. /* max signal level reference */
-#define MAXCLP 100 /* max clips above reference per s */
-#define MAXSNR 30. /* max SNR reference */
-#define DGAIN 20. /* data channel gain reference */
-#define SGAIN 10. /* sync channel gain reference */
-#define MAXFREQ 1. /* max frequency tolerance (125 PPM) */
-#define PI 3.1415926535 /* the real thing */
-#define DATSIZ (170 * MS) /* data matched filter size */
-#define SYNSIZ (800 * MS) /* minute sync matched filter size */
-#define MAXERR 30 /* max data bit errors in minute */
-#define NCHAN 5 /* number of radio channels */
-#define AUDIO_PHI 5e-6 /* dispersion growth factor */
-#ifdef IRIG_SUCKS
-#define WIGGLE 11 /* wiggle filter length */
-#endif /* IRIG_SUCKS */
-
-/*
- * General purpose status bits (status)
- *
- * SELV and/or SELH are set when WWV or WWVH has been heard and cleared
- * on signal loss. SSYNC is set when the second sync pulse has been
- * acquired and cleared by signal loss. MSYNC is set when the minute
- * sync pulse has been acquired. DSYNC is set when a digit reaches the
- * threshold and INSYNC is set when all nine digits have reached the
- * threshold. The MSYNC, DSYNC and INSYNC bits are cleared only by
- * timeout, upon which the driver starts over from scratch.
- *
- * DGATE is set if a data bit is invalid and BGATE is set if a BCD digit
- * bit is invalid. SFLAG is set when during seconds 59, 0 and 1 while
- * probing alternate frequencies. LEPDAY is set when SECWAR of the
- * timecode is set on 30 June or 31 December. LEPSEC is set during the
- * last minute of the day when LEPDAY is set. At the end of this minute
- * the driver inserts second 60 in the seconds state machine and the
- * minute sync slips a second. The SLOSS and SJITR bits are for monitor
- * only.
- */
-#define MSYNC 0x0001 /* minute epoch sync */
-#define SSYNC 0x0002 /* second epoch sync */
-#define DSYNC 0x0004 /* minute units sync */
-#define INSYNC 0x0008 /* clock synchronized */
-#define FGATE 0x0010 /* frequency gate */
-#define DGATE 0x0020 /* data bit error */
-#define BGATE 0x0040 /* BCD digit bit error */
-#define SFLAG 0x1000 /* probe flag */
-#define LEPDAY 0x2000 /* leap second day */
-#define LEPSEC 0x4000 /* leap second minute */
-
-/*
- * Station scoreboard bits
- *
- * These are used to establish the signal quality for each of the five
- * frequencies and two stations.
- */
-#define SYNCNG 0x0001 /* sync or SNR below threshold */
-#define DATANG 0x0002 /* data or SNR below threshold */
-#define ERRRNG 0x0004 /* data error */
-#define SELV 0x0100 /* WWV station select */
-#define SELH 0x0200 /* WWVH station select */
-
-/*
- * Alarm status bits (alarm)
- *
- * These bits indicate various alarm conditions, which are decoded to
- * form the quality character included in the timecode. If not tracking
- * second sync, the SYNERR alarm is raised. The data error counter is
- * incremented for each invalid data bit. If too many data bit errors
- * are encountered in one minute, the MODERR alarm is raised. The DECERR
- * alarm is raised if a maximum likelihood digit fails to compare with
- * the current clock digit. If the probability of any miscellaneous bit
- * or any digit falls below the threshold, the SYMERR alarm is raised.
- */
-#define DECERR 1 /* BCD digit compare error */
-#define SYMERR 2 /* low bit or digit probability */
-#define MODERR 4 /* too many data bit errors */
-#define SYNERR 8 /* not synchronized to station */
-
-/*
- * Watchcat timeouts (watch)
- *
- * If these timeouts expire, the status bits are mashed to zero and the
- * driver starts from scratch. Suitably more refined procedures may be
- * developed in future. All these are in minutes.
- */
-#define ACQSN 5 /* station acquisition timeout */
-#define DIGIT 30 /* minute unit digit timeout */
-#define HOLD 30 /* reachable timeout */
-#define PANIC (2 * 1440) /* panic timeout */
-
-/*
- * Thresholds. These establish the minimum signal level, minimum SNR and
- * maximum jitter thresholds which establish the error and false alarm
- * rates of the driver. The values defined here may be on the
- * adventurous side in the interest of the highest sensitivity.
- */
-#define MTHR 13. /* acquisition signal gate (percent) */
-#define TTHR 50. /* tracking signal gate (percent) */
-#define ATHR 2000. /* acquisition amplitude threshold */
-#define ASNR 6. /* acquisition SNR threshold (dB) */
-#define AWND 20. /* acquisition jitter threshold (ms) */
-#define AMIN 3 /* min bit count */
-#define AMAX 6 /* max bit count */
-#define QTHR 2000 /* QSY sync threshold */
-#define QSNR 20. /* QSY sync SNR threshold (dB) */
-#define XTHR 1000. /* QSY data threshold */
-#define XSNR 10. /* QSY data SNR threshold (dB) */
-#define STHR 500 /* second sync amplitude threshold */
-#define SSNR 10. /* second sync SNR threshold */
-#define SCMP 10 /* second sync compare threshold */
-#define DTHR 1000 /* bit amplitude threshold */
-#define DSNR 10. /* bit SNR threshold (dB) */
-#define BTHR 1000 /* digit amplitude threshold */
-#define BSNR 3. /* digit likelihood threshold (dB) */
-#define BCMP 5 /* digit compare threshold */
-
-/*
- * Tone frequency definitions. The increments are for 4.5-deg sine
- * table.
- */
-#define MS (SECOND / 1000) /* samples per millisecond */
-#define IN100 ((100 * 80) / SECOND) /* 100 Hz increment */
-#define IN1000 ((1000 * 80) / SECOND) /* 1000 Hz increment */
-#define IN1200 ((1200 * 80) / SECOND) /* 1200 Hz increment */
-
-/*
- * Acquisition and tracking time constants. Usually powers of 2.
- */
-#define MINAVG 8 /* min time constant */
-#define MAXAVG 1024 /* max time constant */
-#define TCONST 16 /* data bit/digit time constant */
-
-/*
- * Miscellaneous status bits (misc)
- *
- * These bits correspond to designated bits in the WWV/H timecode. The
- * bit probabilities are exponentially averaged over several minutes and
- * processed by a integrator and threshold.
- */
-#define DUT1 0x01 /* 56 DUT .1 */
-#define DUT2 0x02 /* 57 DUT .2 */
-#define DUT4 0x04 /* 58 DUT .4 */
-#define DUTS 0x08 /* 50 DUT sign */
-#define DST1 0x10 /* 55 DST1 leap warning */
-#define DST2 0x20 /* 2 DST2 DST1 delayed one day */
-#define SECWAR 0x40 /* 3 leap second warning */
-
-/*
- * The on-time synchronization point for the driver is the second epoch
- * sync pulse produced by the FIR matched filters. As the 5-ms delay of
- * these filters is compensated, the program delay is 1.1 ms due to the
- * 600-Hz IIR bandpass filter. The measured receiver delay is 4.7 ms and
- * the codec delay less than 0.2 ms. The additional propagation delay
- * specific to each receiver location can be programmed in the fudge
- * time1 and time2 values for WWV and WWVH, respectively.
- */
-#define PDELAY (.0011 + .0047 + .0002) /* net system delay (s) */
-
-/*
- * Table of sine values at 4.5-degree increments. This is used by the
- * synchronous matched filter demodulators. The integral of sine-squared
- * over one complete cycle is PI, so the table is normallized by 1 / PI.
- */
-double sintab[] = {
- 0.000000e+00, 2.497431e-02, 4.979464e-02, 7.430797e-02, /* 0-3 */
- 9.836316e-02, 1.218119e-01, 1.445097e-01, 1.663165e-01, /* 4-7 */
- 1.870979e-01, 2.067257e-01, 2.250791e-01, 2.420447e-01, /* 8-11 */
- 2.575181e-01, 2.714038e-01, 2.836162e-01, 2.940800e-01, /* 12-15 */
- 3.027307e-01, 3.095150e-01, 3.143910e-01, 3.173286e-01, /* 16-19 */
- 3.183099e-01, 3.173286e-01, 3.143910e-01, 3.095150e-01, /* 20-23 */
- 3.027307e-01, 2.940800e-01, 2.836162e-01, 2.714038e-01, /* 24-27 */
- 2.575181e-01, 2.420447e-01, 2.250791e-01, 2.067257e-01, /* 28-31 */
- 1.870979e-01, 1.663165e-01, 1.445097e-01, 1.218119e-01, /* 32-35 */
- 9.836316e-02, 7.430797e-02, 4.979464e-02, 2.497431e-02, /* 36-39 */
--0.000000e+00, -2.497431e-02, -4.979464e-02, -7.430797e-02, /* 40-43 */
--9.836316e-02, -1.218119e-01, -1.445097e-01, -1.663165e-01, /* 44-47 */
--1.870979e-01, -2.067257e-01, -2.250791e-01, -2.420447e-01, /* 48-51 */
--2.575181e-01, -2.714038e-01, -2.836162e-01, -2.940800e-01, /* 52-55 */
--3.027307e-01, -3.095150e-01, -3.143910e-01, -3.173286e-01, /* 56-59 */
--3.183099e-01, -3.173286e-01, -3.143910e-01, -3.095150e-01, /* 60-63 */
--3.027307e-01, -2.940800e-01, -2.836162e-01, -2.714038e-01, /* 64-67 */
--2.575181e-01, -2.420447e-01, -2.250791e-01, -2.067257e-01, /* 68-71 */
--1.870979e-01, -1.663165e-01, -1.445097e-01, -1.218119e-01, /* 72-75 */
--9.836316e-02, -7.430797e-02, -4.979464e-02, -2.497431e-02, /* 76-79 */
- 0.000000e+00}; /* 80 */
-
-/*
- * Decoder operations at the end of each second are driven by a state
- * machine. The transition matrix consists of a dispatch table indexed
- * by second number. Each entry in the table contains a case switch
- * number and argument.
- */
-struct progx {
- int sw; /* case switch number */
- int arg; /* argument */
-};
-
-/*
- * Case switch numbers
- */
-#define IDLE 0 /* no operation */
-#define COEF 1 /* BCD bit */
-#define COEF2 2 /* BCD bit ignored */
-#define DECIM9 3 /* BCD digit 0-9 */
-#define DECIM6 4 /* BCD digit 0-6 */
-#define DECIM3 5 /* BCD digit 0-3 */
-#define DECIM2 6 /* BCD digit 0-2 */
-#define MSCBIT 7 /* miscellaneous bit */
-#define MSC20 8 /* miscellaneous bit */
-#define MSC21 9 /* QSY probe channel */
-#define MIN1 10 /* minute */
-#define MIN2 11 /* leap second */
-#define SYNC2 12 /* QSY data channel */
-#define SYNC3 13 /* QSY data channel */
-
-/*
- * Offsets in decoding matrix
- */
-#define MN 0 /* minute digits (2) */
-#define HR 2 /* hour digits (2) */
-#define DA 4 /* day digits (3) */
-#define YR 7 /* year digits (2) */
-
-struct progx progx[] = {
- {SYNC2, 0}, /* 0 latch sync max */
- {SYNC3, 0}, /* 1 QSY data channel */
- {MSCBIT, DST2}, /* 2 dst2 */
- {MSCBIT, SECWAR}, /* 3 lw */
- {COEF, 0}, /* 4 1 year units */
- {COEF, 1}, /* 5 2 */
- {COEF, 2}, /* 6 4 */
- {COEF, 3}, /* 7 8 */
- {DECIM9, YR}, /* 8 */
- {IDLE, 0}, /* 9 p1 */
- {COEF, 0}, /* 10 1 minute units */
- {COEF, 1}, /* 11 2 */
- {COEF, 2}, /* 12 4 */
- {COEF, 3}, /* 13 8 */
- {DECIM9, MN}, /* 14 */
- {COEF, 0}, /* 15 10 minute tens */
- {COEF, 1}, /* 16 20 */
- {COEF, 2}, /* 17 40 */
- {COEF2, 3}, /* 18 80 (not used) */
- {DECIM6, MN + 1}, /* 19 p2 */
- {COEF, 0}, /* 20 1 hour units */
- {COEF, 1}, /* 21 2 */
- {COEF, 2}, /* 22 4 */
- {COEF, 3}, /* 23 8 */
- {DECIM9, HR}, /* 24 */
- {COEF, 0}, /* 25 10 hour tens */
- {COEF, 1}, /* 26 20 */
- {COEF2, 2}, /* 27 40 (not used) */
- {COEF2, 3}, /* 28 80 (not used) */
- {DECIM2, HR + 1}, /* 29 p3 */
- {COEF, 0}, /* 30 1 day units */
- {COEF, 1}, /* 31 2 */
- {COEF, 2}, /* 32 4 */
- {COEF, 3}, /* 33 8 */
- {DECIM9, DA}, /* 34 */
- {COEF, 0}, /* 35 10 day tens */
- {COEF, 1}, /* 36 20 */
- {COEF, 2}, /* 37 40 */
- {COEF, 3}, /* 38 80 */
- {DECIM9, DA + 1}, /* 39 p4 */
- {COEF, 0}, /* 40 100 day hundreds */
- {COEF, 1}, /* 41 200 */
- {COEF2, 2}, /* 42 400 (not used) */
- {COEF2, 3}, /* 43 800 (not used) */
- {DECIM3, DA + 2}, /* 44 */
- {IDLE, 0}, /* 45 */
- {IDLE, 0}, /* 46 */
- {IDLE, 0}, /* 47 */
- {IDLE, 0}, /* 48 */
- {IDLE, 0}, /* 49 p5 */
- {MSCBIT, DUTS}, /* 50 dut+- */
- {COEF, 0}, /* 51 10 year tens */
- {COEF, 1}, /* 52 20 */
- {COEF, 2}, /* 53 40 */
- {COEF, 3}, /* 54 80 */
- {MSC20, DST1}, /* 55 dst1 */
- {MSCBIT, DUT1}, /* 56 0.1 dut */
- {MSCBIT, DUT2}, /* 57 0.2 */
- {MSC21, DUT4}, /* 58 0.4 QSY probe channel */
- {MIN1, 0}, /* 59 p6 latch sync min */
- {MIN2, 0} /* 60 leap second */
-};
-
-/*
- * BCD coefficients for maximum likelihood digit decode
- */
-#define P15 1. /* max positive number */
-#define N15 -1. /* max negative number */
-
-/*
- * Digits 0-9
- */
-#define P9 (P15 / 4) /* mark (+1) */
-#define N9 (N15 / 4) /* space (-1) */
-
-double bcd9[][4] = {
- {N9, N9, N9, N9}, /* 0 */
- {P9, N9, N9, N9}, /* 1 */
- {N9, P9, N9, N9}, /* 2 */
- {P9, P9, N9, N9}, /* 3 */
- {N9, N9, P9, N9}, /* 4 */
- {P9, N9, P9, N9}, /* 5 */
- {N9, P9, P9, N9}, /* 6 */
- {P9, P9, P9, N9}, /* 7 */
- {N9, N9, N9, P9}, /* 8 */
- {P9, N9, N9, P9}, /* 9 */
- {0, 0, 0, 0} /* backstop */
-};
-
-/*
- * Digits 0-6 (minute tens)
- */
-#define P6 (P15 / 3) /* mark (+1) */
-#define N6 (N15 / 3) /* space (-1) */
-
-double bcd6[][4] = {
- {N6, N6, N6, 0}, /* 0 */
- {P6, N6, N6, 0}, /* 1 */
- {N6, P6, N6, 0}, /* 2 */
- {P6, P6, N6, 0}, /* 3 */
- {N6, N6, P6, 0}, /* 4 */
- {P6, N6, P6, 0}, /* 5 */
- {N6, P6, P6, 0}, /* 6 */
- {0, 0, 0, 0} /* backstop */
-};
-
-/*
- * Digits 0-3 (day hundreds)
- */
-#define P3 (P15 / 2) /* mark (+1) */
-#define N3 (N15 / 2) /* space (-1) */
-
-double bcd3[][4] = {
- {N3, N3, 0, 0}, /* 0 */
- {P3, N3, 0, 0}, /* 1 */
- {N3, P3, 0, 0}, /* 2 */
- {P3, P3, 0, 0}, /* 3 */
- {0, 0, 0, 0} /* backstop */
-};
-
-/*
- * Digits 0-2 (hour tens)
- */
-#define P2 (P15 / 2) /* mark (+1) */
-#define N2 (N15 / 2) /* space (-1) */
-
-double bcd2[][4] = {
- {N2, N2, 0, 0}, /* 0 */
- {P2, N2, 0, 0}, /* 1 */
- {N2, P2, 0, 0}, /* 2 */
- {0, 0, 0, 0} /* backstop */
-};
-
-/*
- * DST decode (DST2 DST1) for prettyprint
- */
-char dstcod[] = {
- 'S', /* 00 standard time */
- 'I', /* 01 set clock ahead at 0200 local */
- 'O', /* 10 set clock back at 0200 local */
- 'D' /* 11 daylight time */
-};
-
-/*
- * The decoding matrix consists of nine row vectors, one for each digit
- * of the timecode. The digits are stored from least to most significant
- * order. The maximum likelihood timecode is formed from the digits
- * corresponding to the maximum likelihood values reading in the
- * opposite order: yy ddd hh:mm.
- */
-struct decvec {
- int radix; /* radix (3, 4, 6, 10) */
- int digit; /* current clock digit */
- int mldigit; /* maximum likelihood digit */
- int phase; /* maximum likelihood digit phase */
- int count; /* match count */
- double digprb; /* max digit probability */
- double digsnr; /* likelihood function (dB) */
- double like[10]; /* likelihood integrator 0-9 */
-};
-
-/*
- * The station structure is used to acquire the minute pulse from WWV
- * and/or WWVH. These stations are distinguished by the frequency used
- * for the second and minute sync pulses, 1000 Hz for WWV and 1200 Hz
- * for WWVH. Other than frequency, the format is the same.
- */
-struct sync {
- double epoch; /* accumulated epoch differences */
- double maxamp; /* sync max envelope (square) */
- double noiamp; /* sync noise envelope (square) */
- long pos; /* max amplitude position */
- long lastpos; /* last max position */
- long mepoch; /* minute synch epoch */
-
- double amp; /* sync amplitude (I, Q squares) */
- double synamp; /* sync max envelope at 800 ms */
- double synmax; /* sync envelope at 0 s */
- double synmin; /* sync envelope at 59, 1 s */
- double synsnr; /* sync signal SNR */
- int count; /* bit counter */
- char refid[5]; /* reference identifier */
- int select; /* select bits */
- int reach; /* reachability register */
-};
-
-/*
- * The channel structure is used to mitigate between channels.
- */
-struct chan {
- int gain; /* audio gain */
- double sigamp; /* data max envelope (square) */
- double noiamp; /* data noise envelope (square) */
- double datsnr; /* data signal SNR */
- struct sync wwv; /* wwv station */
- struct sync wwvh; /* wwvh station */
-};
-
-/*
- * WWV unit control structure
- */
-struct wwvunit {
- l_fp timestamp; /* audio sample timestamp */
- l_fp tick; /* audio sample increment */
- double phase, freq; /* logical clock phase and frequency */
- double monitor; /* audio monitor point */
- int fd_icom; /* ICOM file descriptor */
- int errflg; /* error flags */
- int watch; /* watchcat */
-
- /*
- * Audio codec variables
- */
- double comp[SIZE]; /* decompanding table */
- int port; /* codec port */
- int gain; /* codec gain */
- int mongain; /* codec monitor gain */
- int clipcnt; /* sample clipped count */
-#ifdef IRIG_SUCKS
- l_fp wigwag; /* wiggle accumulator */
- int wp; /* wiggle filter pointer */
- l_fp wiggle[WIGGLE]; /* wiggle filter */
- l_fp wigbot[WIGGLE]; /* wiggle bottom fisher*/
-#endif /* IRIG_SUCKS */
-
- /*
- * Variables used to establish basic system timing
- */
- int avgint; /* master time constant */
- int tepoch; /* sync epoch median */
- int yepoch; /* sync epoch */
- int repoch; /* buffered sync epoch */
- double epomax; /* second sync amplitude */
- double eposnr; /* second sync SNR */
- double irig; /* data I channel amplitude */
- double qrig; /* data Q channel amplitude */
- int datapt; /* 100 Hz ramp */
- double datpha; /* 100 Hz VFO control */
- int rphase; /* second sample counter */
- long mphase; /* minute sample counter */
-
- /*
- * Variables used to mitigate which channel to use
- */
- struct chan mitig[NCHAN]; /* channel data */
- struct sync *sptr; /* station pointer */
- int dchan; /* data channel */
- int schan; /* probe channel */
- int achan; /* active channel */
-
- /*
- * Variables used by the clock state machine
- */
- struct decvec decvec[9]; /* decoding matrix */
- int rsec; /* seconds counter */
- int digcnt; /* count of digits synchronized */
-
- /*
- * Variables used to estimate signal levels and bit/digit
- * probabilities
- */
- double sigsig; /* data max signal */
- double sigamp; /* data max envelope (square) */
- double noiamp; /* data noise envelope (square) */
- double datsnr; /* data SNR (dB) */
-
- /*
- * Variables used to establish status and alarm conditions
- */
- int status; /* status bits */
- int alarm; /* alarm flashers */
- int misc; /* miscellaneous timecode bits */
- int errcnt; /* data bit error counter */
- int errbit; /* data bit errors in minute */
-};
-
-/*
- * Function prototypes
- */
-static int wwv_start P((int, struct peer *));
-static void wwv_shutdown P((int, struct peer *));
-static void wwv_receive P((struct recvbuf *));
-static void wwv_poll P((int, struct peer *));
-
-/*
- * More function prototypes
- */
-static void wwv_epoch P((struct peer *));
-static void wwv_rf P((struct peer *, double));
-static void wwv_endpoc P((struct peer *, int));
-static void wwv_rsec P((struct peer *, double));
-static void wwv_qrz P((struct peer *, struct sync *,
- double, int));
-static void wwv_corr4 P((struct peer *, struct decvec *,
- double [], double [][4]));
-static void wwv_gain P((struct peer *));
-static void wwv_tsec P((struct wwvunit *));
-static double wwv_data P((struct wwvunit *, double));
-static int timecode P((struct wwvunit *, char *));
-static double wwv_snr P((double, double));
-static int carry P((struct decvec *));
-static void wwv_newchan P((struct peer *));
-static void wwv_newgame P((struct peer *));
-static double wwv_metric P((struct sync *));
-#ifdef ICOM
-static int wwv_qsy P((struct peer *, int));
-#endif /* ICOM */
-
-static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
-
-/*
- * Transfer vector
- */
-struct refclock refclock_wwv = {
- wwv_start, /* start up driver */
- wwv_shutdown, /* shut down driver */
- wwv_poll, /* transmit poll message */
- noentry, /* not used (old wwv_control) */
- noentry, /* initialize driver (not used) */
- noentry, /* not used (old wwv_buginfo) */
- NOFLAGS /* not used */
-};
-
-
-/*
- * wwv_start - open the devices and initialize data for processing
- */
-static int
-wwv_start(
- int unit, /* instance number (used by PCM) */
- struct peer *peer /* peer structure pointer */
- )
-{
- struct refclockproc *pp;
- struct wwvunit *up;
-#ifdef ICOM
- int temp;
-#endif /* ICOM */
-
- /*
- * Local variables
- */
- int fd; /* file descriptor */
- int i; /* index */
- double step; /* codec adjustment */
-
- /*
- * Open audio device
- */
- fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
- if (fd < 0)
- return (0);
-#ifdef DEBUG
- if (debug)
- audio_show();
-#endif
-
- /*
- * Allocate and initialize unit structure
- */
- if (!(up = (struct wwvunit *)emalloc(sizeof(struct wwvunit)))) {
- close(fd);
- return (0);
- }
- memset(up, 0, sizeof(struct wwvunit));
- pp = peer->procptr;
- pp->unitptr = (caddr_t)up;
- pp->io.clock_recv = wwv_receive;
- pp->io.srcclock = (caddr_t)peer;
- pp->io.datalen = 0;
- pp->io.fd = fd;
- if (!io_addclock(&pp->io)) {
- close(fd);
- free(up);
- return (0);
- }
-
- /*
- * Initialize miscellaneous variables
- */
- peer->precision = PRECISION;
- pp->clockdesc = DESCRIPTION;
-
- /*
- * The companded samples are encoded sign-magnitude. The table
- * contains all the 256 values in the interest of speed.
- */
- up->comp[0] = up->comp[OFFSET] = 0.;
- up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
- up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
- step = 2.;
- for (i = 3; i < OFFSET; i++) {
- up->comp[i] = up->comp[i - 1] + step;
- up->comp[OFFSET + i] = -up->comp[i];
- if (i % 16 == 0)
- step *= 2.;
- }
- DTOLFP(1. / SECOND, &up->tick);
-
- /*
- * Initialize the decoding matrix with the radix for each digit
- * position.
- */
- up->decvec[MN].radix = 10; /* minutes */
- up->decvec[MN + 1].radix = 6;
- up->decvec[HR].radix = 10; /* hours */
- up->decvec[HR + 1].radix = 3;
- up->decvec[DA].radix = 10; /* days */
- up->decvec[DA + 1].radix = 10;
- up->decvec[DA + 2].radix = 4;
- up->decvec[YR].radix = 10; /* years */
- up->decvec[YR + 1].radix = 10;
- wwv_newgame(peer);
- up->schan = up->achan = 3;
-
- /*
- * Initialize autotune if available. Start out at 15 MHz. Note
- * that the ICOM select code must be less than 128, so the high
- * order bit can be used to select the line speed.
- */
-#ifdef ICOM
- temp = 0;
-#ifdef DEBUG
- if (debug > 1)
- temp = P_TRACE;
-#endif
- if (peer->ttl != 0) {
- if (peer->ttl & 0x80)
- up->fd_icom = icom_init("/dev/icom", B1200,
- temp);
- else
- up->fd_icom = icom_init("/dev/icom", B9600,
- temp);
- }
- if (up->fd_icom > 0) {
- if ((temp = wwv_qsy(peer, up->schan)) != 0) {
- NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
- msyslog(LOG_NOTICE,
- "icom: radio not found");
- up->errflg = CEVNT_FAULT;
- close(up->fd_icom);
- up->fd_icom = 0;
- } else {
- NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
- msyslog(LOG_NOTICE,
- "icom: autotune enabled");
- }
- }
-#endif /* ICOM */
- return (1);
-}
-
-
-/*
- * wwv_shutdown - shut down the clock
- */
-static void
-wwv_shutdown(
- int unit, /* instance number (not used) */
- struct peer *peer /* peer structure pointer */
- )
-{
- struct refclockproc *pp;
- struct wwvunit *up;
-
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
- io_closeclock(&pp->io);
- if (up->fd_icom > 0)
- close(up->fd_icom);
- free(up);
-}
-
-
-/*
- * wwv_receive - receive data from the audio device
- *
- * This routine reads input samples and adjusts the logical clock to
- * track the A/D sample clock by dropping or duplicating codec samples.
- * It also controls the A/D signal level with an AGC loop to mimimize
- * quantization noise and avoid overload.
- */
-static void
-wwv_receive(
- struct recvbuf *rbufp /* receive buffer structure pointer */
- )
-{
- struct peer *peer;
- struct refclockproc *pp;
- struct wwvunit *up;
-
- /*
- * Local variables
- */
- double sample; /* codec sample */
- u_char *dpt; /* buffer pointer */
- int bufcnt; /* buffer counter */
- l_fp ltemp;
-
- peer = (struct peer *)rbufp->recv_srcclock;
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
-
- /*
- * Main loop - read until there ain't no more. Note codec
- * samples are bit-inverted.
- */
- DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
- L_SUB(&rbufp->recv_time, &ltemp);
- up->timestamp = rbufp->recv_time;
- dpt = rbufp->recv_buffer;
- for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
- sample = up->comp[~*dpt++ & 0xff];
-
- /*
- * Clip noise spikes greater than MAXSIG. If no clips,
- * increase the gain a tad; if the clips are too high,
- * decrease a tad.
- */
- if (sample > MAXSIG) {
- sample = MAXSIG;
- up->clipcnt++;
- } else if (sample < -MAXSIG) {
- sample = -MAXSIG;
- up->clipcnt++;
- }
-
- /*
- * Variable frequency oscillator. The codec oscillator
- * runs at the nominal rate of 8000 samples per second,
- * or 125 us per sample. A frequency change of one unit
- * results in either duplicating or deleting one sample
- * per second, which results in a frequency change of
- * 125 PPM.
- */
- up->phase += up->freq / SECOND;
- if (up->phase >= .5) {
- up->phase -= 1.;
- } else if (up->phase < -.5) {
- up->phase += 1.;
- wwv_rf(peer, sample);
- wwv_rf(peer, sample);
- } else {
- wwv_rf(peer, sample);
- }
- L_ADD(&up->timestamp, &up->tick);
- }
-
- /*
- * Set the input port and monitor gain for the next buffer.
- */
- if (pp->sloppyclockflag & CLK_FLAG2)
- up->port = 2;
- else
- up->port = 1;
- if (pp->sloppyclockflag & CLK_FLAG3)
- up->mongain = MONGAIN;
- else
- up->mongain = 0;
-}
-
-
-/*
- * wwv_poll - called by the transmit procedure
- *
- * This routine keeps track of status. If no offset samples have been
- * processed during a poll interval, a timeout event is declared. If
- * errors have have occurred during the interval, they are reported as
- * well. Once the clock is set, it always appears reachable, unless
- * reset by watchdog timeout.
- */
-static void
-wwv_poll(
- int unit, /* instance number (not used) */
- struct peer *peer /* peer structure pointer */
- )
-{
- struct refclockproc *pp;
- struct wwvunit *up;
-
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
- if (pp->coderecv == pp->codeproc)
- up->errflg = CEVNT_TIMEOUT;
- if (up->errflg)
- refclock_report(peer, up->errflg);
- up->errflg = 0;
- pp->polls++;
-}
-
-
-/*
- * wwv_rf - process signals and demodulate to baseband
- *
- * This routine grooms and filters decompanded raw audio samples. The
- * output signals include the 100-Hz baseband data signal in quadrature
- * form, plus the epoch index of the second sync signal and the second
- * index of the minute sync signal.
- *
- * There are two 1-s ramps used by this program. Both count the 8000
- * logical clock samples spanning exactly one second. The epoch ramp
- * counts the samples starting at an arbitrary time. The rphase ramp
- * counts the samples starting at the 5-ms second sync pulse found
- * during the epoch ramp.
- *
- * There are two 1-m ramps used by this program. The mphase ramp counts
- * the 480,000 logical clock samples spanning exactly one minute and
- * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
- * the minute starting at the 800-ms minute sync pulse found during the
- * mphase ramp. The rsec ramp drives the seconds state machine to
- * determine the bits and digits of the timecode.
- *
- * Demodulation operations are based on three synthesized quadrature
- * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
- * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
- * matched filters for the data signal (170 ms at 100 Hz), WWV minute
- * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
- * at 1200 Hz). Two additional matched filters are switched in
- * as required for the WWV second sync signal (5 ms at 1000 Hz) and
- * WWVH second sync signal (5 ms at 1200 Hz).
- */
-static void
-wwv_rf(
- struct peer *peer, /* peerstructure pointer */
- double isig /* input signal */
- )
-{
- struct refclockproc *pp;
- struct wwvunit *up;
- struct sync *sp;
-
- static double lpf[5]; /* 150-Hz lpf delay line */
- double data; /* lpf output */
- static double bpf[9]; /* 1000/1200-Hz bpf delay line */
- double syncx; /* bpf output */
- static double mf[41]; /* 1000/1200-Hz mf delay line */
- double mfsync; /* mf output */
-
- static int iptr; /* data channel pointer */
- static double ibuf[DATSIZ]; /* data I channel delay line */
- static double qbuf[DATSIZ]; /* data Q channel delay line */
-
- static int jptr; /* sync channel pointer */
- static double cibuf[SYNSIZ]; /* wwv I channel delay line */
- static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
- static double ciamp; /* wwv I channel amplitude */
- static double cqamp; /* wwv Q channel amplitude */
- static int csinptr; /* wwv channel phase */
- static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
- static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
- static double hiamp; /* wwvh I channel amplitude */
- static double hqamp; /* wwvh Q channel amplitude */
- static int hsinptr; /* wwvh channels phase */
-
- static double epobuf[SECOND]; /* epoch sync comb filter */
- static double epomax; /* epoch sync amplitude buffer */
- static int epopos; /* epoch sync position buffer */
-
- static int iniflg; /* initialization flag */
- int epoch; /* comb filter index */
- int pdelay; /* propagation delay (samples) */
- double dtemp;
- int i;
-
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
-
- if (!iniflg) {
- iniflg = 1;
- memset((char *)lpf, 0, sizeof(lpf));
- memset((char *)bpf, 0, sizeof(bpf));
- memset((char *)mf, 0, sizeof(mf));
- memset((char *)ibuf, 0, sizeof(ibuf));
- memset((char *)qbuf, 0, sizeof(qbuf));
- memset((char *)cibuf, 0, sizeof(cibuf));
- memset((char *)cqbuf, 0, sizeof(cqbuf));
- memset((char *)hibuf, 0, sizeof(hibuf));
- memset((char *)hqbuf, 0, sizeof(hqbuf));
- memset((char *)epobuf, 0, sizeof(epobuf));
- }
-
- /*
- * Baseband data demodulation. The 100-Hz subcarrier is
- * extracted using a 150-Hz IIR lowpass filter. This attenuates
- * the 1000/1200-Hz sync signals, as well as the 440-Hz and
- * 600-Hz tones and most of the noise and voice modulation
- * components.
- *
- * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
- * passband ripple, -50 dB stopband ripple.
- */
- data = (lpf[4] = lpf[3]) * 8.360961e-01;
- data += (lpf[3] = lpf[2]) * -3.481740e+00;
- data += (lpf[2] = lpf[1]) * 5.452988e+00;
- data += (lpf[1] = lpf[0]) * -3.807229e+00;
- lpf[0] = isig - data;
- data = lpf[0] * 3.281435e-03
- + lpf[1] * -1.149947e-02
- + lpf[2] * 1.654858e-02
- + lpf[3] * -1.149947e-02
- + lpf[4] * 3.281435e-03;
-
- /*
- * The I and Q quadrature data signals are produced by
- * multiplying the filtered signal by 100-Hz sine and cosine
- * signals, respectively. The data signals are demodulated by
- * 170-ms synchronous matched filters to produce the amplitude
- * and phase signals used by the decoder.
- */
- i = up->datapt;
- up->datapt = (up->datapt + IN100) % 80;
- dtemp = sintab[i] * data / DATSIZ * DGAIN;
- up->irig -= ibuf[iptr];
- ibuf[iptr] = dtemp;
- up->irig += dtemp;
- i = (i + 20) % 80;
- dtemp = sintab[i] * data / DATSIZ * DGAIN;
- up->qrig -= qbuf[iptr];
- qbuf[iptr] = dtemp;
- up->qrig += dtemp;
- iptr = (iptr + 1) % DATSIZ;
-
- /*
- * Baseband sync demodulation. The 1000/1200 sync signals are
- * extracted using a 600-Hz IIR bandpass filter. This removes
- * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
- * tones and most of the noise and voice modulation components.
- *
- * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
- * passband ripple, -50 dB stopband ripple.
- */
- syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
- syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
- syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
- syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
- syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
- syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
- syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
- syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
- bpf[0] = isig - syncx;
- syncx = bpf[0] * 8.203628e-03
- + bpf[1] * -2.375732e-02
- + bpf[2] * 3.353214e-02
- + bpf[3] * -4.080258e-02
- + bpf[4] * 4.605479e-02
- + bpf[5] * -4.080258e-02
- + bpf[6] * 3.353214e-02
- + bpf[7] * -2.375732e-02
- + bpf[8] * 8.203628e-03;
-
- /*
- * The I and Q quadrature minute sync signals are produced by
- * multiplying the filtered signal by 1000-Hz (WWV) and 1200-Hz
- * (WWVH) sine and cosine signals, respectively. The resulting
- * signals are demodulated by 800-ms synchronous matched filters
- * to synchronize the second and minute and to detect which one
- * (or both) the WWV or WWVH signal is present.
- *
- * Note the master timing ramps, which run continuously. The
- * minute counter (mphase) counts the samples in the minute,
- * while the second counter (epoch) counts the samples in the
- * second.
- */
- up->mphase = (up->mphase + 1) % MINUTE;
- epoch = up->mphase % SECOND;
- i = csinptr;
- csinptr = (csinptr + IN1000) % 80;
- dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
- ciamp = ciamp - cibuf[jptr] + dtemp;
- cibuf[jptr] = dtemp;
- i = (i + 20) % 80;
- dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
- cqamp = cqamp - cqbuf[jptr] + dtemp;
- cqbuf[jptr] = dtemp;
- sp = &up->mitig[up->schan].wwv;
- dtemp = ciamp * ciamp + cqamp * cqamp;
- sp->amp = dtemp;
- if (!(up->status & MSYNC))
- wwv_qrz(peer, sp, dtemp, (int)(pp->fudgetime1 *
- SECOND));
- i = hsinptr;
- hsinptr = (hsinptr + IN1200) % 80;
- dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
- hiamp = hiamp - hibuf[jptr] + dtemp;
- hibuf[jptr] = dtemp;
- i = (i + 20) % 80;
- dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
- hqamp = hqamp - hqbuf[jptr] + dtemp;
- hqbuf[jptr] = dtemp;
- sp = &up->mitig[up->schan].wwvh;
- dtemp = hiamp * hiamp + hqamp * hqamp;
- sp->amp = dtemp;
- if (!(up->status & MSYNC))
- wwv_qrz(peer, sp, dtemp, (int)(pp->fudgetime2 *
- SECOND));
- jptr = (jptr + 1) % SYNSIZ;
-
- /*
- * The following section is called once per minute. It does
- * housekeeping and timeout functions and empties the dustbins.
- */
- if (up->mphase == 0) {
- up->watch++;
- if (!(up->status & MSYNC)) {
-
- /*
- * If minute sync has not been acquired before
- * timeout, or if no signal is heard, the
- * program cycles to the next frequency and
- * tries again.
- */
- wwv_newchan(peer);
- if (!(up->status & (SELV | SELH)) || up->watch >
- ACQSN) {
- wwv_newgame(peer);
-#ifdef ICOM
- if (up->fd_icom > 0) {
- up->schan = (up->schan + 1) %
- NCHAN;
- wwv_qsy(peer, up->schan);
- }
-#endif /* ICOM */
- }
- } else {
-
- /*
- * If the leap bit is set, set the minute epoch
- * back one second so the station processes
- * don't miss a beat.
- */
- if (up->status & LEPSEC) {
- up->mphase -= SECOND;
- if (up->mphase < 0)
- up->mphase += MINUTE;
- }
- }
- }
-
- /*
- * When the channel metric reaches threshold and the second
- * counter matches the minute epoch within the second, the
- * driver has synchronized to the station. The second number is
- * the remaining seconds until the next minute epoch, while the
- * sync epoch is zero. Watch out for the first second; if
- * already synchronized to the second, the buffered sync epoch
- * must be set.
- */
- if (up->status & MSYNC) {
- wwv_epoch(peer);
- } else if ((sp = up->sptr) != NULL) {
- struct chan *cp;
-
- if (sp->count >= AMIN && epoch == sp->mepoch % SECOND) {
- up->rsec = 60 - sp->mepoch / SECOND;
- up->rphase = 0;
- up->status |= MSYNC;
- up->watch = 0;
- if (!(up->status & SSYNC))
- up->repoch = up->yepoch = epoch;
- else
- up->repoch = up->yepoch;
- for (i = 0; i < NCHAN; i++) {
- cp = &up->mitig[i];
- cp->wwv.count = cp->wwv.reach = 0;
- cp->wwvh.count = cp->wwvh.reach = 0;
- }
- }
- }
-
- /*
- * The second sync pulse is extracted using 5-ms (40 sample) FIR
- * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
- * pulse is used for the most precise synchronization, since if
- * provides a resolution of one sample (125 us). The filters run
- * only if the station has been reliably determined.
- */
- if (up->status & SELV) {
- pdelay = (int)(pp->fudgetime1 * SECOND);
-
- /*
- * WWV FIR matched filter, five cycles of 1000-Hz
- * sinewave.
- */
- mf[40] = mf[39];
- mfsync = (mf[39] = mf[38]) * 4.224514e-02;
- mfsync += (mf[38] = mf[37]) * 5.974365e-02;
- mfsync += (mf[37] = mf[36]) * 4.224514e-02;
- mf[36] = mf[35];
- mfsync += (mf[35] = mf[34]) * -4.224514e-02;
- mfsync += (mf[34] = mf[33]) * -5.974365e-02;
- mfsync += (mf[33] = mf[32]) * -4.224514e-02;
- mf[32] = mf[31];
- mfsync += (mf[31] = mf[30]) * 4.224514e-02;
- mfsync += (mf[30] = mf[29]) * 5.974365e-02;
- mfsync += (mf[29] = mf[28]) * 4.224514e-02;
- mf[28] = mf[27];
- mfsync += (mf[27] = mf[26]) * -4.224514e-02;
- mfsync += (mf[26] = mf[25]) * -5.974365e-02;
- mfsync += (mf[25] = mf[24]) * -4.224514e-02;
- mf[24] = mf[23];
- mfsync += (mf[23] = mf[22]) * 4.224514e-02;
- mfsync += (mf[22] = mf[21]) * 5.974365e-02;
- mfsync += (mf[21] = mf[20]) * 4.224514e-02;
- mf[20] = mf[19];
- mfsync += (mf[19] = mf[18]) * -4.224514e-02;
- mfsync += (mf[18] = mf[17]) * -5.974365e-02;
- mfsync += (mf[17] = mf[16]) * -4.224514e-02;
- mf[16] = mf[15];
- mfsync += (mf[15] = mf[14]) * 4.224514e-02;
- mfsync += (mf[14] = mf[13]) * 5.974365e-02;
- mfsync += (mf[13] = mf[12]) * 4.224514e-02;
- mf[12] = mf[11];
- mfsync += (mf[11] = mf[10]) * -4.224514e-02;
- mfsync += (mf[10] = mf[9]) * -5.974365e-02;
- mfsync += (mf[9] = mf[8]) * -4.224514e-02;
- mf[8] = mf[7];
- mfsync += (mf[7] = mf[6]) * 4.224514e-02;
- mfsync += (mf[6] = mf[5]) * 5.974365e-02;
- mfsync += (mf[5] = mf[4]) * 4.224514e-02;
- mf[4] = mf[3];
- mfsync += (mf[3] = mf[2]) * -4.224514e-02;
- mfsync += (mf[2] = mf[1]) * -5.974365e-02;
- mfsync += (mf[1] = mf[0]) * -4.224514e-02;
- mf[0] = syncx;
- } else if (up->status & SELH) {
- pdelay = (int)(pp->fudgetime2 * SECOND);
-
- /*
- * WWVH FIR matched filter, six cycles of 1200-Hz
- * sinewave.
- */
- mf[40] = mf[39];
- mfsync = (mf[39] = mf[38]) * 4.833363e-02;
- mfsync += (mf[38] = mf[37]) * 5.681959e-02;
- mfsync += (mf[37] = mf[36]) * 1.846180e-02;
- mfsync += (mf[36] = mf[35]) * -3.511644e-02;
- mfsync += (mf[35] = mf[34]) * -5.974365e-02;
- mfsync += (mf[34] = mf[33]) * -3.511644e-02;
- mfsync += (mf[33] = mf[32]) * 1.846180e-02;
- mfsync += (mf[32] = mf[31]) * 5.681959e-02;
- mfsync += (mf[31] = mf[30]) * 4.833363e-02;
- mf[30] = mf[29];
- mfsync += (mf[29] = mf[28]) * -4.833363e-02;
- mfsync += (mf[28] = mf[27]) * -5.681959e-02;
- mfsync += (mf[27] = mf[26]) * -1.846180e-02;
- mfsync += (mf[26] = mf[25]) * 3.511644e-02;
- mfsync += (mf[25] = mf[24]) * 5.974365e-02;
- mfsync += (mf[24] = mf[23]) * 3.511644e-02;
- mfsync += (mf[23] = mf[22]) * -1.846180e-02;
- mfsync += (mf[22] = mf[21]) * -5.681959e-02;
- mfsync += (mf[21] = mf[20]) * -4.833363e-02;
- mf[20] = mf[19];
- mfsync += (mf[19] = mf[18]) * 4.833363e-02;
- mfsync += (mf[18] = mf[17]) * 5.681959e-02;
- mfsync += (mf[17] = mf[16]) * 1.846180e-02;
- mfsync += (mf[16] = mf[15]) * -3.511644e-02;
- mfsync += (mf[15] = mf[14]) * -5.974365e-02;
- mfsync += (mf[14] = mf[13]) * -3.511644e-02;
- mfsync += (mf[13] = mf[12]) * 1.846180e-02;
- mfsync += (mf[12] = mf[11]) * 5.681959e-02;
- mfsync += (mf[11] = mf[10]) * 4.833363e-02;
- mf[10] = mf[9];
- mfsync += (mf[9] = mf[8]) * -4.833363e-02;
- mfsync += (mf[8] = mf[7]) * -5.681959e-02;
- mfsync += (mf[7] = mf[6]) * -1.846180e-02;
- mfsync += (mf[6] = mf[5]) * 3.511644e-02;
- mfsync += (mf[5] = mf[4]) * 5.974365e-02;
- mfsync += (mf[4] = mf[3]) * 3.511644e-02;
- mfsync += (mf[3] = mf[2]) * -1.846180e-02;
- mfsync += (mf[2] = mf[1]) * -5.681959e-02;
- mfsync += (mf[1] = mf[0]) * -4.833363e-02;
- mf[0] = syncx;
- } else {
- mfsync = 0;
- pdelay = 0;
- }
-
- /*
- * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
- * filter. Correct for the FIR matched filter delay, which is 5
- * ms for both the WWV and WWVH filters, and also for the
- * propagation delay. Once each second look for second sync. If
- * not in minute sync, fiddle the codec gain. Note the SNR is
- * computed from the maximum sample and the two samples 6 ms
- * before and 6 ms after it, so if we slip more than a cycle the
- * SNR should plummet.
- */
- dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
- up->avgint);
- if (dtemp > epomax) {
- epomax = dtemp;
- epopos = epoch;
- }
- if (epoch == 0) {
- int k, j;
-
- up->epomax = epomax;
- k = epopos - 6 * MS;
- if (k < 0)
- k += SECOND;
- j = epopos + 6 * MS;
- if (j >= SECOND)
- i -= SECOND;
- up->eposnr = wwv_snr(epomax, max(abs(epobuf[k]),
- abs(epobuf[j])));
- epopos -= pdelay + 5 * MS;
- if (epopos < 0)
- epopos += SECOND;
- wwv_endpoc(peer, epopos);
- if (!(up->status & SSYNC))
- up->alarm |= SYNERR;
- epomax = 0;
- if (!(up->status & MSYNC))
- wwv_gain(peer);
- }
-}
-
-
-/*
- * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
- *
- * This routine implements a virtual station process used to acquire
- * minute sync and to mitigate among the ten frequency and station
- * combinations. During minute sync acquisition the process probes each
- * frequency in turn for the minute pulse from either station, which
- * involves searching through the entire minute of samples. After
- * finding a candidate, the process searches only the seconds before and
- * after the candidate for the signal and all other seconds for the
- * noise.
- *
- * Students of radar receiver technology will discover this algorithm
- * amounts to a range gate discriminator. The discriminator requires
- * that the peak minute pulse amplitude be at least 2000 and the SNR be
- * at least 6 dB. In addition after finding a candidate, The peak second
- * pulse amplitude must be at least 2000, the SNR at least 6 dB and the
- * difference between the current and previous epoch must be less than
- * 7.5 ms, which corresponds to a frequency error of 125 PPM.. A compare
- * counter keeps track of the number of successive intervals which
- * satisfy these criteria.
- *
- * Note that, while the minute pulse is found by by the discriminator,
- * the actual value is determined from the second epoch. The assumption
- * is that the discriminator peak occurs about 800 ms into the second,
- * so the timing is retarted to the previous second epoch.
- */
-static void
-wwv_qrz(
- struct peer *peer, /* peer structure pointer */
- struct sync *sp, /* sync channel structure */
- double syncx, /* bandpass filtered sync signal */
- int pdelay /* propagation delay (samples) */
- )
-{
- struct refclockproc *pp;
- struct wwvunit *up;
- char tbuf[80]; /* monitor buffer */
- double snr; /* on-pulse/off-pulse ratio (dB) */
- long epoch, fpoch;
- int isgood;
-
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
-
- /*
- * Find the sample with peak energy, which defines the minute
- * epoch. If a sample has been found with good amplitude,
- * accumulate the noise squares for all except the second before
- * and after that position.
- */
- isgood = up->epomax > STHR && up->eposnr > SSNR;
- if (isgood) {
- fpoch = up->mphase % SECOND - up->tepoch;
- if (fpoch < 0)
- fpoch += SECOND;
- } else {
- fpoch = pdelay + SYNSIZ;
- }
- epoch = up->mphase - fpoch;
- if (epoch < 0)
- epoch += MINUTE;
- if (syncx > sp->maxamp) {
- sp->maxamp = syncx;
- sp->pos = epoch;
- }
- if (abs((epoch - sp->lastpos) % MINUTE) > SECOND)
- sp->noiamp += syncx;
-
- /*
- * At the end of the minute, determine the epoch of the
- * sync pulse, as well as the SNR and difference between
- * the current and previous epoch, which represents the
- * intrinsic frequency error plus jitter.
- */
- if (up->mphase == 0) {
- sp->synmax = sqrt(sp->maxamp);
- sp->synmin = sqrt(sp->noiamp / (MINUTE - 2 * SECOND));
- epoch = (sp->pos - sp->lastpos) % MINUTE;
-
- /*
- * If not yet in minute sync, we have to do a little
- * dance to find a valid minute sync pulse, emphasis
- * valid.
- */
- snr = wwv_snr(sp->synmax, sp->synmin);
- isgood = isgood && sp->synmax > ATHR && snr > ASNR;
- switch (sp->count) {
-
- /*
- * In state 0 the station was not heard during the
- * previous probe. Look for the biggest blip greater
- * than the amplitude threshold in the minute and assume
- * that the minute sync pulse. We're fishing here, since
- * the range gate has not yet been determined. If found,
- * bump to state 1.
- */
- case 0:
- if (sp->synmax >= ATHR)
- sp->count++;
- break;
-
- /*
- * In state 1 a candidate blip has been found and the
- * next minute has been searched for another blip. If
- * none are found acceptable, drop back to state 0 and
- * hunt some more. Otherwise, a legitimate minute pulse
- * may have been found, so bump to state 2.
- */
- case 1:
- if (!isgood) {
- sp->count = 0;
- break;
- }
- sp->count++;
- break;
-
- /*
- * In states 2 and above, continue to groom samples as
- * before and drop back to state 0 if the groom fails.
- * If it succeeds, set the epoch and bump to the next
- * state until reaching the threshold, if ever.
- */
- default:
- if (!isgood || abs(epoch) > AWND * MS) {
- sp->count = 0;
- break;
- }
- sp->mepoch = sp->pos;
- sp->count++;
- break;
- }
- if (pp->sloppyclockflag & CLK_FLAG4) {
- sprintf(tbuf,
- "wwv8 %d %3d %s %d %5.0f %5.1f %5ld %5d %ld",
- up->port, up->gain, sp->refid, sp->count,
- sp->synmax, snr, sp->pos, up->tepoch,
- epoch);
- record_clock_stats(&peer->srcadr, tbuf);
-#ifdef DEBUG
- if (debug)
- printf("%s\n", tbuf);
-#endif
- }
- sp->lastpos = sp->pos;
- sp->maxamp = sp->noiamp = 0;
- }
-}
-
-
-/*
- * wwv_endpoc - identify and acquire second sync pulse
- *
- * This routine is called at the end of the second sync interval. It
- * determines the second sync epoch position within the interval and
- * disciplines the sample clock using a frequency-lock loop (FLL).
- *
- * Second sync is determined in the RF input routine as the maximum
- * over all 8000 samples in the second comb filter. To assure accurate
- * and reliable time and frequency discipline, this routine performs a
- * great deal of heavy-handed heuristic data filtering and grooming.
- *
- * Note that, since the minute sync pulse is very wide (800 ms), precise
- * minute sync epoch acquisition requires at least a rough estimate of
- * the second sync pulse (5 ms). This becomes more important in choppy
- * conditions at the lower frequencies at night, since sferics and
- * cochannel crude can badly distort the minute pulse.
- */
-static void
-wwv_endpoc(
- struct peer *peer, /* peer structure pointer */
- int epopos /* epoch max position */
- )
-{
- struct refclockproc *pp;
- struct wwvunit *up;
- static int epoch_mf[3]; /* epoch median filter */
- static int xepoch; /* last second epoch */
- static int zepoch; /* last averaging interval epoch */
- static int syncnt; /* run length counter */
- static int maxrun; /* longest run length */
- static int mepoch; /* longest run epoch */
- static int avgcnt; /* averaging interval counter */
- static int avginc; /* averaging ratchet */
- static int iniflg; /* initialization flag */
- char tbuf[80]; /* monitor buffer */
- double dtemp;
- int tmp2;
-
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
- if (!iniflg) {
- iniflg = 1;
- memset((char *)epoch_mf, 0, sizeof(epoch_mf));
- }
-
- /*
- * A three-stage median filter is used to help denoise the
- * second sync pulse. The median sample becomes the candidate
- * epoch.
- */
- epoch_mf[2] = epoch_mf[1];
- epoch_mf[1] = epoch_mf[0];
- epoch_mf[0] = epopos;
- if (epoch_mf[0] > epoch_mf[1]) {
- if (epoch_mf[1] > epoch_mf[2])
- up->tepoch = epoch_mf[1]; /* 0 1 2 */
- else if (epoch_mf[2] > epoch_mf[0])
- up->tepoch = epoch_mf[0]; /* 2 0 1 */
- else
- up->tepoch = epoch_mf[2]; /* 0 2 1 */
- } else {
- if (epoch_mf[1] < epoch_mf[2])
- up->tepoch = epoch_mf[1]; /* 2 1 0 */
- else if (epoch_mf[2] < epoch_mf[0])
- up->tepoch = epoch_mf[0]; /* 1 0 2 */
- else
- up->tepoch = epoch_mf[2]; /* 1 2 0 */
- }
-
- /*
- * If the signal amplitude or SNR fall below thresholds or if no
- * stations are heard, dim the second sync lamp and start over.
- */
- if (!(up->status & (SELV | SELH)) || up->epomax < STHR ||
- up->eposnr < SSNR) {
- up->status &= ~(SSYNC | FGATE);
- avgcnt = syncnt = maxrun = 0;
- return;
- }
- avgcnt++;
-
- /*
- * If the epoch candidate is the same as the last one, increment
- * the compare counter. If not, save the length and epoch of the
- * current run for use later and reset the counter.
- */
- tmp2 = (up->tepoch - xepoch) % SECOND;
- if (tmp2 == 0) {
- syncnt++;
- } else {
- if (maxrun > 0 && mepoch == xepoch) {
- maxrun += syncnt;
- } else if (syncnt > maxrun) {
- maxrun = syncnt;
- mepoch = xepoch;
- }
- syncnt = 0;
- }
- if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & (SSYNC |
- MSYNC))) {
- sprintf(tbuf,
- "wwv1 %04x %5.0f %5.1f %5d %5d %4d %4d",
- up->status, up->epomax, up->eposnr, up->tepoch,
- tmp2, avgcnt, syncnt);
- record_clock_stats(&peer->srcadr, tbuf);
-#ifdef DEBUG
- if (debug)
- printf("%s\n", tbuf);
-#endif /* DEBUG */
- }
-
- /*
- * The sample clock frequency is disciplined using a first order
- * feedback loop with time constant consistent with the Allan
- * intercept of typical computer clocks.
- *
- * The frequency update is calculated from the epoch change in
- * 125-us units divided by the averaging interval in seconds.
- * The averaging interval affects other receiver functions,
- * including the the 1000/1200-Hz comb filter and codec clock
- * loop. It also affects the 100-Hz subcarrier loop and the bit
- * and digit comparison counter thresholds.
- */
- if (avgcnt < up->avgint) {
- xepoch = up->tepoch;
- return;
- }
-
- /*
- * During the averaging interval the longest run of identical
- * epoches is determined. If the longest run is at least 10
- * seconds, the SSYNC bit is lit and the value becomes the
- * reference epoch for the next interval. If not, the second
- * synd lamp is dark and flashers set.
- */
- if (maxrun > 0 && mepoch == xepoch) {
- maxrun += syncnt;
- } else if (syncnt > maxrun) {
- maxrun = syncnt;
- mepoch = xepoch;
- }
- xepoch = up->tepoch;
- if (maxrun > SCMP) {
- up->status |= SSYNC;
- up->yepoch = mepoch;
- } else {
- up->status &= ~SSYNC;
- }
-
- /*
- * If the epoch change over the averaging interval is less than
- * 1 ms, the frequency is adjusted, but clamped at +-125 PPM. If
- * greater than 1 ms, the counter is decremented. If the epoch
- * change is less than 0.5 ms, the counter is incremented. If
- * the counter increments to +3, the averaging interval is
- * doubled and the counter set to zero; if it increments to -3,
- * the interval is halved and the counter set to zero.
- *
- * Here be spooks. From careful observations, the epoch
- * sometimes makes a long run of identical samples, then takes a
- * lurch due apparently to lost interrupts or spooks. If this
- * happens, the epoch change times the maximum run length will
- * be greater than the averaging interval, so the lurch should
- * be believed but the frequency left alone. Really intricate
- * here.
- */
- if (maxrun == 0)
- mepoch = up->tepoch;
- dtemp = (mepoch - zepoch) % SECOND;
- if (up->status & FGATE) {
- if (abs(dtemp) < MAXFREQ * MINAVG) {
- if (maxrun * abs(mepoch - zepoch) <
- avgcnt) {
- up->freq += dtemp / avgcnt;
- if (up->freq > MAXFREQ)
- up->freq = MAXFREQ;
- else if (up->freq < -MAXFREQ)
- up->freq = -MAXFREQ;
- }
- if (abs(dtemp) < MAXFREQ * MINAVG / 2) {
- if (avginc < 3) {
- avginc++;
- } else {
- if (up->avgint < MAXAVG) {
- up->avgint <<= 1;
- avginc = 0;
- }
- }
- }
- } else {
- if (avginc > -3) {
- avginc--;
- } else {
- if (up->avgint > MINAVG) {
- up->avgint >>= 1;
- avginc = 0;
- }
- }
- }
- }
- if (pp->sloppyclockflag & CLK_FLAG4) {
- sprintf(tbuf,
- "wwv2 %04x %4.0f %4d %4d %2d %4d %4.0f %6.1f",
- up->status, up->epomax, mepoch, maxrun, avginc,
- avgcnt, dtemp, up->freq * 1e6 / SECOND);
- record_clock_stats(&peer->srcadr, tbuf);
-#ifdef DEBUG
- if (debug)
- printf("%s\n", tbuf);
-#endif /* DEBUG */
- }
- up->status |= FGATE;
- zepoch = mepoch;
- avgcnt = syncnt = maxrun = 0;
-}
-
-
-/*
- * wwv_epoch - epoch scanner
- *
- * This routine scans the receiver second epoch to determine the signal
- * amplitudes and pulse timings. Receiver synchronization is determined
- * by the minute sync pulse detected in the wwv_rf() routine and the
- * second sync pulse detected in the wwv_epoch() routine. A pulse width
- * discriminator extracts data signals from the 100-Hz subcarrier. The
- * transmitted signals are delayed by the propagation delay, receiver
- * delay and filter delay of this program. Delay corrections are
- * introduced separately for WWV and WWVH.
- *
- * Most communications radios use a highpass filter in the audio stages,
- * which can do nasty things to the subcarrier phase relative to the
- * sync pulses. Therefore, the data subcarrier reference phase is
- * disciplined using the hardlimited quadrature-phase signal sampled at
- * the same time as the in-phase signal. The phase tracking loop uses
- * phase adjustments of plus-minus one sample (125 us).
- */
-static void
-wwv_epoch(
- struct peer *peer /* peer structure pointer */
- )
-{
- struct refclockproc *pp;
- struct wwvunit *up;
- struct chan *cp;
- static double dpulse; /* data pulse length */
- double dtemp;
-
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
-
- /*
- * Sample the minute sync pulse envelopes at epoch 800 for both
- * the WWV and WWVH stations. This will be used later for
- * channel and station mitigation. Note that the seconds epoch
- * is set here well before the end of the second to make sure we
- * never seet the epoch backwards.
- */
- if (up->rphase == 800 * MS) {
- up->repoch = up->yepoch;
- cp = &up->mitig[up->achan];
- cp->wwv.synamp = cp->wwv.amp;
- cp->wwvh.synamp = cp->wwvh.amp;
- }
-
- /*
- * Sample the data subcarrier at epoch 15 ms, giving a guard
- * time of +-15 ms from the beginning of the second until the
- * pulse rises at 30 ms. The I-channel amplitude is used to
- * calculate the slice level. The envelope amplitude is used
- * during the probe seconds to determine the SNR. There is a
- * compromise here; we want to delay the sample as long as
- * possible to give the radio time to change frequency and the
- * AGC to stabilize, but as early as possible if the second
- * epoch is not exact.
- */
- if (up->rphase == 15 * MS) {
- up->noiamp = up->irig * up->irig + up->qrig * up->qrig;
-
- /*
- * Sample the data subcarrier at epoch 215 ms, giving a guard
- * time of +-15 ms from the earliest the pulse peak can be
- * reached to the earliest it can begin to fall. For the data
- * channel latch the I-channel amplitude for all except the
- * probe seconds and adjust the 100-Hz reference oscillator
- * phase using the Q-channel amplitude at this epoch. For the
- * probe channel latch the envelope amplitude.
- */
- } else if (up->rphase == 215 * MS) {
- up->sigsig = up->irig;
- if (up->sigsig < 0)
- up->sigsig = 0;
- up->datpha = up->qrig / up->avgint;
- if (up->datpha >= 0) {
- up->datapt++;
- if (up->datapt >= 80)
- up->datapt -= 80;
- } else {
- up->datapt--;
- if (up->datapt < 0)
- up->datapt += 80;
- }
- up->sigamp = up->irig * up->irig + up->qrig * up->qrig;
-
- /*
- * The slice level is set half way between the peak signal and
- * noise levels. Sample the negative zero crossing after epoch
- * 200 ms and record the epoch at that time. This defines the
- * length of the data pulse, which will later be converted into
- * scaled bit probabilities.
- */
- } else if (up->rphase > 200 * MS) {
- dtemp = (up->sigsig + sqrt(up->noiamp)) / 2;
- if (up->irig < dtemp && dpulse == 0)
- dpulse = up->rphase;
- }
-
- /*
- * At the end of the second crank the clock state machine and
- * adjust the codec gain. Note the epoch is buffered from the
- * center of the second in order to avoid jitter while the
- * seconds synch is diddling the epoch. Then, determine the true
- * offset and update the median filter in the driver interface.
- *
- * Sample the data subcarrier envelope at the end of the second
- * to determine the SNR for the pulse. This gives a guard time
- * of +-30 ms from the decay of the longest pulse to the rise of
- * the next pulse.
- */
- up->rphase++;
- if (up->mphase % SECOND == up->repoch) {
- up->datsnr = wwv_snr(up->sigsig, sqrt(up->noiamp));
- wwv_rsec(peer, dpulse);
- wwv_gain(peer);
- up->rphase = dpulse = 0;
- }
-}
-
-
-/*
- * wwv_rsec - process receiver second
- *
- * This routine is called at the end of each receiver second to
- * implement the per-second state machine. The machine assembles BCD
- * digit bits, decodes miscellaneous bits and dances the leap seconds.
- *
- * Normally, the minute has 60 seconds numbered 0-59. If the leap
- * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
- * for leap years) or 31 December (day 365 or 366 for leap years) is
- * augmented by one second numbered 60. This is accomplished by
- * extending the minute interval by one second and teaching the state
- * machine to ignore it.
- */
-static void
-wwv_rsec(
- struct peer *peer, /* peer structure pointer */
- double dpulse
- )
-{
- static int iniflg; /* initialization flag */
- static double bcddld[4]; /* BCD data bits */
- static double bitvec[61]; /* bit integrator for misc bits */
- struct refclockproc *pp;
- struct wwvunit *up;
- struct chan *cp;
- struct sync *sp, *rp;
- l_fp offset; /* offset in NTP seconds */
- double bit; /* bit likelihood */
- char tbuf[80]; /* monitor buffer */
- int sw, arg, nsec;
-#ifdef IRIG_SUCKS
- int i;
- l_fp ltemp;
-#endif /* IRIG_SUCKS */
-
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
- if (!iniflg) {
- iniflg = 1;
- memset((char *)bitvec, 0, sizeof(bitvec));
- }
-
- /*
- * The bit represents the probability of a hit on zero (negative
- * values), a hit on one (positive values) or a miss (zero
- * value). The likelihood vector is the exponential average of
- * these probabilities. Only the bits of this vector
- * corresponding to the miscellaneous bits of the timecode are
- * used, but it's easier to do them all. After that, crank the
- * seconds state machine.
- */
- nsec = up->rsec + 1;
- bit = wwv_data(up, dpulse);
- bitvec[up->rsec] += (bit - bitvec[up->rsec]) / TCONST;
- sw = progx[up->rsec].sw;
- arg = progx[up->rsec].arg;
- switch (sw) {
-
- /*
- * Ignore this second.
- */
- case IDLE: /* 9, 45-49 */
- break;
-
- /*
- * Probe channel stuff
- *
- * The WWV/H format contains data pulses in second 59 (position
- * identifier), second 1 (not used) and the minute sync pulse in
- * second 0. At the end of second 58, QSY to the probe channel,
- * which rotates over all WWV/H frequencies. At the end of
- * second 1 QSY back to the data channel.
- *
- * At the end of second 0 save the minute sync pulse peak value
- * previously latched at 800 ms.
- */
- case SYNC2: /* 0 */
- cp = &up->mitig[up->achan];
- cp->wwv.synmax = sqrt(cp->wwv.synamp);
- cp->wwvh.synmax = sqrt(cp->wwvh.synamp);
- break;
-
- /*
- * At the end of second 1 determine the minute sync pulse
- * amplitude and SNR and set SYNCNG if these values are below
- * thresholds. Determine the data pulse amplitude and SNR and
- * set DATANG if these values are below thresholds. Set ERRRNG
- * if data pulses in second 59 and second 1 are decoded in
- * error. Shift a 1 into the reachability register if SYNCNG and
- * DATANG are both lit; otherwise shift a 0. Ignore ERRRNG for
- * the present. The number of 1 bits in the last six intervals
- * represents the channel metric used by the mitigation routine.
- * Finally, QSY back to the data channel.
- */
- case SYNC3: /* 1 */
- cp = &up->mitig[up->achan];
- cp->sigamp = sqrt(up->sigamp);
- cp->noiamp = sqrt(up->noiamp);
- cp->datsnr = wwv_snr(cp->sigamp, cp->noiamp);
-
- /*
- * WWV station
- */
- sp = &cp->wwv;
- sp->synmin = sqrt((sp->synmin + sp->synamp) / 2.);
- sp->synsnr = wwv_snr(sp->synmax, sp->synmin);
- sp->select &= ~(SYNCNG | DATANG | ERRRNG);
- if (sp->synmax < QTHR || sp->synsnr < QSNR)
- sp->select |= SYNCNG;
- if (cp->sigamp < XTHR || cp->datsnr < XSNR)
- sp->select |= DATANG;
- if (up->errcnt > 2)
- sp->select |= ERRRNG;
- sp->reach <<= 1;
- if (sp->reach & (1 << AMAX))
- sp->count--;
- if (!(sp->select & (SYNCNG | DATANG))) {
- sp->reach |= 1;
- sp->count++;
- }
-
- /*
- * WWVH station
- */
- rp = &cp->wwvh;
- rp->synmin = sqrt((rp->synmin + rp->synamp) / 2.);
- rp->synsnr = wwv_snr(rp->synmax, rp->synmin);
- rp->select &= ~(SYNCNG | DATANG | ERRRNG);
- if (rp->synmax < QTHR || rp->synsnr < QSNR)
- rp->select |= SYNCNG;
- if (cp->sigamp < XTHR || cp->datsnr < XSNR)
- rp->select |= DATANG;
- if (up->errcnt > 2)
- rp->select |= ERRRNG;
- rp->reach <<= 1;
- if (rp->reach & (1 << AMAX))
- rp->count--;
- if (!(rp->select & (SYNCNG | DATANG | ERRRNG))) {
- rp->reach |= 1;
- rp->count++;
- }
-
- /*
- * Set up for next minute.
- */
- if (pp->sloppyclockflag & CLK_FLAG4) {
- sprintf(tbuf,
- "wwv5 %2d %04x %3d %4d %d %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
- up->port, up->status, up->gain, up->yepoch,
- up->errcnt, cp->sigamp, cp->datsnr,
- sp->refid, sp->reach & 0xffff,
- wwv_metric(sp), sp->synmax, sp->synsnr,
- rp->refid, rp->reach & 0xffff,
- wwv_metric(rp), rp->synmax, rp->synsnr);
- record_clock_stats(&peer->srcadr, tbuf);
-#ifdef DEBUG
- if (debug)
- printf("%s\n", tbuf);
-#endif /* DEBUG */
- }
-#ifdef ICOM
- if (up->fd_icom > 0)
- wwv_qsy(peer, up->dchan);
-#endif /* ICOM */
- up->status &= ~SFLAG;
- up->errcnt = 0;
- up->alarm = 0;
- wwv_newchan(peer);
- break;
-
- /*
- * Save the bit probability in the BCD data vector at the index
- * given by the argument. Note that all bits of the vector have
- * to be above the data gate threshold for the digit to be
- * considered valid. Bits not used in the digit are forced to
- * zero and not checked for errors.
- */
- case COEF: /* 4-7, 10-13, 15-17, 20-23,
- 25-26, 30-33, 35-38, 40-41,
- 51-54 */
- if (up->status & DGATE)
- up->status |= BGATE;
- bcddld[arg] = bit;
- break;
-
- case COEF2: /* 18, 27-28, 42-43 */
- bcddld[arg] = 0;
- break;
-
- /*
- * Correlate coefficient vector with each valid digit vector and
- * save in decoding matrix. We step through the decoding matrix
- * digits correlating each with the coefficients and saving the
- * greatest and the next lower for later SNR calculation.
- */
- case DECIM2: /* 29 */
- wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
- break;
-
- case DECIM3: /* 44 */
- wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
- break;
-
- case DECIM6: /* 19 */
- wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
- break;
-
- case DECIM9: /* 8, 14, 24, 34, 39 */
- wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
- break;
-
- /*
- * Miscellaneous bits. If above the positive threshold, declare
- * 1; if below the negative threshold, declare 0; otherwise
- * raise the SYMERR alarm. At the end of second 58, QSY to the
- * probe channel. The design is intended to preserve the bits
- * over periods of signal loss.
- */
- case MSC20: /* 55 */
- wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
- /* fall through */
-
- case MSCBIT: /* 2-3, 50, 56-57 */
- if (bitvec[up->rsec] > BTHR)
- up->misc |= arg;
- else if (bitvec[up->rsec] < -BTHR)
- up->misc &= ~arg;
- else
- up->alarm |= SYMERR;
- break;
-
- /*
- * Save the data channel gain, then QSY to the probe channel.
- */
- case MSC21: /* 58 */
- if (bitvec[up->rsec] > BTHR)
- up->misc |= arg;
- else if (bitvec[up->rsec] < -BTHR)
- up->misc &= ~arg;
- else
- up->alarm |= SYMERR;
- up->mitig[up->dchan].gain = up->gain;
-#ifdef ICOM
- if (up->fd_icom > 0) {
- up->schan = (up->schan + 1) % NCHAN;
- wwv_qsy(peer, up->schan);
- }
-#endif /* ICOM */
- up->status |= SFLAG | SELV | SELH;
- up->errbit = up->errcnt;
- up->errcnt = 0;
- break;
-
- /*
- * The endgames
- *
- * During second 59 the receiver and codec AGC are settling
- * down, so the data pulse is unusable. At the end of this
- * second, latch the minute sync pulse noise floor. Then do the
- * minute processing and update the system clock. If a leap
- * second sail on to the next second (60); otherwise, set up for
- * the next minute.
- */
- case MIN1: /* 59 */
- cp = &up->mitig[up->achan];
- cp->wwv.synmin = cp->wwv.synamp;
- cp->wwvh.synmin = cp->wwvh.synamp;
-
- /*
- * Dance the leap if necessary and the kernel has the
- * right stuff. Then, wind up the clock and initialize
- * for the following minute. If the leap dance, note the
- * kernel is armed one second before the actual leap is
- * scheduled.
- */
- if (up->status & SSYNC && up->digcnt >= 9)
- up->status |= INSYNC;
- if (up->status & LEPDAY) {
- pp->leap = LEAP_ADDSECOND;
- } else {
- pp->leap = LEAP_NOWARNING;
- wwv_tsec(up);
- nsec = up->digcnt = 0;
- }
- pp->lencode = timecode(up, pp->a_lastcode);
- record_clock_stats(&peer->srcadr, pp->a_lastcode);
-#ifdef DEBUG
- if (debug)
- printf("wwv: timecode %d %s\n", pp->lencode,
- pp->a_lastcode);
-#endif /* DEBUG */
- if (up->status & INSYNC && up->watch < HOLD)
- refclock_receive(peer);
- break;
-
- /*
- * If LEPDAY is set on the last minute of 30 June or 31
- * December, the LEPSEC bit is set. At the end of the minute in
- * which LEPSEC is set the transmitter and receiver insert an
- * extra second (60) in the timescale and the minute sync skips
- * a second. We only get to test this wrinkle at intervals of
- * about 18 months; the actual mileage may vary.
- */
- case MIN2: /* 60 */
- wwv_tsec(up);
- nsec = up->digcnt = 0;
- break;
- }
-
- /*
- * If digit sync has not been acquired before timeout or if no
- * station has been heard, game over and restart from scratch.
- */
- if (!(up->status & DSYNC) && (!(up->status & (SELV | SELH)) ||
- up->watch > DIGIT)) {
- wwv_newgame(peer);
- return;
- }
-
- /*
- * If no timestamps have been struck before timeout, game over
- * and restart from scratch.
- */
- if (up->watch > PANIC) {
- wwv_newgame(peer);
- return;
- }
- pp->disp += AUDIO_PHI;
- up->rsec = nsec;
-
-#ifdef IRIG_SUCKS
- /*
- * You really don't wanna know what comes down here. Leave it to
- * say Solaris 2.8 broke the nice clean audio stream, apparently
- * affected by a 5-ms sawtooth jitter. Sundown on Solaris. This
- * leaves a little twilight.
- *
- * The scheme involves differentiation, forward learning and
- * integration. The sawtooth has a period of 11 seconds. The
- * timestamp differences are integrated and subtracted from the
- * signal.
- */
- ltemp = pp->lastrec;
- L_SUB(&ltemp, &pp->lastref);
- if (ltemp.l_f < 0)
- ltemp.l_i = -1;
- else
- ltemp.l_i = 0;
- pp->lastref = pp->lastrec;
- if (!L_ISNEG(&ltemp))
- L_CLR(&up->wigwag);
- else
- L_ADD(&up->wigwag, &ltemp);
- L_SUB(&pp->lastrec, &up->wigwag);
- up->wiggle[up->wp] = ltemp;
-
- /*
- * Bottom fisher. To understand this, you have to know about
- * velocity microphones and AM transmitters. No further
- * explanation is offered, as this is truly a black art.
- */
- up->wigbot[up->wp] = pp->lastrec;
- for (i = 0; i < WIGGLE; i++) {
- if (i != up->wp)
- up->wigbot[i].l_ui++;
- L_SUB(&pp->lastrec, &up->wigbot[i]);
- if (L_ISNEG(&pp->lastrec))
- L_ADD(&pp->lastrec, &up->wigbot[i]);
- else
- pp->lastrec = up->wigbot[i];
- }
- up->wp++;
- up->wp %= WIGGLE;
-#endif /* IRIG_SUCKS */
-
- /*
- * If victory has been declared and seconds sync is lit, strike
- * a timestamp. It should not be a surprise, especially if the
- * radio is not tunable, that sometimes no stations are above
- * the noise and the reference ID set to NONE.
- */
- if (up->status & INSYNC && up->status & SSYNC) {
- pp->second = up->rsec;
- pp->minute = up->decvec[MN].digit + up->decvec[MN +
- 1].digit * 10;
- pp->hour = up->decvec[HR].digit + up->decvec[HR +
- 1].digit * 10;
- pp->day = up->decvec[DA].digit + up->decvec[DA +
- 1].digit * 10 + up->decvec[DA + 2].digit * 100;
- pp->year = up->decvec[YR].digit + up->decvec[YR +
- 1].digit * 10;
- pp->year += 2000;
- L_CLR(&offset);
- if (!clocktime(pp->day, pp->hour, pp->minute,
- pp->second, GMT, up->timestamp.l_ui,
- &pp->yearstart, &offset.l_ui)) {
- up->errflg = CEVNT_BADTIME;
- } else {
- up->watch = 0;
- pp->disp = 0;
- refclock_process_offset(pp, offset,
- up->timestamp, PDELAY);
- }
- }
- if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
- DSYNC)) {
- sprintf(tbuf,
- "wwv3 %2d %04x %5.0f %5.1f %5.0f %5.1f %5.0f",
- up->rsec, up->status, up->epomax, up->eposnr,
- up->sigsig, up->datsnr, bit);
- record_clock_stats(&peer->srcadr, tbuf);
-#ifdef DEBUG
- if (debug)
- printf("%s\n", tbuf);
-#endif /* DEBUG */
- }
-}
-
-
-/*
- * wwv_data - calculate bit probability
- *
- * This routine is called at the end of the receiver second to calculate
- * the probabilities that the previous second contained a zero (P0), one
- * (P1) or position indicator (P2) pulse. If not in sync or if the data
- * bit is bad, a bit error is declared and the probabilities are forced
- * to zero. Otherwise, the data gate is enabled and the probabilities
- * are calculated. Note that the data matched filter contributes half
- * the pulse width, or 85 ms.
- *
- * It's important to observe that there are three conditions to
- * determine: average to +1 (hit), average to -1 (miss) or average to
- * zero (erasure). The erasure condition results from insufficient
- * signal (noise) and has no bias toward either a hit or miss.
- */
-static double
-wwv_data(
- struct wwvunit *up, /* driver unit pointer */
- double pulse /* pulse length (sample units) */
- )
-{
- double p0, p1, p2; /* probabilities */
- double dpulse; /* pulse length in ms */
-
- p0 = p1 = p2 = 0;
- dpulse = pulse - DATSIZ / 2;
-
- /*
- * If no station is being tracked, if either the data amplitude
- * or SNR are below threshold or if the pulse length is less
- * than 170 ms, declare an erasure.
- */
- if (!(up->status & (SELV | SELH)) || up->sigsig < DTHR ||
- up->datsnr < DSNR || dpulse < DATSIZ) {
- up->status |= DGATE;
- up->errcnt++;
- if (up->errcnt > MAXERR)
- up->alarm |= MODERR;
- return (0);
- }
-
- /*
- * The probability of P0 is one below 200 ms falling to zero at
- * 500 ms. The probability of P1 is zero below 200 ms rising to
- * one at 500 ms and falling to zero at 800 ms. The probability
- * of P2 is zero below 500 ms, rising to one above 800 ms.
- */
- up->status &= ~DGATE;
- if (dpulse < (200 * MS)) {
- p0 = 1;
- } else if (dpulse < 500 * MS) {
- dpulse -= 200 * MS;
- p1 = dpulse / (300 * MS);
- p0 = 1 - p1;
- } else if (dpulse < 800 * MS) {
- dpulse -= 500 * MS;
- p2 = dpulse / (300 * MS);
- p1 = 1 - p2;
- } else {
- p2 = 1;
- }
-
- /*
- * The ouput is a metric that ranges from -1 (P0), to +1 (P1)
- * scaled for convenience. An output of zero represents an
- * erasure, either because of a data error or pulse length
- * greater than 500 ms. At the moment, we don't use P2.
- */
- return ((p1 - p0) * MAXSIG);
-}
-
-
-/*
- * wwv_corr4 - determine maximum likelihood digit
- *
- * This routine correlates the received digit vector with the BCD
- * coefficient vectors corresponding to all valid digits at the given
- * position in the decoding matrix. The maximum value corresponds to the
- * maximum likelihood digit, while the ratio of this value to the next
- * lower value determines the likelihood function. Note that, if the
- * digit is invalid, the likelihood vector is averaged toward a miss.
- */
-static void
-wwv_corr4(
- struct peer *peer, /* peer unit pointer */
- struct decvec *vp, /* decoding table pointer */
- double data[], /* received data vector */
- double tab[][4] /* correlation vector array */
- )
-{
- struct refclockproc *pp;
- struct wwvunit *up;
-
- double topmax, nxtmax; /* metrics */
- double acc; /* accumulator */
- char tbuf[80]; /* monitor buffer */
- int mldigit; /* max likelihood digit */
- int diff; /* decoding difference */
- int i, j;
-
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
-
- /*
- * Correlate digit vector with each BCD coefficient vector. If
- * any BCD digit bit is bad, consider all bits a miss.
- */
- mldigit = 0;
- topmax = nxtmax = -MAXSIG;
- for (i = 0; tab[i][0] != 0; i++) {
- acc = 0;
- for (j = 0; j < 4; j++) {
- if (!(up->status & BGATE))
- acc += data[j] * tab[i][j];
- }
- acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
- if (acc > topmax) {
- nxtmax = topmax;
- topmax = acc;
- mldigit = i;
- } else if (acc > nxtmax) {
- nxtmax = acc;
- }
- }
- vp->mldigit = mldigit;
- vp->digprb = topmax;
- vp->digsnr = wwv_snr(topmax, nxtmax);
-
- /*
- * The maximum likelihood digit is compared with the current
- * clock digit. The difference represents the decoding phase
- * error. If the clock is not yet synchronized, the phase error
- * is corrected even of the digit probability and likelihood are
- * below thresholds. This avoids lengthy averaging times should
- * a carry mistake occur. However, the digit is not declared
- * synchronized until these values are above thresholds and the
- * last five decoded values are identical. If the clock is
- * synchronized, the phase error is not corrected unless the
- * last five digits are all above thresholds and identical. This
- * avoids mistakes when the signal is coming out of the noise
- * and the SNR is very marginal.
- */
- diff = mldigit - vp->digit;
- if (diff < 0)
- diff += vp->radix;
- if (diff != vp->phase) {
- vp->count = 0;
- vp->phase = diff;
- }
- if (vp->digsnr < BSNR) {
- vp->count = 0;
- up->alarm |= SYMERR;
- } else if (vp->digprb < BTHR) {
- vp->count = 0;
- up->alarm |= SYMERR;
- if (!(up->status & INSYNC)) {
- vp->phase = 0;
- vp->digit = mldigit;
- }
- } else if (vp->count < BCMP) {
- vp->count++;
- up->status |= DSYNC;
- if (!(up->status & INSYNC)) {
- vp->phase = 0;
- vp->digit = mldigit;
- }
- } else {
- vp->phase = 0;
- vp->digit = mldigit;
- up->digcnt++;
- }
- if (vp->digit != mldigit)
- up->alarm |= DECERR;
- if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
- INSYNC)) {
- sprintf(tbuf,
- "wwv4 %2d %04x %5.0f %2d %d %d %d %d %5.0f %5.1f",
- up->rsec, up->status, up->epomax, vp->radix,
- vp->digit, vp->mldigit, vp->phase, vp->count,
- vp->digprb, vp->digsnr);
- record_clock_stats(&peer->srcadr, tbuf);
-#ifdef DEBUG
- if (debug)
- printf("%s\n", tbuf);
-#endif /* DEBUG */
- }
- up->status &= ~BGATE;
-}
-
-
-/*
- * wwv_tsec - transmitter minute processing
- *
- * This routine is called at the end of the transmitter minute. It
- * implements a state machine that advances the logical clock subject to
- * the funny rules that govern the conventional clock and calendar.
- */
-static void
-wwv_tsec(
- struct wwvunit *up /* driver structure pointer */
- )
-{
- int minute, day, isleap;
- int temp;
-
- /*
- * Advance minute unit of the day.
- */
- temp = carry(&up->decvec[MN]); /* minute units */
-
- /*
- * Propagate carries through the day.
- */
- if (temp == 0) /* carry minutes */
- temp = carry(&up->decvec[MN + 1]);
- if (temp == 0) /* carry hours */
- temp = carry(&up->decvec[HR]);
- if (temp == 0)
- temp = carry(&up->decvec[HR + 1]);
-
- /*
- * Decode the current minute and day. Set leap day if the
- * timecode leap bit is set on 30 June or 31 December. Set leap
- * minute if the last minute on leap day. This code fails in
- * 2400 AD.
- */
- minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
- 10 + up->decvec[HR].digit * 60 + up->decvec[HR +
- 1].digit * 600;
- day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
- up->decvec[DA + 2].digit * 100;
- isleap = (up->decvec[YR].digit & 0x3) == 0;
- if (up->misc & SECWAR && (day == (isleap ? 182 : 183) || day ==
- (isleap ? 365 : 366)) && up->status & INSYNC && up->status &
- SSYNC)
- up->status |= LEPDAY;
- else
- up->status &= ~LEPDAY;
- if (up->status & LEPDAY && minute == 1439)
- up->status |= LEPSEC;
- else
- up->status &= ~LEPSEC;
-
- /*
- * Roll the day if this the first minute and propagate carries
- * through the year.
- */
- if (minute != 1440)
- return;
- minute = 0;
- while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
- while (carry(&up->decvec[HR + 1]) != 0);
- day++;
- temp = carry(&up->decvec[DA]); /* carry days */
- if (temp == 0)
- temp = carry(&up->decvec[DA + 1]);
- if (temp == 0)
- temp = carry(&up->decvec[DA + 2]);
-
- /*
- * Roll the year if this the first day and propagate carries
- * through the century.
- */
- if (day != (isleap ? 365 : 366))
- return;
- day = 1;
- while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
- while (carry(&up->decvec[DA + 1]) != 0);
- while (carry(&up->decvec[DA + 2]) != 0);
- temp = carry(&up->decvec[YR]); /* carry years */
- if (temp)
- carry(&up->decvec[YR + 1]);
-}
-
-
-/*
- * carry - process digit
- *
- * This routine rotates a likelihood vector one position and increments
- * the clock digit modulo the radix. It returns the new clock digit or
- * zero if a carry occurred. Once synchronized, the clock digit will
- * match the maximum likelihood digit corresponding to that position.
- */
-static int
-carry(
- struct decvec *dp /* decoding table pointer */
- )
-{
- int temp;
- int j;
-
- dp->digit++; /* advance clock digit */
- if (dp->digit == dp->radix) { /* modulo radix */
- dp->digit = 0;
- }
- temp = dp->like[dp->radix - 1]; /* rotate likelihood vector */
- for (j = dp->radix - 1; j > 0; j--)
- dp->like[j] = dp->like[j - 1];
- dp->like[0] = temp;
- return (dp->digit);
-}
-
-
-/*
- * wwv_snr - compute SNR or likelihood function
- */
-static double
-wwv_snr(
- double signal, /* signal */
- double noise /* noise */
- )
-{
- double rval;
-
- /*
- * This is a little tricky. Due to the way things are measured,
- * either or both the signal or noise amplitude can be negative
- * or zero. The intent is that, if the signal is negative or
- * zero, the SNR must always be zero. This can happen with the
- * subcarrier SNR before the phase has been aligned. On the
- * other hand, in the likelihood function the "noise" is the
- * next maximum down from the peak and this could be negative.
- * However, in this case the SNR is truly stupendous, so we
- * simply cap at MAXSNR dB.
- */
- if (signal <= 0) {
- rval = 0;
- } else if (noise <= 0) {
- rval = MAXSNR;
- } else {
- rval = 20 * log10(signal / noise);
- if (rval > MAXSNR)
- rval = MAXSNR;
- }
- return (rval);
-}
-
-
-/*
- * wwv_newchan - change to new data channel
- *
- * The radio actually appears to have ten channels, one channel for each
- * of five frequencies and each of two stations (WWV and WWVH), although
- * if not tunable only the 15 MHz channels appear live. While the radio
- * is tuned to the working data channel frequency and station for most
- * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
- * probe frequency in order to search for minute sync pulse and data
- * subcarrier from other transmitters.
- *
- * The search for WWV and WWVH operates simultaneously, with WWV minute
- * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
- * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
- * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
- * on 25 MHz.
- *
- * This routine selects the best channel using a metric computed from
- * the reachability register and minute pulse amplitude. Normally, the
- * award goes to the the channel with the highest metric; but, in case
- * of ties, the award goes to the channel with the highest minute sync
- * pulse amplitude and then to the highest frequency.
- *
- * The routine performs an important squelch function to keep dirty data
- * from polluting the integrators. During acquisition and until the
- * clock is synchronized, the signal metric must be at least MTR (13);
- * after that the metrict must be at least TTHR (50). If either of these
- * is not true, the station select bits are cleared so the second sync
- * is disabled and the data bit integrators averaged to a miss.
- */
-static void
-wwv_newchan(
- struct peer *peer /* peer structure pointer */
- )
-{
- struct refclockproc *pp;
- struct wwvunit *up;
- struct sync *sp, *rp;
- double rank, dtemp;
- int i, j;
-
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
-
- /*
- * Search all five station pairs looking for the channel with
- * maximum metric. If no station is found above thresholds, the
- * reference ID is set to NONE and we wait for hotter ions.
- */
- j = 0;
- sp = NULL;
- rank = 0;
- for (i = 0; i < NCHAN; i++) {
- rp = &up->mitig[i].wwvh;
- dtemp = wwv_metric(rp);
- if (dtemp >= rank) {
- rank = dtemp;
- sp = rp;
- j = i;
- }
- rp = &up->mitig[i].wwv;
- dtemp = wwv_metric(rp);
- if (dtemp >= rank) {
- rank = dtemp;
- sp = rp;
- j = i;
- }
- }
- up->dchan = j;
- up->sptr = sp;
- up->status &= ~(SELV | SELH);
- memcpy(&pp->refid, "NONE", 4);
- if ((!(up->status & INSYNC) && rank >= MTHR) || ((up->status &
- INSYNC) && rank >= TTHR)) {
- up->status |= sp->select & (SELV | SELH);
- memcpy(&pp->refid, sp->refid, 4);
- }
- if (peer->stratum <= 1)
- memcpy(&peer->refid, &pp->refid, 4);
-}
-
-
-/*
- * www_newgame - reset and start over
- */
-static void
-wwv_newgame(
- struct peer *peer /* peer structure pointer */
- )
-{
- struct refclockproc *pp;
- struct wwvunit *up;
- struct chan *cp;
- int i;
-
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
-
- /*
- * Initialize strategic values. Note we set the leap bits
- * NOTINSYNC and the refid "NONE".
- */
- peer->leap = LEAP_NOTINSYNC;
- up->watch = up->status = up->alarm = 0;
- up->avgint = MINAVG;
- up->freq = 0;
- up->sptr = NULL;
- up->gain = MAXGAIN / 2;
-
- /*
- * Initialize the station processes for audio gain, select bit,
- * station/frequency identifier and reference identifier.
- */
- memset(up->mitig, 0, sizeof(up->mitig));
- for (i = 0; i < NCHAN; i++) {
- cp = &up->mitig[i];
- cp->gain = up->gain;
- cp->wwv.select = SELV;
- sprintf(cp->wwv.refid, "WV%.0f", floor(qsy[i]));
- cp->wwvh.select = SELH;
- sprintf(cp->wwvh.refid, "WH%.0f", floor(qsy[i]));
- }
- wwv_newchan(peer);
-}
-
-/*
- * wwv_metric - compute station metric
- *
- * The most significant bits represent the number of ones in the
- * reachability register. The least significant bits represent the
- * minute sync pulse amplitude. The combined value is scaled 0-100.
- */
-double
-wwv_metric(
- struct sync *sp /* station pointer */
- )
-{
- double dtemp;
-
- dtemp = sp->count * MAXSIG;
- if (sp->synmax < MAXSIG)
- dtemp += sp->synmax;
- else
- dtemp += MAXSIG - 1;
- dtemp /= (AMAX + 1) * MAXSIG;
- return (dtemp * 100.);
-}
-
-
-#ifdef ICOM
-/*
- * wwv_qsy - Tune ICOM receiver
- *
- * This routine saves the AGC for the current channel, switches to a new
- * channel and restores the AGC for that channel. If a tunable receiver
- * is not available, just fake it.
- */
-static int
-wwv_qsy(
- struct peer *peer, /* peer structure pointer */
- int chan /* channel */
- )
-{
- int rval = 0;
- struct refclockproc *pp;
- struct wwvunit *up;
-
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
- if (up->fd_icom > 0) {
- up->mitig[up->achan].gain = up->gain;
- rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
- qsy[chan]);
- up->achan = chan;
- up->gain = up->mitig[up->achan].gain;
- }
- return (rval);
-}
-#endif /* ICOM */
-
-
-/*
- * timecode - assemble timecode string and length
- *
- * Prettytime format - similar to Spectracom
- *
- * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
- *
- * s sync indicator ('?' or ' ')
- * q error bits (hex 0-F)
- * yyyy year of century
- * ddd day of year
- * hh hour of day
- * mm minute of hour
- * ss second of minute)
- * l leap second warning (' ' or 'L')
- * d DST state ('S', 'D', 'I', or 'O')
- * dut DUT sign and magnitude (0.1 s)
- * lset minutes since last clock update
- * agc audio gain (0-255)
- * iden reference identifier (station and frequency)
- * sig signal quality (0-100)
- * errs bit errors in last minute
- * freq frequency offset (PPM)
- * avgt averaging time (s)
- */
-static int
-timecode(
- struct wwvunit *up, /* driver structure pointer */
- char *ptr /* target string */
- )
-{
- struct sync *sp;
- int year, day, hour, minute, second, dut;
- char synchar, leapchar, dst;
- char cptr[50];
-
-
- /*
- * Common fixed-format fields
- */
- synchar = (up->status & INSYNC) ? ' ' : '?';
- year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
- 2000;
- day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
- up->decvec[DA + 2].digit * 100;
- hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
- minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
- second = 0;
- leapchar = (up->misc & SECWAR) ? 'L' : ' ';
- dst = dstcod[(up->misc >> 4) & 0x3];
- dut = up->misc & 0x7;
- if (!(up->misc & DUTS))
- dut = -dut;
- sprintf(ptr, "%c%1X", synchar, up->alarm);
- sprintf(cptr, " %4d %03d %02d:%02d:%02d %c%c %+d",
- year, day, hour, minute, second, leapchar, dst, dut);
- strcat(ptr, cptr);
-
- /*
- * Specific variable-format fields
- */
- sp = up->sptr;
- sprintf(cptr, " %d %d %s %.0f %d %.1f %d", up->watch,
- up->mitig[up->dchan].gain, sp->refid, wwv_metric(sp),
- up->errbit, up->freq / SECOND * 1e6, up->avgint);
- strcat(ptr, cptr);
- return (strlen(ptr));
-}
-
-
-/*
- * wwv_gain - adjust codec gain
- *
- * This routine is called at the end of each second. It counts the
- * number of signal clips above the MAXSIG threshold during the previous
- * second. If there are no clips, the gain is bumped up; if too many
- * clips, it is bumped down. The decoder is relatively insensitive to
- * amplitude, so this crudity works just fine. The input port is set and
- * the error flag is cleared, mostly to be ornery.
- */
-static void
-wwv_gain(
- struct peer *peer /* peer structure pointer */
- )
-{
- struct refclockproc *pp;
- struct wwvunit *up;
-
- pp = peer->procptr;
- up = (struct wwvunit *)pp->unitptr;
-
- /*
- * Apparently, the codec uses only the high order bits of the
- * gain control field. Thus, it may take awhile for changes to
- * wiggle the hardware bits.
- */
- if (up->clipcnt == 0) {
- up->gain += 4;
- if (up->gain > MAXGAIN)
- up->gain = MAXGAIN;
- } else if (up->clipcnt > MAXCLP) {
- up->gain -= 4;
- if (up->gain < 0)
- up->gain = 0;
- }
- audio_gain(up->gain, up->mongain, up->port);
- up->clipcnt = 0;
-#if DEBUG
- if (debug > 1)
- audio_show();
-#endif
-}
-
-
-#else
-int refclock_wwv_bs;
-#endif /* REFCLOCK */
OpenPOWER on IntegriCloud