diff options
Diffstat (limited to 'contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp')
-rw-r--r-- | contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp | 796 |
1 files changed, 477 insertions, 319 deletions
diff --git a/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp b/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp index 303aa6c..aa60f87 100644 --- a/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp +++ b/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp @@ -56,11 +56,11 @@ EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { assert(!VTList.empty() && "empty list?"); TypeVec.append(VTList.begin(), VTList.end()); - + if (!VTList.empty()) assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && VTList[0] != MVT::fAny); - + // Verify no duplicates. array_pod_sort(TypeVec.begin(), TypeVec.end()); assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); @@ -72,9 +72,9 @@ bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, bool (*Pred)(MVT::SimpleValueType), const char *PredicateName) { assert(isCompletelyUnknown()); - const std::vector<MVT::SimpleValueType> &LegalTypes = + const std::vector<MVT::SimpleValueType> &LegalTypes = TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); - + for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) if (Pred == 0 || Pred(LegalTypes[i])) TypeVec.push_back(LegalTypes[i]); @@ -82,14 +82,14 @@ bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, // If we have nothing that matches the predicate, bail out. if (TypeVec.empty()) TP.error("Type inference contradiction found, no " + - std::string(PredicateName) + " types found"); + std::string(PredicateName) + " types found"); // No need to sort with one element. if (TypeVec.size() == 1) return true; // Remove duplicates. array_pod_sort(TypeVec.begin(), TypeVec.end()); TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); - + return true; } @@ -100,7 +100,7 @@ bool EEVT::TypeSet::hasIntegerTypes() const { if (isInteger(TypeVec[i])) return true; return false; -} +} /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or /// a floating point value type. @@ -109,7 +109,7 @@ bool EEVT::TypeSet::hasFloatingPointTypes() const { if (isFloatingPoint(TypeVec[i])) return true; return false; -} +} /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector /// value type. @@ -123,9 +123,9 @@ bool EEVT::TypeSet::hasVectorTypes() const { std::string EEVT::TypeSet::getName() const { if (TypeVec.empty()) return "<empty>"; - + std::string Result; - + for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { std::string VTName = llvm::getEnumName(TypeVec[i]); // Strip off MVT:: prefix if present. @@ -134,7 +134,7 @@ std::string EEVT::TypeSet::getName() const { if (i) Result += ':'; Result += VTName; } - + if (TypeVec.size() == 1) return Result; return "{" + Result + "}"; @@ -146,14 +146,14 @@ std::string EEVT::TypeSet::getName() const { bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ if (InVT.isCompletelyUnknown() || *this == InVT) return false; - + if (isCompletelyUnknown()) { *this = InVT; return true; } - + assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); - + // Handle the abstract cases, seeing if we can resolve them better. switch (TypeVec[0]) { default: break; @@ -163,26 +163,26 @@ bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ EEVT::TypeSet InCopy(InVT); InCopy.EnforceInteger(TP); InCopy.EnforceScalar(TP); - + if (InCopy.isConcrete()) { // If the RHS has one integer type, upgrade iPTR to i32. TypeVec[0] = InVT.TypeVec[0]; return true; } - + // If the input has multiple scalar integers, this doesn't add any info. if (!InCopy.isCompletelyUnknown()) return false; } break; } - + // If the input constraint is iAny/iPTR and this is an integer type list, // remove non-integer types from the list. if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && hasIntegerTypes()) { bool MadeChange = EnforceInteger(TP); - + // If we're merging in iPTR/iPTRAny and the node currently has a list of // multiple different integer types, replace them with a single iPTR. if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && @@ -191,10 +191,10 @@ bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ TypeVec[0] = InVT.TypeVec[0]; MadeChange = true; } - + return MadeChange; } - + // If this is a type list and the RHS is a typelist as well, eliminate entries // from this list that aren't in the other one. bool MadeChange = false; @@ -207,16 +207,16 @@ bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ InInVT = true; break; } - + if (InInVT) continue; TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } - + // If we removed all of our types, we have a type contradiction. if (!TypeVec.empty()) return MadeChange; - + // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, merging '" + InVT.getName() + "' into '" + InputSet.getName() + "'"); @@ -232,12 +232,12 @@ bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { return false; TypeSet InputSet(*this); - + // Filter out all the fp types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isInteger(TypeVec[i])) TypeVec.erase(TypeVec.begin()+i--); - + if (TypeVec.empty()) TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be integer"); @@ -254,12 +254,12 @@ bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { return false; TypeSet InputSet(*this); - + // Filter out all the fp types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isFloatingPoint(TypeVec[i])) TypeVec.erase(TypeVec.begin()+i--); - + if (TypeVec.empty()) TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be floating point"); @@ -276,12 +276,12 @@ bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { return false; TypeSet InputSet(*this); - + // Filter out all the vector types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isScalar(TypeVec[i])) TypeVec.erase(TypeVec.begin()+i--); - + if (TypeVec.empty()) TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be scalar"); @@ -296,14 +296,14 @@ bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { TypeSet InputSet(*this); bool MadeChange = false; - + // Filter out all the scalar types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isVector(TypeVec[i])) { TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } - + if (TypeVec.empty()) TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be a vector"); @@ -317,13 +317,13 @@ bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { // Both operands must be integer or FP, but we don't care which. bool MadeChange = false; - + if (isCompletelyUnknown()) MadeChange = FillWithPossibleTypes(TP); if (Other.isCompletelyUnknown()) MadeChange = Other.FillWithPossibleTypes(TP); - + // If one side is known to be integer or known to be FP but the other side has // no information, get at least the type integrality info in there. if (!hasFloatingPointTypes()) @@ -334,62 +334,165 @@ bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { MadeChange |= EnforceInteger(TP); else if (!Other.hasIntegerTypes()) MadeChange |= EnforceFloatingPoint(TP); - + assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && "Should have a type list now"); - + // If one contains vectors but the other doesn't pull vectors out. if (!hasVectorTypes()) MadeChange |= Other.EnforceScalar(TP); if (!hasVectorTypes()) MadeChange |= EnforceScalar(TP); + + if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) { + // If we are down to concrete types, this code does not currently + // handle nodes which have multiple types, where some types are + // integer, and some are fp. Assert that this is not the case. + assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && + !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && + "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); + + // Otherwise, if these are both vector types, either this vector + // must have a larger bitsize than the other, or this element type + // must be larger than the other. + EVT Type(TypeVec[0]); + EVT OtherType(Other.TypeVec[0]); + + if (hasVectorTypes() && Other.hasVectorTypes()) { + if (Type.getSizeInBits() >= OtherType.getSizeInBits()) + if (Type.getVectorElementType().getSizeInBits() + >= OtherType.getVectorElementType().getSizeInBits()) + TP.error("Type inference contradiction found, '" + + getName() + "' element type not smaller than '" + + Other.getName() +"'!"); + } + else + // For scalar types, the bitsize of this type must be larger + // than that of the other. + if (Type.getSizeInBits() >= OtherType.getSizeInBits()) + TP.error("Type inference contradiction found, '" + + getName() + "' is not smaller than '" + + Other.getName() +"'!"); + + } - // This code does not currently handle nodes which have multiple types, - // where some types are integer, and some are fp. Assert that this is not - // the case. - assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && - !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && - "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); - + + // Handle int and fp as disjoint sets. This won't work for patterns + // that have mixed fp/int types but those are likely rare and would + // not have been accepted by this code previously. + // Okay, find the smallest type from the current set and remove it from the // largest set. - MVT::SimpleValueType Smallest = TypeVec[0]; + MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE; + for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) + if (isInteger(TypeVec[i])) { + SmallestInt = TypeVec[i]; + break; + } for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) - if (TypeVec[i] < Smallest) - Smallest = TypeVec[i]; - + if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt) + SmallestInt = TypeVec[i]; + + MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE; + for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) + if (isFloatingPoint(TypeVec[i])) { + SmallestFP = TypeVec[i]; + break; + } + for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) + if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP) + SmallestFP = TypeVec[i]; + + int OtherIntSize = 0; + int OtherFPSize = 0; + for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = + Other.TypeVec.begin(); + TVI != Other.TypeVec.end(); + /* NULL */) { + if (isInteger(*TVI)) { + ++OtherIntSize; + if (*TVI == SmallestInt) { + TVI = Other.TypeVec.erase(TVI); + --OtherIntSize; + MadeChange = true; + continue; + } + } + else if (isFloatingPoint(*TVI)) { + ++OtherFPSize; + if (*TVI == SmallestFP) { + TVI = Other.TypeVec.erase(TVI); + --OtherFPSize; + MadeChange = true; + continue; + } + } + ++TVI; + } + // If this is the only type in the large set, the constraint can never be // satisfied. - if (Other.TypeVec.size() == 1 && Other.TypeVec[0] == Smallest) + if ((Other.hasIntegerTypes() && OtherIntSize == 0) + || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) TP.error("Type inference contradiction found, '" + Other.getName() + "' has nothing larger than '" + getName() +"'!"); - - SmallVector<MVT::SimpleValueType, 2>::iterator TVI = - std::find(Other.TypeVec.begin(), Other.TypeVec.end(), Smallest); - if (TVI != Other.TypeVec.end()) { - Other.TypeVec.erase(TVI); - MadeChange = true; - } - + // Okay, find the largest type in the Other set and remove it from the // current set. - MVT::SimpleValueType Largest = Other.TypeVec[0]; + MVT::SimpleValueType LargestInt = MVT::Other; + for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) + if (isInteger(Other.TypeVec[i])) { + LargestInt = Other.TypeVec[i]; + break; + } for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) - if (Other.TypeVec[i] > Largest) - Largest = Other.TypeVec[i]; - + if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt) + LargestInt = Other.TypeVec[i]; + + MVT::SimpleValueType LargestFP = MVT::Other; + for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) + if (isFloatingPoint(Other.TypeVec[i])) { + LargestFP = Other.TypeVec[i]; + break; + } + for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) + if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP) + LargestFP = Other.TypeVec[i]; + + int IntSize = 0; + int FPSize = 0; + for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = + TypeVec.begin(); + TVI != TypeVec.end(); + /* NULL */) { + if (isInteger(*TVI)) { + ++IntSize; + if (*TVI == LargestInt) { + TVI = TypeVec.erase(TVI); + --IntSize; + MadeChange = true; + continue; + } + } + else if (isFloatingPoint(*TVI)) { + ++FPSize; + if (*TVI == LargestFP) { + TVI = TypeVec.erase(TVI); + --FPSize; + MadeChange = true; + continue; + } + } + ++TVI; + } + // If this is the only type in the small set, the constraint can never be // satisfied. - if (TypeVec.size() == 1 && TypeVec[0] == Largest) + if ((hasIntegerTypes() && IntSize == 0) + || (hasFloatingPointTypes() && FPSize == 0)) TP.error("Type inference contradiction found, '" + getName() + "' has nothing smaller than '" + Other.getName()+"'!"); - - TVI = std::find(TypeVec.begin(), TypeVec.end(), Largest); - if (TVI != TypeVec.end()) { - TypeVec.erase(TVI); - MadeChange = true; - } - + return MadeChange; } @@ -406,7 +509,7 @@ bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, if (isConcrete()) { EVT IVT = getConcrete(); IVT = IVT.getVectorElementType(); - return MadeChange | + return MadeChange | VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); } @@ -414,11 +517,11 @@ bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, // disagree. if (!VTOperand.isConcrete()) return MadeChange; - + MVT::SimpleValueType VT = VTOperand.getConcrete(); - + TypeSet InputSet(*this); - + // Filter out all the types which don't have the right element type. for (unsigned i = 0; i != TypeVec.size(); ++i) { assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); @@ -427,13 +530,43 @@ bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, MadeChange = true; } } - + if (TypeVec.empty()) // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, forcing '" + InputSet.getName() + "' to have a vector element"); return MadeChange; } +/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a +/// vector type specified by VTOperand. +bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, + TreePattern &TP) { + // "This" must be a vector and "VTOperand" must be a vector. + bool MadeChange = false; + MadeChange |= EnforceVector(TP); + MadeChange |= VTOperand.EnforceVector(TP); + + // "This" must be larger than "VTOperand." + MadeChange |= VTOperand.EnforceSmallerThan(*this, TP); + + // If we know the vector type, it forces the scalar types to agree. + if (isConcrete()) { + EVT IVT = getConcrete(); + IVT = IVT.getVectorElementType(); + + EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); + MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); + } else if (VTOperand.isConcrete()) { + EVT IVT = VTOperand.getConcrete(); + IVT = IVT.getVectorElementType(); + + EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); + MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); + } + + return MadeChange; +} + //===----------------------------------------------------------------------===// // Helpers for working with extended types. @@ -473,18 +606,21 @@ void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { } //! Dump the dependent variable set: +#ifndef NDEBUG void DumpDepVars(MultipleUseVarSet &DepVars) { if (DepVars.empty()) { DEBUG(errs() << "<empty set>"); } else { DEBUG(errs() << "[ "); - for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end(); - i != e; ++i) { + for (MultipleUseVarSet::const_iterator i = DepVars.begin(), + e = DepVars.end(); i != e; ++i) { DEBUG(errs() << (*i) << " "); } DEBUG(errs() << "]"); } } +#endif + } //===----------------------------------------------------------------------===// @@ -502,7 +638,7 @@ static unsigned getPatternSize(const TreePatternNode *P, // e.g. (set R32:$dst, 0). if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) Size += 2; - + // FIXME: This is a hack to statically increase the priority of patterns // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. // Later we can allow complexity / cost for each pattern to be (optionally) @@ -511,12 +647,12 @@ static unsigned getPatternSize(const TreePatternNode *P, const ComplexPattern *AM = P->getComplexPatternInfo(CGP); if (AM) Size += AM->getNumOperands() * 3; - + // If this node has some predicate function that must match, it adds to the // complexity of this node. if (!P->getPredicateFns().empty()) ++Size; - + // Count children in the count if they are also nodes. for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { TreePatternNode *Child = P->getChild(i); @@ -524,7 +660,7 @@ static unsigned getPatternSize(const TreePatternNode *P, Child->getType(0) != MVT::Other) Size += getPatternSize(Child, CGP); else if (Child->isLeaf()) { - if (dynamic_cast<IntInit*>(Child->getLeafValue())) + if (dynamic_cast<IntInit*>(Child->getLeafValue())) Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). else if (Child->getComplexPatternInfo(CGP)) Size += getPatternSize(Child, CGP); @@ -532,7 +668,7 @@ static unsigned getPatternSize(const TreePatternNode *P, ++Size; } } - + return Size; } @@ -573,13 +709,13 @@ std::string PatternToMatch::getPredicateCheck() const { SDTypeConstraint::SDTypeConstraint(Record *R) { OperandNo = R->getValueAsInt("OperandNum"); - + if (R->isSubClassOf("SDTCisVT")) { ConstraintType = SDTCisVT; x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); if (x.SDTCisVT_Info.VT == MVT::isVoid) throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); - + } else if (R->isSubClassOf("SDTCisPtrTy")) { ConstraintType = SDTCisPtrTy; } else if (R->isSubClassOf("SDTCisInt")) { @@ -593,15 +729,19 @@ SDTypeConstraint::SDTypeConstraint(Record *R) { x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { ConstraintType = SDTCisVTSmallerThanOp; - x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = + x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { ConstraintType = SDTCisOpSmallerThanOp; - x.SDTCisOpSmallerThanOp_Info.BigOperandNum = + x.SDTCisOpSmallerThanOp_Info.BigOperandNum = R->getValueAsInt("BigOperandNum"); } else if (R->isSubClassOf("SDTCisEltOfVec")) { ConstraintType = SDTCisEltOfVec; x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); + } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { + ConstraintType = SDTCisSubVecOfVec; + x.SDTCisSubVecOfVec_Info.OtherOperandNum = + R->getValueAsInt("OtherOpNum"); } else { errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; exit(1); @@ -618,11 +758,11 @@ static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, ResNo = OpNo; return N; } - + OpNo -= NumResults; - + if (OpNo >= N->getNumChildren()) { - errs() << "Invalid operand number in type constraint " + errs() << "Invalid operand number in type constraint " << (OpNo+NumResults) << " "; N->dump(); errs() << '\n'; @@ -641,7 +781,7 @@ bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, TreePattern &TP) const { unsigned ResNo = 0; // The result number being referenced. TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); - + switch (ConstraintType) { default: assert(0 && "Unknown constraint type!"); case SDTCisVT: @@ -676,9 +816,9 @@ bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, TP.error(N->getOperator()->getName() + " expects a VT operand!"); MVT::SimpleValueType VT = getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); - + EEVT::TypeSet TypeListTmp(VT, TP); - + unsigned OResNo = 0; TreePatternNode *OtherNode = getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, @@ -699,13 +839,24 @@ bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, TreePatternNode *VecOperand = getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo); - + // Filter vector types out of VecOperand that don't have the right element // type. return VecOperand->getExtType(VResNo). EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); } - } + case SDTCisSubVecOfVec: { + unsigned VResNo = 0; + TreePatternNode *BigVecOperand = + getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, + VResNo); + + // Filter vector types out of BigVecOperand that don't have the + // right subvector type. + return BigVecOperand->getExtType(VResNo). + EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); + } + } return false; } @@ -718,7 +869,7 @@ SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { Record *TypeProfile = R->getValueAsDef("TypeProfile"); NumResults = TypeProfile->getValueAsInt("NumResults"); NumOperands = TypeProfile->getValueAsInt("NumOperands"); - + // Parse the properties. Properties = 0; std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); @@ -729,12 +880,12 @@ SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { Properties |= 1 << SDNPAssociative; } else if (PropList[i]->getName() == "SDNPHasChain") { Properties |= 1 << SDNPHasChain; - } else if (PropList[i]->getName() == "SDNPOutFlag") { - Properties |= 1 << SDNPOutFlag; - } else if (PropList[i]->getName() == "SDNPInFlag") { - Properties |= 1 << SDNPInFlag; - } else if (PropList[i]->getName() == "SDNPOptInFlag") { - Properties |= 1 << SDNPOptInFlag; + } else if (PropList[i]->getName() == "SDNPOutGlue") { + Properties |= 1 << SDNPOutGlue; + } else if (PropList[i]->getName() == "SDNPInGlue") { + Properties |= 1 << SDNPInGlue; + } else if (PropList[i]->getName() == "SDNPOptInGlue") { + Properties |= 1 << SDNPOptInGlue; } else if (PropList[i]->getName() == "SDNPMayStore") { Properties |= 1 << SDNPMayStore; } else if (PropList[i]->getName() == "SDNPMayLoad") { @@ -751,8 +902,8 @@ SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { exit(1); } } - - + + // Parse the type constraints. std::vector<Record*> ConstraintList = TypeProfile->getValueAsListOfDefs("Constraints"); @@ -767,12 +918,12 @@ MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { assert(NumResults <= 1 && "We only work with nodes with zero or one result so far!"); assert(ResNo == 0 && "Only handles single result nodes so far"); - + for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { // Make sure that this applies to the correct node result. if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # continue; - + switch (TypeConstraints[i].ConstraintType) { default: break; case SDTypeConstraint::SDTCisVT: @@ -799,20 +950,20 @@ static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { if (Operator->getName() == "set" || Operator->getName() == "implicit") return 0; // All return nothing. - + if (Operator->isSubClassOf("Intrinsic")) return CDP.getIntrinsic(Operator).IS.RetVTs.size(); - + if (Operator->isSubClassOf("SDNode")) return CDP.getSDNodeInfo(Operator).getNumResults(); - + if (Operator->isSubClassOf("PatFrag")) { // If we've already parsed this pattern fragment, get it. Otherwise, handle // the forward reference case where one pattern fragment references another // before it is processed. if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) return PFRec->getOnlyTree()->getNumTypes(); - + // Get the result tree. DagInit *Tree = Operator->getValueAsDag("Fragment"); Record *Op = 0; @@ -821,22 +972,22 @@ static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { assert(Op && "Invalid Fragment"); return GetNumNodeResults(Op, CDP); } - + if (Operator->isSubClassOf("Instruction")) { CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); // FIXME: Should allow access to all the results here. - unsigned NumDefsToAdd = InstInfo.NumDefs ? 1 : 0; - + unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; + // Add on one implicit def if it has a resolvable type. if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) ++NumDefsToAdd; return NumDefsToAdd; } - + if (Operator->isSubClassOf("SDNodeXForm")) return 1; // FIXME: Generalize SDNodeXForm - + Operator->dump(); errs() << "Unhandled node in GetNumNodeResults\n"; exit(1); @@ -862,7 +1013,7 @@ void TreePatternNode::print(raw_ostream &OS) const { } OS << ")"; } - + for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) OS << "<<P:" << PredicateFns[i] << ">>"; if (TransformFn) @@ -900,7 +1051,7 @@ bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, } return getLeafValue() == N->getLeafValue(); } - + if (N->getOperator() != getOperator() || N->getNumChildren() != getNumChildren()) return false; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) @@ -944,7 +1095,7 @@ void TreePatternNode::RemoveAllTypes() { void TreePatternNode:: SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { if (isLeaf()) return; - + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { TreePatternNode *Child = getChild(i); if (Child->isLeaf()) { @@ -972,7 +1123,7 @@ SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { if (isLeaf()) return this; // nothing to do. Record *Op = getOperator(); - + if (!Op->isSubClassOf("PatFrag")) { // Just recursively inline children nodes. for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { @@ -991,7 +1142,7 @@ TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { // Otherwise, we found a reference to a fragment. First, look up its // TreePattern record. TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); - + // Verify that we are passing the right number of operands. if (Frag->getNumArgs() != Children.size()) TP.error("'" + Op->getName() + "' fragment requires " + @@ -1009,10 +1160,10 @@ TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { std::map<std::string, TreePatternNode*> ArgMap; for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); - + FragTree->SubstituteFormalArguments(ArgMap); } - + FragTree->setName(getName()); for (unsigned i = 0, e = Types.size(); i != e; ++i) FragTree->UpdateNodeType(i, getExtType(i), TP); @@ -1023,7 +1174,7 @@ TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { // Get a new copy of this fragment to stitch into here. //delete this; // FIXME: implement refcounting! - + // The fragment we inlined could have recursive inlining that is needed. See // if there are any pattern fragments in it and inline them as needed. return FragTree->InlinePatternFragments(TP); @@ -1038,21 +1189,21 @@ static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, // Check to see if this is a register or a register class. if (R->isSubClassOf("RegisterClass")) { assert(ResNo == 0 && "Regclass ref only has one result!"); - if (NotRegisters) + if (NotRegisters) return EEVT::TypeSet(); // Unknown. const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); } - + if (R->isSubClassOf("PatFrag")) { assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); // Pattern fragment types will be resolved when they are inlined. return EEVT::TypeSet(); // Unknown. } - + if (R->isSubClassOf("Register")) { assert(ResNo == 0 && "Registers only produce one result!"); - if (NotRegisters) + if (NotRegisters) return EEVT::TypeSet(); // Unknown. const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); return EEVT::TypeSet(T.getRegisterVTs(R)); @@ -1062,16 +1213,16 @@ static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); return EEVT::TypeSet(); } - + if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { assert(ResNo == 0 && "This node only has one result!"); // Using a VTSDNode or CondCodeSDNode. return EEVT::TypeSet(MVT::Other, TP); } - + if (R->isSubClassOf("ComplexPattern")) { assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); - if (NotRegisters) + if (NotRegisters) return EEVT::TypeSet(); // Unknown. return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), TP); @@ -1080,13 +1231,13 @@ static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, assert(ResNo == 0 && "Regclass can only have one result!"); return EEVT::TypeSet(MVT::iPTR, TP); } - + if (R->getName() == "node" || R->getName() == "srcvalue" || R->getName() == "zero_reg") { // Placeholder. return EEVT::TypeSet(); // Unknown. } - + TP.error("Unknown node flavor used in pattern: " + R->getName()); return EEVT::TypeSet(MVT::Other, TP); } @@ -1100,8 +1251,8 @@ getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { getOperator() != CDP.get_intrinsic_w_chain_sdnode() && getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) return 0; - - unsigned IID = + + unsigned IID = dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); return &CDP.getIntrinsicInfo(IID); } @@ -1111,7 +1262,7 @@ getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { const ComplexPattern * TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { if (!isLeaf()) return 0; - + DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) return &CGP.getComplexPattern(DI->getDef()); @@ -1126,10 +1277,10 @@ bool TreePatternNode::NodeHasProperty(SDNP Property, return CP->hasProperty(Property); return false; } - + Record *Operator = getOperator(); if (!Operator->isSubClassOf("SDNode")) return false; - + return CGP.getSDNodeInfo(Operator).hasProperty(Property); } @@ -1146,7 +1297,7 @@ bool TreePatternNode::TreeHasProperty(SDNP Property, if (getChild(i)->TreeHasProperty(Property, CGP)) return true; return false; -} +} /// isCommutativeIntrinsic - Return true if the node corresponds to a /// commutative intrinsic. @@ -1173,27 +1324,27 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { NotRegisters, TP), TP); return MadeChange; } - + if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { assert(Types.size() == 1 && "Invalid IntInit"); - + // Int inits are always integers. :) bool MadeChange = Types[0].EnforceInteger(TP); - + if (!Types[0].isConcrete()) return MadeChange; - + MVT::SimpleValueType VT = getType(0); if (VT == MVT::iPTR || VT == MVT::iPTRAny) return MadeChange; - + unsigned Size = EVT(VT).getSizeInBits(); // Make sure that the value is representable for this type. if (Size >= 32) return MadeChange; - + int Val = (II->getValue() << (32-Size)) >> (32-Size); if (Val == II->getValue()) return MadeChange; - + // If sign-extended doesn't fit, does it fit as unsigned? unsigned ValueMask; unsigned UnsignedVal; @@ -1202,34 +1353,34 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { if ((ValueMask & UnsignedVal) == UnsignedVal) return MadeChange; - + TP.error("Integer value '" + itostr(II->getValue())+ "' is out of range for type '" + getEnumName(getType(0)) + "'!"); return MadeChange; } return false; } - + // special handling for set, which isn't really an SDNode. if (getOperator()->getName() == "set") { assert(getNumTypes() == 0 && "Set doesn't produce a value"); assert(getNumChildren() >= 2 && "Missing RHS of a set?"); unsigned NC = getNumChildren(); - + TreePatternNode *SetVal = getChild(NC-1); bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); for (unsigned i = 0; i < NC-1; ++i) { TreePatternNode *Child = getChild(i); MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); - + // Types of operands must match. MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); } return MadeChange; } - + if (getOperator()->getName() == "implicit") { assert(getNumTypes() == 0 && "Node doesn't produce a value"); @@ -1238,15 +1389,15 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); return MadeChange; } - + if (getOperator()->getName() == "COPY_TO_REGCLASS") { bool MadeChange = false; MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); - + assert(getChild(0)->getNumTypes() == 1 && getChild(1)->getNumTypes() == 1 && "Unhandled case"); - + // child #1 of COPY_TO_REGCLASS should be a register class. We don't care // what type it gets, so if it didn't get a concrete type just give it the // first viable type from the reg class. @@ -1257,14 +1408,14 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { } return MadeChange; } - + if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { bool MadeChange = false; // Apply the result type to the node. unsigned NumRetVTs = Int->IS.RetVTs.size(); unsigned NumParamVTs = Int->IS.ParamVTs.size(); - + for (unsigned i = 0, e = NumRetVTs; i != e; ++i) MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); @@ -1275,46 +1426,46 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { // Apply type info to the intrinsic ID. MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); - + for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); - + MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); } return MadeChange; } - + if (getOperator()->isSubClassOf("SDNode")) { const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); - + // Check that the number of operands is sane. Negative operands -> varargs. if (NI.getNumOperands() >= 0 && getNumChildren() != (unsigned)NI.getNumOperands()) TP.error(getOperator()->getName() + " node requires exactly " + itostr(NI.getNumOperands()) + " operands!"); - + bool MadeChange = NI.ApplyTypeConstraints(this, TP); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); return MadeChange; } - + if (getOperator()->isSubClassOf("Instruction")) { const DAGInstruction &Inst = CDP.getInstruction(getOperator()); CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(getOperator()); - + bool MadeChange = false; // Apply the result types to the node, these come from the things in the // (outs) list of the instruction. // FIXME: Cap at one result so far. - unsigned NumResultsToAdd = InstInfo.NumDefs ? 1 : 0; + unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { Record *ResultNode = Inst.getResult(ResNo); - + if (ResultNode->isSubClassOf("PointerLikeRegClass")) { MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); } else if (ResultNode->getName() == "unknown") { @@ -1322,26 +1473,26 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { } else { assert(ResultNode->isSubClassOf("RegisterClass") && "Operands should be register classes!"); - const CodeGenRegisterClass &RC = + const CodeGenRegisterClass &RC = CDP.getTargetInfo().getRegisterClass(ResultNode); MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); } } - + // If the instruction has implicit defs, we apply the first one as a result. // FIXME: This sucks, it should apply all implicit defs. if (!InstInfo.ImplicitDefs.empty()) { unsigned ResNo = NumResultsToAdd; - + // FIXME: Generalize to multiple possible types and multiple possible // ImplicitDefs. MVT::SimpleValueType VT = InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); - + if (VT != MVT::Other) MadeChange |= UpdateNodeType(ResNo, VT, TP); } - + // If this is an INSERT_SUBREG, constrain the source and destination VTs to // be the same. if (getOperator()->getName() == "INSERT_SUBREG") { @@ -1353,7 +1504,7 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { unsigned ChildNo = 0; for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { Record *OperandNode = Inst.getOperand(i); - + // If the instruction expects a predicate or optional def operand, we // codegen this by setting the operand to it's default value if it has a // non-empty DefaultOps field. @@ -1361,18 +1512,18 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { OperandNode->isSubClassOf("OptionalDefOperand")) && !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) continue; - + // Verify that we didn't run out of provided operands. if (ChildNo >= getNumChildren()) TP.error("Instruction '" + getOperator()->getName() + "' expects more operands than were provided."); - + MVT::SimpleValueType VT; TreePatternNode *Child = getChild(ChildNo++); unsigned ChildResNo = 0; // Instructions always use res #0 of their op. - + if (OperandNode->isSubClassOf("RegisterClass")) { - const CodeGenRegisterClass &RC = + const CodeGenRegisterClass &RC = CDP.getTargetInfo().getRegisterClass(OperandNode); MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); } else if (OperandNode->isSubClassOf("Operand")) { @@ -1392,12 +1543,12 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { if (ChildNo != getNumChildren()) TP.error("Instruction '" + getOperator()->getName() + "' was provided too many operands!"); - + return MadeChange; } - + assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); - + // Node transforms always take one operand. if (getNumChildren() != 1) TP.error("Node transform '" + getOperator()->getName() + @@ -1405,7 +1556,7 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); - + // If either the output or input of the xform does not have exact // type info. We assume they must be the same. Otherwise, it is perfectly // legal to transform from one type to a completely different type. @@ -1435,7 +1586,7 @@ static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { /// used as a sanity check for .td files (to prevent people from writing stuff /// that can never possibly work), and to prevent the pattern permuter from /// generating stuff that is useless. -bool TreePatternNode::canPatternMatch(std::string &Reason, +bool TreePatternNode::canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP) { if (isLeaf()) return true; @@ -1449,7 +1600,7 @@ bool TreePatternNode::canPatternMatch(std::string &Reason, // TODO: return true; } - + // If this node is a commutative operator, check that the LHS isn't an // immediate. const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); @@ -1466,7 +1617,7 @@ bool TreePatternNode::canPatternMatch(std::string &Reason, } } } - + return true; } @@ -1506,7 +1657,7 @@ void TreePattern::ComputeNamedNodes() { void TreePattern::ComputeNamedNodes(TreePatternNode *N) { if (!N->getName().empty()) NamedNodes[N->getName()].push_back(N); - + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) ComputeNamedNodes(N->getChild(i)); } @@ -1515,7 +1666,7 @@ void TreePattern::ComputeNamedNodes(TreePatternNode *N) { TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) { Record *R = DI->getDef(); - + // Direct reference to a leaf DagNode or PatFrag? Turn it into a // TreePatternNode if its own. For example: /// (foo GPR, imm) -> (foo GPR, (imm)) @@ -1523,7 +1674,7 @@ TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ return ParseTreePattern(new DagInit(DI, "", std::vector<std::pair<Init*, std::string> >()), OpName); - + // Input argument? TreePatternNode *Res = new TreePatternNode(DI, 1); if (R->getName() == "node" && !OpName.empty()) { @@ -1535,13 +1686,13 @@ TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ Res->setName(OpName); return Res; } - + if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) { if (!OpName.empty()) error("Constant int argument should not have a name!"); return new TreePatternNode(II, 1); } - + if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) { // Turn this into an IntInit. Init *II = BI->convertInitializerTo(new IntRecTy()); @@ -1558,34 +1709,34 @@ TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); if (!OpDef) error("Pattern has unexpected operator type!"); Record *Operator = OpDef->getDef(); - + if (Operator->isSubClassOf("ValueType")) { // If the operator is a ValueType, then this must be "type cast" of a leaf // node. if (Dag->getNumArgs() != 1) error("Type cast only takes one operand!"); - + TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); - + // Apply the type cast. assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); New->UpdateNodeType(0, getValueType(Operator), *this); - + if (!OpName.empty()) error("ValueType cast should not have a name!"); return New; } - + // Verify that this is something that makes sense for an operator. - if (!Operator->isSubClassOf("PatFrag") && + if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && - !Operator->isSubClassOf("Instruction") && + !Operator->isSubClassOf("Instruction") && !Operator->isSubClassOf("SDNodeXForm") && !Operator->isSubClassOf("Intrinsic") && Operator->getName() != "set" && Operator->getName() != "implicit") error("Unrecognized node '" + Operator->getName() + "'!"); - + // Check to see if this is something that is illegal in an input pattern. if (isInputPattern) { if (Operator->isSubClassOf("Instruction") || @@ -1594,7 +1745,7 @@ TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ } else { if (Operator->isSubClassOf("Intrinsic")) error("Cannot use '" + Operator->getName() + "' in an output pattern!"); - + if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" && Operator->getName() != "fpimm" && @@ -1609,15 +1760,15 @@ TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ Operator->getName() != "vt") error("Cannot use '" + Operator->getName() + "' in an output pattern!"); } - + std::vector<TreePatternNode*> Children; // Parse all the operands. for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); - + // If the operator is an intrinsic, then this is just syntactic sugar for for - // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and + // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and // convert the intrinsic name to a number. if (Operator->isSubClassOf("Intrinsic")) { const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); @@ -1632,15 +1783,15 @@ TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); else // Otherwise, no chain. Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); - + TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1); Children.insert(Children.begin(), IIDNode); } - + unsigned NumResults = GetNumNodeResults(Operator, CDP); TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); Result->setName(OpName); - + if (!Dag->getName().empty()) { assert(Result->getName().empty()); Result->setName(Dag->getName()); @@ -1698,10 +1849,10 @@ InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { } // If there are constraints on our named nodes, apply them. - for (StringMap<SmallVector<TreePatternNode*,1> >::iterator + for (StringMap<SmallVector<TreePatternNode*,1> >::iterator I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { SmallVectorImpl<TreePatternNode*> &Nodes = I->second; - + // If we have input named node types, propagate their types to the named // values here. if (InNamedTypes) { @@ -1724,7 +1875,7 @@ InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { if (DI && DI->getDef()->isSubClassOf("RegisterClass")) continue; } - + assert(Nodes[i]->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"); @@ -1732,7 +1883,7 @@ InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { *this); } } - + // If there are multiple nodes with the same name, they must all have the // same type. if (I->second.size() > 1) { @@ -1740,14 +1891,14 @@ InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"); - + MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); } } } } - + bool HasUnresolvedTypes = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); @@ -1763,7 +1914,7 @@ void TreePattern::print(raw_ostream &OS) const { OS << ")"; } OS << ": "; - + if (Trees.size() > 1) OS << "[\n"; for (unsigned i = 0, e = Trees.size(); i != e; ++i) { @@ -1782,7 +1933,9 @@ void TreePattern::dump() const { print(errs()); } // CodeGenDAGPatterns implementation // -CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) { +CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : + Records(R), Target(R) { + Intrinsics = LoadIntrinsics(Records, false); TgtIntrinsics = LoadIntrinsics(Records, true); ParseNodeInfo(); @@ -1792,7 +1945,7 @@ CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) { ParseDefaultOperands(); ParseInstructions(); ParsePatterns(); - + // Generate variants. For example, commutative patterns can match // multiple ways. Add them to PatternsToMatch as well. GenerateVariants(); @@ -1863,20 +2016,20 @@ void CodeGenDAGPatterns::ParseComplexPatterns() { /// void CodeGenDAGPatterns::ParsePatternFragments() { std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); - + // First step, parse all of the fragments. for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); PatternFragments[Fragments[i]] = P; - + // Validate the argument list, converting it to set, to discard duplicates. std::vector<std::string> &Args = P->getArgList(); std::set<std::string> OperandsSet(Args.begin(), Args.end()); - + if (OperandsSet.count("")) P->error("Cannot have unnamed 'node' values in pattern fragment!"); - + // Parse the operands list. DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); @@ -1887,8 +2040,8 @@ void CodeGenDAGPatterns::ParsePatternFragments() { OpsOp->getDef()->getName() != "outs" && OpsOp->getDef()->getName() != "ins")) P->error("Operands list should start with '(ops ... '!"); - - // Copy over the arguments. + + // Copy over the arguments. Args.clear(); for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || @@ -1903,7 +2056,7 @@ void CodeGenDAGPatterns::ParsePatternFragments() { OperandsSet.erase(OpsList->getArgName(j)); Args.push_back(OpsList->getArgName(j)); } - + if (!OperandsSet.empty()) P->error("Operands list does not contain an entry for operand '" + *OperandsSet.begin() + "'!"); @@ -1913,20 +2066,20 @@ void CodeGenDAGPatterns::ParsePatternFragments() { std::string Code = Fragments[i]->getValueAsCode("Predicate"); if (!Code.empty()) P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName()); - + // If there is a node transformation corresponding to this, keep track of // it. Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? P->getOnlyTree()->setTransformFn(Transform); } - + // Now that we've parsed all of the tree fragments, do a closure on them so // that there are not references to PatFrags left inside of them. for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { TreePattern *ThePat = PatternFragments[Fragments[i]]; ThePat->InlinePatternFragments(); - + // Infer as many types as possible. Don't worry about it if we don't infer // all of them, some may depend on the inputs of the pattern. try { @@ -1937,7 +2090,7 @@ void CodeGenDAGPatterns::ParsePatternFragments() { // actually used by instructions, the type consistency error will be // reported there. } - + // If debugging, print out the pattern fragment result. DEBUG(ThePat->dump()); } @@ -1951,11 +2104,11 @@ void CodeGenDAGPatterns::ParseDefaultOperands() { // Find some SDNode. assert(!SDNodes.empty() && "No SDNodes parsed?"); Init *SomeSDNode = new DefInit(SDNodes.begin()->first); - + for (unsigned iter = 0; iter != 2; ++iter) { for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); - + // Clone the DefaultInfo dag node, changing the operator from 'ops' to // SomeSDnode so that we can parse this. std::vector<std::pair<Init*, std::string> > Ops; @@ -1963,20 +2116,20 @@ void CodeGenDAGPatterns::ParseDefaultOperands() { Ops.push_back(std::make_pair(DefaultInfo->getArg(op), DefaultInfo->getArgName(op))); DagInit *DI = new DagInit(SomeSDNode, "", Ops); - + // Create a TreePattern to parse this. TreePattern P(DefaultOps[iter][i], DI, false, *this); assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); // Copy the operands over into a DAGDefaultOperand. DAGDefaultOperand DefaultOpInfo; - + TreePatternNode *T = P.getTree(0); for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { TreePatternNode *TPN = T->getChild(op); while (TPN->ApplyTypeConstraints(P, false)) /* Resolve all types */; - + if (TPN->ContainsUnresolvedType()) { if (iter == 0) throw "Value #" + utostr(i) + " of PredicateOperand '" + @@ -2033,7 +2186,7 @@ static bool HandleUse(TreePattern *I, TreePatternNode *Pat, assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); SlotRec = Slot->getOperator(); } - + // Ensure that the inputs agree if we've already seen this input. if (Rec != SlotRec) I->error("All $" + Pat->getName() + " inputs must agree with each other"); @@ -2056,13 +2209,13 @@ FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, I->error("Cannot specify a transform function for a non-input value!"); return; } - + if (Pat->getOperator()->getName() == "implicit") { for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("implicitly defined value should be a register!"); - + DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); if (!Val || !Val->getDef()->isSubClassOf("Register")) I->error("implicitly defined value should be a register!"); @@ -2070,7 +2223,7 @@ FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, } return; } - + if (Pat->getOperator()->getName() != "set") { // If this is not a set, verify that the children nodes are not void typed, // and recurse. @@ -2080,30 +2233,30 @@ FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, InstImpResults); } - + // If this is a non-leaf node with no children, treat it basically as if // it were a leaf. This handles nodes like (imm). bool isUse = HandleUse(I, Pat, InstInputs); - + if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } - + // Otherwise, this is a set, validate and collect instruction results. if (Pat->getNumChildren() == 0) I->error("set requires operands!"); - + if (Pat->getTransformFn()) I->error("Cannot specify a transform function on a set node!"); - + // Check the set destinations. unsigned NumDests = Pat->getNumChildren()-1; for (unsigned i = 0; i != NumDests; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("set destination should be a register!"); - + DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); if (!Val) I->error("set destination should be a register!"); @@ -2121,7 +2274,7 @@ FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, I->error("set destination should be a register!"); } } - + // Verify and collect info from the computation. FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), InstInputs, InstResults, InstImpResults); @@ -2254,8 +2407,8 @@ static void InferFromPattern(const CodeGenInstruction &Inst, "which already inferred this.\n", Inst.TheDef->getName().c_str()); HasSideEffects = true; } - - if (Inst.isVariadic) + + if (Inst.Operands.isVariadic) IsVariadic = true; // Can warn if we want. } @@ -2264,64 +2417,64 @@ static void InferFromPattern(const CodeGenInstruction &Inst, /// resolved instructions. void CodeGenDAGPatterns::ParseInstructions() { std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); - + for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { ListInit *LI = 0; - + if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) LI = Instrs[i]->getValueAsListInit("Pattern"); - + // If there is no pattern, only collect minimal information about the // instruction for its operand list. We have to assume that there is one // result, as we have no detailed info. if (!LI || LI->getSize() == 0) { std::vector<Record*> Results; std::vector<Record*> Operands; - + CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); - if (InstInfo.OperandList.size() != 0) { - if (InstInfo.NumDefs == 0) { + if (InstInfo.Operands.size() != 0) { + if (InstInfo.Operands.NumDefs == 0) { // These produce no results - for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) - Operands.push_back(InstInfo.OperandList[j].Rec); + for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) + Operands.push_back(InstInfo.Operands[j].Rec); } else { // Assume the first operand is the result. - Results.push_back(InstInfo.OperandList[0].Rec); - + Results.push_back(InstInfo.Operands[0].Rec); + // The rest are inputs. - for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) - Operands.push_back(InstInfo.OperandList[j].Rec); + for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) + Operands.push_back(InstInfo.Operands[j].Rec); } } - + // Create and insert the instruction. std::vector<Record*> ImpResults; - Instructions.insert(std::make_pair(Instrs[i], + Instructions.insert(std::make_pair(Instrs[i], DAGInstruction(0, Results, Operands, ImpResults))); continue; // no pattern. } - + // Parse the instruction. TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); // Inline pattern fragments into it. I->InlinePatternFragments(); - + // Infer as many types as possible. If we cannot infer all of them, we can // never do anything with this instruction pattern: report it to the user. if (!I->InferAllTypes()) I->error("Could not infer all types in pattern!"); - - // InstInputs - Keep track of all of the inputs of the instruction, along + + // InstInputs - Keep track of all of the inputs of the instruction, along // with the record they are declared as. std::map<std::string, TreePatternNode*> InstInputs; - + // InstResults - Keep track of all the virtual registers that are 'set' // in the instruction, including what reg class they are. std::map<std::string, TreePatternNode*> InstResults; std::vector<Record*> InstImpResults; - + // Verify that the top-level forms in the instruction are of void type, and // fill in the InstResults map. for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { @@ -2348,29 +2501,29 @@ void CodeGenDAGPatterns::ParseInstructions() { std::vector<Record*> Results; TreePatternNode *Res0Node = 0; for (unsigned i = 0; i != NumResults; ++i) { - if (i == CGI.OperandList.size()) + if (i == CGI.Operands.size()) I->error("'" + InstResults.begin()->first + "' set but does not appear in operand list!"); - const std::string &OpName = CGI.OperandList[i].Name; - + const std::string &OpName = CGI.Operands[i].Name; + // Check that it exists in InstResults. TreePatternNode *RNode = InstResults[OpName]; if (RNode == 0) I->error("Operand $" + OpName + " does not exist in operand list!"); - + if (i == 0) Res0Node = RNode; Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); if (R == 0) I->error("Operand $" + OpName + " should be a set destination: all " "outputs must occur before inputs in operand list!"); - - if (CGI.OperandList[i].Rec != R) + + if (CGI.Operands[i].Rec != R) I->error("Operand $" + OpName + " class mismatch!"); - + // Remember the return type. - Results.push_back(CGI.OperandList[i].Rec); - + Results.push_back(CGI.Operands[i].Rec); + // Okay, this one checks out. InstResults.erase(OpName); } @@ -2381,8 +2534,8 @@ void CodeGenDAGPatterns::ParseInstructions() { std::vector<TreePatternNode*> ResultNodeOperands; std::vector<Record*> Operands; - for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { - CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; + for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { + CGIOperandList::OperandInfo &Op = CGI.Operands[i]; const std::string &OpName = Op.Name; if (OpName.empty()) I->error("Operand #" + utostr(i) + " in operands list has no name!"); @@ -2403,7 +2556,7 @@ void CodeGenDAGPatterns::ParseInstructions() { } TreePatternNode *InVal = InstInputsCheck[OpName]; InstInputsCheck.erase(OpName); // It occurred, remove from map. - + if (InVal->isLeaf() && dynamic_cast<DefInit*>(InVal->getLeafValue())) { Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); @@ -2412,13 +2565,13 @@ void CodeGenDAGPatterns::ParseInstructions() { " between the operand and pattern"); } Operands.push_back(Op.Rec); - + // Construct the result for the dest-pattern operand list. TreePatternNode *OpNode = InVal->clone(); - + // No predicate is useful on the result. OpNode->clearPredicateFns(); - + // Promote the xform function to be an explicit node if set. if (Record *Xform = OpNode->getTransformFn()) { OpNode->setTransformFn(0); @@ -2426,10 +2579,10 @@ void CodeGenDAGPatterns::ParseInstructions() { Children.push_back(OpNode); OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); } - + ResultNodeOperands.push_back(OpNode); } - + if (!InstInputsCheck.empty()) I->error("Input operand $" + InstInputsCheck.begin()->first + " occurs in pattern but not in operands list!"); @@ -2454,10 +2607,10 @@ void CodeGenDAGPatterns::ParseInstructions() { DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; TheInsertedInst.setResultPattern(Temp.getOnlyTree()); - + DEBUG(I->dump()); } - + // If we can, convert the instructions to be patterns that are matched! for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = Instructions.begin(), @@ -2476,10 +2629,11 @@ void CodeGenDAGPatterns::ParseInstructions() { // Not a set (store or something?) SrcPattern = Pattern; } - + Record *Instr = II->first; AddPatternToMatch(I, - PatternToMatch(Instr->getValueAsListInit("Predicates"), + PatternToMatch(Instr, + Instr->getValueAsListInit("Predicates"), SrcPattern, TheInst.getResultPattern(), TheInst.getImpResults(), @@ -2491,7 +2645,7 @@ void CodeGenDAGPatterns::ParseInstructions() { typedef std::pair<const TreePatternNode*, unsigned> NameRecord; -static void FindNames(const TreePatternNode *P, +static void FindNames(const TreePatternNode *P, std::map<std::string, NameRecord> &Names, const TreePattern *PatternTop) { if (!P->getName().empty()) { @@ -2503,7 +2657,7 @@ static void FindNames(const TreePatternNode *P, PatternTop->error("repetition of value: $" + P->getName() + " where different uses have different types!"); } - + if (!P->isLeaf()) { for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) FindNames(P->getChild(i), Names, PatternTop); @@ -2516,7 +2670,7 @@ void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, std::string Reason; if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) Pattern->error("Pattern can never match: " + Reason); - + // If the source pattern's root is a complex pattern, that complex pattern // must specify the nodes it can potentially match. if (const ComplexPattern *CP = @@ -2524,8 +2678,8 @@ void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, if (CP->getRootNodes().empty()) Pattern->error("ComplexPattern at root must specify list of opcodes it" " could match"); - - + + // Find all of the named values in the input and output, ensure they have the // same type. std::map<std::string, NameRecord> SrcNames, DstNames; @@ -2540,14 +2694,14 @@ void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, Pattern->error("Pattern has input without matching name in output: $" + I->first); } - + // Scan all of the named values in the source pattern, rejecting them if the // name isn't used in the dest, and isn't used to tie two values together. for (std::map<std::string, NameRecord>::iterator I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) Pattern->error("Pattern has dead named input: $" + I->first); - + PatternsToMatch.push_back(PTM); } @@ -2566,7 +2720,7 @@ void CodeGenDAGPatterns::InferInstructionFlags() { InstInfo.mayStore = MayStore; InstInfo.mayLoad = MayLoad; InstInfo.hasSideEffects = HasSideEffects; - InstInfo.isVariadic = IsVariadic; + InstInfo.Operands.isVariadic = IsVariadic; } } @@ -2576,7 +2730,7 @@ void CodeGenDAGPatterns::InferInstructionFlags() { static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { if (N->isLeaf()) return false; - + // Analyze children. for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) if (ForceArbitraryInstResultType(N->getChild(i), TP)) @@ -2590,12 +2744,12 @@ static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) continue; - + // Otherwise, force its type to the first possibility (an arbitrary choice). if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) return true; } - + return false; } @@ -2609,20 +2763,20 @@ void CodeGenDAGPatterns::ParsePatterns() { // Inline pattern fragments into it. Pattern->InlinePatternFragments(); - + ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); if (LI->getSize() == 0) continue; // no pattern. - + // Parse the instruction. TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); - + // Inline pattern fragments into it. Result->InlinePatternFragments(); if (Result->getNumTrees() != 1) Result->error("Cannot handle instructions producing instructions " "with temporaries yet!"); - + bool IterateInference; bool InferredAllPatternTypes, InferredAllResultTypes; do { @@ -2630,14 +2784,14 @@ void CodeGenDAGPatterns::ParsePatterns() { // can never do anything with this pattern: report it to the user. InferredAllPatternTypes = Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); - + // Infer as many types as possible. If we cannot infer all of them, we // can never do anything with this pattern: report it to the user. InferredAllResultTypes = Result->InferAllTypes(&Pattern->getNamedNodesMap()); IterateInference = false; - + // Apply the type of the result to the source pattern. This helps us // resolve cases where the input type is known to be a pointer type (which // is considered resolved), but the result knows it needs to be 32- or @@ -2650,7 +2804,7 @@ void CodeGenDAGPatterns::ParsePatterns() { IterateInference |= Result->getTree(0)-> UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); } - + // If our iteration has converged and the input pattern's types are fully // resolved but the result pattern is not fully resolved, we may have a // situation where we have two instructions in the result pattern and @@ -2665,7 +2819,7 @@ void CodeGenDAGPatterns::ParsePatterns() { IterateInference = ForceArbitraryInstResultType(Result->getTree(0), *Result); } while (IterateInference); - + // Verify that we inferred enough types that we can do something with the // pattern and result. If these fire the user has to add type casts. if (!InferredAllPatternTypes) @@ -2674,7 +2828,7 @@ void CodeGenDAGPatterns::ParsePatterns() { Pattern->dump(); Result->error("Could not infer all types in pattern result!"); } - + // Validate that the input pattern is correct. std::map<std::string, TreePatternNode*> InstInputs; std::map<std::string, TreePatternNode*> InstResults; @@ -2702,16 +2856,17 @@ void CodeGenDAGPatterns::ParsePatterns() { DstPattern = new TreePatternNode(DstPattern->getOperator(), ResultNodeOperands, DstPattern->getNumTypes()); - + for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); - + TreePattern Temp(Result->getRecord(), DstPattern, false, *this); Temp.InferAllTypes(); - + AddPatternToMatch(Pattern, - PatternToMatch(CurPattern->getValueAsListInit("Predicates"), + PatternToMatch(CurPattern, + CurPattern->getValueAsListInit("Predicates"), Pattern->getTree(0), Temp.getOnlyTree(), InstImpResults, CurPattern->getValueAsInt("AddedComplexity"), @@ -2721,7 +2876,7 @@ void CodeGenDAGPatterns::ParsePatterns() { /// CombineChildVariants - Given a bunch of permutations of each child of the /// 'operator' node, put them together in all possible ways. -static void CombineChildVariants(TreePatternNode *Orig, +static void CombineChildVariants(TreePatternNode *Orig, const std::vector<std::vector<TreePatternNode*> > &ChildVariants, std::vector<TreePatternNode*> &OutVariants, CodeGenDAGPatterns &CDP, @@ -2730,7 +2885,7 @@ static void CombineChildVariants(TreePatternNode *Orig, for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) if (ChildVariants[i].empty()) return; - + // The end result is an all-pairs construction of the resultant pattern. std::vector<unsigned> Idxs; Idxs.resize(ChildVariants.size()); @@ -2751,21 +2906,21 @@ static void CombineChildVariants(TreePatternNode *Orig, NewChildren.push_back(ChildVariants[i][Idxs[i]]); TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, Orig->getNumTypes()); - + // Copy over properties. R->setName(Orig->getName()); R->setPredicateFns(Orig->getPredicateFns()); R->setTransformFn(Orig->getTransformFn()); for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) R->setType(i, Orig->getExtType(i)); - + // If this pattern cannot match, do not include it as a variant. std::string ErrString; if (!R->canPatternMatch(ErrString, CDP)) { delete R; } else { bool AlreadyExists = false; - + // Scan to see if this pattern has already been emitted. We can get // duplication due to things like commuting: // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) @@ -2775,13 +2930,13 @@ static void CombineChildVariants(TreePatternNode *Orig, AlreadyExists = true; break; } - + if (AlreadyExists) delete R; else OutVariants.push_back(R); } - + // Increment indices to the next permutation by incrementing the // indicies from last index backward, e.g., generate the sequence // [0, 0], [0, 1], [1, 0], [1, 1]. @@ -2798,7 +2953,7 @@ static void CombineChildVariants(TreePatternNode *Orig, /// CombineChildVariants - A helper function for binary operators. /// -static void CombineChildVariants(TreePatternNode *Orig, +static void CombineChildVariants(TreePatternNode *Orig, const std::vector<TreePatternNode*> &LHS, const std::vector<TreePatternNode*> &RHS, std::vector<TreePatternNode*> &OutVariants, @@ -2808,14 +2963,14 @@ static void CombineChildVariants(TreePatternNode *Orig, ChildVariants.push_back(LHS); ChildVariants.push_back(RHS); CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); -} +} static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, std::vector<TreePatternNode *> &Children) { assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); Record *Operator = N->getOperator(); - + // Only permit raw nodes. if (!N->getName().empty() || !N->getPredicateFns().empty() || N->getTransformFn()) { @@ -2852,7 +3007,7 @@ static void GenerateVariantsOf(TreePatternNode *N, // If this node is associative, re-associate. if (NodeInfo.hasProperty(SDNPAssociative)) { - // Re-associate by pulling together all of the linked operators + // Re-associate by pulling together all of the linked operators std::vector<TreePatternNode*> MaximalChildren; GatherChildrenOfAssociativeOpcode(N, MaximalChildren); @@ -2864,11 +3019,11 @@ static void GenerateVariantsOf(TreePatternNode *N, GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); - + // There are only two ways we can permute the tree: // (A op B) op C and A op (B op C) // Within these forms, we can also permute A/B/C. - + // Generate legal pair permutations of A/B/C. std::vector<TreePatternNode*> ABVariants; std::vector<TreePatternNode*> BAVariants; @@ -2901,7 +3056,7 @@ static void GenerateVariantsOf(TreePatternNode *N, return; } } - + // Compute permutations of all children. std::vector<std::vector<TreePatternNode*> > ChildVariants; ChildVariants.resize(N->getNumChildren()); @@ -2953,7 +3108,7 @@ static void GenerateVariantsOf(TreePatternNode *N, // match multiple ways. Add them to PatternsToMatch as well. void CodeGenDAGPatterns::GenerateVariants() { DEBUG(errs() << "Generating instruction variants.\n"); - + // Loop over all of the patterns we've collected, checking to see if we can // generate variants of the instruction, through the exploitation of // identities. This permits the target to provide aggressive matching without @@ -2970,7 +3125,8 @@ void CodeGenDAGPatterns::GenerateVariants() { DEBUG(errs() << "Dependent/multiply used variables: "); DEBUG(DumpDepVars(DepVars)); DEBUG(errs() << "\n"); - GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars); + GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, + DepVars); assert(!Variants.empty() && "Must create at least original variant!"); Variants.erase(Variants.begin()); // Remove the original pattern. @@ -2988,7 +3144,7 @@ void CodeGenDAGPatterns::GenerateVariants() { DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); errs() << "\n"); - + // Scan to see if an instruction or explicit pattern already matches this. bool AlreadyExists = false; for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { @@ -2997,7 +3153,8 @@ void CodeGenDAGPatterns::GenerateVariants() { PatternsToMatch[p].getPredicates()) continue; // Check to see if this variant already exists. - if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) { + if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), + DepVars)) { DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); AlreadyExists = true; break; @@ -3008,7 +3165,8 @@ void CodeGenDAGPatterns::GenerateVariants() { // Otherwise, add it to the list of patterns we have. PatternsToMatch. - push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), + push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), + PatternsToMatch[i].getPredicates(), Variant, PatternsToMatch[i].getDstPattern(), PatternsToMatch[i].getDstRegs(), PatternsToMatch[i].getAddedComplexity(), |