summaryrefslogtreecommitdiffstats
path: root/contrib/ntp/ntpd/refclock_irig.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ntp/ntpd/refclock_irig.c')
-rw-r--r--contrib/ntp/ntpd/refclock_irig.c1049
1 files changed, 0 insertions, 1049 deletions
diff --git a/contrib/ntp/ntpd/refclock_irig.c b/contrib/ntp/ntpd/refclock_irig.c
deleted file mode 100644
index 0b35368..0000000
--- a/contrib/ntp/ntpd/refclock_irig.c
+++ /dev/null
@@ -1,1049 +0,0 @@
-/*
- * refclock_irig - audio IRIG-B/E demodulator/decoder
- */
-#ifdef HAVE_CONFIG_H
-#include <config.h>
-#endif
-
-#if defined(REFCLOCK) && defined(CLOCK_IRIG)
-
-#include "ntpd.h"
-#include "ntp_io.h"
-#include "ntp_refclock.h"
-#include "ntp_calendar.h"
-#include "ntp_stdlib.h"
-
-#include <stdio.h>
-#include <ctype.h>
-#include <math.h>
-#ifdef HAVE_SYS_IOCTL_H
-#include <sys/ioctl.h>
-#endif /* HAVE_SYS_IOCTL_H */
-
-#include "audio.h"
-
-/*
- * Audio IRIG-B/E demodulator/decoder
- *
- * This driver receives, demodulates and decodes IRIG-B/E signals when
- * connected to the audio codec /dev/audio. The IRIG signal format is an
- * amplitude-modulated carrier with pulse-width modulated data bits. For
- * IRIG-B, the carrier frequency is 1000 Hz and bit rate 100 b/s; for
- * IRIG-E, the carrier frequenchy is 100 Hz and bit rate 10 b/s. The
- * driver automatically recognizes which format is in use.
- *
- * The program processes 8000-Hz mu-law companded samples using separate
- * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
- * detector and automatic threshold corrector. Cycle crossings relative
- * to the corrected slice level determine the width of each pulse and
- * its value - zero, one or position identifier. The data encode 20 BCD
- * digits which determine the second, minute, hour and day of the year
- * and sometimes the year and synchronization condition. The comb filter
- * exponentially averages the corresponding samples of successive baud
- * intervals in order to reliably identify the reference carrier cycle.
- * A type-II phase-lock loop (PLL) performs additional integration and
- * interpolation to accurately determine the zero crossing of that
- * cycle, which determines the reference timestamp. A pulse-width
- * discriminator demodulates the data pulses, which are then encoded as
- * the BCD digits of the timecode.
- *
- * The timecode and reference timestamp are updated once each second
- * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
- * saved for later processing. At poll intervals of 64 s, the saved
- * samples are processed by a trimmed-mean filter and used to update the
- * system clock.
- *
- * An automatic gain control feature provides protection against
- * overdriven or underdriven input signal amplitudes. It is designed to
- * maintain adequate demodulator signal amplitude while avoiding
- * occasional noise spikes. In order to assure reliable capture, the
- * decompanded input signal amplitude must be greater than 100 units and
- * the codec sample frequency error less than 250 PPM (.025 percent).
- *
- * The program performs a number of error checks to protect against
- * overdriven or underdriven input signal levels, incorrect signal
- * format or improper hardware configuration. Specifically, if any of
- * the following errors occur for a time measurement, the data are
- * rejected.
- *
- * o The peak carrier amplitude is less than DRPOUT (100). This usually
- * means dead IRIG signal source, broken cable or wrong input port.
- *
- * o The frequency error is greater than MAXFREQ +-250 PPM (.025%). This
- * usually means broken codec hardware or wrong codec configuration.
- *
- * o The modulation index is less than MODMIN (0.5). This usually means
- * overdriven IRIG signal or wrong IRIG format.
- *
- * o A frame synchronization error has occurred. This usually means
- * wrong IRIG signal format or the IRIG signal source has lost
- * synchronization (signature control).
- *
- * o A data decoding error has occurred. This usually means wrong IRIG
- * signal format.
- *
- * o The current second of the day is not exactly one greater than the
- * previous one. This usually means a very noisy IRIG signal or
- * insufficient CPU resources.
- *
- * o An audio codec error (overrun) occurred. This usually means
- * insufficient CPU resources, as sometimes happens with Sun SPARC
- * IPCs when doing something useful.
- *
- * Note that additional checks are done elsewhere in the reference clock
- * interface routines.
- *
- * Debugging aids
- *
- * The timecode format used for debugging and data recording includes
- * data helpful in diagnosing problems with the IRIG signal and codec
- * connections. With debugging enabled (-d on the ntpd command line),
- * the driver produces one line for each timecode in the following
- * format:
- *
- * 00 1 98 23 19:26:52 721 143 0.694 20 0.1 66.5 3094572411.00027
- *
- * The most recent line is also written to the clockstats file at 64-s
- * intervals.
- *
- * The first field contains the error flags in hex, where the hex bits
- * are interpreted as below. This is followed by the IRIG status
- * indicator, year of century, day of year and time of day. The status
- * indicator and year are not produced by some IRIG devices. Following
- * these fields are the signal amplitude (0-8100), codec gain (0-255),
- * modulation index (0-1), time constant (2-20), carrier phase error
- * (us) and carrier frequency error (PPM). The last field is the on-time
- * timestamp in NTP format.
- *
- * The fraction part of the on-time timestamp is a good indicator of how
- * well the driver is doing. With an UltrSPARC 30 and Solaris 2.7, this
- * thing can keep the clock within a few tens of microseconds relative
- * to the IRIG-B signal. Accuracy with IRIG-E is about ten times worse.
- * Unfortunately, Sun broke the 2.7 audio driver in 2.8, which has a
- * 10-ms sawtooth modulation. The driver attempts to remove the
- * modulation by some clever estimation techniques which mostly work.
- * Your experience may vary.
- *
- * Unlike other drivers, which can have multiple instantiations, this
- * one supports only one. It does not seem likely that more than one
- * audio codec would be useful in a single machine. More than one would
- * probably chew up too much CPU time anyway.
- *
- * Fudge factors
- *
- * Fudge flag4 causes the dubugging output described above to be
- * recorded in the clockstats file. When the audio driver is compiled,
- * fudge flag2 selects the audio input port, where 0 is the mike port
- * (default) and 1 is the line-in port. It does not seem useful to
- * select the compact disc player port. Fudge flag3 enables audio
- * monitoring of the input signal. For this purpose, the monitor gain is
- * set to a default value. Fudgetime2 is used as a frequency vernier for
- * broken codec sample frequency.
- */
-/*
- * Interface definitions
- */
-#define DEVICE_AUDIO "/dev/audio" /* audio device name */
-#define PRECISION (-17) /* precision assumed (about 10 us) */
-#define REFID "IRIG" /* reference ID */
-#define DESCRIPTION "Generic IRIG Audio Driver" /* WRU */
-#define AUDIO_BUFSIZ 320 /* audio buffer size (40 ms) */
-#define SECOND 8000 /* nominal sample rate (Hz) */
-#define BAUD 80 /* samples per baud interval */
-#define OFFSET 128 /* companded sample offset */
-#define SIZE 256 /* decompanding table size */
-#define CYCLE 8 /* samples per carrier cycle */
-#define SUBFLD 10 /* bits per subfield */
-#define FIELD 10 /* subfields per field */
-#define MINTC 2 /* min PLL time constant */
-#define MAXTC 20 /* max PLL time constant max */
-#define MAXSIG 6000. /* maximum signal level */
-#define MAXCLP 100 /* max clips above reference per s */
-#define DRPOUT 100. /* dropout signal level */
-#define MODMIN 0.5 /* minimum modulation index */
-#define MAXFREQ (250e-6 * SECOND) /* freq tolerance (.025%) */
-#define PI 3.1415926535 /* the real thing */
-#ifdef IRIG_SUCKS
-#define WIGGLE 11 /* wiggle filter length */
-#endif /* IRIG_SUCKS */
-
-/*
- * Experimentally determined filter delays
- */
-#define IRIG_B .0019 /* IRIG-B filter delay */
-#define IRIG_E .0019 /* IRIG-E filter delay */
-
-/*
- * Data bit definitions
- */
-#define BIT0 0 /* zero */
-#define BIT1 1 /* one */
-#define BITP 2 /* position identifier */
-
-/*
- * Error flags (up->errflg)
- */
-#define IRIG_ERR_AMP 0x01 /* low carrier amplitude */
-#define IRIG_ERR_FREQ 0x02 /* frequency tolerance exceeded */
-#define IRIG_ERR_MOD 0x04 /* low modulation index */
-#define IRIG_ERR_SYNCH 0x08 /* frame synch error */
-#define IRIG_ERR_DECODE 0x10 /* frame decoding error */
-#define IRIG_ERR_CHECK 0x20 /* second numbering discrepancy */
-#define IRIG_ERR_ERROR 0x40 /* codec error (overrun) */
-#define IRIG_ERR_SIGERR 0x80 /* IRIG status error (Spectracom) */
-
-/*
- * IRIG unit control structure
- */
-struct irigunit {
- u_char timecode[21]; /* timecode string */
- l_fp timestamp; /* audio sample timestamp */
- l_fp tick; /* audio sample increment */
- double integ[BAUD]; /* baud integrator */
- double phase, freq; /* logical clock phase and frequency */
- double zxing; /* phase detector integrator */
- double yxing; /* cycle phase */
- double exing; /* envelope phase */
- double modndx; /* modulation index */
- double irig_b; /* IRIG-B signal amplitude */
- double irig_e; /* IRIG-E signal amplitude */
- int errflg; /* error flags */
- /*
- * Audio codec variables
- */
- double comp[SIZE]; /* decompanding table */
- int port; /* codec port */
- int gain; /* codec gain */
- int mongain; /* codec monitor gain */
- int clipcnt; /* sample clipped count */
- int seccnt; /* second interval counter */
-
- /*
- * RF variables
- */
- double hpf[5]; /* IRIG-B filter shift register */
- double lpf[5]; /* IRIG-E filter shift register */
- double intmin, intmax; /* integrated envelope min and max */
- double envmax; /* peak amplitude */
- double envmin; /* noise amplitude */
- double maxsignal; /* integrated peak amplitude */
- double noise; /* integrated noise amplitude */
- double lastenv[CYCLE]; /* last cycle amplitudes */
- double lastint[CYCLE]; /* last integrated cycle amplitudes */
- double lastsig; /* last carrier sample */
- double fdelay; /* filter delay */
- int decim; /* sample decimation factor */
- int envphase; /* envelope phase */
- int envptr; /* envelope phase pointer */
- int carphase; /* carrier phase */
- int envsw; /* envelope state */
- int envxing; /* envelope slice crossing */
- int tc; /* time constant */
- int tcount; /* time constant counter */
- int badcnt; /* decimation interval counter */
-
- /*
- * Decoder variables
- */
- int pulse; /* cycle counter */
- int cycles; /* carrier cycles */
- int dcycles; /* data cycles */
- int xptr; /* translate table pointer */
- int lastbit; /* last code element length */
- int second; /* previous second */
- int fieldcnt; /* subfield count in field */
- int bits; /* demodulated bits */
- int bitcnt; /* bit count in subfield */
-#ifdef IRIG_SUCKS
- l_fp wigwag; /* wiggle accumulator */
- int wp; /* wiggle filter pointer */
- l_fp wiggle[WIGGLE]; /* wiggle filter */
- l_fp wigbot[WIGGLE]; /* wiggle bottom fisher*/
-#endif /* IRIG_SUCKS */
- l_fp wuggle;
-};
-
-/*
- * Function prototypes
- */
-static int irig_start P((int, struct peer *));
-static void irig_shutdown P((int, struct peer *));
-static void irig_receive P((struct recvbuf *));
-static void irig_poll P((int, struct peer *));
-
-/*
- * More function prototypes
- */
-static void irig_base P((struct peer *, double));
-static void irig_rf P((struct peer *, double));
-static void irig_decode P((struct peer *, int));
-static void irig_gain P((struct peer *));
-
-/*
- * Transfer vector
- */
-struct refclock refclock_irig = {
- irig_start, /* start up driver */
- irig_shutdown, /* shut down driver */
- irig_poll, /* transmit poll message */
- noentry, /* not used (old irig_control) */
- noentry, /* initialize driver (not used) */
- noentry, /* not used (old irig_buginfo) */
- NOFLAGS /* not used */
-};
-
-/*
- * Global variables
- */
-static char hexchar[] = { /* really quick decoding table */
- '0', '8', '4', 'c', /* 0000 0001 0010 0011 */
- '2', 'a', '6', 'e', /* 0100 0101 0110 0111 */
- '1', '9', '5', 'd', /* 1000 1001 1010 1011 */
- '3', 'b', '7', 'f' /* 1100 1101 1110 1111 */
-};
-
-
-/*
- * irig_start - open the devices and initialize data for processing
- */
-static int
-irig_start(
- int unit, /* instance number (used for PCM) */
- struct peer *peer /* peer structure pointer */
- )
-{
- struct refclockproc *pp;
- struct irigunit *up;
-
- /*
- * Local variables
- */
- int fd; /* file descriptor */
- int i; /* index */
- double step; /* codec adjustment */
-
- /*
- * Open audio device
- */
- fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
- if (fd < 0)
- return (0);
-#ifdef DEBUG
- if (debug)
- audio_show();
-#endif
-
- /*
- * Allocate and initialize unit structure
- */
- if (!(up = (struct irigunit *)
- emalloc(sizeof(struct irigunit)))) {
- (void) close(fd);
- return (0);
- }
- memset((char *)up, 0, sizeof(struct irigunit));
- pp = peer->procptr;
- pp->unitptr = (caddr_t)up;
- pp->io.clock_recv = irig_receive;
- pp->io.srcclock = (caddr_t)peer;
- pp->io.datalen = 0;
- pp->io.fd = fd;
- if (!io_addclock(&pp->io)) {
- (void)close(fd);
- free(up);
- return (0);
- }
-
- /*
- * Initialize miscellaneous variables
- */
- peer->precision = PRECISION;
- pp->clockdesc = DESCRIPTION;
- memcpy((char *)&pp->refid, REFID, 4);
- up->tc = MINTC;
- up->decim = 1;
- up->fdelay = IRIG_B;
- up->gain = 127;
-
- /*
- * The companded samples are encoded sign-magnitude. The table
- * contains all the 256 values in the interest of speed.
- */
- up->comp[0] = up->comp[OFFSET] = 0.;
- up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
- up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
- step = 2.;
- for (i = 3; i < OFFSET; i++) {
- up->comp[i] = up->comp[i - 1] + step;
- up->comp[OFFSET + i] = -up->comp[i];
- if (i % 16 == 0)
- step *= 2.;
- }
- DTOLFP(1. / SECOND, &up->tick);
- return (1);
-}
-
-
-/*
- * irig_shutdown - shut down the clock
- */
-static void
-irig_shutdown(
- int unit, /* instance number (not used) */
- struct peer *peer /* peer structure pointer */
- )
-{
- struct refclockproc *pp;
- struct irigunit *up;
-
- pp = peer->procptr;
- up = (struct irigunit *)pp->unitptr;
- io_closeclock(&pp->io);
- free(up);
-}
-
-
-/*
- * irig_receive - receive data from the audio device
- *
- * This routine reads input samples and adjusts the logical clock to
- * track the irig clock by dropping or duplicating codec samples.
- */
-static void
-irig_receive(
- struct recvbuf *rbufp /* receive buffer structure pointer */
- )
-{
- struct peer *peer;
- struct refclockproc *pp;
- struct irigunit *up;
-
- /*
- * Local variables
- */
- double sample; /* codec sample */
- u_char *dpt; /* buffer pointer */
- int bufcnt; /* buffer counter */
- l_fp ltemp; /* l_fp temp */
-
- peer = (struct peer *)rbufp->recv_srcclock;
- pp = peer->procptr;
- up = (struct irigunit *)pp->unitptr;
-
- /*
- * Main loop - read until there ain't no more. Note codec
- * samples are bit-inverted.
- */
- DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
- L_SUB(&rbufp->recv_time, &ltemp);
- up->timestamp = rbufp->recv_time;
- dpt = rbufp->recv_buffer;
- for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
- sample = up->comp[~*dpt++ & 0xff];
-
- /*
- * Clip noise spikes greater than MAXSIG. If no clips,
- * increase the gain a tad; if the clips are too high,
- * decrease a tad.
- */
- if (sample > MAXSIG) {
- sample = MAXSIG;
- up->clipcnt++;
- } else if (sample < -MAXSIG) {
- sample = -MAXSIG;
- up->clipcnt++;
- }
-
- /*
- * Variable frequency oscillator. The codec oscillator
- * runs at the nominal rate of 8000 samples per second,
- * or 125 us per sample. A frequency change of one unit
- * results in either duplicating or deleting one sample
- * per second, which results in a frequency change of
- * 125 PPM.
- */
- up->phase += up->freq / SECOND;
- up->phase += pp->fudgetime2 / 1e6;
- if (up->phase >= .5) {
- up->phase -= 1.;
- } else if (up->phase < -.5) {
- up->phase += 1.;
- irig_rf(peer, sample);
- irig_rf(peer, sample);
- } else {
- irig_rf(peer, sample);
- }
- L_ADD(&up->timestamp, &up->tick);
-
- /*
- * Once each second, determine the IRIG format and gain.
- */
- up->seccnt = (up->seccnt + 1) % SECOND;
- if (up->seccnt == 0) {
- if (up->irig_b > up->irig_e) {
- up->decim = 1;
- up->fdelay = IRIG_B;
- } else {
- up->decim = 10;
- up->fdelay = IRIG_E;
- }
- irig_gain(peer);
- up->irig_b = up->irig_e = 0;
- }
- }
-
- /*
- * Set the input port and monitor gain for the next buffer.
- */
- if (pp->sloppyclockflag & CLK_FLAG2)
- up->port = 2;
- else
- up->port = 1;
- if (pp->sloppyclockflag & CLK_FLAG3)
- up->mongain = MONGAIN;
- else
- up->mongain = 0;
-}
-
-/*
- * irig_rf - RF processing
- *
- * This routine filters the RF signal using a highpass filter for IRIG-B
- * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
- * decimated by a factor of ten. The lowpass filter functions also as a
- * decimation filter in this case. Note that the codec filters function
- * as roofing filters to attenuate both the high and low ends of the
- * passband. IIR filter coefficients were determined using Matlab Signal
- * Processing Toolkit.
- */
-static void
-irig_rf(
- struct peer *peer, /* peer structure pointer */
- double sample /* current signal sample */
- )
-{
- struct refclockproc *pp;
- struct irigunit *up;
-
- /*
- * Local variables
- */
- double irig_b, irig_e; /* irig filter outputs */
-
- pp = peer->procptr;
- up = (struct irigunit *)pp->unitptr;
-
- /*
- * IRIG-B filter. 4th-order elliptic, 800-Hz highpass, 0.3 dB
- * passband ripple, -50 dB stopband ripple, phase delay .0022
- * s)
- */
- irig_b = (up->hpf[4] = up->hpf[3]) * 2.322484e-01;
- irig_b += (up->hpf[3] = up->hpf[2]) * -1.103929e+00;
- irig_b += (up->hpf[2] = up->hpf[1]) * 2.351081e+00;
- irig_b += (up->hpf[1] = up->hpf[0]) * -2.335036e+00;
- up->hpf[0] = sample - irig_b;
- irig_b = up->hpf[0] * 4.335855e-01
- + up->hpf[1] * -1.695859e+00
- + up->hpf[2] * 2.525004e+00
- + up->hpf[3] * -1.695859e+00
- + up->hpf[4] * 4.335855e-01;
- up->irig_b += irig_b * irig_b;
-
- /*
- * IRIG-E filter. 4th-order elliptic, 130-Hz lowpass, 0.3 dB
- * passband ripple, -50 dB stopband ripple, phase delay .0219 s.
- */
- irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-01;
- irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+00;
- irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+00;
- irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+00;
- up->lpf[0] = sample - irig_e;
- irig_e = up->lpf[0] * 3.215696e-03
- + up->lpf[1] * -1.174951e-02
- + up->lpf[2] * 1.712074e-02
- + up->lpf[3] * -1.174951e-02
- + up->lpf[4] * 3.215696e-03;
- up->irig_e += irig_e * irig_e;
-
- /*
- * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
- */
- up->badcnt = (up->badcnt + 1) % up->decim;
- if (up->badcnt == 0) {
- if (up->decim == 1)
- irig_base(peer, irig_b);
- else
- irig_base(peer, irig_e);
- }
-}
-
-/*
- * irig_base - baseband processing
- *
- * This routine processes the baseband signal and demodulates the AM
- * carrier using a synchronous detector. It then synchronizes to the
- * data frame at the baud rate and decodes the data pulses.
- */
-static void
-irig_base(
- struct peer *peer, /* peer structure pointer */
- double sample /* current signal sample */
- )
-{
- struct refclockproc *pp;
- struct irigunit *up;
-
- /*
- * Local variables
- */
- double xxing; /* phase detector interpolated output */
- double lope; /* integrator output */
- double env; /* envelope detector output */
- double dtemp; /* double temp */
-
- pp = peer->procptr;
- up = (struct irigunit *)pp->unitptr;
-
- /*
- * Synchronous baud integrator. Corresponding samples of current
- * and past baud intervals are integrated to refine the envelope
- * amplitude and phase estimate. We keep one cycle of both the
- * raw and integrated data for later use.
- */
- up->envphase = (up->envphase + 1) % BAUD;
- up->carphase = (up->carphase + 1) % CYCLE;
- up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
- (5 * up->tc);
- lope = up->integ[up->envphase];
- up->lastenv[up->carphase] = sample;
- up->lastint[up->carphase] = lope;
-
- /*
- * Phase detector. Sample amplitudes are integrated over the
- * baud interval. Cycle phase is determined from these
- * amplitudes using an eight-sample cyclic buffer. A phase
- * change of 360 degrees produces an output change of one unit.
- */
- if (up->lastsig > 0 && lope <= 0) {
- xxing = lope / (up->lastsig - lope);
- up->zxing += (up->carphase - 4 + xxing) / CYCLE;
- }
- up->lastsig = lope;
-
- /*
- * Update signal/noise estimates and PLL phase/frequency.
- */
- if (up->envphase == 0) {
-
- /*
- * Update envelope signal and noise estimates and mess
- * with error bits.
- */
- up->maxsignal = up->intmax;
- up->noise = up->intmin;
- if (up->maxsignal < DRPOUT)
- up->errflg |= IRIG_ERR_AMP;
- if (up->maxsignal > 0)
- up->modndx = (up->intmax - up->intmin) /
- up->intmax;
- else
- up->modndx = 0;
- if (up->modndx < MODMIN)
- up->errflg |= IRIG_ERR_MOD;
- up->intmin = 1e6; up->intmax = 0;
- if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
- IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
- up->tc = MINTC;
- up->tcount = 0;
- }
-
- /*
- * Update PLL phase and frequency. The PLL time constant
- * is set initially to stabilize the frequency within a
- * minute or two, then increases to the maximum. The
- * frequency is clamped so that the PLL capture range
- * cannot be exceeded.
- */
- dtemp = up->zxing * up->decim / BAUD;
- up->yxing = dtemp;
- up->zxing = 0.;
- up->phase += dtemp / up->tc;
- up->freq += dtemp / (4. * up->tc * up->tc);
- if (up->freq > MAXFREQ) {
- up->freq = MAXFREQ;
- up->errflg |= IRIG_ERR_FREQ;
- } else if (up->freq < -MAXFREQ) {
- up->freq = -MAXFREQ;
- up->errflg |= IRIG_ERR_FREQ;
- }
- }
-
- /*
- * Synchronous demodulator. There are eight samples in the cycle
- * and ten cycles in the baud interval. The amplitude of each
- * cycle is determined at the last sample in the cycle. The
- * beginning of the data pulse is determined from the integrated
- * samples, while the end of the pulse is determined from the
- * raw samples. The raw data bits are demodulated relative to
- * the slice level and left-shifted in the decoding register.
- */
- if (up->carphase != 7)
- return;
- env = (up->lastenv[2] - up->lastenv[6]) / 2.;
- lope = (up->lastint[2] - up->lastint[6]) / 2.;
- if (lope > up->intmax)
- up->intmax = lope;
- if (lope < up->intmin)
- up->intmin = lope;
-
- /*
- * Pulse code demodulator and reference timestamp. The decoder
- * looks for a sequence of ten bits; the first two bits must be
- * one, the last two bits must be zero. Frame synch is asserted
- * when three correct frames have been found.
- */
- up->pulse = (up->pulse + 1) % 10;
- if (up->pulse == 1)
- up->envmax = env;
- else if (up->pulse == 9)
- up->envmin = env;
- up->dcycles <<= 1;
- if (env >= (up->envmax + up->envmin) / 2.)
- up->dcycles |= 1;
- up->cycles <<= 1;
- if (lope >= (up->maxsignal + up->noise) / 2.)
- up->cycles |= 1;
- if ((up->cycles & 0x303c0f03) == 0x300c0300) {
- l_fp ltemp;
- int bitz;
-
- /*
- * The PLL time constant starts out small, in order to
- * sustain a frequency tolerance of 250 PPM. It
- * gradually increases as the loop settles down. Note
- * that small wiggles are not believed, unless they
- * persist for lots of samples.
- */
- if (up->pulse != 9)
- up->errflg |= IRIG_ERR_SYNCH;
- up->pulse = 9;
- up->exing = -up->yxing;
- if (fabs(up->envxing - up->envphase) <= 1) {
- up->tcount++;
- if (up->tcount > 50 * up->tc) {
- up->tc++;
- if (up->tc > MAXTC)
- up->tc = MAXTC;
- up->tcount = 0;
- up->envxing = up->envphase;
- } else {
- up->exing -= up->envxing - up->envphase;
- }
- } else {
- up->tcount = 0;
- up->envxing = up->envphase;
- }
-
- /*
- * Determine a reference timestamp, accounting for the
- * codec delay and filter delay. Note the timestamp is
- * for the previous frame, so we have to backtrack for
- * this plus the delay since the last carrier positive
- * zero crossing.
- */
- dtemp = up->decim * ((up->exing + BAUD) / SECOND + 1.) +
- up->fdelay;
- DTOLFP(dtemp, &ltemp);
- pp->lastrec = up->timestamp;
- L_SUB(&pp->lastrec, &ltemp);
-
- /*
- * The data bits are collected in ten-bit frames. The
- * first two and last two bits are determined by frame
- * sync and ignored here; the resulting patterns
- * represent zero (0-1 bits), one (2-4 bits) and
- * position identifier (5-6 bits). The remaining
- * patterns represent errors and are treated as zeros.
- */
- bitz = up->dcycles & 0xfc;
- switch(bitz) {
-
- case 0x00:
- case 0x80:
- irig_decode(peer, BIT0);
- break;
-
- case 0xc0:
- case 0xe0:
- case 0xf0:
- irig_decode(peer, BIT1);
- break;
-
- case 0xf8:
- case 0xfc:
- irig_decode(peer, BITP);
- break;
-
- default:
- irig_decode(peer, 0);
- up->errflg |= IRIG_ERR_DECODE;
- }
- }
-}
-
-
-/*
- * irig_decode - decode the data
- *
- * This routine assembles bits into digits, digits into subfields and
- * subfields into the timecode field. Bits can have values of zero, one
- * or position identifier. There are four bits per digit, two digits per
- * subfield and ten subfields per field. The last bit in every subfield
- * and the first bit in the first subfield are position identifiers.
- */
-static void
-irig_decode(
- struct peer *peer, /* peer structure pointer */
- int bit /* data bit (0, 1 or 2) */
- )
-{
- struct refclockproc *pp;
- struct irigunit *up;
-#ifdef IRIG_SUCKS
- int i;
-#endif /* IRIG_SUCKS */
-
- /*
- * Local variables
- */
- char syncchar; /* sync character (Spectracom) */
- char sbs[6]; /* binary seconds since 0h */
- char spare[2]; /* mulligan digits */
-
- pp = peer->procptr;
- up = (struct irigunit *)pp->unitptr;
-
- /*
- * Assemble subfield bits.
- */
- up->bits <<= 1;
- if (bit == BIT1) {
- up->bits |= 1;
- } else if (bit == BITP && up->lastbit == BITP) {
-
- /*
- * Frame sync - two adjacent position identifiers.
- * Monitor the reference timestamp and wiggle the
- * clock, but only if no errors have occurred.
- */
- up->bitcnt = 1;
- up->fieldcnt = 0;
- up->lastbit = 0;
- if (up->errflg == 0) {
-#ifdef IRIG_SUCKS
- l_fp ltemp;
-
- /*
- * You really don't wanna know what comes down
- * here. Leave it to say Solaris 2.8 broke the
- * nice clean audio stream, apparently affected
- * by a 5-ms sawtooth jitter. Sundown on
- * Solaris. This leaves a little twilight.
- *
- * The scheme involves differentiation, forward
- * learning and integration. The sawtooth has a
- * period of 11 seconds. The timestamp
- * differences are integrated and subtracted
- * from the signal.
- */
- ltemp = pp->lastrec;
- L_SUB(&ltemp, &pp->lastref);
- if (ltemp.l_f < 0)
- ltemp.l_i = -1;
- else
- ltemp.l_i = 0;
- pp->lastref = pp->lastrec;
- if (!L_ISNEG(&ltemp))
- L_CLR(&up->wigwag);
- else
- L_ADD(&up->wigwag, &ltemp);
- L_SUB(&pp->lastrec, &up->wigwag);
- up->wiggle[up->wp] = ltemp;
-
- /*
- * Bottom fisher. To understand this, you have
- * to know about velocity microphones and AM
- * transmitters. No further explanation is
- * offered, as this is truly a black art.
- */
- up->wigbot[up->wp] = pp->lastrec;
- for (i = 0; i < WIGGLE; i++) {
- if (i != up->wp)
- up->wigbot[i].l_ui++;
- L_SUB(&pp->lastrec, &up->wigbot[i]);
- if (L_ISNEG(&pp->lastrec))
- L_ADD(&pp->lastrec,
- &up->wigbot[i]);
- else
- pp->lastrec = up->wigbot[i];
- }
- up->wp++;
- up->wp %= WIGGLE;
- up->wuggle = pp->lastrec;
- refclock_process(pp);
-#else /* IRIG_SUCKS */
- pp->lastref = pp->lastrec;
- up->wuggle = pp->lastrec;
- refclock_process(pp);
-#endif /* IRIG_SUCKS */
- }
- up->errflg = 0;
- }
- up->bitcnt = (up->bitcnt + 1) % SUBFLD;
- if (up->bitcnt == 0) {
-
- /*
- * End of subfield. Encode two hexadecimal digits in
- * little-endian timecode field.
- */
- if (up->fieldcnt == 0)
- up->bits <<= 1;
- if (up->xptr < 2)
- up->xptr = 2 * FIELD;
- up->timecode[--up->xptr] = hexchar[(up->bits >> 5) &
- 0xf];
- up->timecode[--up->xptr] = hexchar[up->bits & 0xf];
- up->fieldcnt = (up->fieldcnt + 1) % FIELD;
- if (up->fieldcnt == 0) {
-
- /*
- * End of field. Decode the timecode and wind
- * the clock. Not all IRIG generators have the
- * year; if so, it is nonzero after year 2000.
- * Not all have the hardware status bit; if so,
- * it is lit when the source is okay and dim
- * when bad. We watch this only if the year is
- * nonzero. Not all are configured for signature
- * control. If so, all BCD digits are set to
- * zero if the source is bad. In this case the
- * refclock_process() will reject the timecode
- * as invalid.
- */
- up->xptr = 2 * FIELD;
- if (sscanf((char *)up->timecode,
- "%6s%2d%c%2s%3d%2d%2d%2d", sbs, &pp->year,
- &syncchar, spare, &pp->day, &pp->hour,
- &pp->minute, &pp->second) != 8)
- pp->leap = LEAP_NOTINSYNC;
- else
- pp->leap = LEAP_NOWARNING;
- up->second = (up->second + up->decim) % 60;
- if (pp->year > 0) {
- pp->year += 2000;
- if (syncchar == '0')
- up->errflg |= IRIG_ERR_CHECK;
- }
- if (pp->second != up->second)
- up->errflg |= IRIG_ERR_CHECK;
- up->second = pp->second;
- sprintf(pp->a_lastcode,
- "%02x %c %2d %3d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.1f %6.1f %s",
- up->errflg, syncchar, pp->year, pp->day,
- pp->hour, pp->minute, pp->second,
- up->maxsignal, up->gain, up->modndx,
- up->tc, up->exing * 1e6 / SECOND, up->freq *
- 1e6 / SECOND, ulfptoa(&up->wuggle, 6));
- pp->lencode = strlen(pp->a_lastcode);
- if (pp->sloppyclockflag & CLK_FLAG4) {
- record_clock_stats(&peer->srcadr,
- pp->a_lastcode);
-#ifdef DEBUG
- if (debug)
- printf("irig: %s\n",
- pp->a_lastcode);
-#endif /* DEBUG */
- }
- }
- }
- up->lastbit = bit;
-}
-
-
-/*
- * irig_poll - called by the transmit procedure
- *
- * This routine sweeps up the timecode updates since the last poll. For
- * IRIG-B there should be at least 60 updates; for IRIG-E there should
- * be at least 6. If nothing is heard, a timeout event is declared and
- * any orphaned timecode updates are sent to foster care.
- */
-static void
-irig_poll(
- int unit, /* instance number (not used) */
- struct peer *peer /* peer structure pointer */
- )
-{
- struct refclockproc *pp;
- struct irigunit *up;
-
- pp = peer->procptr;
- up = (struct irigunit *)pp->unitptr;
-
- if (pp->coderecv == pp->codeproc) {
- refclock_report(peer, CEVNT_TIMEOUT);
- return;
- } else {
- refclock_receive(peer);
- record_clock_stats(&peer->srcadr, pp->a_lastcode);
-#ifdef DEBUG
- if (debug)
- printf("irig: %s\n", pp->a_lastcode);
-#endif /* DEBUG */
- }
- pp->polls++;
-
-}
-
-
-/*
- * irig_gain - adjust codec gain
- *
- * This routine is called once each second. If the signal envelope
- * amplitude is too low, the codec gain is bumped up by four units; if
- * too high, it is bumped down. The decoder is relatively insensitive to
- * amplitude, so this crudity works just fine. The input port is set and
- * the error flag is cleared, mostly to be ornery.
- */
-static void
-irig_gain(
- struct peer *peer /* peer structure pointer */
- )
-{
- struct refclockproc *pp;
- struct irigunit *up;
-
- pp = peer->procptr;
- up = (struct irigunit *)pp->unitptr;
-
- /*
- * Apparently, the codec uses only the high order bits of the
- * gain control field. Thus, it may take awhile for changes to
- * wiggle the hardware bits.
- */
- if (up->clipcnt == 0) {
- up->gain += 4;
- if (up->gain > MAXGAIN)
- up->gain = MAXGAIN;
- } else if (up->clipcnt > MAXCLP) {
- up->gain -= 4;
- if (up->gain < 0)
- up->gain = 0;
- }
- audio_gain(up->gain, up->mongain, up->port);
- up->clipcnt = 0;
-}
-
-#else
-int refclock_irig_bs;
-#endif /* REFCLOCK */
OpenPOWER on IntegriCloud