diff options
Diffstat (limited to 'contrib/llvm/utils/TableGen/CodeGenRegisters.cpp')
-rw-r--r-- | contrib/llvm/utils/TableGen/CodeGenRegisters.cpp | 1645 |
1 files changed, 1645 insertions, 0 deletions
diff --git a/contrib/llvm/utils/TableGen/CodeGenRegisters.cpp b/contrib/llvm/utils/TableGen/CodeGenRegisters.cpp new file mode 100644 index 0000000..45c5bb8 --- /dev/null +++ b/contrib/llvm/utils/TableGen/CodeGenRegisters.cpp @@ -0,0 +1,1645 @@ +//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines structures to encapsulate information gleaned from the +// target register and register class definitions. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenRegisters.h" +#include "CodeGenTarget.h" +#include "llvm/TableGen/Error.h" +#include "llvm/ADT/IntEqClasses.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/Twine.h" + +using namespace llvm; + +//===----------------------------------------------------------------------===// +// CodeGenSubRegIndex +//===----------------------------------------------------------------------===// + +CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) + : TheDef(R), + EnumValue(Enum) +{} + +std::string CodeGenSubRegIndex::getNamespace() const { + if (TheDef->getValue("Namespace")) + return TheDef->getValueAsString("Namespace"); + else + return ""; +} + +const std::string &CodeGenSubRegIndex::getName() const { + return TheDef->getName(); +} + +std::string CodeGenSubRegIndex::getQualifiedName() const { + std::string N = getNamespace(); + if (!N.empty()) + N += "::"; + N += getName(); + return N; +} + +void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { + std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); + if (Comps.empty()) + return; + if (Comps.size() != 2) + throw TGError(TheDef->getLoc(), "ComposedOf must have exactly two entries"); + CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); + CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); + CodeGenSubRegIndex *X = A->addComposite(B, this); + if (X) + throw TGError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); +} + +void CodeGenSubRegIndex::cleanComposites() { + // Clean out redundant mappings of the form this+X -> X. + for (CompMap::iterator i = Composed.begin(), e = Composed.end(); i != e;) { + CompMap::iterator j = i; + ++i; + if (j->first == j->second) + Composed.erase(j); + } +} + +//===----------------------------------------------------------------------===// +// CodeGenRegister +//===----------------------------------------------------------------------===// + +CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) + : TheDef(R), + EnumValue(Enum), + CostPerUse(R->getValueAsInt("CostPerUse")), + CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), + SubRegsComplete(false) +{} + +const std::string &CodeGenRegister::getName() const { + return TheDef->getName(); +} + +namespace { +// Iterate over all register units in a set of registers. +class RegUnitIterator { + CodeGenRegister::Set::const_iterator RegI, RegE; + CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE; + +public: + RegUnitIterator(const CodeGenRegister::Set &Regs): + RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() { + + if (RegI != RegE) { + UnitI = (*RegI)->getRegUnits().begin(); + UnitE = (*RegI)->getRegUnits().end(); + advance(); + } + } + + bool isValid() const { return UnitI != UnitE; } + + unsigned operator* () const { assert(isValid()); return *UnitI; }; + + const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } + + /// Preincrement. Move to the next unit. + void operator++() { + assert(isValid() && "Cannot advance beyond the last operand"); + ++UnitI; + advance(); + } + +protected: + void advance() { + while (UnitI == UnitE) { + if (++RegI == RegE) + break; + UnitI = (*RegI)->getRegUnits().begin(); + UnitE = (*RegI)->getRegUnits().end(); + } + } +}; +} // namespace + +// Merge two RegUnitLists maintaining the order and removing duplicates. +// Overwrites MergedRU in the process. +static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU, + const CodeGenRegister::RegUnitList &RRU) { + CodeGenRegister::RegUnitList LRU = MergedRU; + MergedRU.clear(); + std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(), + std::back_inserter(MergedRU)); +} + +// Return true of this unit appears in RegUnits. +static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { + return std::count(RegUnits.begin(), RegUnits.end(), Unit); +} + +// Inherit register units from subregisters. +// Return true if the RegUnits changed. +bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { + unsigned OldNumUnits = RegUnits.size(); + for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); + I != E; ++I) { + // Strangely a register may have itself as a subreg (self-cycle) e.g. XMM. + // Only create a unit if no other subregs have units. + CodeGenRegister *SR = I->second; + if (SR == this) { + // RegUnits are only empty during getSubRegs, prior to computing weight. + if (RegUnits.empty()) + RegUnits.push_back(RegBank.newRegUnit(0)); + continue; + } + // Merge the subregister's units into this register's RegUnits. + mergeRegUnits(RegUnits, SR->RegUnits); + } + return OldNumUnits != RegUnits.size(); +} + +const CodeGenRegister::SubRegMap & +CodeGenRegister::getSubRegs(CodeGenRegBank &RegBank) { + // Only compute this map once. + if (SubRegsComplete) + return SubRegs; + SubRegsComplete = true; + + std::vector<Record*> SubList = TheDef->getValueAsListOfDefs("SubRegs"); + std::vector<Record*> IdxList = TheDef->getValueAsListOfDefs("SubRegIndices"); + if (SubList.size() != IdxList.size()) + throw TGError(TheDef->getLoc(), "Register " + getName() + + " SubRegIndices doesn't match SubRegs"); + + // First insert the direct subregs and make sure they are fully indexed. + SmallVector<CodeGenSubRegIndex*, 8> Indices; + for (unsigned i = 0, e = SubList.size(); i != e; ++i) { + CodeGenRegister *SR = RegBank.getReg(SubList[i]); + CodeGenSubRegIndex *Idx = RegBank.getSubRegIdx(IdxList[i]); + Indices.push_back(Idx); + if (!SubRegs.insert(std::make_pair(Idx, SR)).second) + throw TGError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + + " appears twice in Register " + getName()); + } + + // Keep track of inherited subregs and how they can be reached. + SmallPtrSet<CodeGenRegister*, 8> Orphans; + + // Clone inherited subregs and place duplicate entries in Orphans. + // Here the order is important - earlier subregs take precedence. + for (unsigned i = 0, e = SubList.size(); i != e; ++i) { + CodeGenRegister *SR = RegBank.getReg(SubList[i]); + const SubRegMap &Map = SR->getSubRegs(RegBank); + + // Add this as a super-register of SR now all sub-registers are in the list. + // This creates a topological ordering, the exact order depends on the + // order getSubRegs is called on all registers. + SR->SuperRegs.push_back(this); + + for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; + ++SI) { + if (!SubRegs.insert(*SI).second) + Orphans.insert(SI->second); + + // Noop sub-register indexes are possible, so avoid duplicates. + if (SI->second != SR) + SI->second->SuperRegs.push_back(this); + } + } + + // Expand any composed subreg indices. + // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a + // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process + // expanded subreg indices recursively. + for (unsigned i = 0; i != Indices.size(); ++i) { + CodeGenSubRegIndex *Idx = Indices[i]; + const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); + CodeGenRegister *SR = SubRegs[Idx]; + const SubRegMap &Map = SR->getSubRegs(RegBank); + + // Look at the possible compositions of Idx. + // They may not all be supported by SR. + for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), + E = Comps.end(); I != E; ++I) { + SubRegMap::const_iterator SRI = Map.find(I->first); + if (SRI == Map.end()) + continue; // Idx + I->first doesn't exist in SR. + // Add I->second as a name for the subreg SRI->second, assuming it is + // orphaned, and the name isn't already used for something else. + if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) + continue; + // We found a new name for the orphaned sub-register. + SubRegs.insert(std::make_pair(I->second, SRI->second)); + Indices.push_back(I->second); + } + } + + // Process the composites. + ListInit *Comps = TheDef->getValueAsListInit("CompositeIndices"); + for (unsigned i = 0, e = Comps->size(); i != e; ++i) { + DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i)); + if (!Pat) + throw TGError(TheDef->getLoc(), "Invalid dag '" + + Comps->getElement(i)->getAsString() + + "' in CompositeIndices"); + DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator()); + if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex")) + throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " + + Pat->getAsString()); + CodeGenSubRegIndex *BaseIdx = RegBank.getSubRegIdx(BaseIdxInit->getDef()); + + // Resolve list of subreg indices into R2. + CodeGenRegister *R2 = this; + for (DagInit::const_arg_iterator di = Pat->arg_begin(), + de = Pat->arg_end(); di != de; ++di) { + DefInit *IdxInit = dynamic_cast<DefInit*>(*di); + if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex")) + throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " + + Pat->getAsString()); + CodeGenSubRegIndex *Idx = RegBank.getSubRegIdx(IdxInit->getDef()); + const SubRegMap &R2Subs = R2->getSubRegs(RegBank); + SubRegMap::const_iterator ni = R2Subs.find(Idx); + if (ni == R2Subs.end()) + throw TGError(TheDef->getLoc(), "Composite " + Pat->getAsString() + + " refers to bad index in " + R2->getName()); + R2 = ni->second; + } + + // Insert composite index. Allow overriding inherited indices etc. + SubRegs[BaseIdx] = R2; + + // R2 is no longer an orphan. + Orphans.erase(R2); + } + + // Now Orphans contains the inherited subregisters without a direct index. + // Create inferred indexes for all missing entries. + // Work backwards in the Indices vector in order to compose subregs bottom-up. + // Consider this subreg sequence: + // + // qsub_1 -> dsub_0 -> ssub_0 + // + // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register + // can be reached in two different ways: + // + // qsub_1 -> ssub_0 + // dsub_2 -> ssub_0 + // + // We pick the latter composition because another register may have [dsub_0, + // dsub_1, dsub_2] subregs without neccessarily having a qsub_1 subreg. The + // dsub_2 -> ssub_0 composition can be shared. + while (!Indices.empty() && !Orphans.empty()) { + CodeGenSubRegIndex *Idx = Indices.pop_back_val(); + CodeGenRegister *SR = SubRegs[Idx]; + const SubRegMap &Map = SR->getSubRegs(RegBank); + for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; + ++SI) + if (Orphans.erase(SI->second)) + SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; + } + + // Initialize RegUnitList. A register with no subregisters creates its own + // unit. Otherwise, it inherits all its subregister's units. Because + // getSubRegs is called recursively, this processes the register hierarchy in + // postorder. + // + // TODO: We currently assume all register units correspond to a named "leaf" + // register. We should also unify register units for ad-hoc register + // aliases. This can be done by iteratively merging units for aliasing + // registers using a worklist. + assert(RegUnits.empty() && "Should only initialize RegUnits once"); + if (SubRegs.empty()) + RegUnits.push_back(RegBank.newRegUnit(0)); + else + inheritRegUnits(RegBank); + return SubRegs; +} + +void +CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, + CodeGenRegBank &RegBank) const { + assert(SubRegsComplete && "Must precompute sub-registers"); + std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices"); + for (unsigned i = 0, e = Indices.size(); i != e; ++i) { + CodeGenSubRegIndex *Idx = RegBank.getSubRegIdx(Indices[i]); + CodeGenRegister *SR = SubRegs.find(Idx)->second; + if (OSet.insert(SR)) + SR->addSubRegsPreOrder(OSet, RegBank); + } +} + +// Get the sum of this register's unit weights. +unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { + unsigned Weight = 0; + for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end(); + I != E; ++I) { + Weight += RegBank.getRegUnitWeight(*I); + } + return Weight; +} + +//===----------------------------------------------------------------------===// +// RegisterTuples +//===----------------------------------------------------------------------===// + +// A RegisterTuples def is used to generate pseudo-registers from lists of +// sub-registers. We provide a SetTheory expander class that returns the new +// registers. +namespace { +struct TupleExpander : SetTheory::Expander { + void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) { + std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); + unsigned Dim = Indices.size(); + ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); + if (Dim != SubRegs->getSize()) + throw TGError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); + if (Dim < 2) + throw TGError(Def->getLoc(), "Tuples must have at least 2 sub-registers"); + + // Evaluate the sub-register lists to be zipped. + unsigned Length = ~0u; + SmallVector<SetTheory::RecSet, 4> Lists(Dim); + for (unsigned i = 0; i != Dim; ++i) { + ST.evaluate(SubRegs->getElement(i), Lists[i]); + Length = std::min(Length, unsigned(Lists[i].size())); + } + + if (Length == 0) + return; + + // Precompute some types. + Record *RegisterCl = Def->getRecords().getClass("Register"); + RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); + StringInit *BlankName = StringInit::get(""); + + // Zip them up. + for (unsigned n = 0; n != Length; ++n) { + std::string Name; + Record *Proto = Lists[0][n]; + std::vector<Init*> Tuple; + unsigned CostPerUse = 0; + for (unsigned i = 0; i != Dim; ++i) { + Record *Reg = Lists[i][n]; + if (i) Name += '_'; + Name += Reg->getName(); + Tuple.push_back(DefInit::get(Reg)); + CostPerUse = std::max(CostPerUse, + unsigned(Reg->getValueAsInt("CostPerUse"))); + } + + // Create a new Record representing the synthesized register. This record + // is only for consumption by CodeGenRegister, it is not added to the + // RecordKeeper. + Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); + Elts.insert(NewReg); + + // Copy Proto super-classes. + for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i) + NewReg->addSuperClass(Proto->getSuperClasses()[i]); + + // Copy Proto fields. + for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { + RecordVal RV = Proto->getValues()[i]; + + // Skip existing fields, like NAME. + if (NewReg->getValue(RV.getNameInit())) + continue; + + StringRef Field = RV.getName(); + + // Replace the sub-register list with Tuple. + if (Field == "SubRegs") + RV.setValue(ListInit::get(Tuple, RegisterRecTy)); + + // Provide a blank AsmName. MC hacks are required anyway. + if (Field == "AsmName") + RV.setValue(BlankName); + + // CostPerUse is aggregated from all Tuple members. + if (Field == "CostPerUse") + RV.setValue(IntInit::get(CostPerUse)); + + // Composite registers are always covered by sub-registers. + if (Field == "CoveredBySubRegs") + RV.setValue(BitInit::get(true)); + + // Copy fields from the RegisterTuples def. + if (Field == "SubRegIndices" || + Field == "CompositeIndices") { + NewReg->addValue(*Def->getValue(Field)); + continue; + } + + // Some fields get their default uninitialized value. + if (Field == "DwarfNumbers" || + Field == "DwarfAlias" || + Field == "Aliases") { + if (const RecordVal *DefRV = RegisterCl->getValue(Field)) + NewReg->addValue(*DefRV); + continue; + } + + // Everything else is copied from Proto. + NewReg->addValue(RV); + } + } + } +}; +} + +//===----------------------------------------------------------------------===// +// CodeGenRegisterClass +//===----------------------------------------------------------------------===// + +CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) + : TheDef(R), Name(R->getName()), EnumValue(-1) { + // Rename anonymous register classes. + if (R->getName().size() > 9 && R->getName()[9] == '.') { + static unsigned AnonCounter = 0; + R->setName("AnonRegClass_"+utostr(AnonCounter++)); + } + + std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); + for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { + Record *Type = TypeList[i]; + if (!Type->isSubClassOf("ValueType")) + throw "RegTypes list member '" + Type->getName() + + "' does not derive from the ValueType class!"; + VTs.push_back(getValueType(Type)); + } + assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); + + // Allocation order 0 is the full set. AltOrders provides others. + const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); + ListInit *AltOrders = R->getValueAsListInit("AltOrders"); + Orders.resize(1 + AltOrders->size()); + + // Default allocation order always contains all registers. + for (unsigned i = 0, e = Elements->size(); i != e; ++i) { + Orders[0].push_back((*Elements)[i]); + Members.insert(RegBank.getReg((*Elements)[i])); + } + + // Alternative allocation orders may be subsets. + SetTheory::RecSet Order; + for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { + RegBank.getSets().evaluate(AltOrders->getElement(i), Order); + Orders[1 + i].append(Order.begin(), Order.end()); + // Verify that all altorder members are regclass members. + while (!Order.empty()) { + CodeGenRegister *Reg = RegBank.getReg(Order.back()); + Order.pop_back(); + if (!contains(Reg)) + throw TGError(R->getLoc(), " AltOrder register " + Reg->getName() + + " is not a class member"); + } + } + + // SubRegClasses is a list<dag> containing (RC, subregindex, ...) dags. + ListInit *SRC = R->getValueAsListInit("SubRegClasses"); + for (ListInit::const_iterator i = SRC->begin(), e = SRC->end(); i != e; ++i) { + DagInit *DAG = dynamic_cast<DagInit*>(*i); + if (!DAG) throw "SubRegClasses must contain DAGs"; + DefInit *DAGOp = dynamic_cast<DefInit*>(DAG->getOperator()); + Record *RCRec; + if (!DAGOp || !(RCRec = DAGOp->getDef())->isSubClassOf("RegisterClass")) + throw "Operator '" + DAG->getOperator()->getAsString() + + "' in SubRegClasses is not a RegisterClass"; + // Iterate over args, all SubRegIndex instances. + for (DagInit::const_arg_iterator ai = DAG->arg_begin(), ae = DAG->arg_end(); + ai != ae; ++ai) { + DefInit *Idx = dynamic_cast<DefInit*>(*ai); + Record *IdxRec; + if (!Idx || !(IdxRec = Idx->getDef())->isSubClassOf("SubRegIndex")) + throw "Argument '" + (*ai)->getAsString() + + "' in SubRegClasses is not a SubRegIndex"; + if (!SubRegClasses.insert(std::make_pair(IdxRec, RCRec)).second) + throw "SubRegIndex '" + IdxRec->getName() + "' mentioned twice"; + } + } + + // Allow targets to override the size in bits of the RegisterClass. + unsigned Size = R->getValueAsInt("Size"); + + Namespace = R->getValueAsString("Namespace"); + SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits(); + SpillAlignment = R->getValueAsInt("Alignment"); + CopyCost = R->getValueAsInt("CopyCost"); + Allocatable = R->getValueAsBit("isAllocatable"); + AltOrderSelect = R->getValueAsString("AltOrderSelect"); +} + +// Create an inferred register class that was missing from the .td files. +// Most properties will be inherited from the closest super-class after the +// class structure has been computed. +CodeGenRegisterClass::CodeGenRegisterClass(StringRef Name, Key Props) + : Members(*Props.Members), + TheDef(0), + Name(Name), + EnumValue(-1), + SpillSize(Props.SpillSize), + SpillAlignment(Props.SpillAlignment), + CopyCost(0), + Allocatable(true) { +} + +// Compute inherited propertied for a synthesized register class. +void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { + assert(!getDef() && "Only synthesized classes can inherit properties"); + assert(!SuperClasses.empty() && "Synthesized class without super class"); + + // The last super-class is the smallest one. + CodeGenRegisterClass &Super = *SuperClasses.back(); + + // Most properties are copied directly. + // Exceptions are members, size, and alignment + Namespace = Super.Namespace; + VTs = Super.VTs; + CopyCost = Super.CopyCost; + Allocatable = Super.Allocatable; + AltOrderSelect = Super.AltOrderSelect; + + // Copy all allocation orders, filter out foreign registers from the larger + // super-class. + Orders.resize(Super.Orders.size()); + for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) + for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) + if (contains(RegBank.getReg(Super.Orders[i][j]))) + Orders[i].push_back(Super.Orders[i][j]); +} + +bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { + return Members.count(Reg); +} + +namespace llvm { + raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { + OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; + for (CodeGenRegister::Set::const_iterator I = K.Members->begin(), + E = K.Members->end(); I != E; ++I) + OS << ", " << (*I)->getName(); + return OS << " }"; + } +} + +// This is a simple lexicographical order that can be used to search for sets. +// It is not the same as the topological order provided by TopoOrderRC. +bool CodeGenRegisterClass::Key:: +operator<(const CodeGenRegisterClass::Key &B) const { + assert(Members && B.Members); + if (*Members != *B.Members) + return *Members < *B.Members; + if (SpillSize != B.SpillSize) + return SpillSize < B.SpillSize; + return SpillAlignment < B.SpillAlignment; +} + +// Returns true if RC is a strict subclass. +// RC is a sub-class of this class if it is a valid replacement for any +// instruction operand where a register of this classis required. It must +// satisfy these conditions: +// +// 1. All RC registers are also in this. +// 2. The RC spill size must not be smaller than our spill size. +// 3. RC spill alignment must be compatible with ours. +// +static bool testSubClass(const CodeGenRegisterClass *A, + const CodeGenRegisterClass *B) { + return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && + A->SpillSize <= B->SpillSize && + std::includes(A->getMembers().begin(), A->getMembers().end(), + B->getMembers().begin(), B->getMembers().end(), + CodeGenRegister::Less()); +} + +/// Sorting predicate for register classes. This provides a topological +/// ordering that arranges all register classes before their sub-classes. +/// +/// Register classes with the same registers, spill size, and alignment form a +/// clique. They will be ordered alphabetically. +/// +static int TopoOrderRC(const void *PA, const void *PB) { + const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA; + const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB; + if (A == B) + return 0; + + // Order by descending set size. Note that the classes' allocation order may + // not have been computed yet. The Members set is always vaild. + if (A->getMembers().size() > B->getMembers().size()) + return -1; + if (A->getMembers().size() < B->getMembers().size()) + return 1; + + // Order by ascending spill size. + if (A->SpillSize < B->SpillSize) + return -1; + if (A->SpillSize > B->SpillSize) + return 1; + + // Order by ascending spill alignment. + if (A->SpillAlignment < B->SpillAlignment) + return -1; + if (A->SpillAlignment > B->SpillAlignment) + return 1; + + // Finally order by name as a tie breaker. + return StringRef(A->getName()).compare(B->getName()); +} + +std::string CodeGenRegisterClass::getQualifiedName() const { + if (Namespace.empty()) + return getName(); + else + return Namespace + "::" + getName(); +} + +// Compute sub-classes of all register classes. +// Assume the classes are ordered topologically. +void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { + ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses(); + + // Visit backwards so sub-classes are seen first. + for (unsigned rci = RegClasses.size(); rci; --rci) { + CodeGenRegisterClass &RC = *RegClasses[rci - 1]; + RC.SubClasses.resize(RegClasses.size()); + RC.SubClasses.set(RC.EnumValue); + + // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. + for (unsigned s = rci; s != RegClasses.size(); ++s) { + if (RC.SubClasses.test(s)) + continue; + CodeGenRegisterClass *SubRC = RegClasses[s]; + if (!testSubClass(&RC, SubRC)) + continue; + // SubRC is a sub-class. Grap all its sub-classes so we won't have to + // check them again. + RC.SubClasses |= SubRC->SubClasses; + } + + // Sweep up missed clique members. They will be immediately preceeding RC. + for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s) + RC.SubClasses.set(s - 1); + } + + // Compute the SuperClasses lists from the SubClasses vectors. + for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { + const BitVector &SC = RegClasses[rci]->getSubClasses(); + for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) { + if (unsigned(s) == rci) + continue; + RegClasses[s]->SuperClasses.push_back(RegClasses[rci]); + } + } + + // With the class hierarchy in place, let synthesized register classes inherit + // properties from their closest super-class. The iteration order here can + // propagate properties down multiple levels. + for (unsigned rci = 0; rci != RegClasses.size(); ++rci) + if (!RegClasses[rci]->getDef()) + RegClasses[rci]->inheritProperties(RegBank); +} + +void +CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx, + BitVector &Out) const { + DenseMap<CodeGenSubRegIndex*, + SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator + FindI = SuperRegClasses.find(SubIdx); + if (FindI == SuperRegClasses.end()) + return; + for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I = + FindI->second.begin(), E = FindI->second.end(); I != E; ++I) + Out.set((*I)->EnumValue); +} + +// Populate a unique sorted list of units from a register set. +void CodeGenRegisterClass::buildRegUnitSet( + std::vector<unsigned> &RegUnits) const { + std::vector<unsigned> TmpUnits; + for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) + TmpUnits.push_back(*UnitI); + std::sort(TmpUnits.begin(), TmpUnits.end()); + std::unique_copy(TmpUnits.begin(), TmpUnits.end(), + std::back_inserter(RegUnits)); +} + +//===----------------------------------------------------------------------===// +// CodeGenRegBank +//===----------------------------------------------------------------------===// + +CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) : Records(Records) { + // Configure register Sets to understand register classes and tuples. + Sets.addFieldExpander("RegisterClass", "MemberList"); + Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); + Sets.addExpander("RegisterTuples", new TupleExpander()); + + // Read in the user-defined (named) sub-register indices. + // More indices will be synthesized later. + std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); + std::sort(SRIs.begin(), SRIs.end(), LessRecord()); + NumNamedIndices = SRIs.size(); + for (unsigned i = 0, e = SRIs.size(); i != e; ++i) + getSubRegIdx(SRIs[i]); + // Build composite maps from ComposedOf fields. + for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) + SubRegIndices[i]->updateComponents(*this); + + // Read in the register definitions. + std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); + std::sort(Regs.begin(), Regs.end(), LessRecord()); + Registers.reserve(Regs.size()); + // Assign the enumeration values. + for (unsigned i = 0, e = Regs.size(); i != e; ++i) + getReg(Regs[i]); + + // Expand tuples and number the new registers. + std::vector<Record*> Tups = + Records.getAllDerivedDefinitions("RegisterTuples"); + for (unsigned i = 0, e = Tups.size(); i != e; ++i) { + const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]); + for (unsigned j = 0, je = TupRegs->size(); j != je; ++j) + getReg((*TupRegs)[j]); + } + + // Precompute all sub-register maps now all the registers are known. + // This will create Composite entries for all inferred sub-register indices. + NumRegUnits = 0; + for (unsigned i = 0, e = Registers.size(); i != e; ++i) + Registers[i]->getSubRegs(*this); + + // Native register units are associated with a leaf register. They've all been + // discovered now. + NumNativeRegUnits = NumRegUnits; + + // Read in register class definitions. + std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); + if (RCs.empty()) + throw std::string("No 'RegisterClass' subclasses defined!"); + + // Allocate user-defined register classes. + RegClasses.reserve(RCs.size()); + for (unsigned i = 0, e = RCs.size(); i != e; ++i) + addToMaps(new CodeGenRegisterClass(*this, RCs[i])); + + // Infer missing classes to create a full algebra. + computeInferredRegisterClasses(); + + // Order register classes topologically and assign enum values. + array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC); + for (unsigned i = 0, e = RegClasses.size(); i != e; ++i) + RegClasses[i]->EnumValue = i; + CodeGenRegisterClass::computeSubClasses(*this); +} + +CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { + CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; + if (Idx) + return Idx; + Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1); + SubRegIndices.push_back(Idx); + return Idx; +} + +CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { + CodeGenRegister *&Reg = Def2Reg[Def]; + if (Reg) + return Reg; + Reg = new CodeGenRegister(Def, Registers.size() + 1); + Registers.push_back(Reg); + return Reg; +} + +void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { + RegClasses.push_back(RC); + + if (Record *Def = RC->getDef()) + Def2RC.insert(std::make_pair(Def, RC)); + + // Duplicate classes are rejected by insert(). + // That's OK, we only care about the properties handled by CGRC::Key. + CodeGenRegisterClass::Key K(*RC); + Key2RC.insert(std::make_pair(K, RC)); +} + +// Create a synthetic sub-class if it is missing. +CodeGenRegisterClass* +CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, + const CodeGenRegister::Set *Members, + StringRef Name) { + // Synthetic sub-class has the same size and alignment as RC. + CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); + RCKeyMap::const_iterator FoundI = Key2RC.find(K); + if (FoundI != Key2RC.end()) + return FoundI->second; + + // Sub-class doesn't exist, create a new one. + CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(Name, K); + addToMaps(NewRC); + return NewRC; +} + +CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { + if (CodeGenRegisterClass *RC = Def2RC[Def]) + return RC; + + throw TGError(Def->getLoc(), "Not a known RegisterClass!"); +} + +CodeGenSubRegIndex* +CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, + CodeGenSubRegIndex *B) { + // Look for an existing entry. + CodeGenSubRegIndex *Comp = A->compose(B); + if (Comp) + return Comp; + + // None exists, synthesize one. + std::string Name = A->getName() + "_then_" + B->getName(); + Comp = getSubRegIdx(new Record(Name, SMLoc(), Records)); + A->addComposite(B, Comp); + return Comp; +} + +void CodeGenRegBank::computeComposites() { + for (unsigned i = 0, e = Registers.size(); i != e; ++i) { + CodeGenRegister *Reg1 = Registers[i]; + const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs(); + for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), + e1 = SRM1.end(); i1 != e1; ++i1) { + CodeGenSubRegIndex *Idx1 = i1->first; + CodeGenRegister *Reg2 = i1->second; + // Ignore identity compositions. + if (Reg1 == Reg2) + continue; + const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); + // Try composing Idx1 with another SubRegIndex. + for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), + e2 = SRM2.end(); i2 != e2; ++i2) { + CodeGenSubRegIndex *Idx2 = i2->first; + CodeGenRegister *Reg3 = i2->second; + // Ignore identity compositions. + if (Reg2 == Reg3) + continue; + // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. + for (CodeGenRegister::SubRegMap::const_iterator i1d = SRM1.begin(), + e1d = SRM1.end(); i1d != e1d; ++i1d) { + if (i1d->second == Reg3) { + // Conflicting composition? Emit a warning but allow it. + if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, i1d->first)) + PrintWarning(Twine("SubRegIndex") + Idx1->getQualifiedName() + + " and " + Idx2->getQualifiedName() + + " compose ambiguously as " + Prev->getQualifiedName() + + " or " + i1d->first->getQualifiedName()); + } + } + } + } + } + + // We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid + // compositions, so remove any mappings of that form. + for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) + SubRegIndices[i]->cleanComposites(); +} + +namespace { +// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is +// the transitive closure of the union of overlapping register +// classes. Together, the UberRegSets form a partition of the registers. If we +// consider overlapping register classes to be connected, then each UberRegSet +// is a set of connected components. +// +// An UberRegSet will likely be a horizontal slice of register names of +// the same width. Nontrivial subregisters should then be in a separate +// UberRegSet. But this property isn't required for valid computation of +// register unit weights. +// +// A Weight field caches the max per-register unit weight in each UberRegSet. +// +// A set of SingularDeterminants flags single units of some register in this set +// for which the unit weight equals the set weight. These units should not have +// their weight increased. +struct UberRegSet { + CodeGenRegister::Set Regs; + unsigned Weight; + CodeGenRegister::RegUnitList SingularDeterminants; + + UberRegSet(): Weight(0) {} +}; +} // namespace + +// Partition registers into UberRegSets, where each set is the transitive +// closure of the union of overlapping register classes. +// +// UberRegSets[0] is a special non-allocatable set. +static void computeUberSets(std::vector<UberRegSet> &UberSets, + std::vector<UberRegSet*> &RegSets, + CodeGenRegBank &RegBank) { + + const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters(); + + // The Register EnumValue is one greater than its index into Registers. + assert(Registers.size() == Registers[Registers.size()-1]->EnumValue && + "register enum value mismatch"); + + // For simplicitly make the SetID the same as EnumValue. + IntEqClasses UberSetIDs(Registers.size()+1); + std::set<unsigned> AllocatableRegs; + for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) { + + CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i]; + if (!RegClass->Allocatable) + continue; + + const CodeGenRegister::Set &Regs = RegClass->getMembers(); + if (Regs.empty()) + continue; + + unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); + assert(USetID && "register number 0 is invalid"); + + AllocatableRegs.insert((*Regs.begin())->EnumValue); + for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()), + E = Regs.end(); I != E; ++I) { + AllocatableRegs.insert((*I)->EnumValue); + UberSetIDs.join(USetID, (*I)->EnumValue); + } + } + // Combine non-allocatable regs. + for (unsigned i = 0, e = Registers.size(); i != e; ++i) { + unsigned RegNum = Registers[i]->EnumValue; + if (AllocatableRegs.count(RegNum)) + continue; + + UberSetIDs.join(0, RegNum); + } + UberSetIDs.compress(); + + // Make the first UberSet a special unallocatable set. + unsigned ZeroID = UberSetIDs[0]; + + // Insert Registers into the UberSets formed by union-find. + // Do not resize after this. + UberSets.resize(UberSetIDs.getNumClasses()); + for (unsigned i = 0, e = Registers.size(); i != e; ++i) { + const CodeGenRegister *Reg = Registers[i]; + unsigned USetID = UberSetIDs[Reg->EnumValue]; + if (!USetID) + USetID = ZeroID; + else if (USetID == ZeroID) + USetID = 0; + + UberRegSet *USet = &UberSets[USetID]; + USet->Regs.insert(Reg); + RegSets[i] = USet; + } +} + +// Recompute each UberSet weight after changing unit weights. +static void computeUberWeights(std::vector<UberRegSet> &UberSets, + CodeGenRegBank &RegBank) { + // Skip the first unallocatable set. + for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()), + E = UberSets.end(); I != E; ++I) { + + // Initialize all unit weights in this set, and remember the max units/reg. + const CodeGenRegister *Reg = 0; + unsigned MaxWeight = 0, Weight = 0; + for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { + if (Reg != UnitI.getReg()) { + if (Weight > MaxWeight) + MaxWeight = Weight; + Reg = UnitI.getReg(); + Weight = 0; + } + unsigned UWeight = RegBank.getRegUnitWeight(*UnitI); + if (!UWeight) { + UWeight = 1; + RegBank.increaseRegUnitWeight(*UnitI, UWeight); + } + Weight += UWeight; + } + if (Weight > MaxWeight) + MaxWeight = Weight; + + // Update the set weight. + I->Weight = MaxWeight; + + // Find singular determinants. + for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(), + RegE = I->Regs.end(); RegI != RegE; ++RegI) { + if ((*RegI)->getRegUnits().size() == 1 + && (*RegI)->getWeight(RegBank) == I->Weight) + mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits()); + } + } +} + +// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of +// a register and its subregisters so that they have the same weight as their +// UberSet. Self-recursion processes the subregister tree in postorder so +// subregisters are normalized first. +// +// Side effects: +// - creates new adopted register units +// - causes superregisters to inherit adopted units +// - increases the weight of "singular" units +// - induces recomputation of UberWeights. +static bool normalizeWeight(CodeGenRegister *Reg, + std::vector<UberRegSet> &UberSets, + std::vector<UberRegSet*> &RegSets, + CodeGenRegister::RegUnitList &NormalUnits, + CodeGenRegBank &RegBank) { + bool Changed = false; + const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); + for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), + SRE = SRM.end(); SRI != SRE; ++SRI) { + if (SRI->second == Reg) + continue; // self-cycles happen + + Changed |= + normalizeWeight(SRI->second, UberSets, RegSets, NormalUnits, RegBank); + } + // Postorder register normalization. + + // Inherit register units newly adopted by subregisters. + if (Reg->inheritRegUnits(RegBank)) + computeUberWeights(UberSets, RegBank); + + // Check if this register is too skinny for its UberRegSet. + UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; + + unsigned RegWeight = Reg->getWeight(RegBank); + if (UberSet->Weight > RegWeight) { + // A register unit's weight can be adjusted only if it is the singular unit + // for this register, has not been used to normalize a subregister's set, + // and has not already been used to singularly determine this UberRegSet. + unsigned AdjustUnit = Reg->getRegUnits().front(); + if (Reg->getRegUnits().size() != 1 + || hasRegUnit(NormalUnits, AdjustUnit) + || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { + // We don't have an adjustable unit, so adopt a new one. + AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); + Reg->adoptRegUnit(AdjustUnit); + // Adopting a unit does not immediately require recomputing set weights. + } + else { + // Adjust the existing single unit. + RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); + // The unit may be shared among sets and registers within this set. + computeUberWeights(UberSets, RegBank); + } + Changed = true; + } + + // Mark these units normalized so superregisters can't change their weights. + mergeRegUnits(NormalUnits, Reg->getRegUnits()); + + return Changed; +} + +// Compute a weight for each register unit created during getSubRegs. +// +// The goal is that two registers in the same class will have the same weight, +// where each register's weight is defined as sum of its units' weights. +void CodeGenRegBank::computeRegUnitWeights() { + assert(RegUnitWeights.empty() && "Only initialize RegUnitWeights once"); + + // Only allocatable units will be initialized to nonzero weight. + RegUnitWeights.resize(NumRegUnits); + + std::vector<UberRegSet> UberSets; + std::vector<UberRegSet*> RegSets(Registers.size()); + computeUberSets(UberSets, RegSets, *this); + // UberSets and RegSets are now immutable. + + computeUberWeights(UberSets, *this); + + // Iterate over each Register, normalizing the unit weights until reaching + // a fix point. + unsigned NumIters = 0; + for (bool Changed = true; Changed; ++NumIters) { + assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); + Changed = false; + for (unsigned i = 0, e = Registers.size(); i != e; ++i) { + CodeGenRegister::RegUnitList NormalUnits; + Changed |= + normalizeWeight(Registers[i], UberSets, RegSets, NormalUnits, *this); + } + } +} + +// Find a set in UniqueSets with the same elements as Set. +// Return an iterator into UniqueSets. +static std::vector<RegUnitSet>::const_iterator +findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, + const RegUnitSet &Set) { + std::vector<RegUnitSet>::const_iterator + I = UniqueSets.begin(), E = UniqueSets.end(); + for(;I != E; ++I) { + if (I->Units == Set.Units) + break; + } + return I; +} + +// Return true if the RUSubSet is a subset of RUSuperSet. +static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, + const std::vector<unsigned> &RUSuperSet) { + return std::includes(RUSuperSet.begin(), RUSuperSet.end(), + RUSubSet.begin(), RUSubSet.end()); +} + +// Iteratively prune unit sets. +void CodeGenRegBank::pruneUnitSets() { + assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); + + // Form an equivalence class of UnitSets with no significant difference. + std::vector<unsigned> SuperSetIDs; + for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); + SubIdx != EndIdx; ++SubIdx) { + const RegUnitSet &SubSet = RegUnitSets[SubIdx]; + unsigned SuperIdx = 0; + for (; SuperIdx != EndIdx; ++SuperIdx) { + if (SuperIdx == SubIdx) + continue; + + const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; + if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) + && (SubSet.Units.size() + 3 > SuperSet.Units.size())) { + break; + } + } + if (SuperIdx == EndIdx) + SuperSetIDs.push_back(SubIdx); + } + // Populate PrunedUnitSets with each equivalence class's superset. + std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); + for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { + unsigned SuperIdx = SuperSetIDs[i]; + PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; + PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); + } + RegUnitSets.swap(PrunedUnitSets); +} + +// Create a RegUnitSet for each RegClass that contains all units in the class +// including adopted units that are necessary to model register pressure. Then +// iteratively compute RegUnitSets such that the union of any two overlapping +// RegUnitSets is repreresented. +// +// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any +// RegUnitSet that is a superset of that RegUnitClass. +void CodeGenRegBank::computeRegUnitSets() { + + // Compute a unique RegUnitSet for each RegClass. + const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses(); + unsigned NumRegClasses = RegClasses.size(); + for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) { + if (!RegClasses[RCIdx]->Allocatable) + continue; + + // Speculatively grow the RegUnitSets to hold the new set. + RegUnitSets.resize(RegUnitSets.size() + 1); + RegUnitSets.back().Name = RegClasses[RCIdx]->getName(); + + // Compute a sorted list of units in this class. + RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units); + + // Find an existing RegUnitSet. + std::vector<RegUnitSet>::const_iterator SetI = + findRegUnitSet(RegUnitSets, RegUnitSets.back()); + if (SetI != llvm::prior(RegUnitSets.end())) + RegUnitSets.pop_back(); + } + + // Iteratively prune unit sets. + pruneUnitSets(); + + // Iterate over all unit sets, including new ones added by this loop. + unsigned NumRegUnitSubSets = RegUnitSets.size(); + for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { + // In theory, this is combinatorial. In practice, it needs to be bounded + // by a small number of sets for regpressure to be efficient. + // If the assert is hit, we need to implement pruning. + assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); + + // Compare new sets with all original classes. + for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; + SearchIdx != EndIdx; ++SearchIdx) { + std::set<unsigned> Intersection; + std::set_intersection(RegUnitSets[Idx].Units.begin(), + RegUnitSets[Idx].Units.end(), + RegUnitSets[SearchIdx].Units.begin(), + RegUnitSets[SearchIdx].Units.end(), + std::inserter(Intersection, Intersection.begin())); + if (Intersection.empty()) + continue; + + // Speculatively grow the RegUnitSets to hold the new set. + RegUnitSets.resize(RegUnitSets.size() + 1); + RegUnitSets.back().Name = + RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; + + std::set_union(RegUnitSets[Idx].Units.begin(), + RegUnitSets[Idx].Units.end(), + RegUnitSets[SearchIdx].Units.begin(), + RegUnitSets[SearchIdx].Units.end(), + std::inserter(RegUnitSets.back().Units, + RegUnitSets.back().Units.begin())); + + // Find an existing RegUnitSet, or add the union to the unique sets. + std::vector<RegUnitSet>::const_iterator SetI = + findRegUnitSet(RegUnitSets, RegUnitSets.back()); + if (SetI != llvm::prior(RegUnitSets.end())) + RegUnitSets.pop_back(); + } + } + + // Iteratively prune unit sets after inferring supersets. + pruneUnitSets(); + + // For each register class, list the UnitSets that are supersets. + RegClassUnitSets.resize(NumRegClasses); + for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) { + if (!RegClasses[RCIdx]->Allocatable) + continue; + + // Recompute the sorted list of units in this class. + std::vector<unsigned> RegUnits; + RegClasses[RCIdx]->buildRegUnitSet(RegUnits); + + // Don't increase pressure for unallocatable regclasses. + if (RegUnits.empty()) + continue; + + // Find all supersets. + for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); + USIdx != USEnd; ++USIdx) { + if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units)) + RegClassUnitSets[RCIdx].push_back(USIdx); + } + assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); + } +} + +// Compute sets of overlapping registers. +// +// The standard set is all super-registers and all sub-registers, but the +// target description can add arbitrary overlapping registers via the 'Aliases' +// field. This complicates things, but we can compute overlapping sets using +// the following rules: +// +// 1. The relation overlap(A, B) is reflexive and symmetric but not transitive. +// +// 2. overlap(A, B) implies overlap(A, S) for all S in supers(B). +// +// Alternatively: +// +// overlap(A, B) iff there exists: +// A' in { A, subregs(A) } and B' in { B, subregs(B) } such that: +// A' = B' or A' in aliases(B') or B' in aliases(A'). +// +// Here subregs(A) is the full flattened sub-register set returned by +// A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the +// description of register A. +// +// This also implies that registers with a common sub-register are considered +// overlapping. This can happen when forming register pairs: +// +// P0 = (R0, R1) +// P1 = (R1, R2) +// P2 = (R2, R3) +// +// In this case, we will infer an overlap between P0 and P1 because of the +// shared sub-register R1. There is no overlap between P0 and P2. +// +void CodeGenRegBank:: +computeOverlaps(std::map<const CodeGenRegister*, CodeGenRegister::Set> &Map) { + assert(Map.empty()); + + // Collect overlaps that don't follow from rule 2. + for (unsigned i = 0, e = Registers.size(); i != e; ++i) { + CodeGenRegister *Reg = Registers[i]; + CodeGenRegister::Set &Overlaps = Map[Reg]; + + // Reg overlaps itself. + Overlaps.insert(Reg); + + // All super-registers overlap. + const CodeGenRegister::SuperRegList &Supers = Reg->getSuperRegs(); + Overlaps.insert(Supers.begin(), Supers.end()); + + // Form symmetrical relations from the special Aliases[] lists. + std::vector<Record*> RegList = Reg->TheDef->getValueAsListOfDefs("Aliases"); + for (unsigned i2 = 0, e2 = RegList.size(); i2 != e2; ++i2) { + CodeGenRegister *Reg2 = getReg(RegList[i2]); + CodeGenRegister::Set &Overlaps2 = Map[Reg2]; + const CodeGenRegister::SuperRegList &Supers2 = Reg2->getSuperRegs(); + // Reg overlaps Reg2 which implies it overlaps supers(Reg2). + Overlaps.insert(Reg2); + Overlaps.insert(Supers2.begin(), Supers2.end()); + Overlaps2.insert(Reg); + Overlaps2.insert(Supers.begin(), Supers.end()); + } + } + + // Apply rule 2. and inherit all sub-register overlaps. + for (unsigned i = 0, e = Registers.size(); i != e; ++i) { + CodeGenRegister *Reg = Registers[i]; + CodeGenRegister::Set &Overlaps = Map[Reg]; + const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); + for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM.begin(), + e2 = SRM.end(); i2 != e2; ++i2) { + CodeGenRegister::Set &Overlaps2 = Map[i2->second]; + Overlaps.insert(Overlaps2.begin(), Overlaps2.end()); + } + } +} + +void CodeGenRegBank::computeDerivedInfo() { + computeComposites(); + + // Compute a weight for each register unit created during getSubRegs. + // This may create adopted register units (with unit # >= NumNativeRegUnits). + computeRegUnitWeights(); + + // Compute a unique set of RegUnitSets. One for each RegClass and inferred + // supersets for the union of overlapping sets. + computeRegUnitSets(); +} + +// +// Synthesize missing register class intersections. +// +// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) +// returns a maximal register class for all X. +// +void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { + for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) { + CodeGenRegisterClass *RC1 = RC; + CodeGenRegisterClass *RC2 = RegClasses[rci]; + if (RC1 == RC2) + continue; + + // Compute the set intersection of RC1 and RC2. + const CodeGenRegister::Set &Memb1 = RC1->getMembers(); + const CodeGenRegister::Set &Memb2 = RC2->getMembers(); + CodeGenRegister::Set Intersection; + std::set_intersection(Memb1.begin(), Memb1.end(), + Memb2.begin(), Memb2.end(), + std::inserter(Intersection, Intersection.begin()), + CodeGenRegister::Less()); + + // Skip disjoint class pairs. + if (Intersection.empty()) + continue; + + // If RC1 and RC2 have different spill sizes or alignments, use the + // larger size for sub-classing. If they are equal, prefer RC1. + if (RC2->SpillSize > RC1->SpillSize || + (RC2->SpillSize == RC1->SpillSize && + RC2->SpillAlignment > RC1->SpillAlignment)) + std::swap(RC1, RC2); + + getOrCreateSubClass(RC1, &Intersection, + RC1->getName() + "_and_" + RC2->getName()); + } +} + +// +// Synthesize missing sub-classes for getSubClassWithSubReg(). +// +// Make sure that the set of registers in RC with a given SubIdx sub-register +// form a register class. Update RC->SubClassWithSubReg. +// +void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { + // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. + typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set, + CodeGenSubRegIndex::Less> SubReg2SetMap; + + // Compute the set of registers supporting each SubRegIndex. + SubReg2SetMap SRSets; + for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(), + RE = RC->getMembers().end(); RI != RE; ++RI) { + const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs(); + for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), + E = SRM.end(); I != E; ++I) + SRSets[I->first].insert(*RI); + } + + // Find matching classes for all SRSets entries. Iterate in SubRegIndex + // numerical order to visit synthetic indices last. + for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { + CodeGenSubRegIndex *SubIdx = SubRegIndices[sri]; + SubReg2SetMap::const_iterator I = SRSets.find(SubIdx); + // Unsupported SubRegIndex. Skip it. + if (I == SRSets.end()) + continue; + // In most cases, all RC registers support the SubRegIndex. + if (I->second.size() == RC->getMembers().size()) { + RC->setSubClassWithSubReg(SubIdx, RC); + continue; + } + // This is a real subset. See if we have a matching class. + CodeGenRegisterClass *SubRC = + getOrCreateSubClass(RC, &I->second, + RC->getName() + "_with_" + I->first->getName()); + RC->setSubClassWithSubReg(SubIdx, SubRC); + } +} + +// +// Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). +// +// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) +// has a maximal result for any SubIdx and any X >= FirstSubRegRC. +// + +void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, + unsigned FirstSubRegRC) { + SmallVector<std::pair<const CodeGenRegister*, + const CodeGenRegister*>, 16> SSPairs; + + // Iterate in SubRegIndex numerical order to visit synthetic indices last. + for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { + CodeGenSubRegIndex *SubIdx = SubRegIndices[sri]; + // Skip indexes that aren't fully supported by RC's registers. This was + // computed by inferSubClassWithSubReg() above which should have been + // called first. + if (RC->getSubClassWithSubReg(SubIdx) != RC) + continue; + + // Build list of (Super, Sub) pairs for this SubIdx. + SSPairs.clear(); + for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(), + RE = RC->getMembers().end(); RI != RE; ++RI) { + const CodeGenRegister *Super = *RI; + const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second; + assert(Sub && "Missing sub-register"); + SSPairs.push_back(std::make_pair(Super, Sub)); + } + + // Iterate over sub-register class candidates. Ignore classes created by + // this loop. They will never be useful. + for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce; + ++rci) { + CodeGenRegisterClass *SubRC = RegClasses[rci]; + // Compute the subset of RC that maps into SubRC. + CodeGenRegister::Set SubSet; + for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) + if (SubRC->contains(SSPairs[i].second)) + SubSet.insert(SSPairs[i].first); + if (SubSet.empty()) + continue; + // RC injects completely into SubRC. + if (SubSet.size() == SSPairs.size()) { + SubRC->addSuperRegClass(SubIdx, RC); + continue; + } + // Only a subset of RC maps into SubRC. Make sure it is represented by a + // class. + getOrCreateSubClass(RC, &SubSet, RC->getName() + + "_with_" + SubIdx->getName() + + "_in_" + SubRC->getName()); + } + } +} + + +// +// Infer missing register classes. +// +void CodeGenRegBank::computeInferredRegisterClasses() { + // When this function is called, the register classes have not been sorted + // and assigned EnumValues yet. That means getSubClasses(), + // getSuperClasses(), and hasSubClass() functions are defunct. + unsigned FirstNewRC = RegClasses.size(); + + // Visit all register classes, including the ones being added by the loop. + for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { + CodeGenRegisterClass *RC = RegClasses[rci]; + + // Synthesize answers for getSubClassWithSubReg(). + inferSubClassWithSubReg(RC); + + // Synthesize answers for getCommonSubClass(). + inferCommonSubClass(RC); + + // Synthesize answers for getMatchingSuperRegClass(). + inferMatchingSuperRegClass(RC); + + // New register classes are created while this loop is running, and we need + // to visit all of them. I particular, inferMatchingSuperRegClass needs + // to match old super-register classes with sub-register classes created + // after inferMatchingSuperRegClass was called. At this point, + // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = + // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. + if (rci + 1 == FirstNewRC) { + unsigned NextNewRC = RegClasses.size(); + for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2) + inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC); + FirstNewRC = NextNewRC; + } + } +} + +/// getRegisterClassForRegister - Find the register class that contains the +/// specified physical register. If the register is not in a register class, +/// return null. If the register is in multiple classes, and the classes have a +/// superset-subset relationship and the same set of types, return the +/// superclass. Otherwise return null. +const CodeGenRegisterClass* +CodeGenRegBank::getRegClassForRegister(Record *R) { + const CodeGenRegister *Reg = getReg(R); + ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses(); + const CodeGenRegisterClass *FoundRC = 0; + for (unsigned i = 0, e = RCs.size(); i != e; ++i) { + const CodeGenRegisterClass &RC = *RCs[i]; + if (!RC.contains(Reg)) + continue; + + // If this is the first class that contains the register, + // make a note of it and go on to the next class. + if (!FoundRC) { + FoundRC = &RC; + continue; + } + + // If a register's classes have different types, return null. + if (RC.getValueTypes() != FoundRC->getValueTypes()) + return 0; + + // Check to see if the previously found class that contains + // the register is a subclass of the current class. If so, + // prefer the superclass. + if (RC.hasSubClass(FoundRC)) { + FoundRC = &RC; + continue; + } + + // Check to see if the previously found class that contains + // the register is a superclass of the current class. If so, + // prefer the superclass. + if (FoundRC->hasSubClass(&RC)) + continue; + + // Multiple classes, and neither is a superclass of the other. + // Return null. + return 0; + } + return FoundRC; +} + +BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { + SetVector<const CodeGenRegister*> Set; + + // First add Regs with all sub-registers. + for (unsigned i = 0, e = Regs.size(); i != e; ++i) { + CodeGenRegister *Reg = getReg(Regs[i]); + if (Set.insert(Reg)) + // Reg is new, add all sub-registers. + // The pre-ordering is not important here. + Reg->addSubRegsPreOrder(Set, *this); + } + + // Second, find all super-registers that are completely covered by the set. + for (unsigned i = 0; i != Set.size(); ++i) { + const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); + for (unsigned j = 0, e = SR.size(); j != e; ++j) { + const CodeGenRegister *Super = SR[j]; + if (!Super->CoveredBySubRegs || Set.count(Super)) + continue; + // This new super-register is covered by its sub-registers. + bool AllSubsInSet = true; + const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); + for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), + E = SRM.end(); I != E; ++I) + if (!Set.count(I->second)) { + AllSubsInSet = false; + break; + } + // All sub-registers in Set, add Super as well. + // We will visit Super later to recheck its super-registers. + if (AllSubsInSet) + Set.insert(Super); + } + } + + // Convert to BitVector. + BitVector BV(Registers.size() + 1); + for (unsigned i = 0, e = Set.size(); i != e; ++i) + BV.set(Set[i]->EnumValue); + return BV; +} |