summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/utils/TableGen/CodeGenDAGPatterns.h')
-rw-r--r--contrib/llvm/utils/TableGen/CodeGenDAGPatterns.h748
1 files changed, 748 insertions, 0 deletions
diff --git a/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.h b/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.h
new file mode 100644
index 0000000..0a1362a
--- /dev/null
+++ b/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.h
@@ -0,0 +1,748 @@
+//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the CodeGenDAGPatterns class, which is used to read and
+// represent the patterns present in a .td file for instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef CODEGEN_DAGPATTERNS_H
+#define CODEGEN_DAGPATTERNS_H
+
+#include "CodeGenTarget.h"
+#include "CodeGenIntrinsics.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringMap.h"
+#include <set>
+#include <algorithm>
+#include <vector>
+#include <map>
+
+namespace llvm {
+ class Record;
+ struct Init;
+ class ListInit;
+ class DagInit;
+ class SDNodeInfo;
+ class TreePattern;
+ class TreePatternNode;
+ class CodeGenDAGPatterns;
+ class ComplexPattern;
+
+/// EEVT::DAGISelGenValueType - These are some extended forms of
+/// MVT::SimpleValueType that we use as lattice values during type inference.
+/// The existing MVT iAny, fAny and vAny types suffice to represent
+/// arbitrary integer, floating-point, and vector types, so only an unknown
+/// value is needed.
+namespace EEVT {
+ /// TypeSet - This is either empty if it's completely unknown, or holds a set
+ /// of types. It is used during type inference because register classes can
+ /// have multiple possible types and we don't know which one they get until
+ /// type inference is complete.
+ ///
+ /// TypeSet can have three states:
+ /// Vector is empty: The type is completely unknown, it can be any valid
+ /// target type.
+ /// Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one
+ /// of those types only.
+ /// Vector has one concrete type: The type is completely known.
+ ///
+ class TypeSet {
+ SmallVector<MVT::SimpleValueType, 4> TypeVec;
+ public:
+ TypeSet() {}
+ TypeSet(MVT::SimpleValueType VT, TreePattern &TP);
+ TypeSet(const std::vector<MVT::SimpleValueType> &VTList);
+
+ bool isCompletelyUnknown() const { return TypeVec.empty(); }
+
+ bool isConcrete() const {
+ if (TypeVec.size() != 1) return false;
+ unsigned char T = TypeVec[0]; (void)T;
+ assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny);
+ return true;
+ }
+
+ MVT::SimpleValueType getConcrete() const {
+ assert(isConcrete() && "Type isn't concrete yet");
+ return (MVT::SimpleValueType)TypeVec[0];
+ }
+
+ bool isDynamicallyResolved() const {
+ return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny;
+ }
+
+ const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const {
+ assert(!TypeVec.empty() && "Not a type list!");
+ return TypeVec;
+ }
+
+ bool isVoid() const {
+ return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid;
+ }
+
+ /// hasIntegerTypes - Return true if this TypeSet contains any integer value
+ /// types.
+ bool hasIntegerTypes() const;
+
+ /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
+ /// a floating point value type.
+ bool hasFloatingPointTypes() const;
+
+ /// hasVectorTypes - Return true if this TypeSet contains a vector value
+ /// type.
+ bool hasVectorTypes() const;
+
+ /// getName() - Return this TypeSet as a string.
+ std::string getName() const;
+
+ /// MergeInTypeInfo - This merges in type information from the specified
+ /// argument. If 'this' changes, it returns true. If the two types are
+ /// contradictory (e.g. merge f32 into i32) then this throws an exception.
+ bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP);
+
+ bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) {
+ return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP);
+ }
+
+ /// Force this type list to only contain integer types.
+ bool EnforceInteger(TreePattern &TP);
+
+ /// Force this type list to only contain floating point types.
+ bool EnforceFloatingPoint(TreePattern &TP);
+
+ /// EnforceScalar - Remove all vector types from this type list.
+ bool EnforceScalar(TreePattern &TP);
+
+ /// EnforceVector - Remove all non-vector types from this type list.
+ bool EnforceVector(TreePattern &TP);
+
+ /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
+ /// this an other based on this information.
+ bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP);
+
+ /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
+ /// whose element is VT.
+ bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
+
+ bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; }
+ bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; }
+
+ private:
+ /// FillWithPossibleTypes - Set to all legal types and return true, only
+ /// valid on completely unknown type sets. If Pred is non-null, only MVTs
+ /// that pass the predicate are added.
+ bool FillWithPossibleTypes(TreePattern &TP,
+ bool (*Pred)(MVT::SimpleValueType) = 0,
+ const char *PredicateName = 0);
+ };
+}
+
+/// Set type used to track multiply used variables in patterns
+typedef std::set<std::string> MultipleUseVarSet;
+
+/// SDTypeConstraint - This is a discriminated union of constraints,
+/// corresponding to the SDTypeConstraint tablegen class in Target.td.
+struct SDTypeConstraint {
+ SDTypeConstraint(Record *R);
+
+ unsigned OperandNo; // The operand # this constraint applies to.
+ enum {
+ SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
+ SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec
+ } ConstraintType;
+
+ union { // The discriminated union.
+ struct {
+ MVT::SimpleValueType VT;
+ } SDTCisVT_Info;
+ struct {
+ unsigned OtherOperandNum;
+ } SDTCisSameAs_Info;
+ struct {
+ unsigned OtherOperandNum;
+ } SDTCisVTSmallerThanOp_Info;
+ struct {
+ unsigned BigOperandNum;
+ } SDTCisOpSmallerThanOp_Info;
+ struct {
+ unsigned OtherOperandNum;
+ } SDTCisEltOfVec_Info;
+ } x;
+
+ /// ApplyTypeConstraint - Given a node in a pattern, apply this type
+ /// constraint to the nodes operands. This returns true if it makes a
+ /// change, false otherwise. If a type contradiction is found, throw an
+ /// exception.
+ bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
+ TreePattern &TP) const;
+};
+
+/// SDNodeInfo - One of these records is created for each SDNode instance in
+/// the target .td file. This represents the various dag nodes we will be
+/// processing.
+class SDNodeInfo {
+ Record *Def;
+ std::string EnumName;
+ std::string SDClassName;
+ unsigned Properties;
+ unsigned NumResults;
+ int NumOperands;
+ std::vector<SDTypeConstraint> TypeConstraints;
+public:
+ SDNodeInfo(Record *R); // Parse the specified record.
+
+ unsigned getNumResults() const { return NumResults; }
+
+ /// getNumOperands - This is the number of operands required or -1 if
+ /// variadic.
+ int getNumOperands() const { return NumOperands; }
+ Record *getRecord() const { return Def; }
+ const std::string &getEnumName() const { return EnumName; }
+ const std::string &getSDClassName() const { return SDClassName; }
+
+ const std::vector<SDTypeConstraint> &getTypeConstraints() const {
+ return TypeConstraints;
+ }
+
+ /// getKnownType - If the type constraints on this node imply a fixed type
+ /// (e.g. all stores return void, etc), then return it as an
+ /// MVT::SimpleValueType. Otherwise, return MVT::Other.
+ MVT::SimpleValueType getKnownType(unsigned ResNo) const;
+
+ /// hasProperty - Return true if this node has the specified property.
+ ///
+ bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
+
+ /// ApplyTypeConstraints - Given a node in a pattern, apply the type
+ /// constraints for this node to the operands of the node. This returns
+ /// true if it makes a change, false otherwise. If a type contradiction is
+ /// found, throw an exception.
+ bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
+ bool MadeChange = false;
+ for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
+ MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
+ return MadeChange;
+ }
+};
+
+/// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
+/// patterns), and as such should be ref counted. We currently just leak all
+/// TreePatternNode objects!
+class TreePatternNode {
+ /// The type of each node result. Before and during type inference, each
+ /// result may be a set of possible types. After (successful) type inference,
+ /// each is a single concrete type.
+ SmallVector<EEVT::TypeSet, 1> Types;
+
+ /// Operator - The Record for the operator if this is an interior node (not
+ /// a leaf).
+ Record *Operator;
+
+ /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
+ ///
+ Init *Val;
+
+ /// Name - The name given to this node with the :$foo notation.
+ ///
+ std::string Name;
+
+ /// PredicateFns - The predicate functions to execute on this node to check
+ /// for a match. If this list is empty, no predicate is involved.
+ std::vector<std::string> PredicateFns;
+
+ /// TransformFn - The transformation function to execute on this node before
+ /// it can be substituted into the resulting instruction on a pattern match.
+ Record *TransformFn;
+
+ std::vector<TreePatternNode*> Children;
+public:
+ TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
+ unsigned NumResults)
+ : Operator(Op), Val(0), TransformFn(0), Children(Ch) {
+ Types.resize(NumResults);
+ }
+ TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
+ : Operator(0), Val(val), TransformFn(0) {
+ Types.resize(NumResults);
+ }
+ ~TreePatternNode();
+
+ const std::string &getName() const { return Name; }
+ void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
+
+ bool isLeaf() const { return Val != 0; }
+
+ // Type accessors.
+ unsigned getNumTypes() const { return Types.size(); }
+ MVT::SimpleValueType getType(unsigned ResNo) const {
+ return Types[ResNo].getConcrete();
+ }
+ const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
+ const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
+ EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
+ void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }
+
+ bool hasTypeSet(unsigned ResNo) const {
+ return Types[ResNo].isConcrete();
+ }
+ bool isTypeCompletelyUnknown(unsigned ResNo) const {
+ return Types[ResNo].isCompletelyUnknown();
+ }
+ bool isTypeDynamicallyResolved(unsigned ResNo) const {
+ return Types[ResNo].isDynamicallyResolved();
+ }
+
+ Init *getLeafValue() const { assert(isLeaf()); return Val; }
+ Record *getOperator() const { assert(!isLeaf()); return Operator; }
+
+ unsigned getNumChildren() const { return Children.size(); }
+ TreePatternNode *getChild(unsigned N) const { return Children[N]; }
+ void setChild(unsigned i, TreePatternNode *N) {
+ Children[i] = N;
+ }
+
+ /// hasChild - Return true if N is any of our children.
+ bool hasChild(const TreePatternNode *N) const {
+ for (unsigned i = 0, e = Children.size(); i != e; ++i)
+ if (Children[i] == N) return true;
+ return false;
+ }
+
+ const std::vector<std::string> &getPredicateFns() const {return PredicateFns;}
+ void clearPredicateFns() { PredicateFns.clear(); }
+ void setPredicateFns(const std::vector<std::string> &Fns) {
+ assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
+ PredicateFns = Fns;
+ }
+ void addPredicateFn(const std::string &Fn) {
+ assert(!Fn.empty() && "Empty predicate string!");
+ if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) ==
+ PredicateFns.end())
+ PredicateFns.push_back(Fn);
+ }
+
+ Record *getTransformFn() const { return TransformFn; }
+ void setTransformFn(Record *Fn) { TransformFn = Fn; }
+
+ /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
+ /// CodeGenIntrinsic information for it, otherwise return a null pointer.
+ const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
+
+ /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
+ /// return the ComplexPattern information, otherwise return null.
+ const ComplexPattern *
+ getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
+
+ /// NodeHasProperty - Return true if this node has the specified property.
+ bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
+
+ /// TreeHasProperty - Return true if any node in this tree has the specified
+ /// property.
+ bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
+
+ /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
+ /// marked isCommutative.
+ bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+public: // Higher level manipulation routines.
+
+ /// clone - Return a new copy of this tree.
+ ///
+ TreePatternNode *clone() const;
+
+ /// RemoveAllTypes - Recursively strip all the types of this tree.
+ void RemoveAllTypes();
+
+ /// isIsomorphicTo - Return true if this node is recursively isomorphic to
+ /// the specified node. For this comparison, all of the state of the node
+ /// is considered, except for the assigned name. Nodes with differing names
+ /// that are otherwise identical are considered isomorphic.
+ bool isIsomorphicTo(const TreePatternNode *N,
+ const MultipleUseVarSet &DepVars) const;
+
+ /// SubstituteFormalArguments - Replace the formal arguments in this tree
+ /// with actual values specified by ArgMap.
+ void SubstituteFormalArguments(std::map<std::string,
+ TreePatternNode*> &ArgMap);
+
+ /// InlinePatternFragments - If this pattern refers to any pattern
+ /// fragments, inline them into place, giving us a pattern without any
+ /// PatFrag references.
+ TreePatternNode *InlinePatternFragments(TreePattern &TP);
+
+ /// ApplyTypeConstraints - Apply all of the type constraints relevant to
+ /// this node and its children in the tree. This returns true if it makes a
+ /// change, false otherwise. If a type contradiction is found, throw an
+ /// exception.
+ bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
+
+ /// UpdateNodeType - Set the node type of N to VT if VT contains
+ /// information. If N already contains a conflicting type, then throw an
+ /// exception. This returns true if any information was updated.
+ ///
+ bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
+ TreePattern &TP) {
+ return Types[ResNo].MergeInTypeInfo(InTy, TP);
+ }
+
+ bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
+ TreePattern &TP) {
+ return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
+ }
+
+ /// ContainsUnresolvedType - Return true if this tree contains any
+ /// unresolved types.
+ bool ContainsUnresolvedType() const {
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ if (!Types[i].isConcrete()) return true;
+
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (getChild(i)->ContainsUnresolvedType()) return true;
+ return false;
+ }
+
+ /// canPatternMatch - If it is impossible for this pattern to match on this
+ /// target, fill in Reason and return false. Otherwise, return true.
+ bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
+};
+
+inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
+ TPN.print(OS);
+ return OS;
+}
+
+
+/// TreePattern - Represent a pattern, used for instructions, pattern
+/// fragments, etc.
+///
+class TreePattern {
+ /// Trees - The list of pattern trees which corresponds to this pattern.
+ /// Note that PatFrag's only have a single tree.
+ ///
+ std::vector<TreePatternNode*> Trees;
+
+ /// NamedNodes - This is all of the nodes that have names in the trees in this
+ /// pattern.
+ StringMap<SmallVector<TreePatternNode*,1> > NamedNodes;
+
+ /// TheRecord - The actual TableGen record corresponding to this pattern.
+ ///
+ Record *TheRecord;
+
+ /// Args - This is a list of all of the arguments to this pattern (for
+ /// PatFrag patterns), which are the 'node' markers in this pattern.
+ std::vector<std::string> Args;
+
+ /// CDP - the top-level object coordinating this madness.
+ ///
+ CodeGenDAGPatterns &CDP;
+
+ /// isInputPattern - True if this is an input pattern, something to match.
+ /// False if this is an output pattern, something to emit.
+ bool isInputPattern;
+public:
+
+ /// TreePattern constructor - Parse the specified DagInits into the
+ /// current record.
+ TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
+ CodeGenDAGPatterns &ise);
+ TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
+ CodeGenDAGPatterns &ise);
+ TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
+ CodeGenDAGPatterns &ise);
+
+ /// getTrees - Return the tree patterns which corresponds to this pattern.
+ ///
+ const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
+ unsigned getNumTrees() const { return Trees.size(); }
+ TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
+ TreePatternNode *getOnlyTree() const {
+ assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
+ return Trees[0];
+ }
+
+ const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() {
+ if (NamedNodes.empty())
+ ComputeNamedNodes();
+ return NamedNodes;
+ }
+
+ /// getRecord - Return the actual TableGen record corresponding to this
+ /// pattern.
+ ///
+ Record *getRecord() const { return TheRecord; }
+
+ unsigned getNumArgs() const { return Args.size(); }
+ const std::string &getArgName(unsigned i) const {
+ assert(i < Args.size() && "Argument reference out of range!");
+ return Args[i];
+ }
+ std::vector<std::string> &getArgList() { return Args; }
+
+ CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
+
+ /// InlinePatternFragments - If this pattern refers to any pattern
+ /// fragments, inline them into place, giving us a pattern without any
+ /// PatFrag references.
+ void InlinePatternFragments() {
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+ Trees[i] = Trees[i]->InlinePatternFragments(*this);
+ }
+
+ /// InferAllTypes - Infer/propagate as many types throughout the expression
+ /// patterns as possible. Return true if all types are inferred, false
+ /// otherwise. Throw an exception if a type contradiction is found.
+ bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> >
+ *NamedTypes=0);
+
+ /// error - Throw an exception, prefixing it with information about this
+ /// pattern.
+ void error(const std::string &Msg) const;
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+private:
+ TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName);
+ void ComputeNamedNodes();
+ void ComputeNamedNodes(TreePatternNode *N);
+};
+
+/// DAGDefaultOperand - One of these is created for each PredicateOperand
+/// or OptionalDefOperand that has a set ExecuteAlways / DefaultOps field.
+struct DAGDefaultOperand {
+ std::vector<TreePatternNode*> DefaultOps;
+};
+
+class DAGInstruction {
+ TreePattern *Pattern;
+ std::vector<Record*> Results;
+ std::vector<Record*> Operands;
+ std::vector<Record*> ImpResults;
+ TreePatternNode *ResultPattern;
+public:
+ DAGInstruction(TreePattern *TP,
+ const std::vector<Record*> &results,
+ const std::vector<Record*> &operands,
+ const std::vector<Record*> &impresults)
+ : Pattern(TP), Results(results), Operands(operands),
+ ImpResults(impresults), ResultPattern(0) {}
+
+ const TreePattern *getPattern() const { return Pattern; }
+ unsigned getNumResults() const { return Results.size(); }
+ unsigned getNumOperands() const { return Operands.size(); }
+ unsigned getNumImpResults() const { return ImpResults.size(); }
+ const std::vector<Record*>& getImpResults() const { return ImpResults; }
+
+ void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
+
+ Record *getResult(unsigned RN) const {
+ assert(RN < Results.size());
+ return Results[RN];
+ }
+
+ Record *getOperand(unsigned ON) const {
+ assert(ON < Operands.size());
+ return Operands[ON];
+ }
+
+ Record *getImpResult(unsigned RN) const {
+ assert(RN < ImpResults.size());
+ return ImpResults[RN];
+ }
+
+ TreePatternNode *getResultPattern() const { return ResultPattern; }
+};
+
+/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
+/// processed to produce isel.
+class PatternToMatch {
+public:
+ PatternToMatch(ListInit *preds,
+ TreePatternNode *src, TreePatternNode *dst,
+ const std::vector<Record*> &dstregs,
+ unsigned complexity, unsigned uid)
+ : Predicates(preds), SrcPattern(src), DstPattern(dst),
+ Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {}
+
+ ListInit *Predicates; // Top level predicate conditions to match.
+ TreePatternNode *SrcPattern; // Source pattern to match.
+ TreePatternNode *DstPattern; // Resulting pattern.
+ std::vector<Record*> Dstregs; // Physical register defs being matched.
+ unsigned AddedComplexity; // Add to matching pattern complexity.
+ unsigned ID; // Unique ID for the record.
+
+ ListInit *getPredicates() const { return Predicates; }
+ TreePatternNode *getSrcPattern() const { return SrcPattern; }
+ TreePatternNode *getDstPattern() const { return DstPattern; }
+ const std::vector<Record*> &getDstRegs() const { return Dstregs; }
+ unsigned getAddedComplexity() const { return AddedComplexity; }
+
+ std::string getPredicateCheck() const;
+
+ /// Compute the complexity metric for the input pattern. This roughly
+ /// corresponds to the number of nodes that are covered.
+ unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
+};
+
+// Deterministic comparison of Record*.
+struct RecordPtrCmp {
+ bool operator()(const Record *LHS, const Record *RHS) const;
+};
+
+class CodeGenDAGPatterns {
+ RecordKeeper &Records;
+ CodeGenTarget Target;
+ std::vector<CodeGenIntrinsic> Intrinsics;
+ std::vector<CodeGenIntrinsic> TgtIntrinsics;
+
+ std::map<Record*, SDNodeInfo, RecordPtrCmp> SDNodes;
+ std::map<Record*, std::pair<Record*, std::string>, RecordPtrCmp> SDNodeXForms;
+ std::map<Record*, ComplexPattern, RecordPtrCmp> ComplexPatterns;
+ std::map<Record*, TreePattern*, RecordPtrCmp> PatternFragments;
+ std::map<Record*, DAGDefaultOperand, RecordPtrCmp> DefaultOperands;
+ std::map<Record*, DAGInstruction, RecordPtrCmp> Instructions;
+
+ // Specific SDNode definitions:
+ Record *intrinsic_void_sdnode;
+ Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
+
+ /// PatternsToMatch - All of the things we are matching on the DAG. The first
+ /// value is the pattern to match, the second pattern is the result to
+ /// emit.
+ std::vector<PatternToMatch> PatternsToMatch;
+public:
+ CodeGenDAGPatterns(RecordKeeper &R);
+ ~CodeGenDAGPatterns();
+
+ CodeGenTarget &getTargetInfo() { return Target; }
+ const CodeGenTarget &getTargetInfo() const { return Target; }
+
+ Record *getSDNodeNamed(const std::string &Name) const;
+
+ const SDNodeInfo &getSDNodeInfo(Record *R) const {
+ assert(SDNodes.count(R) && "Unknown node!");
+ return SDNodes.find(R)->second;
+ }
+
+ // Node transformation lookups.
+ typedef std::pair<Record*, std::string> NodeXForm;
+ const NodeXForm &getSDNodeTransform(Record *R) const {
+ assert(SDNodeXForms.count(R) && "Invalid transform!");
+ return SDNodeXForms.find(R)->second;
+ }
+
+ typedef std::map<Record*, NodeXForm, RecordPtrCmp>::const_iterator
+ nx_iterator;
+ nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
+ nx_iterator nx_end() const { return SDNodeXForms.end(); }
+
+
+ const ComplexPattern &getComplexPattern(Record *R) const {
+ assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
+ return ComplexPatterns.find(R)->second;
+ }
+
+ const CodeGenIntrinsic &getIntrinsic(Record *R) const {
+ for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
+ if (Intrinsics[i].TheDef == R) return Intrinsics[i];
+ for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
+ if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
+ assert(0 && "Unknown intrinsic!");
+ abort();
+ }
+
+ const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
+ if (IID-1 < Intrinsics.size())
+ return Intrinsics[IID-1];
+ if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
+ return TgtIntrinsics[IID-Intrinsics.size()-1];
+ assert(0 && "Bad intrinsic ID!");
+ abort();
+ }
+
+ unsigned getIntrinsicID(Record *R) const {
+ for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
+ if (Intrinsics[i].TheDef == R) return i;
+ for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
+ if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
+ assert(0 && "Unknown intrinsic!");
+ abort();
+ }
+
+ const DAGDefaultOperand &getDefaultOperand(Record *R) const {
+ assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
+ return DefaultOperands.find(R)->second;
+ }
+
+ // Pattern Fragment information.
+ TreePattern *getPatternFragment(Record *R) const {
+ assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
+ return PatternFragments.find(R)->second;
+ }
+ TreePattern *getPatternFragmentIfRead(Record *R) const {
+ if (!PatternFragments.count(R)) return 0;
+ return PatternFragments.find(R)->second;
+ }
+
+ typedef std::map<Record*, TreePattern*, RecordPtrCmp>::const_iterator
+ pf_iterator;
+ pf_iterator pf_begin() const { return PatternFragments.begin(); }
+ pf_iterator pf_end() const { return PatternFragments.end(); }
+
+ // Patterns to match information.
+ typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
+ ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
+ ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
+
+
+
+ const DAGInstruction &getInstruction(Record *R) const {
+ assert(Instructions.count(R) && "Unknown instruction!");
+ return Instructions.find(R)->second;
+ }
+
+ Record *get_intrinsic_void_sdnode() const {
+ return intrinsic_void_sdnode;
+ }
+ Record *get_intrinsic_w_chain_sdnode() const {
+ return intrinsic_w_chain_sdnode;
+ }
+ Record *get_intrinsic_wo_chain_sdnode() const {
+ return intrinsic_wo_chain_sdnode;
+ }
+
+ bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
+
+private:
+ void ParseNodeInfo();
+ void ParseNodeTransforms();
+ void ParseComplexPatterns();
+ void ParsePatternFragments();
+ void ParseDefaultOperands();
+ void ParseInstructions();
+ void ParsePatterns();
+ void InferInstructionFlags();
+ void GenerateVariants();
+
+ void AddPatternToMatch(const TreePattern *Pattern, const PatternToMatch &PTM);
+ void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
+ std::map<std::string,
+ TreePatternNode*> &InstInputs,
+ std::map<std::string,
+ TreePatternNode*> &InstResults,
+ std::vector<Record*> &InstImpResults);
+};
+} // end namespace llvm
+
+#endif
OpenPOWER on IntegriCloud