summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp')
-rw-r--r--contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp3293
1 files changed, 3293 insertions, 0 deletions
diff --git a/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp b/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp
new file mode 100644
index 0000000..dbf1662
--- /dev/null
+++ b/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp
@@ -0,0 +1,3293 @@
+//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CodeGenDAGPatterns class, which is used to read and
+// represent the patterns present in a .td file for instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenDAGPatterns.h"
+#include "llvm/TableGen/Error.h"
+#include "llvm/TableGen/Record.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Debug.h"
+#include <set>
+#include <algorithm>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// EEVT::TypeSet Implementation
+//===----------------------------------------------------------------------===//
+
+static inline bool isInteger(MVT::SimpleValueType VT) {
+ return EVT(VT).isInteger();
+}
+static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
+ return EVT(VT).isFloatingPoint();
+}
+static inline bool isVector(MVT::SimpleValueType VT) {
+ return EVT(VT).isVector();
+}
+static inline bool isScalar(MVT::SimpleValueType VT) {
+ return !EVT(VT).isVector();
+}
+
+EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
+ if (VT == MVT::iAny)
+ EnforceInteger(TP);
+ else if (VT == MVT::fAny)
+ EnforceFloatingPoint(TP);
+ else if (VT == MVT::vAny)
+ EnforceVector(TP);
+ else {
+ assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
+ VT == MVT::iPTRAny) && "Not a concrete type!");
+ TypeVec.push_back(VT);
+ }
+}
+
+
+EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
+ assert(!VTList.empty() && "empty list?");
+ TypeVec.append(VTList.begin(), VTList.end());
+
+ if (!VTList.empty())
+ assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
+ VTList[0] != MVT::fAny);
+
+ // Verify no duplicates.
+ array_pod_sort(TypeVec.begin(), TypeVec.end());
+ assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
+}
+
+/// FillWithPossibleTypes - Set to all legal types and return true, only valid
+/// on completely unknown type sets.
+bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
+ bool (*Pred)(MVT::SimpleValueType),
+ const char *PredicateName) {
+ assert(isCompletelyUnknown());
+ const std::vector<MVT::SimpleValueType> &LegalTypes =
+ TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
+
+ for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
+ if (Pred == 0 || Pred(LegalTypes[i]))
+ TypeVec.push_back(LegalTypes[i]);
+
+ // If we have nothing that matches the predicate, bail out.
+ if (TypeVec.empty())
+ TP.error("Type inference contradiction found, no " +
+ std::string(PredicateName) + " types found");
+ // No need to sort with one element.
+ if (TypeVec.size() == 1) return true;
+
+ // Remove duplicates.
+ array_pod_sort(TypeVec.begin(), TypeVec.end());
+ TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
+
+ return true;
+}
+
+/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
+/// integer value type.
+bool EEVT::TypeSet::hasIntegerTypes() const {
+ for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
+ if (isInteger(TypeVec[i]))
+ return true;
+ return false;
+}
+
+/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
+/// a floating point value type.
+bool EEVT::TypeSet::hasFloatingPointTypes() const {
+ for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
+ if (isFloatingPoint(TypeVec[i]))
+ return true;
+ return false;
+}
+
+/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
+/// value type.
+bool EEVT::TypeSet::hasVectorTypes() const {
+ for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
+ if (isVector(TypeVec[i]))
+ return true;
+ return false;
+}
+
+
+std::string EEVT::TypeSet::getName() const {
+ if (TypeVec.empty()) return "<empty>";
+
+ std::string Result;
+
+ for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
+ std::string VTName = llvm::getEnumName(TypeVec[i]);
+ // Strip off MVT:: prefix if present.
+ if (VTName.substr(0,5) == "MVT::")
+ VTName = VTName.substr(5);
+ if (i) Result += ':';
+ Result += VTName;
+ }
+
+ if (TypeVec.size() == 1)
+ return Result;
+ return "{" + Result + "}";
+}
+
+/// MergeInTypeInfo - This merges in type information from the specified
+/// argument. If 'this' changes, it returns true. If the two types are
+/// contradictory (e.g. merge f32 into i32) then this throws an exception.
+bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
+ if (InVT.isCompletelyUnknown() || *this == InVT)
+ return false;
+
+ if (isCompletelyUnknown()) {
+ *this = InVT;
+ return true;
+ }
+
+ assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
+
+ // Handle the abstract cases, seeing if we can resolve them better.
+ switch (TypeVec[0]) {
+ default: break;
+ case MVT::iPTR:
+ case MVT::iPTRAny:
+ if (InVT.hasIntegerTypes()) {
+ EEVT::TypeSet InCopy(InVT);
+ InCopy.EnforceInteger(TP);
+ InCopy.EnforceScalar(TP);
+
+ if (InCopy.isConcrete()) {
+ // If the RHS has one integer type, upgrade iPTR to i32.
+ TypeVec[0] = InVT.TypeVec[0];
+ return true;
+ }
+
+ // If the input has multiple scalar integers, this doesn't add any info.
+ if (!InCopy.isCompletelyUnknown())
+ return false;
+ }
+ break;
+ }
+
+ // If the input constraint is iAny/iPTR and this is an integer type list,
+ // remove non-integer types from the list.
+ if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
+ hasIntegerTypes()) {
+ bool MadeChange = EnforceInteger(TP);
+
+ // If we're merging in iPTR/iPTRAny and the node currently has a list of
+ // multiple different integer types, replace them with a single iPTR.
+ if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
+ TypeVec.size() != 1) {
+ TypeVec.resize(1);
+ TypeVec[0] = InVT.TypeVec[0];
+ MadeChange = true;
+ }
+
+ return MadeChange;
+ }
+
+ // If this is a type list and the RHS is a typelist as well, eliminate entries
+ // from this list that aren't in the other one.
+ bool MadeChange = false;
+ TypeSet InputSet(*this);
+
+ for (unsigned i = 0; i != TypeVec.size(); ++i) {
+ bool InInVT = false;
+ for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
+ if (TypeVec[i] == InVT.TypeVec[j]) {
+ InInVT = true;
+ break;
+ }
+
+ if (InInVT) continue;
+ TypeVec.erase(TypeVec.begin()+i--);
+ MadeChange = true;
+ }
+
+ // If we removed all of our types, we have a type contradiction.
+ if (!TypeVec.empty())
+ return MadeChange;
+
+ // FIXME: Really want an SMLoc here!
+ TP.error("Type inference contradiction found, merging '" +
+ InVT.getName() + "' into '" + InputSet.getName() + "'");
+ return true; // unreachable
+}
+
+/// EnforceInteger - Remove all non-integer types from this set.
+bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
+ // If we know nothing, then get the full set.
+ if (TypeVec.empty())
+ return FillWithPossibleTypes(TP, isInteger, "integer");
+ if (!hasFloatingPointTypes())
+ return false;
+
+ TypeSet InputSet(*this);
+
+ // Filter out all the fp types.
+ for (unsigned i = 0; i != TypeVec.size(); ++i)
+ if (!isInteger(TypeVec[i]))
+ TypeVec.erase(TypeVec.begin()+i--);
+
+ if (TypeVec.empty())
+ TP.error("Type inference contradiction found, '" +
+ InputSet.getName() + "' needs to be integer");
+ return true;
+}
+
+/// EnforceFloatingPoint - Remove all integer types from this set.
+bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
+ // If we know nothing, then get the full set.
+ if (TypeVec.empty())
+ return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
+
+ if (!hasIntegerTypes())
+ return false;
+
+ TypeSet InputSet(*this);
+
+ // Filter out all the fp types.
+ for (unsigned i = 0; i != TypeVec.size(); ++i)
+ if (!isFloatingPoint(TypeVec[i]))
+ TypeVec.erase(TypeVec.begin()+i--);
+
+ if (TypeVec.empty())
+ TP.error("Type inference contradiction found, '" +
+ InputSet.getName() + "' needs to be floating point");
+ return true;
+}
+
+/// EnforceScalar - Remove all vector types from this.
+bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
+ // If we know nothing, then get the full set.
+ if (TypeVec.empty())
+ return FillWithPossibleTypes(TP, isScalar, "scalar");
+
+ if (!hasVectorTypes())
+ return false;
+
+ TypeSet InputSet(*this);
+
+ // Filter out all the vector types.
+ for (unsigned i = 0; i != TypeVec.size(); ++i)
+ if (!isScalar(TypeVec[i]))
+ TypeVec.erase(TypeVec.begin()+i--);
+
+ if (TypeVec.empty())
+ TP.error("Type inference contradiction found, '" +
+ InputSet.getName() + "' needs to be scalar");
+ return true;
+}
+
+/// EnforceVector - Remove all vector types from this.
+bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
+ // If we know nothing, then get the full set.
+ if (TypeVec.empty())
+ return FillWithPossibleTypes(TP, isVector, "vector");
+
+ TypeSet InputSet(*this);
+ bool MadeChange = false;
+
+ // Filter out all the scalar types.
+ for (unsigned i = 0; i != TypeVec.size(); ++i)
+ if (!isVector(TypeVec[i])) {
+ TypeVec.erase(TypeVec.begin()+i--);
+ MadeChange = true;
+ }
+
+ if (TypeVec.empty())
+ TP.error("Type inference contradiction found, '" +
+ InputSet.getName() + "' needs to be a vector");
+ return MadeChange;
+}
+
+
+
+/// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
+/// this an other based on this information.
+bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
+ // Both operands must be integer or FP, but we don't care which.
+ bool MadeChange = false;
+
+ if (isCompletelyUnknown())
+ MadeChange = FillWithPossibleTypes(TP);
+
+ if (Other.isCompletelyUnknown())
+ MadeChange = Other.FillWithPossibleTypes(TP);
+
+ // If one side is known to be integer or known to be FP but the other side has
+ // no information, get at least the type integrality info in there.
+ if (!hasFloatingPointTypes())
+ MadeChange |= Other.EnforceInteger(TP);
+ else if (!hasIntegerTypes())
+ MadeChange |= Other.EnforceFloatingPoint(TP);
+ if (!Other.hasFloatingPointTypes())
+ MadeChange |= EnforceInteger(TP);
+ else if (!Other.hasIntegerTypes())
+ MadeChange |= EnforceFloatingPoint(TP);
+
+ assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
+ "Should have a type list now");
+
+ // If one contains vectors but the other doesn't pull vectors out.
+ if (!hasVectorTypes())
+ MadeChange |= Other.EnforceScalar(TP);
+ if (!hasVectorTypes())
+ MadeChange |= EnforceScalar(TP);
+
+ if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
+ // If we are down to concrete types, this code does not currently
+ // handle nodes which have multiple types, where some types are
+ // integer, and some are fp. Assert that this is not the case.
+ assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
+ !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
+ "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
+
+ // Otherwise, if these are both vector types, either this vector
+ // must have a larger bitsize than the other, or this element type
+ // must be larger than the other.
+ EVT Type(TypeVec[0]);
+ EVT OtherType(Other.TypeVec[0]);
+
+ if (hasVectorTypes() && Other.hasVectorTypes()) {
+ if (Type.getSizeInBits() >= OtherType.getSizeInBits())
+ if (Type.getVectorElementType().getSizeInBits()
+ >= OtherType.getVectorElementType().getSizeInBits())
+ TP.error("Type inference contradiction found, '" +
+ getName() + "' element type not smaller than '" +
+ Other.getName() +"'!");
+ }
+ else
+ // For scalar types, the bitsize of this type must be larger
+ // than that of the other.
+ if (Type.getSizeInBits() >= OtherType.getSizeInBits())
+ TP.error("Type inference contradiction found, '" +
+ getName() + "' is not smaller than '" +
+ Other.getName() +"'!");
+
+ }
+
+
+ // Handle int and fp as disjoint sets. This won't work for patterns
+ // that have mixed fp/int types but those are likely rare and would
+ // not have been accepted by this code previously.
+
+ // Okay, find the smallest type from the current set and remove it from the
+ // largest set.
+ MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
+ for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
+ if (isInteger(TypeVec[i])) {
+ SmallestInt = TypeVec[i];
+ break;
+ }
+ for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
+ if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
+ SmallestInt = TypeVec[i];
+
+ MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
+ for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
+ if (isFloatingPoint(TypeVec[i])) {
+ SmallestFP = TypeVec[i];
+ break;
+ }
+ for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
+ if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
+ SmallestFP = TypeVec[i];
+
+ int OtherIntSize = 0;
+ int OtherFPSize = 0;
+ for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
+ Other.TypeVec.begin();
+ TVI != Other.TypeVec.end();
+ /* NULL */) {
+ if (isInteger(*TVI)) {
+ ++OtherIntSize;
+ if (*TVI == SmallestInt) {
+ TVI = Other.TypeVec.erase(TVI);
+ --OtherIntSize;
+ MadeChange = true;
+ continue;
+ }
+ }
+ else if (isFloatingPoint(*TVI)) {
+ ++OtherFPSize;
+ if (*TVI == SmallestFP) {
+ TVI = Other.TypeVec.erase(TVI);
+ --OtherFPSize;
+ MadeChange = true;
+ continue;
+ }
+ }
+ ++TVI;
+ }
+
+ // If this is the only type in the large set, the constraint can never be
+ // satisfied.
+ if ((Other.hasIntegerTypes() && OtherIntSize == 0)
+ || (Other.hasFloatingPointTypes() && OtherFPSize == 0))
+ TP.error("Type inference contradiction found, '" +
+ Other.getName() + "' has nothing larger than '" + getName() +"'!");
+
+ // Okay, find the largest type in the Other set and remove it from the
+ // current set.
+ MVT::SimpleValueType LargestInt = MVT::Other;
+ for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
+ if (isInteger(Other.TypeVec[i])) {
+ LargestInt = Other.TypeVec[i];
+ break;
+ }
+ for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
+ if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
+ LargestInt = Other.TypeVec[i];
+
+ MVT::SimpleValueType LargestFP = MVT::Other;
+ for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
+ if (isFloatingPoint(Other.TypeVec[i])) {
+ LargestFP = Other.TypeVec[i];
+ break;
+ }
+ for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
+ if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
+ LargestFP = Other.TypeVec[i];
+
+ int IntSize = 0;
+ int FPSize = 0;
+ for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
+ TypeVec.begin();
+ TVI != TypeVec.end();
+ /* NULL */) {
+ if (isInteger(*TVI)) {
+ ++IntSize;
+ if (*TVI == LargestInt) {
+ TVI = TypeVec.erase(TVI);
+ --IntSize;
+ MadeChange = true;
+ continue;
+ }
+ }
+ else if (isFloatingPoint(*TVI)) {
+ ++FPSize;
+ if (*TVI == LargestFP) {
+ TVI = TypeVec.erase(TVI);
+ --FPSize;
+ MadeChange = true;
+ continue;
+ }
+ }
+ ++TVI;
+ }
+
+ // If this is the only type in the small set, the constraint can never be
+ // satisfied.
+ if ((hasIntegerTypes() && IntSize == 0)
+ || (hasFloatingPointTypes() && FPSize == 0))
+ TP.error("Type inference contradiction found, '" +
+ getName() + "' has nothing smaller than '" + Other.getName()+"'!");
+
+ return MadeChange;
+}
+
+/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
+/// whose element is specified by VTOperand.
+bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
+ TreePattern &TP) {
+ // "This" must be a vector and "VTOperand" must be a scalar.
+ bool MadeChange = false;
+ MadeChange |= EnforceVector(TP);
+ MadeChange |= VTOperand.EnforceScalar(TP);
+
+ // If we know the vector type, it forces the scalar to agree.
+ if (isConcrete()) {
+ EVT IVT = getConcrete();
+ IVT = IVT.getVectorElementType();
+ return MadeChange |
+ VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
+ }
+
+ // If the scalar type is known, filter out vector types whose element types
+ // disagree.
+ if (!VTOperand.isConcrete())
+ return MadeChange;
+
+ MVT::SimpleValueType VT = VTOperand.getConcrete();
+
+ TypeSet InputSet(*this);
+
+ // Filter out all the types which don't have the right element type.
+ for (unsigned i = 0; i != TypeVec.size(); ++i) {
+ assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
+ if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
+ TypeVec.erase(TypeVec.begin()+i--);
+ MadeChange = true;
+ }
+ }
+
+ if (TypeVec.empty()) // FIXME: Really want an SMLoc here!
+ TP.error("Type inference contradiction found, forcing '" +
+ InputSet.getName() + "' to have a vector element");
+ return MadeChange;
+}
+
+/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
+/// vector type specified by VTOperand.
+bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
+ TreePattern &TP) {
+ // "This" must be a vector and "VTOperand" must be a vector.
+ bool MadeChange = false;
+ MadeChange |= EnforceVector(TP);
+ MadeChange |= VTOperand.EnforceVector(TP);
+
+ // "This" must be larger than "VTOperand."
+ MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
+
+ // If we know the vector type, it forces the scalar types to agree.
+ if (isConcrete()) {
+ EVT IVT = getConcrete();
+ IVT = IVT.getVectorElementType();
+
+ EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
+ MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
+ } else if (VTOperand.isConcrete()) {
+ EVT IVT = VTOperand.getConcrete();
+ IVT = IVT.getVectorElementType();
+
+ EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
+ MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
+ }
+
+ return MadeChange;
+}
+
+//===----------------------------------------------------------------------===//
+// Helpers for working with extended types.
+
+bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
+ return LHS->getID() < RHS->getID();
+}
+
+/// Dependent variable map for CodeGenDAGPattern variant generation
+typedef std::map<std::string, int> DepVarMap;
+
+/// Const iterator shorthand for DepVarMap
+typedef DepVarMap::const_iterator DepVarMap_citer;
+
+static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
+ if (N->isLeaf()) {
+ if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL)
+ DepMap[N->getName()]++;
+ } else {
+ for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
+ FindDepVarsOf(N->getChild(i), DepMap);
+ }
+}
+
+/// Find dependent variables within child patterns
+static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
+ DepVarMap depcounts;
+ FindDepVarsOf(N, depcounts);
+ for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
+ if (i->second > 1) // std::pair<std::string, int>
+ DepVars.insert(i->first);
+ }
+}
+
+#ifndef NDEBUG
+/// Dump the dependent variable set:
+static void DumpDepVars(MultipleUseVarSet &DepVars) {
+ if (DepVars.empty()) {
+ DEBUG(errs() << "<empty set>");
+ } else {
+ DEBUG(errs() << "[ ");
+ for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
+ e = DepVars.end(); i != e; ++i) {
+ DEBUG(errs() << (*i) << " ");
+ }
+ DEBUG(errs() << "]");
+ }
+}
+#endif
+
+
+//===----------------------------------------------------------------------===//
+// TreePredicateFn Implementation
+//===----------------------------------------------------------------------===//
+
+/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
+TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
+ assert((getPredCode().empty() || getImmCode().empty()) &&
+ ".td file corrupt: can't have a node predicate *and* an imm predicate");
+}
+
+std::string TreePredicateFn::getPredCode() const {
+ return PatFragRec->getRecord()->getValueAsCode("PredicateCode");
+}
+
+std::string TreePredicateFn::getImmCode() const {
+ return PatFragRec->getRecord()->getValueAsCode("ImmediateCode");
+}
+
+
+/// isAlwaysTrue - Return true if this is a noop predicate.
+bool TreePredicateFn::isAlwaysTrue() const {
+ return getPredCode().empty() && getImmCode().empty();
+}
+
+/// Return the name to use in the generated code to reference this, this is
+/// "Predicate_foo" if from a pattern fragment "foo".
+std::string TreePredicateFn::getFnName() const {
+ return "Predicate_" + PatFragRec->getRecord()->getName();
+}
+
+/// getCodeToRunOnSDNode - Return the code for the function body that
+/// evaluates this predicate. The argument is expected to be in "Node",
+/// not N. This handles casting and conversion to a concrete node type as
+/// appropriate.
+std::string TreePredicateFn::getCodeToRunOnSDNode() const {
+ // Handle immediate predicates first.
+ std::string ImmCode = getImmCode();
+ if (!ImmCode.empty()) {
+ std::string Result =
+ " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
+ return Result + ImmCode;
+ }
+
+ // Handle arbitrary node predicates.
+ assert(!getPredCode().empty() && "Don't have any predicate code!");
+ std::string ClassName;
+ if (PatFragRec->getOnlyTree()->isLeaf())
+ ClassName = "SDNode";
+ else {
+ Record *Op = PatFragRec->getOnlyTree()->getOperator();
+ ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
+ }
+ std::string Result;
+ if (ClassName == "SDNode")
+ Result = " SDNode *N = Node;\n";
+ else
+ Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
+
+ return Result + getPredCode();
+}
+
+//===----------------------------------------------------------------------===//
+// PatternToMatch implementation
+//
+
+
+/// getPatternSize - Return the 'size' of this pattern. We want to match large
+/// patterns before small ones. This is used to determine the size of a
+/// pattern.
+static unsigned getPatternSize(const TreePatternNode *P,
+ const CodeGenDAGPatterns &CGP) {
+ unsigned Size = 3; // The node itself.
+ // If the root node is a ConstantSDNode, increases its size.
+ // e.g. (set R32:$dst, 0).
+ if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
+ Size += 2;
+
+ // FIXME: This is a hack to statically increase the priority of patterns
+ // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
+ // Later we can allow complexity / cost for each pattern to be (optionally)
+ // specified. To get best possible pattern match we'll need to dynamically
+ // calculate the complexity of all patterns a dag can potentially map to.
+ const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
+ if (AM)
+ Size += AM->getNumOperands() * 3;
+
+ // If this node has some predicate function that must match, it adds to the
+ // complexity of this node.
+ if (!P->getPredicateFns().empty())
+ ++Size;
+
+ // Count children in the count if they are also nodes.
+ for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = P->getChild(i);
+ if (!Child->isLeaf() && Child->getNumTypes() &&
+ Child->getType(0) != MVT::Other)
+ Size += getPatternSize(Child, CGP);
+ else if (Child->isLeaf()) {
+ if (dynamic_cast<IntInit*>(Child->getLeafValue()))
+ Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
+ else if (Child->getComplexPatternInfo(CGP))
+ Size += getPatternSize(Child, CGP);
+ else if (!Child->getPredicateFns().empty())
+ ++Size;
+ }
+ }
+
+ return Size;
+}
+
+/// Compute the complexity metric for the input pattern. This roughly
+/// corresponds to the number of nodes that are covered.
+unsigned PatternToMatch::
+getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
+ return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
+}
+
+
+/// getPredicateCheck - Return a single string containing all of this
+/// pattern's predicates concatenated with "&&" operators.
+///
+std::string PatternToMatch::getPredicateCheck() const {
+ std::string PredicateCheck;
+ for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
+ if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
+ Record *Def = Pred->getDef();
+ if (!Def->isSubClassOf("Predicate")) {
+#ifndef NDEBUG
+ Def->dump();
+#endif
+ assert(0 && "Unknown predicate type!");
+ }
+ if (!PredicateCheck.empty())
+ PredicateCheck += " && ";
+ PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
+ }
+ }
+
+ return PredicateCheck;
+}
+
+//===----------------------------------------------------------------------===//
+// SDTypeConstraint implementation
+//
+
+SDTypeConstraint::SDTypeConstraint(Record *R) {
+ OperandNo = R->getValueAsInt("OperandNum");
+
+ if (R->isSubClassOf("SDTCisVT")) {
+ ConstraintType = SDTCisVT;
+ x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
+ if (x.SDTCisVT_Info.VT == MVT::isVoid)
+ throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
+
+ } else if (R->isSubClassOf("SDTCisPtrTy")) {
+ ConstraintType = SDTCisPtrTy;
+ } else if (R->isSubClassOf("SDTCisInt")) {
+ ConstraintType = SDTCisInt;
+ } else if (R->isSubClassOf("SDTCisFP")) {
+ ConstraintType = SDTCisFP;
+ } else if (R->isSubClassOf("SDTCisVec")) {
+ ConstraintType = SDTCisVec;
+ } else if (R->isSubClassOf("SDTCisSameAs")) {
+ ConstraintType = SDTCisSameAs;
+ x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
+ } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
+ ConstraintType = SDTCisVTSmallerThanOp;
+ x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
+ R->getValueAsInt("OtherOperandNum");
+ } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
+ ConstraintType = SDTCisOpSmallerThanOp;
+ x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
+ R->getValueAsInt("BigOperandNum");
+ } else if (R->isSubClassOf("SDTCisEltOfVec")) {
+ ConstraintType = SDTCisEltOfVec;
+ x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
+ } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
+ ConstraintType = SDTCisSubVecOfVec;
+ x.SDTCisSubVecOfVec_Info.OtherOperandNum =
+ R->getValueAsInt("OtherOpNum");
+ } else {
+ errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
+ exit(1);
+ }
+}
+
+/// getOperandNum - Return the node corresponding to operand #OpNo in tree
+/// N, and the result number in ResNo.
+static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
+ const SDNodeInfo &NodeInfo,
+ unsigned &ResNo) {
+ unsigned NumResults = NodeInfo.getNumResults();
+ if (OpNo < NumResults) {
+ ResNo = OpNo;
+ return N;
+ }
+
+ OpNo -= NumResults;
+
+ if (OpNo >= N->getNumChildren()) {
+ errs() << "Invalid operand number in type constraint "
+ << (OpNo+NumResults) << " ";
+ N->dump();
+ errs() << '\n';
+ exit(1);
+ }
+
+ return N->getChild(OpNo);
+}
+
+/// ApplyTypeConstraint - Given a node in a pattern, apply this type
+/// constraint to the nodes operands. This returns true if it makes a
+/// change, false otherwise. If a type contradiction is found, throw an
+/// exception.
+bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
+ const SDNodeInfo &NodeInfo,
+ TreePattern &TP) const {
+ unsigned ResNo = 0; // The result number being referenced.
+ TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
+
+ switch (ConstraintType) {
+ default: assert(0 && "Unknown constraint type!");
+ case SDTCisVT:
+ // Operand must be a particular type.
+ return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
+ case SDTCisPtrTy:
+ // Operand must be same as target pointer type.
+ return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
+ case SDTCisInt:
+ // Require it to be one of the legal integer VTs.
+ return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
+ case SDTCisFP:
+ // Require it to be one of the legal fp VTs.
+ return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
+ case SDTCisVec:
+ // Require it to be one of the legal vector VTs.
+ return NodeToApply->getExtType(ResNo).EnforceVector(TP);
+ case SDTCisSameAs: {
+ unsigned OResNo = 0;
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
+ return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
+ OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
+ }
+ case SDTCisVTSmallerThanOp: {
+ // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
+ // have an integer type that is smaller than the VT.
+ if (!NodeToApply->isLeaf() ||
+ !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
+ !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
+ ->isSubClassOf("ValueType"))
+ TP.error(N->getOperator()->getName() + " expects a VT operand!");
+ MVT::SimpleValueType VT =
+ getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
+
+ EEVT::TypeSet TypeListTmp(VT, TP);
+
+ unsigned OResNo = 0;
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
+ OResNo);
+
+ return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
+ }
+ case SDTCisOpSmallerThanOp: {
+ unsigned BResNo = 0;
+ TreePatternNode *BigOperand =
+ getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
+ BResNo);
+ return NodeToApply->getExtType(ResNo).
+ EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
+ }
+ case SDTCisEltOfVec: {
+ unsigned VResNo = 0;
+ TreePatternNode *VecOperand =
+ getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
+ VResNo);
+
+ // Filter vector types out of VecOperand that don't have the right element
+ // type.
+ return VecOperand->getExtType(VResNo).
+ EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
+ }
+ case SDTCisSubVecOfVec: {
+ unsigned VResNo = 0;
+ TreePatternNode *BigVecOperand =
+ getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
+ VResNo);
+
+ // Filter vector types out of BigVecOperand that don't have the
+ // right subvector type.
+ return BigVecOperand->getExtType(VResNo).
+ EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
+ }
+ }
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// SDNodeInfo implementation
+//
+SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
+ EnumName = R->getValueAsString("Opcode");
+ SDClassName = R->getValueAsString("SDClass");
+ Record *TypeProfile = R->getValueAsDef("TypeProfile");
+ NumResults = TypeProfile->getValueAsInt("NumResults");
+ NumOperands = TypeProfile->getValueAsInt("NumOperands");
+
+ // Parse the properties.
+ Properties = 0;
+ std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
+ for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
+ if (PropList[i]->getName() == "SDNPCommutative") {
+ Properties |= 1 << SDNPCommutative;
+ } else if (PropList[i]->getName() == "SDNPAssociative") {
+ Properties |= 1 << SDNPAssociative;
+ } else if (PropList[i]->getName() == "SDNPHasChain") {
+ Properties |= 1 << SDNPHasChain;
+ } else if (PropList[i]->getName() == "SDNPOutGlue") {
+ Properties |= 1 << SDNPOutGlue;
+ } else if (PropList[i]->getName() == "SDNPInGlue") {
+ Properties |= 1 << SDNPInGlue;
+ } else if (PropList[i]->getName() == "SDNPOptInGlue") {
+ Properties |= 1 << SDNPOptInGlue;
+ } else if (PropList[i]->getName() == "SDNPMayStore") {
+ Properties |= 1 << SDNPMayStore;
+ } else if (PropList[i]->getName() == "SDNPMayLoad") {
+ Properties |= 1 << SDNPMayLoad;
+ } else if (PropList[i]->getName() == "SDNPSideEffect") {
+ Properties |= 1 << SDNPSideEffect;
+ } else if (PropList[i]->getName() == "SDNPMemOperand") {
+ Properties |= 1 << SDNPMemOperand;
+ } else if (PropList[i]->getName() == "SDNPVariadic") {
+ Properties |= 1 << SDNPVariadic;
+ } else {
+ errs() << "Unknown SD Node property '" << PropList[i]->getName()
+ << "' on node '" << R->getName() << "'!\n";
+ exit(1);
+ }
+ }
+
+
+ // Parse the type constraints.
+ std::vector<Record*> ConstraintList =
+ TypeProfile->getValueAsListOfDefs("Constraints");
+ TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
+}
+
+/// getKnownType - If the type constraints on this node imply a fixed type
+/// (e.g. all stores return void, etc), then return it as an
+/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
+MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
+ unsigned NumResults = getNumResults();
+ assert(NumResults <= 1 &&
+ "We only work with nodes with zero or one result so far!");
+ assert(ResNo == 0 && "Only handles single result nodes so far");
+
+ for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
+ // Make sure that this applies to the correct node result.
+ if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value #
+ continue;
+
+ switch (TypeConstraints[i].ConstraintType) {
+ default: break;
+ case SDTypeConstraint::SDTCisVT:
+ return TypeConstraints[i].x.SDTCisVT_Info.VT;
+ case SDTypeConstraint::SDTCisPtrTy:
+ return MVT::iPTR;
+ }
+ }
+ return MVT::Other;
+}
+
+//===----------------------------------------------------------------------===//
+// TreePatternNode implementation
+//
+
+TreePatternNode::~TreePatternNode() {
+#if 0 // FIXME: implement refcounted tree nodes!
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ delete getChild(i);
+#endif
+}
+
+static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
+ if (Operator->getName() == "set" ||
+ Operator->getName() == "implicit")
+ return 0; // All return nothing.
+
+ if (Operator->isSubClassOf("Intrinsic"))
+ return CDP.getIntrinsic(Operator).IS.RetVTs.size();
+
+ if (Operator->isSubClassOf("SDNode"))
+ return CDP.getSDNodeInfo(Operator).getNumResults();
+
+ if (Operator->isSubClassOf("PatFrag")) {
+ // If we've already parsed this pattern fragment, get it. Otherwise, handle
+ // the forward reference case where one pattern fragment references another
+ // before it is processed.
+ if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
+ return PFRec->getOnlyTree()->getNumTypes();
+
+ // Get the result tree.
+ DagInit *Tree = Operator->getValueAsDag("Fragment");
+ Record *Op = 0;
+ if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
+ Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
+ assert(Op && "Invalid Fragment");
+ return GetNumNodeResults(Op, CDP);
+ }
+
+ if (Operator->isSubClassOf("Instruction")) {
+ CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
+
+ // FIXME: Should allow access to all the results here.
+ unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
+
+ // Add on one implicit def if it has a resolvable type.
+ if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
+ ++NumDefsToAdd;
+ return NumDefsToAdd;
+ }
+
+ if (Operator->isSubClassOf("SDNodeXForm"))
+ return 1; // FIXME: Generalize SDNodeXForm
+
+ Operator->dump();
+ errs() << "Unhandled node in GetNumNodeResults\n";
+ exit(1);
+}
+
+void TreePatternNode::print(raw_ostream &OS) const {
+ if (isLeaf())
+ OS << *getLeafValue();
+ else
+ OS << '(' << getOperator()->getName();
+
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ OS << ':' << getExtType(i).getName();
+
+ if (!isLeaf()) {
+ if (getNumChildren() != 0) {
+ OS << " ";
+ getChild(0)->print(OS);
+ for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
+ OS << ", ";
+ getChild(i)->print(OS);
+ }
+ }
+ OS << ")";
+ }
+
+ for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
+ OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
+ if (TransformFn)
+ OS << "<<X:" << TransformFn->getName() << ">>";
+ if (!getName().empty())
+ OS << ":$" << getName();
+
+}
+void TreePatternNode::dump() const {
+ print(errs());
+}
+
+/// isIsomorphicTo - Return true if this node is recursively
+/// isomorphic to the specified node. For this comparison, the node's
+/// entire state is considered. The assigned name is ignored, since
+/// nodes with differing names are considered isomorphic. However, if
+/// the assigned name is present in the dependent variable set, then
+/// the assigned name is considered significant and the node is
+/// isomorphic if the names match.
+bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
+ const MultipleUseVarSet &DepVars) const {
+ if (N == this) return true;
+ if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
+ getPredicateFns() != N->getPredicateFns() ||
+ getTransformFn() != N->getTransformFn())
+ return false;
+
+ if (isLeaf()) {
+ if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
+ if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
+ return ((DI->getDef() == NDI->getDef())
+ && (DepVars.find(getName()) == DepVars.end()
+ || getName() == N->getName()));
+ }
+ }
+ return getLeafValue() == N->getLeafValue();
+ }
+
+ if (N->getOperator() != getOperator() ||
+ N->getNumChildren() != getNumChildren()) return false;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
+ return false;
+ return true;
+}
+
+/// clone - Make a copy of this tree and all of its children.
+///
+TreePatternNode *TreePatternNode::clone() const {
+ TreePatternNode *New;
+ if (isLeaf()) {
+ New = new TreePatternNode(getLeafValue(), getNumTypes());
+ } else {
+ std::vector<TreePatternNode*> CChildren;
+ CChildren.reserve(Children.size());
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ CChildren.push_back(getChild(i)->clone());
+ New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
+ }
+ New->setName(getName());
+ New->Types = Types;
+ New->setPredicateFns(getPredicateFns());
+ New->setTransformFn(getTransformFn());
+ return New;
+}
+
+/// RemoveAllTypes - Recursively strip all the types of this tree.
+void TreePatternNode::RemoveAllTypes() {
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ Types[i] = EEVT::TypeSet(); // Reset to unknown type.
+ if (isLeaf()) return;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ getChild(i)->RemoveAllTypes();
+}
+
+
+/// SubstituteFormalArguments - Replace the formal arguments in this tree
+/// with actual values specified by ArgMap.
+void TreePatternNode::
+SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
+ if (isLeaf()) return;
+
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = getChild(i);
+ if (Child->isLeaf()) {
+ Init *Val = Child->getLeafValue();
+ if (dynamic_cast<DefInit*>(Val) &&
+ static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
+ // We found a use of a formal argument, replace it with its value.
+ TreePatternNode *NewChild = ArgMap[Child->getName()];
+ assert(NewChild && "Couldn't find formal argument!");
+ assert((Child->getPredicateFns().empty() ||
+ NewChild->getPredicateFns() == Child->getPredicateFns()) &&
+ "Non-empty child predicate clobbered!");
+ setChild(i, NewChild);
+ }
+ } else {
+ getChild(i)->SubstituteFormalArguments(ArgMap);
+ }
+ }
+}
+
+
+/// InlinePatternFragments - If this pattern refers to any pattern
+/// fragments, inline them into place, giving us a pattern without any
+/// PatFrag references.
+TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
+ if (isLeaf()) return this; // nothing to do.
+ Record *Op = getOperator();
+
+ if (!Op->isSubClassOf("PatFrag")) {
+ // Just recursively inline children nodes.
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = getChild(i);
+ TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
+
+ assert((Child->getPredicateFns().empty() ||
+ NewChild->getPredicateFns() == Child->getPredicateFns()) &&
+ "Non-empty child predicate clobbered!");
+
+ setChild(i, NewChild);
+ }
+ return this;
+ }
+
+ // Otherwise, we found a reference to a fragment. First, look up its
+ // TreePattern record.
+ TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
+
+ // Verify that we are passing the right number of operands.
+ if (Frag->getNumArgs() != Children.size())
+ TP.error("'" + Op->getName() + "' fragment requires " +
+ utostr(Frag->getNumArgs()) + " operands!");
+
+ TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
+
+ TreePredicateFn PredFn(Frag);
+ if (!PredFn.isAlwaysTrue())
+ FragTree->addPredicateFn(PredFn);
+
+ // Resolve formal arguments to their actual value.
+ if (Frag->getNumArgs()) {
+ // Compute the map of formal to actual arguments.
+ std::map<std::string, TreePatternNode*> ArgMap;
+ for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
+ ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
+
+ FragTree->SubstituteFormalArguments(ArgMap);
+ }
+
+ FragTree->setName(getName());
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ FragTree->UpdateNodeType(i, getExtType(i), TP);
+
+ // Transfer in the old predicates.
+ for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
+ FragTree->addPredicateFn(getPredicateFns()[i]);
+
+ // Get a new copy of this fragment to stitch into here.
+ //delete this; // FIXME: implement refcounting!
+
+ // The fragment we inlined could have recursive inlining that is needed. See
+ // if there are any pattern fragments in it and inline them as needed.
+ return FragTree->InlinePatternFragments(TP);
+}
+
+/// getImplicitType - Check to see if the specified record has an implicit
+/// type which should be applied to it. This will infer the type of register
+/// references from the register file information, for example.
+///
+static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
+ bool NotRegisters, TreePattern &TP) {
+ // Check to see if this is a register operand.
+ if (R->isSubClassOf("RegisterOperand")) {
+ assert(ResNo == 0 && "Regoperand ref only has one result!");
+ if (NotRegisters)
+ return EEVT::TypeSet(); // Unknown.
+ Record *RegClass = R->getValueAsDef("RegClass");
+ const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
+ return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
+ }
+
+ // Check to see if this is a register or a register class.
+ if (R->isSubClassOf("RegisterClass")) {
+ assert(ResNo == 0 && "Regclass ref only has one result!");
+ if (NotRegisters)
+ return EEVT::TypeSet(); // Unknown.
+ const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
+ return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
+ }
+
+ if (R->isSubClassOf("PatFrag")) {
+ assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
+ // Pattern fragment types will be resolved when they are inlined.
+ return EEVT::TypeSet(); // Unknown.
+ }
+
+ if (R->isSubClassOf("Register")) {
+ assert(ResNo == 0 && "Registers only produce one result!");
+ if (NotRegisters)
+ return EEVT::TypeSet(); // Unknown.
+ const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
+ return EEVT::TypeSet(T.getRegisterVTs(R));
+ }
+
+ if (R->isSubClassOf("SubRegIndex")) {
+ assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
+ return EEVT::TypeSet();
+ }
+
+ if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
+ assert(ResNo == 0 && "This node only has one result!");
+ // Using a VTSDNode or CondCodeSDNode.
+ return EEVT::TypeSet(MVT::Other, TP);
+ }
+
+ if (R->isSubClassOf("ComplexPattern")) {
+ assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
+ if (NotRegisters)
+ return EEVT::TypeSet(); // Unknown.
+ return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
+ TP);
+ }
+ if (R->isSubClassOf("PointerLikeRegClass")) {
+ assert(ResNo == 0 && "Regclass can only have one result!");
+ return EEVT::TypeSet(MVT::iPTR, TP);
+ }
+
+ if (R->getName() == "node" || R->getName() == "srcvalue" ||
+ R->getName() == "zero_reg") {
+ // Placeholder.
+ return EEVT::TypeSet(); // Unknown.
+ }
+
+ TP.error("Unknown node flavor used in pattern: " + R->getName());
+ return EEVT::TypeSet(MVT::Other, TP);
+}
+
+
+/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
+/// CodeGenIntrinsic information for it, otherwise return a null pointer.
+const CodeGenIntrinsic *TreePatternNode::
+getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
+ if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
+ getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
+ getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
+ return 0;
+
+ unsigned IID =
+ dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
+ return &CDP.getIntrinsicInfo(IID);
+}
+
+/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
+/// return the ComplexPattern information, otherwise return null.
+const ComplexPattern *
+TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
+ if (!isLeaf()) return 0;
+
+ DefInit *DI = dynamic_cast<DefInit*>(getLeafValue());
+ if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
+ return &CGP.getComplexPattern(DI->getDef());
+ return 0;
+}
+
+/// NodeHasProperty - Return true if this node has the specified property.
+bool TreePatternNode::NodeHasProperty(SDNP Property,
+ const CodeGenDAGPatterns &CGP) const {
+ if (isLeaf()) {
+ if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
+ return CP->hasProperty(Property);
+ return false;
+ }
+
+ Record *Operator = getOperator();
+ if (!Operator->isSubClassOf("SDNode")) return false;
+
+ return CGP.getSDNodeInfo(Operator).hasProperty(Property);
+}
+
+
+
+
+/// TreeHasProperty - Return true if any node in this tree has the specified
+/// property.
+bool TreePatternNode::TreeHasProperty(SDNP Property,
+ const CodeGenDAGPatterns &CGP) const {
+ if (NodeHasProperty(Property, CGP))
+ return true;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (getChild(i)->TreeHasProperty(Property, CGP))
+ return true;
+ return false;
+}
+
+/// isCommutativeIntrinsic - Return true if the node corresponds to a
+/// commutative intrinsic.
+bool
+TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
+ if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
+ return Int->isCommutative;
+ return false;
+}
+
+
+/// ApplyTypeConstraints - Apply all of the type constraints relevant to
+/// this node and its children in the tree. This returns true if it makes a
+/// change, false otherwise. If a type contradiction is found, throw an
+/// exception.
+bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
+ CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
+ if (isLeaf()) {
+ if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
+ // If it's a regclass or something else known, include the type.
+ bool MadeChange = false;
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
+ NotRegisters, TP), TP);
+ return MadeChange;
+ }
+
+ if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
+ assert(Types.size() == 1 && "Invalid IntInit");
+
+ // Int inits are always integers. :)
+ bool MadeChange = Types[0].EnforceInteger(TP);
+
+ if (!Types[0].isConcrete())
+ return MadeChange;
+
+ MVT::SimpleValueType VT = getType(0);
+ if (VT == MVT::iPTR || VT == MVT::iPTRAny)
+ return MadeChange;
+
+ unsigned Size = EVT(VT).getSizeInBits();
+ // Make sure that the value is representable for this type.
+ if (Size >= 32) return MadeChange;
+
+ int Val = (II->getValue() << (32-Size)) >> (32-Size);
+ if (Val == II->getValue()) return MadeChange;
+
+ // If sign-extended doesn't fit, does it fit as unsigned?
+ unsigned ValueMask;
+ unsigned UnsignedVal;
+ ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
+ UnsignedVal = unsigned(II->getValue());
+
+ if ((ValueMask & UnsignedVal) == UnsignedVal)
+ return MadeChange;
+
+ TP.error("Integer value '" + itostr(II->getValue())+
+ "' is out of range for type '" + getEnumName(getType(0)) + "'!");
+ return MadeChange;
+ }
+ return false;
+ }
+
+ // special handling for set, which isn't really an SDNode.
+ if (getOperator()->getName() == "set") {
+ assert(getNumTypes() == 0 && "Set doesn't produce a value");
+ assert(getNumChildren() >= 2 && "Missing RHS of a set?");
+ unsigned NC = getNumChildren();
+
+ TreePatternNode *SetVal = getChild(NC-1);
+ bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
+
+ for (unsigned i = 0; i < NC-1; ++i) {
+ TreePatternNode *Child = getChild(i);
+ MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
+
+ // Types of operands must match.
+ MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
+ MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
+ }
+ return MadeChange;
+ }
+
+ if (getOperator()->getName() == "implicit") {
+ assert(getNumTypes() == 0 && "Node doesn't produce a value");
+
+ bool MadeChange = false;
+ for (unsigned i = 0; i < getNumChildren(); ++i)
+ MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ return MadeChange;
+ }
+
+ if (getOperator()->getName() == "COPY_TO_REGCLASS") {
+ bool MadeChange = false;
+ MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
+ MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
+
+ assert(getChild(0)->getNumTypes() == 1 &&
+ getChild(1)->getNumTypes() == 1 && "Unhandled case");
+
+ // child #1 of COPY_TO_REGCLASS should be a register class. We don't care
+ // what type it gets, so if it didn't get a concrete type just give it the
+ // first viable type from the reg class.
+ if (!getChild(1)->hasTypeSet(0) &&
+ !getChild(1)->getExtType(0).isCompletelyUnknown()) {
+ MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
+ MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
+ }
+ return MadeChange;
+ }
+
+ if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
+ bool MadeChange = false;
+
+ // Apply the result type to the node.
+ unsigned NumRetVTs = Int->IS.RetVTs.size();
+ unsigned NumParamVTs = Int->IS.ParamVTs.size();
+
+ for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
+ MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
+
+ if (getNumChildren() != NumParamVTs + 1)
+ TP.error("Intrinsic '" + Int->Name + "' expects " +
+ utostr(NumParamVTs) + " operands, not " +
+ utostr(getNumChildren() - 1) + " operands!");
+
+ // Apply type info to the intrinsic ID.
+ MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
+
+ for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
+ MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
+
+ MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
+ assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
+ MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
+ }
+ return MadeChange;
+ }
+
+ if (getOperator()->isSubClassOf("SDNode")) {
+ const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
+
+ // Check that the number of operands is sane. Negative operands -> varargs.
+ if (NI.getNumOperands() >= 0 &&
+ getNumChildren() != (unsigned)NI.getNumOperands())
+ TP.error(getOperator()->getName() + " node requires exactly " +
+ itostr(NI.getNumOperands()) + " operands!");
+
+ bool MadeChange = NI.ApplyTypeConstraints(this, TP);
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ return MadeChange;
+ }
+
+ if (getOperator()->isSubClassOf("Instruction")) {
+ const DAGInstruction &Inst = CDP.getInstruction(getOperator());
+ CodeGenInstruction &InstInfo =
+ CDP.getTargetInfo().getInstruction(getOperator());
+
+ bool MadeChange = false;
+
+ // Apply the result types to the node, these come from the things in the
+ // (outs) list of the instruction.
+ // FIXME: Cap at one result so far.
+ unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
+ for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
+ Record *ResultNode = Inst.getResult(ResNo);
+
+ if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
+ MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
+ } else if (ResultNode->isSubClassOf("RegisterOperand")) {
+ Record *RegClass = ResultNode->getValueAsDef("RegClass");
+ const CodeGenRegisterClass &RC =
+ CDP.getTargetInfo().getRegisterClass(RegClass);
+ MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
+ } else if (ResultNode->getName() == "unknown") {
+ // Nothing to do.
+ } else {
+ assert(ResultNode->isSubClassOf("RegisterClass") &&
+ "Operands should be register classes!");
+ const CodeGenRegisterClass &RC =
+ CDP.getTargetInfo().getRegisterClass(ResultNode);
+ MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
+ }
+ }
+
+ // If the instruction has implicit defs, we apply the first one as a result.
+ // FIXME: This sucks, it should apply all implicit defs.
+ if (!InstInfo.ImplicitDefs.empty()) {
+ unsigned ResNo = NumResultsToAdd;
+
+ // FIXME: Generalize to multiple possible types and multiple possible
+ // ImplicitDefs.
+ MVT::SimpleValueType VT =
+ InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
+
+ if (VT != MVT::Other)
+ MadeChange |= UpdateNodeType(ResNo, VT, TP);
+ }
+
+ // If this is an INSERT_SUBREG, constrain the source and destination VTs to
+ // be the same.
+ if (getOperator()->getName() == "INSERT_SUBREG") {
+ assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
+ MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
+ MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
+ }
+
+ unsigned ChildNo = 0;
+ for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
+ Record *OperandNode = Inst.getOperand(i);
+
+ // If the instruction expects a predicate or optional def operand, we
+ // codegen this by setting the operand to it's default value if it has a
+ // non-empty DefaultOps field.
+ if ((OperandNode->isSubClassOf("PredicateOperand") ||
+ OperandNode->isSubClassOf("OptionalDefOperand")) &&
+ !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
+ continue;
+
+ // Verify that we didn't run out of provided operands.
+ if (ChildNo >= getNumChildren())
+ TP.error("Instruction '" + getOperator()->getName() +
+ "' expects more operands than were provided.");
+
+ MVT::SimpleValueType VT;
+ TreePatternNode *Child = getChild(ChildNo++);
+ unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
+
+ if (OperandNode->isSubClassOf("RegisterClass")) {
+ const CodeGenRegisterClass &RC =
+ CDP.getTargetInfo().getRegisterClass(OperandNode);
+ MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
+ } else if (OperandNode->isSubClassOf("RegisterOperand")) {
+ Record *RegClass = OperandNode->getValueAsDef("RegClass");
+ const CodeGenRegisterClass &RC =
+ CDP.getTargetInfo().getRegisterClass(RegClass);
+ MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
+ } else if (OperandNode->isSubClassOf("Operand")) {
+ VT = getValueType(OperandNode->getValueAsDef("Type"));
+ MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
+ } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
+ MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
+ } else if (OperandNode->getName() == "unknown") {
+ // Nothing to do.
+ } else {
+ assert(0 && "Unknown operand type!");
+ abort();
+ }
+ MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
+ }
+
+ if (ChildNo != getNumChildren())
+ TP.error("Instruction '" + getOperator()->getName() +
+ "' was provided too many operands!");
+
+ return MadeChange;
+ }
+
+ assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
+
+ // Node transforms always take one operand.
+ if (getNumChildren() != 1)
+ TP.error("Node transform '" + getOperator()->getName() +
+ "' requires one operand!");
+
+ bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
+
+
+ // If either the output or input of the xform does not have exact
+ // type info. We assume they must be the same. Otherwise, it is perfectly
+ // legal to transform from one type to a completely different type.
+#if 0
+ if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
+ bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
+ MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
+ return MadeChange;
+ }
+#endif
+ return MadeChange;
+}
+
+/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
+/// RHS of a commutative operation, not the on LHS.
+static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
+ if (!N->isLeaf() && N->getOperator()->getName() == "imm")
+ return true;
+ if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
+ return true;
+ return false;
+}
+
+
+/// canPatternMatch - If it is impossible for this pattern to match on this
+/// target, fill in Reason and return false. Otherwise, return true. This is
+/// used as a sanity check for .td files (to prevent people from writing stuff
+/// that can never possibly work), and to prevent the pattern permuter from
+/// generating stuff that is useless.
+bool TreePatternNode::canPatternMatch(std::string &Reason,
+ const CodeGenDAGPatterns &CDP) {
+ if (isLeaf()) return true;
+
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (!getChild(i)->canPatternMatch(Reason, CDP))
+ return false;
+
+ // If this is an intrinsic, handle cases that would make it not match. For
+ // example, if an operand is required to be an immediate.
+ if (getOperator()->isSubClassOf("Intrinsic")) {
+ // TODO:
+ return true;
+ }
+
+ // If this node is a commutative operator, check that the LHS isn't an
+ // immediate.
+ const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
+ bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
+ if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
+ // Scan all of the operands of the node and make sure that only the last one
+ // is a constant node, unless the RHS also is.
+ if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
+ bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
+ for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
+ if (OnlyOnRHSOfCommutative(getChild(i))) {
+ Reason="Immediate value must be on the RHS of commutative operators!";
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// TreePattern implementation
+//
+
+TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
+ CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
+ isInputPattern = isInput;
+ for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
+ Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
+}
+
+TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
+ CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
+ isInputPattern = isInput;
+ Trees.push_back(ParseTreePattern(Pat, ""));
+}
+
+TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
+ CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
+ isInputPattern = isInput;
+ Trees.push_back(Pat);
+}
+
+void TreePattern::error(const std::string &Msg) const {
+ dump();
+ throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
+}
+
+void TreePattern::ComputeNamedNodes() {
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+ ComputeNamedNodes(Trees[i]);
+}
+
+void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
+ if (!N->getName().empty())
+ NamedNodes[N->getName()].push_back(N);
+
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ ComputeNamedNodes(N->getChild(i));
+}
+
+
+TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
+ if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
+ Record *R = DI->getDef();
+
+ // Direct reference to a leaf DagNode or PatFrag? Turn it into a
+ // TreePatternNode of its own. For example:
+ /// (foo GPR, imm) -> (foo GPR, (imm))
+ if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
+ return ParseTreePattern(
+ DagInit::get(DI, "",
+ std::vector<std::pair<Init*, std::string> >()),
+ OpName);
+
+ // Input argument?
+ TreePatternNode *Res = new TreePatternNode(DI, 1);
+ if (R->getName() == "node" && !OpName.empty()) {
+ if (OpName.empty())
+ error("'node' argument requires a name to match with operand list");
+ Args.push_back(OpName);
+ }
+
+ Res->setName(OpName);
+ return Res;
+ }
+
+ if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
+ if (!OpName.empty())
+ error("Constant int argument should not have a name!");
+ return new TreePatternNode(II, 1);
+ }
+
+ if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
+ // Turn this into an IntInit.
+ Init *II = BI->convertInitializerTo(IntRecTy::get());
+ if (II == 0 || !dynamic_cast<IntInit*>(II))
+ error("Bits value must be constants!");
+ return ParseTreePattern(II, OpName);
+ }
+
+ DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
+ if (!Dag) {
+ TheInit->dump();
+ error("Pattern has unexpected init kind!");
+ }
+ DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
+ if (!OpDef) error("Pattern has unexpected operator type!");
+ Record *Operator = OpDef->getDef();
+
+ if (Operator->isSubClassOf("ValueType")) {
+ // If the operator is a ValueType, then this must be "type cast" of a leaf
+ // node.
+ if (Dag->getNumArgs() != 1)
+ error("Type cast only takes one operand!");
+
+ TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
+
+ // Apply the type cast.
+ assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
+ New->UpdateNodeType(0, getValueType(Operator), *this);
+
+ if (!OpName.empty())
+ error("ValueType cast should not have a name!");
+ return New;
+ }
+
+ // Verify that this is something that makes sense for an operator.
+ if (!Operator->isSubClassOf("PatFrag") &&
+ !Operator->isSubClassOf("SDNode") &&
+ !Operator->isSubClassOf("Instruction") &&
+ !Operator->isSubClassOf("SDNodeXForm") &&
+ !Operator->isSubClassOf("Intrinsic") &&
+ Operator->getName() != "set" &&
+ Operator->getName() != "implicit")
+ error("Unrecognized node '" + Operator->getName() + "'!");
+
+ // Check to see if this is something that is illegal in an input pattern.
+ if (isInputPattern) {
+ if (Operator->isSubClassOf("Instruction") ||
+ Operator->isSubClassOf("SDNodeXForm"))
+ error("Cannot use '" + Operator->getName() + "' in an input pattern!");
+ } else {
+ if (Operator->isSubClassOf("Intrinsic"))
+ error("Cannot use '" + Operator->getName() + "' in an output pattern!");
+
+ if (Operator->isSubClassOf("SDNode") &&
+ Operator->getName() != "imm" &&
+ Operator->getName() != "fpimm" &&
+ Operator->getName() != "tglobaltlsaddr" &&
+ Operator->getName() != "tconstpool" &&
+ Operator->getName() != "tjumptable" &&
+ Operator->getName() != "tframeindex" &&
+ Operator->getName() != "texternalsym" &&
+ Operator->getName() != "tblockaddress" &&
+ Operator->getName() != "tglobaladdr" &&
+ Operator->getName() != "bb" &&
+ Operator->getName() != "vt")
+ error("Cannot use '" + Operator->getName() + "' in an output pattern!");
+ }
+
+ std::vector<TreePatternNode*> Children;
+
+ // Parse all the operands.
+ for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
+ Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
+
+ // If the operator is an intrinsic, then this is just syntactic sugar for for
+ // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
+ // convert the intrinsic name to a number.
+ if (Operator->isSubClassOf("Intrinsic")) {
+ const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
+ unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
+
+ // If this intrinsic returns void, it must have side-effects and thus a
+ // chain.
+ if (Int.IS.RetVTs.empty())
+ Operator = getDAGPatterns().get_intrinsic_void_sdnode();
+ else if (Int.ModRef != CodeGenIntrinsic::NoMem)
+ // Has side-effects, requires chain.
+ Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
+ else // Otherwise, no chain.
+ Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
+
+ TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
+ Children.insert(Children.begin(), IIDNode);
+ }
+
+ unsigned NumResults = GetNumNodeResults(Operator, CDP);
+ TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
+ Result->setName(OpName);
+
+ if (!Dag->getName().empty()) {
+ assert(Result->getName().empty());
+ Result->setName(Dag->getName());
+ }
+ return Result;
+}
+
+/// SimplifyTree - See if we can simplify this tree to eliminate something that
+/// will never match in favor of something obvious that will. This is here
+/// strictly as a convenience to target authors because it allows them to write
+/// more type generic things and have useless type casts fold away.
+///
+/// This returns true if any change is made.
+static bool SimplifyTree(TreePatternNode *&N) {
+ if (N->isLeaf())
+ return false;
+
+ // If we have a bitconvert with a resolved type and if the source and
+ // destination types are the same, then the bitconvert is useless, remove it.
+ if (N->getOperator()->getName() == "bitconvert" &&
+ N->getExtType(0).isConcrete() &&
+ N->getExtType(0) == N->getChild(0)->getExtType(0) &&
+ N->getName().empty()) {
+ N = N->getChild(0);
+ SimplifyTree(N);
+ return true;
+ }
+
+ // Walk all children.
+ bool MadeChange = false;
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = N->getChild(i);
+ MadeChange |= SimplifyTree(Child);
+ N->setChild(i, Child);
+ }
+ return MadeChange;
+}
+
+
+
+/// InferAllTypes - Infer/propagate as many types throughout the expression
+/// patterns as possible. Return true if all types are inferred, false
+/// otherwise. Throw an exception if a type contradiction is found.
+bool TreePattern::
+InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
+ if (NamedNodes.empty())
+ ComputeNamedNodes();
+
+ bool MadeChange = true;
+ while (MadeChange) {
+ MadeChange = false;
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
+ MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
+ MadeChange |= SimplifyTree(Trees[i]);
+ }
+
+ // If there are constraints on our named nodes, apply them.
+ for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
+ I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
+ SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
+
+ // If we have input named node types, propagate their types to the named
+ // values here.
+ if (InNamedTypes) {
+ // FIXME: Should be error?
+ assert(InNamedTypes->count(I->getKey()) &&
+ "Named node in output pattern but not input pattern?");
+
+ const SmallVectorImpl<TreePatternNode*> &InNodes =
+ InNamedTypes->find(I->getKey())->second;
+
+ // The input types should be fully resolved by now.
+ for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
+ // If this node is a register class, and it is the root of the pattern
+ // then we're mapping something onto an input register. We allow
+ // changing the type of the input register in this case. This allows
+ // us to match things like:
+ // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
+ if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
+ DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
+ if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
+ DI->getDef()->isSubClassOf("RegisterOperand")))
+ continue;
+ }
+
+ assert(Nodes[i]->getNumTypes() == 1 &&
+ InNodes[0]->getNumTypes() == 1 &&
+ "FIXME: cannot name multiple result nodes yet");
+ MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
+ *this);
+ }
+ }
+
+ // If there are multiple nodes with the same name, they must all have the
+ // same type.
+ if (I->second.size() > 1) {
+ for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
+ TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
+ assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
+ "FIXME: cannot name multiple result nodes yet");
+
+ MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
+ MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
+ }
+ }
+ }
+ }
+
+ bool HasUnresolvedTypes = false;
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+ HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
+ return !HasUnresolvedTypes;
+}
+
+void TreePattern::print(raw_ostream &OS) const {
+ OS << getRecord()->getName();
+ if (!Args.empty()) {
+ OS << "(" << Args[0];
+ for (unsigned i = 1, e = Args.size(); i != e; ++i)
+ OS << ", " << Args[i];
+ OS << ")";
+ }
+ OS << ": ";
+
+ if (Trees.size() > 1)
+ OS << "[\n";
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
+ OS << "\t";
+ Trees[i]->print(OS);
+ OS << "\n";
+ }
+
+ if (Trees.size() > 1)
+ OS << "]\n";
+}
+
+void TreePattern::dump() const { print(errs()); }
+
+//===----------------------------------------------------------------------===//
+// CodeGenDAGPatterns implementation
+//
+
+CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
+ Records(R), Target(R) {
+
+ Intrinsics = LoadIntrinsics(Records, false);
+ TgtIntrinsics = LoadIntrinsics(Records, true);
+ ParseNodeInfo();
+ ParseNodeTransforms();
+ ParseComplexPatterns();
+ ParsePatternFragments();
+ ParseDefaultOperands();
+ ParseInstructions();
+ ParsePatterns();
+
+ // Generate variants. For example, commutative patterns can match
+ // multiple ways. Add them to PatternsToMatch as well.
+ GenerateVariants();
+
+ // Infer instruction flags. For example, we can detect loads,
+ // stores, and side effects in many cases by examining an
+ // instruction's pattern.
+ InferInstructionFlags();
+}
+
+CodeGenDAGPatterns::~CodeGenDAGPatterns() {
+ for (pf_iterator I = PatternFragments.begin(),
+ E = PatternFragments.end(); I != E; ++I)
+ delete I->second;
+}
+
+
+Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
+ Record *N = Records.getDef(Name);
+ if (!N || !N->isSubClassOf("SDNode")) {
+ errs() << "Error getting SDNode '" << Name << "'!\n";
+ exit(1);
+ }
+ return N;
+}
+
+// Parse all of the SDNode definitions for the target, populating SDNodes.
+void CodeGenDAGPatterns::ParseNodeInfo() {
+ std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
+ while (!Nodes.empty()) {
+ SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
+ Nodes.pop_back();
+ }
+
+ // Get the builtin intrinsic nodes.
+ intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
+ intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
+ intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
+}
+
+/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
+/// map, and emit them to the file as functions.
+void CodeGenDAGPatterns::ParseNodeTransforms() {
+ std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
+ while (!Xforms.empty()) {
+ Record *XFormNode = Xforms.back();
+ Record *SDNode = XFormNode->getValueAsDef("Opcode");
+ std::string Code = XFormNode->getValueAsCode("XFormFunction");
+ SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
+
+ Xforms.pop_back();
+ }
+}
+
+void CodeGenDAGPatterns::ParseComplexPatterns() {
+ std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
+ while (!AMs.empty()) {
+ ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
+ AMs.pop_back();
+ }
+}
+
+
+/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
+/// file, building up the PatternFragments map. After we've collected them all,
+/// inline fragments together as necessary, so that there are no references left
+/// inside a pattern fragment to a pattern fragment.
+///
+void CodeGenDAGPatterns::ParsePatternFragments() {
+ std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
+
+ // First step, parse all of the fragments.
+ for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
+ DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
+ TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
+ PatternFragments[Fragments[i]] = P;
+
+ // Validate the argument list, converting it to set, to discard duplicates.
+ std::vector<std::string> &Args = P->getArgList();
+ std::set<std::string> OperandsSet(Args.begin(), Args.end());
+
+ if (OperandsSet.count(""))
+ P->error("Cannot have unnamed 'node' values in pattern fragment!");
+
+ // Parse the operands list.
+ DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
+ DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
+ // Special cases: ops == outs == ins. Different names are used to
+ // improve readability.
+ if (!OpsOp ||
+ (OpsOp->getDef()->getName() != "ops" &&
+ OpsOp->getDef()->getName() != "outs" &&
+ OpsOp->getDef()->getName() != "ins"))
+ P->error("Operands list should start with '(ops ... '!");
+
+ // Copy over the arguments.
+ Args.clear();
+ for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
+ if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
+ static_cast<DefInit*>(OpsList->getArg(j))->
+ getDef()->getName() != "node")
+ P->error("Operands list should all be 'node' values.");
+ if (OpsList->getArgName(j).empty())
+ P->error("Operands list should have names for each operand!");
+ if (!OperandsSet.count(OpsList->getArgName(j)))
+ P->error("'" + OpsList->getArgName(j) +
+ "' does not occur in pattern or was multiply specified!");
+ OperandsSet.erase(OpsList->getArgName(j));
+ Args.push_back(OpsList->getArgName(j));
+ }
+
+ if (!OperandsSet.empty())
+ P->error("Operands list does not contain an entry for operand '" +
+ *OperandsSet.begin() + "'!");
+
+ // If there is a code init for this fragment, keep track of the fact that
+ // this fragment uses it.
+ TreePredicateFn PredFn(P);
+ if (!PredFn.isAlwaysTrue())
+ P->getOnlyTree()->addPredicateFn(PredFn);
+
+ // If there is a node transformation corresponding to this, keep track of
+ // it.
+ Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
+ if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
+ P->getOnlyTree()->setTransformFn(Transform);
+ }
+
+ // Now that we've parsed all of the tree fragments, do a closure on them so
+ // that there are not references to PatFrags left inside of them.
+ for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
+ TreePattern *ThePat = PatternFragments[Fragments[i]];
+ ThePat->InlinePatternFragments();
+
+ // Infer as many types as possible. Don't worry about it if we don't infer
+ // all of them, some may depend on the inputs of the pattern.
+ try {
+ ThePat->InferAllTypes();
+ } catch (...) {
+ // If this pattern fragment is not supported by this target (no types can
+ // satisfy its constraints), just ignore it. If the bogus pattern is
+ // actually used by instructions, the type consistency error will be
+ // reported there.
+ }
+
+ // If debugging, print out the pattern fragment result.
+ DEBUG(ThePat->dump());
+ }
+}
+
+void CodeGenDAGPatterns::ParseDefaultOperands() {
+ std::vector<Record*> DefaultOps[2];
+ DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
+ DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
+
+ // Find some SDNode.
+ assert(!SDNodes.empty() && "No SDNodes parsed?");
+ Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
+
+ for (unsigned iter = 0; iter != 2; ++iter) {
+ for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
+ DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
+
+ // Clone the DefaultInfo dag node, changing the operator from 'ops' to
+ // SomeSDnode so that we can parse this.
+ std::vector<std::pair<Init*, std::string> > Ops;
+ for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
+ Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
+ DefaultInfo->getArgName(op)));
+ DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
+
+ // Create a TreePattern to parse this.
+ TreePattern P(DefaultOps[iter][i], DI, false, *this);
+ assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
+
+ // Copy the operands over into a DAGDefaultOperand.
+ DAGDefaultOperand DefaultOpInfo;
+
+ TreePatternNode *T = P.getTree(0);
+ for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
+ TreePatternNode *TPN = T->getChild(op);
+ while (TPN->ApplyTypeConstraints(P, false))
+ /* Resolve all types */;
+
+ if (TPN->ContainsUnresolvedType()) {
+ if (iter == 0)
+ throw "Value #" + utostr(i) + " of PredicateOperand '" +
+ DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
+ else
+ throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
+ DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
+ }
+ DefaultOpInfo.DefaultOps.push_back(TPN);
+ }
+
+ // Insert it into the DefaultOperands map so we can find it later.
+ DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
+ }
+ }
+}
+
+/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
+/// instruction input. Return true if this is a real use.
+static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
+ std::map<std::string, TreePatternNode*> &InstInputs) {
+ // No name -> not interesting.
+ if (Pat->getName().empty()) {
+ if (Pat->isLeaf()) {
+ DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
+ if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
+ DI->getDef()->isSubClassOf("RegisterOperand")))
+ I->error("Input " + DI->getDef()->getName() + " must be named!");
+ }
+ return false;
+ }
+
+ Record *Rec;
+ if (Pat->isLeaf()) {
+ DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
+ if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
+ Rec = DI->getDef();
+ } else {
+ Rec = Pat->getOperator();
+ }
+
+ // SRCVALUE nodes are ignored.
+ if (Rec->getName() == "srcvalue")
+ return false;
+
+ TreePatternNode *&Slot = InstInputs[Pat->getName()];
+ if (!Slot) {
+ Slot = Pat;
+ return true;
+ }
+ Record *SlotRec;
+ if (Slot->isLeaf()) {
+ SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
+ } else {
+ assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
+ SlotRec = Slot->getOperator();
+ }
+
+ // Ensure that the inputs agree if we've already seen this input.
+ if (Rec != SlotRec)
+ I->error("All $" + Pat->getName() + " inputs must agree with each other");
+ if (Slot->getExtTypes() != Pat->getExtTypes())
+ I->error("All $" + Pat->getName() + " inputs must agree with each other");
+ return true;
+}
+
+/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
+/// part of "I", the instruction), computing the set of inputs and outputs of
+/// the pattern. Report errors if we see anything naughty.
+void CodeGenDAGPatterns::
+FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
+ std::map<std::string, TreePatternNode*> &InstInputs,
+ std::map<std::string, TreePatternNode*>&InstResults,
+ std::vector<Record*> &InstImpResults) {
+ if (Pat->isLeaf()) {
+ bool isUse = HandleUse(I, Pat, InstInputs);
+ if (!isUse && Pat->getTransformFn())
+ I->error("Cannot specify a transform function for a non-input value!");
+ return;
+ }
+
+ if (Pat->getOperator()->getName() == "implicit") {
+ for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Dest = Pat->getChild(i);
+ if (!Dest->isLeaf())
+ I->error("implicitly defined value should be a register!");
+
+ DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
+ if (!Val || !Val->getDef()->isSubClassOf("Register"))
+ I->error("implicitly defined value should be a register!");
+ InstImpResults.push_back(Val->getDef());
+ }
+ return;
+ }
+
+ if (Pat->getOperator()->getName() != "set") {
+ // If this is not a set, verify that the children nodes are not void typed,
+ // and recurse.
+ for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
+ if (Pat->getChild(i)->getNumTypes() == 0)
+ I->error("Cannot have void nodes inside of patterns!");
+ FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
+ InstImpResults);
+ }
+
+ // If this is a non-leaf node with no children, treat it basically as if
+ // it were a leaf. This handles nodes like (imm).
+ bool isUse = HandleUse(I, Pat, InstInputs);
+
+ if (!isUse && Pat->getTransformFn())
+ I->error("Cannot specify a transform function for a non-input value!");
+ return;
+ }
+
+ // Otherwise, this is a set, validate and collect instruction results.
+ if (Pat->getNumChildren() == 0)
+ I->error("set requires operands!");
+
+ if (Pat->getTransformFn())
+ I->error("Cannot specify a transform function on a set node!");
+
+ // Check the set destinations.
+ unsigned NumDests = Pat->getNumChildren()-1;
+ for (unsigned i = 0; i != NumDests; ++i) {
+ TreePatternNode *Dest = Pat->getChild(i);
+ if (!Dest->isLeaf())
+ I->error("set destination should be a register!");
+
+ DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
+ if (!Val)
+ I->error("set destination should be a register!");
+
+ if (Val->getDef()->isSubClassOf("RegisterClass") ||
+ Val->getDef()->isSubClassOf("RegisterOperand") ||
+ Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
+ if (Dest->getName().empty())
+ I->error("set destination must have a name!");
+ if (InstResults.count(Dest->getName()))
+ I->error("cannot set '" + Dest->getName() +"' multiple times");
+ InstResults[Dest->getName()] = Dest;
+ } else if (Val->getDef()->isSubClassOf("Register")) {
+ InstImpResults.push_back(Val->getDef());
+ } else {
+ I->error("set destination should be a register!");
+ }
+ }
+
+ // Verify and collect info from the computation.
+ FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
+ InstInputs, InstResults, InstImpResults);
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction Analysis
+//===----------------------------------------------------------------------===//
+
+class InstAnalyzer {
+ const CodeGenDAGPatterns &CDP;
+ bool &mayStore;
+ bool &mayLoad;
+ bool &IsBitcast;
+ bool &HasSideEffects;
+ bool &IsVariadic;
+public:
+ InstAnalyzer(const CodeGenDAGPatterns &cdp,
+ bool &maystore, bool &mayload, bool &isbc, bool &hse, bool &isv)
+ : CDP(cdp), mayStore(maystore), mayLoad(mayload), IsBitcast(isbc),
+ HasSideEffects(hse), IsVariadic(isv) {
+ }
+
+ /// Analyze - Analyze the specified instruction, returning true if the
+ /// instruction had a pattern.
+ bool Analyze(Record *InstRecord) {
+ const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
+ if (Pattern == 0) {
+ HasSideEffects = 1;
+ return false; // No pattern.
+ }
+
+ // FIXME: Assume only the first tree is the pattern. The others are clobber
+ // nodes.
+ AnalyzeNode(Pattern->getTree(0));
+ return true;
+ }
+
+private:
+ bool IsNodeBitcast(const TreePatternNode *N) const {
+ if (HasSideEffects || mayLoad || mayStore || IsVariadic)
+ return false;
+
+ if (N->getNumChildren() != 2)
+ return false;
+
+ const TreePatternNode *N0 = N->getChild(0);
+ if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue()))
+ return false;
+
+ const TreePatternNode *N1 = N->getChild(1);
+ if (N1->isLeaf())
+ return false;
+ if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
+ return false;
+
+ const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
+ if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
+ return false;
+ return OpInfo.getEnumName() == "ISD::BITCAST";
+ }
+
+ void AnalyzeNode(const TreePatternNode *N) {
+ if (N->isLeaf()) {
+ if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
+ Record *LeafRec = DI->getDef();
+ // Handle ComplexPattern leaves.
+ if (LeafRec->isSubClassOf("ComplexPattern")) {
+ const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
+ if (CP.hasProperty(SDNPMayStore)) mayStore = true;
+ if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
+ if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
+ }
+ }
+ return;
+ }
+
+ // Analyze children.
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ AnalyzeNode(N->getChild(i));
+
+ // Ignore set nodes, which are not SDNodes.
+ if (N->getOperator()->getName() == "set") {
+ IsBitcast = IsNodeBitcast(N);
+ return;
+ }
+
+ // Get information about the SDNode for the operator.
+ const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
+
+ // Notice properties of the node.
+ if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
+ if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
+ if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
+ if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true;
+
+ if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
+ // If this is an intrinsic, analyze it.
+ if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
+ mayLoad = true;// These may load memory.
+
+ if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
+ mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
+
+ if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
+ // WriteMem intrinsics can have other strange effects.
+ HasSideEffects = true;
+ }
+ }
+
+};
+
+static void InferFromPattern(const CodeGenInstruction &Inst,
+ bool &MayStore, bool &MayLoad,
+ bool &IsBitcast,
+ bool &HasSideEffects, bool &IsVariadic,
+ const CodeGenDAGPatterns &CDP) {
+ MayStore = MayLoad = IsBitcast = HasSideEffects = IsVariadic = false;
+
+ bool HadPattern =
+ InstAnalyzer(CDP, MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic)
+ .Analyze(Inst.TheDef);
+
+ // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
+ if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it.
+ // If we decided that this is a store from the pattern, then the .td file
+ // entry is redundant.
+ if (MayStore)
+ fprintf(stderr,
+ "Warning: mayStore flag explicitly set on instruction '%s'"
+ " but flag already inferred from pattern.\n",
+ Inst.TheDef->getName().c_str());
+ MayStore = true;
+ }
+
+ if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it.
+ // If we decided that this is a load from the pattern, then the .td file
+ // entry is redundant.
+ if (MayLoad)
+ fprintf(stderr,
+ "Warning: mayLoad flag explicitly set on instruction '%s'"
+ " but flag already inferred from pattern.\n",
+ Inst.TheDef->getName().c_str());
+ MayLoad = true;
+ }
+
+ if (Inst.neverHasSideEffects) {
+ if (HadPattern)
+ fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
+ "which already has a pattern\n", Inst.TheDef->getName().c_str());
+ HasSideEffects = false;
+ }
+
+ if (Inst.hasSideEffects) {
+ if (HasSideEffects)
+ fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
+ "which already inferred this.\n", Inst.TheDef->getName().c_str());
+ HasSideEffects = true;
+ }
+
+ if (Inst.Operands.isVariadic)
+ IsVariadic = true; // Can warn if we want.
+}
+
+/// ParseInstructions - Parse all of the instructions, inlining and resolving
+/// any fragments involved. This populates the Instructions list with fully
+/// resolved instructions.
+void CodeGenDAGPatterns::ParseInstructions() {
+ std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
+
+ for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
+ ListInit *LI = 0;
+
+ if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
+ LI = Instrs[i]->getValueAsListInit("Pattern");
+
+ // If there is no pattern, only collect minimal information about the
+ // instruction for its operand list. We have to assume that there is one
+ // result, as we have no detailed info.
+ if (!LI || LI->getSize() == 0) {
+ std::vector<Record*> Results;
+ std::vector<Record*> Operands;
+
+ CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
+
+ if (InstInfo.Operands.size() != 0) {
+ if (InstInfo.Operands.NumDefs == 0) {
+ // These produce no results
+ for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
+ Operands.push_back(InstInfo.Operands[j].Rec);
+ } else {
+ // Assume the first operand is the result.
+ Results.push_back(InstInfo.Operands[0].Rec);
+
+ // The rest are inputs.
+ for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
+ Operands.push_back(InstInfo.Operands[j].Rec);
+ }
+ }
+
+ // Create and insert the instruction.
+ std::vector<Record*> ImpResults;
+ Instructions.insert(std::make_pair(Instrs[i],
+ DAGInstruction(0, Results, Operands, ImpResults)));
+ continue; // no pattern.
+ }
+
+ // Parse the instruction.
+ TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
+ // Inline pattern fragments into it.
+ I->InlinePatternFragments();
+
+ // Infer as many types as possible. If we cannot infer all of them, we can
+ // never do anything with this instruction pattern: report it to the user.
+ if (!I->InferAllTypes())
+ I->error("Could not infer all types in pattern!");
+
+ // InstInputs - Keep track of all of the inputs of the instruction, along
+ // with the record they are declared as.
+ std::map<std::string, TreePatternNode*> InstInputs;
+
+ // InstResults - Keep track of all the virtual registers that are 'set'
+ // in the instruction, including what reg class they are.
+ std::map<std::string, TreePatternNode*> InstResults;
+
+ std::vector<Record*> InstImpResults;
+
+ // Verify that the top-level forms in the instruction are of void type, and
+ // fill in the InstResults map.
+ for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
+ TreePatternNode *Pat = I->getTree(j);
+ if (Pat->getNumTypes() != 0)
+ I->error("Top-level forms in instruction pattern should have"
+ " void types");
+
+ // Find inputs and outputs, and verify the structure of the uses/defs.
+ FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
+ InstImpResults);
+ }
+
+ // Now that we have inputs and outputs of the pattern, inspect the operands
+ // list for the instruction. This determines the order that operands are
+ // added to the machine instruction the node corresponds to.
+ unsigned NumResults = InstResults.size();
+
+ // Parse the operands list from the (ops) list, validating it.
+ assert(I->getArgList().empty() && "Args list should still be empty here!");
+ CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
+
+ // Check that all of the results occur first in the list.
+ std::vector<Record*> Results;
+ TreePatternNode *Res0Node = 0;
+ for (unsigned i = 0; i != NumResults; ++i) {
+ if (i == CGI.Operands.size())
+ I->error("'" + InstResults.begin()->first +
+ "' set but does not appear in operand list!");
+ const std::string &OpName = CGI.Operands[i].Name;
+
+ // Check that it exists in InstResults.
+ TreePatternNode *RNode = InstResults[OpName];
+ if (RNode == 0)
+ I->error("Operand $" + OpName + " does not exist in operand list!");
+
+ if (i == 0)
+ Res0Node = RNode;
+ Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
+ if (R == 0)
+ I->error("Operand $" + OpName + " should be a set destination: all "
+ "outputs must occur before inputs in operand list!");
+
+ if (CGI.Operands[i].Rec != R)
+ I->error("Operand $" + OpName + " class mismatch!");
+
+ // Remember the return type.
+ Results.push_back(CGI.Operands[i].Rec);
+
+ // Okay, this one checks out.
+ InstResults.erase(OpName);
+ }
+
+ // Loop over the inputs next. Make a copy of InstInputs so we can destroy
+ // the copy while we're checking the inputs.
+ std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
+
+ std::vector<TreePatternNode*> ResultNodeOperands;
+ std::vector<Record*> Operands;
+ for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
+ CGIOperandList::OperandInfo &Op = CGI.Operands[i];
+ const std::string &OpName = Op.Name;
+ if (OpName.empty())
+ I->error("Operand #" + utostr(i) + " in operands list has no name!");
+
+ if (!InstInputsCheck.count(OpName)) {
+ // If this is an predicate operand or optional def operand with an
+ // DefaultOps set filled in, we can ignore this. When we codegen it,
+ // we will do so as always executed.
+ if (Op.Rec->isSubClassOf("PredicateOperand") ||
+ Op.Rec->isSubClassOf("OptionalDefOperand")) {
+ // Does it have a non-empty DefaultOps field? If so, ignore this
+ // operand.
+ if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
+ continue;
+ }
+ I->error("Operand $" + OpName +
+ " does not appear in the instruction pattern");
+ }
+ TreePatternNode *InVal = InstInputsCheck[OpName];
+ InstInputsCheck.erase(OpName); // It occurred, remove from map.
+
+ if (InVal->isLeaf() &&
+ dynamic_cast<DefInit*>(InVal->getLeafValue())) {
+ Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
+ if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
+ I->error("Operand $" + OpName + "'s register class disagrees"
+ " between the operand and pattern");
+ }
+ Operands.push_back(Op.Rec);
+
+ // Construct the result for the dest-pattern operand list.
+ TreePatternNode *OpNode = InVal->clone();
+
+ // No predicate is useful on the result.
+ OpNode->clearPredicateFns();
+
+ // Promote the xform function to be an explicit node if set.
+ if (Record *Xform = OpNode->getTransformFn()) {
+ OpNode->setTransformFn(0);
+ std::vector<TreePatternNode*> Children;
+ Children.push_back(OpNode);
+ OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
+ }
+
+ ResultNodeOperands.push_back(OpNode);
+ }
+
+ if (!InstInputsCheck.empty())
+ I->error("Input operand $" + InstInputsCheck.begin()->first +
+ " occurs in pattern but not in operands list!");
+
+ TreePatternNode *ResultPattern =
+ new TreePatternNode(I->getRecord(), ResultNodeOperands,
+ GetNumNodeResults(I->getRecord(), *this));
+ // Copy fully inferred output node type to instruction result pattern.
+ for (unsigned i = 0; i != NumResults; ++i)
+ ResultPattern->setType(i, Res0Node->getExtType(i));
+
+ // Create and insert the instruction.
+ // FIXME: InstImpResults should not be part of DAGInstruction.
+ DAGInstruction TheInst(I, Results, Operands, InstImpResults);
+ Instructions.insert(std::make_pair(I->getRecord(), TheInst));
+
+ // Use a temporary tree pattern to infer all types and make sure that the
+ // constructed result is correct. This depends on the instruction already
+ // being inserted into the Instructions map.
+ TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
+ Temp.InferAllTypes(&I->getNamedNodesMap());
+
+ DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
+ TheInsertedInst.setResultPattern(Temp.getOnlyTree());
+
+ DEBUG(I->dump());
+ }
+
+ // If we can, convert the instructions to be patterns that are matched!
+ for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II =
+ Instructions.begin(),
+ E = Instructions.end(); II != E; ++II) {
+ DAGInstruction &TheInst = II->second;
+ const TreePattern *I = TheInst.getPattern();
+ if (I == 0) continue; // No pattern.
+
+ // FIXME: Assume only the first tree is the pattern. The others are clobber
+ // nodes.
+ TreePatternNode *Pattern = I->getTree(0);
+ TreePatternNode *SrcPattern;
+ if (Pattern->getOperator()->getName() == "set") {
+ SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
+ } else{
+ // Not a set (store or something?)
+ SrcPattern = Pattern;
+ }
+
+ Record *Instr = II->first;
+ AddPatternToMatch(I,
+ PatternToMatch(Instr,
+ Instr->getValueAsListInit("Predicates"),
+ SrcPattern,
+ TheInst.getResultPattern(),
+ TheInst.getImpResults(),
+ Instr->getValueAsInt("AddedComplexity"),
+ Instr->getID()));
+ }
+}
+
+
+typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
+
+static void FindNames(const TreePatternNode *P,
+ std::map<std::string, NameRecord> &Names,
+ const TreePattern *PatternTop) {
+ if (!P->getName().empty()) {
+ NameRecord &Rec = Names[P->getName()];
+ // If this is the first instance of the name, remember the node.
+ if (Rec.second++ == 0)
+ Rec.first = P;
+ else if (Rec.first->getExtTypes() != P->getExtTypes())
+ PatternTop->error("repetition of value: $" + P->getName() +
+ " where different uses have different types!");
+ }
+
+ if (!P->isLeaf()) {
+ for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
+ FindNames(P->getChild(i), Names, PatternTop);
+ }
+}
+
+void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
+ const PatternToMatch &PTM) {
+ // Do some sanity checking on the pattern we're about to match.
+ std::string Reason;
+ if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this))
+ Pattern->error("Pattern can never match: " + Reason);
+
+ // If the source pattern's root is a complex pattern, that complex pattern
+ // must specify the nodes it can potentially match.
+ if (const ComplexPattern *CP =
+ PTM.getSrcPattern()->getComplexPatternInfo(*this))
+ if (CP->getRootNodes().empty())
+ Pattern->error("ComplexPattern at root must specify list of opcodes it"
+ " could match");
+
+
+ // Find all of the named values in the input and output, ensure they have the
+ // same type.
+ std::map<std::string, NameRecord> SrcNames, DstNames;
+ FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
+ FindNames(PTM.getDstPattern(), DstNames, Pattern);
+
+ // Scan all of the named values in the destination pattern, rejecting them if
+ // they don't exist in the input pattern.
+ for (std::map<std::string, NameRecord>::iterator
+ I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
+ if (SrcNames[I->first].first == 0)
+ Pattern->error("Pattern has input without matching name in output: $" +
+ I->first);
+ }
+
+ // Scan all of the named values in the source pattern, rejecting them if the
+ // name isn't used in the dest, and isn't used to tie two values together.
+ for (std::map<std::string, NameRecord>::iterator
+ I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
+ if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
+ Pattern->error("Pattern has dead named input: $" + I->first);
+
+ PatternsToMatch.push_back(PTM);
+}
+
+
+
+void CodeGenDAGPatterns::InferInstructionFlags() {
+ const std::vector<const CodeGenInstruction*> &Instructions =
+ Target.getInstructionsByEnumValue();
+ for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
+ CodeGenInstruction &InstInfo =
+ const_cast<CodeGenInstruction &>(*Instructions[i]);
+ // Determine properties of the instruction from its pattern.
+ bool MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic;
+ InferFromPattern(InstInfo, MayStore, MayLoad, IsBitcast,
+ HasSideEffects, IsVariadic, *this);
+ InstInfo.mayStore = MayStore;
+ InstInfo.mayLoad = MayLoad;
+ InstInfo.isBitcast = IsBitcast;
+ InstInfo.hasSideEffects = HasSideEffects;
+ InstInfo.Operands.isVariadic = IsVariadic;
+
+ // Sanity checks.
+ if (InstInfo.isReMaterializable && InstInfo.hasSideEffects)
+ throw TGError(InstInfo.TheDef->getLoc(), "The instruction " +
+ InstInfo.TheDef->getName() +
+ " is rematerializable AND has unmodeled side effects?");
+ }
+}
+
+/// Given a pattern result with an unresolved type, see if we can find one
+/// instruction with an unresolved result type. Force this result type to an
+/// arbitrary element if it's possible types to converge results.
+static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
+ if (N->isLeaf())
+ return false;
+
+ // Analyze children.
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ if (ForceArbitraryInstResultType(N->getChild(i), TP))
+ return true;
+
+ if (!N->getOperator()->isSubClassOf("Instruction"))
+ return false;
+
+ // If this type is already concrete or completely unknown we can't do
+ // anything.
+ for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
+ if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
+ continue;
+
+ // Otherwise, force its type to the first possibility (an arbitrary choice).
+ if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
+ return true;
+ }
+
+ return false;
+}
+
+void CodeGenDAGPatterns::ParsePatterns() {
+ std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
+
+ for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
+ Record *CurPattern = Patterns[i];
+ DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
+ TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
+
+ // Inline pattern fragments into it.
+ Pattern->InlinePatternFragments();
+
+ ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
+ if (LI->getSize() == 0) continue; // no pattern.
+
+ // Parse the instruction.
+ TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
+
+ // Inline pattern fragments into it.
+ Result->InlinePatternFragments();
+
+ if (Result->getNumTrees() != 1)
+ Result->error("Cannot handle instructions producing instructions "
+ "with temporaries yet!");
+
+ bool IterateInference;
+ bool InferredAllPatternTypes, InferredAllResultTypes;
+ do {
+ // Infer as many types as possible. If we cannot infer all of them, we
+ // can never do anything with this pattern: report it to the user.
+ InferredAllPatternTypes =
+ Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
+
+ // Infer as many types as possible. If we cannot infer all of them, we
+ // can never do anything with this pattern: report it to the user.
+ InferredAllResultTypes =
+ Result->InferAllTypes(&Pattern->getNamedNodesMap());
+
+ IterateInference = false;
+
+ // Apply the type of the result to the source pattern. This helps us
+ // resolve cases where the input type is known to be a pointer type (which
+ // is considered resolved), but the result knows it needs to be 32- or
+ // 64-bits. Infer the other way for good measure.
+ for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
+ Pattern->getTree(0)->getNumTypes());
+ i != e; ++i) {
+ IterateInference = Pattern->getTree(0)->
+ UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
+ IterateInference |= Result->getTree(0)->
+ UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
+ }
+
+ // If our iteration has converged and the input pattern's types are fully
+ // resolved but the result pattern is not fully resolved, we may have a
+ // situation where we have two instructions in the result pattern and
+ // the instructions require a common register class, but don't care about
+ // what actual MVT is used. This is actually a bug in our modelling:
+ // output patterns should have register classes, not MVTs.
+ //
+ // In any case, to handle this, we just go through and disambiguate some
+ // arbitrary types to the result pattern's nodes.
+ if (!IterateInference && InferredAllPatternTypes &&
+ !InferredAllResultTypes)
+ IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
+ *Result);
+ } while (IterateInference);
+
+ // Verify that we inferred enough types that we can do something with the
+ // pattern and result. If these fire the user has to add type casts.
+ if (!InferredAllPatternTypes)
+ Pattern->error("Could not infer all types in pattern!");
+ if (!InferredAllResultTypes) {
+ Pattern->dump();
+ Result->error("Could not infer all types in pattern result!");
+ }
+
+ // Validate that the input pattern is correct.
+ std::map<std::string, TreePatternNode*> InstInputs;
+ std::map<std::string, TreePatternNode*> InstResults;
+ std::vector<Record*> InstImpResults;
+ for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
+ FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
+ InstInputs, InstResults,
+ InstImpResults);
+
+ // Promote the xform function to be an explicit node if set.
+ TreePatternNode *DstPattern = Result->getOnlyTree();
+ std::vector<TreePatternNode*> ResultNodeOperands;
+ for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
+ TreePatternNode *OpNode = DstPattern->getChild(ii);
+ if (Record *Xform = OpNode->getTransformFn()) {
+ OpNode->setTransformFn(0);
+ std::vector<TreePatternNode*> Children;
+ Children.push_back(OpNode);
+ OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
+ }
+ ResultNodeOperands.push_back(OpNode);
+ }
+ DstPattern = Result->getOnlyTree();
+ if (!DstPattern->isLeaf())
+ DstPattern = new TreePatternNode(DstPattern->getOperator(),
+ ResultNodeOperands,
+ DstPattern->getNumTypes());
+
+ for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
+ DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
+
+ TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
+ Temp.InferAllTypes();
+
+
+ AddPatternToMatch(Pattern,
+ PatternToMatch(CurPattern,
+ CurPattern->getValueAsListInit("Predicates"),
+ Pattern->getTree(0),
+ Temp.getOnlyTree(), InstImpResults,
+ CurPattern->getValueAsInt("AddedComplexity"),
+ CurPattern->getID()));
+ }
+}
+
+/// CombineChildVariants - Given a bunch of permutations of each child of the
+/// 'operator' node, put them together in all possible ways.
+static void CombineChildVariants(TreePatternNode *Orig,
+ const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
+ std::vector<TreePatternNode*> &OutVariants,
+ CodeGenDAGPatterns &CDP,
+ const MultipleUseVarSet &DepVars) {
+ // Make sure that each operand has at least one variant to choose from.
+ for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
+ if (ChildVariants[i].empty())
+ return;
+
+ // The end result is an all-pairs construction of the resultant pattern.
+ std::vector<unsigned> Idxs;
+ Idxs.resize(ChildVariants.size());
+ bool NotDone;
+ do {
+#ifndef NDEBUG
+ DEBUG(if (!Idxs.empty()) {
+ errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
+ for (unsigned i = 0; i < Idxs.size(); ++i) {
+ errs() << Idxs[i] << " ";
+ }
+ errs() << "]\n";
+ });
+#endif
+ // Create the variant and add it to the output list.
+ std::vector<TreePatternNode*> NewChildren;
+ for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
+ NewChildren.push_back(ChildVariants[i][Idxs[i]]);
+ TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
+ Orig->getNumTypes());
+
+ // Copy over properties.
+ R->setName(Orig->getName());
+ R->setPredicateFns(Orig->getPredicateFns());
+ R->setTransformFn(Orig->getTransformFn());
+ for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
+ R->setType(i, Orig->getExtType(i));
+
+ // If this pattern cannot match, do not include it as a variant.
+ std::string ErrString;
+ if (!R->canPatternMatch(ErrString, CDP)) {
+ delete R;
+ } else {
+ bool AlreadyExists = false;
+
+ // Scan to see if this pattern has already been emitted. We can get
+ // duplication due to things like commuting:
+ // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
+ // which are the same pattern. Ignore the dups.
+ for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
+ if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
+ AlreadyExists = true;
+ break;
+ }
+
+ if (AlreadyExists)
+ delete R;
+ else
+ OutVariants.push_back(R);
+ }
+
+ // Increment indices to the next permutation by incrementing the
+ // indicies from last index backward, e.g., generate the sequence
+ // [0, 0], [0, 1], [1, 0], [1, 1].
+ int IdxsIdx;
+ for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
+ if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
+ Idxs[IdxsIdx] = 0;
+ else
+ break;
+ }
+ NotDone = (IdxsIdx >= 0);
+ } while (NotDone);
+}
+
+/// CombineChildVariants - A helper function for binary operators.
+///
+static void CombineChildVariants(TreePatternNode *Orig,
+ const std::vector<TreePatternNode*> &LHS,
+ const std::vector<TreePatternNode*> &RHS,
+ std::vector<TreePatternNode*> &OutVariants,
+ CodeGenDAGPatterns &CDP,
+ const MultipleUseVarSet &DepVars) {
+ std::vector<std::vector<TreePatternNode*> > ChildVariants;
+ ChildVariants.push_back(LHS);
+ ChildVariants.push_back(RHS);
+ CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
+}
+
+
+static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
+ std::vector<TreePatternNode *> &Children) {
+ assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
+ Record *Operator = N->getOperator();
+
+ // Only permit raw nodes.
+ if (!N->getName().empty() || !N->getPredicateFns().empty() ||
+ N->getTransformFn()) {
+ Children.push_back(N);
+ return;
+ }
+
+ if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
+ Children.push_back(N->getChild(0));
+ else
+ GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
+
+ if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
+ Children.push_back(N->getChild(1));
+ else
+ GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
+}
+
+/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
+/// the (potentially recursive) pattern by using algebraic laws.
+///
+static void GenerateVariantsOf(TreePatternNode *N,
+ std::vector<TreePatternNode*> &OutVariants,
+ CodeGenDAGPatterns &CDP,
+ const MultipleUseVarSet &DepVars) {
+ // We cannot permute leaves.
+ if (N->isLeaf()) {
+ OutVariants.push_back(N);
+ return;
+ }
+
+ // Look up interesting info about the node.
+ const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
+
+ // If this node is associative, re-associate.
+ if (NodeInfo.hasProperty(SDNPAssociative)) {
+ // Re-associate by pulling together all of the linked operators
+ std::vector<TreePatternNode*> MaximalChildren;
+ GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
+
+ // Only handle child sizes of 3. Otherwise we'll end up trying too many
+ // permutations.
+ if (MaximalChildren.size() == 3) {
+ // Find the variants of all of our maximal children.
+ std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
+ GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
+ GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
+ GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
+
+ // There are only two ways we can permute the tree:
+ // (A op B) op C and A op (B op C)
+ // Within these forms, we can also permute A/B/C.
+
+ // Generate legal pair permutations of A/B/C.
+ std::vector<TreePatternNode*> ABVariants;
+ std::vector<TreePatternNode*> BAVariants;
+ std::vector<TreePatternNode*> ACVariants;
+ std::vector<TreePatternNode*> CAVariants;
+ std::vector<TreePatternNode*> BCVariants;
+ std::vector<TreePatternNode*> CBVariants;
+ CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
+ CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
+ CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
+ CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
+ CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
+ CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
+
+ // Combine those into the result: (x op x) op x
+ CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
+
+ // Combine those into the result: x op (x op x)
+ CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
+ return;
+ }
+ }
+
+ // Compute permutations of all children.
+ std::vector<std::vector<TreePatternNode*> > ChildVariants;
+ ChildVariants.resize(N->getNumChildren());
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
+
+ // Build all permutations based on how the children were formed.
+ CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
+
+ // If this node is commutative, consider the commuted order.
+ bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
+ if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
+ assert((N->getNumChildren()==2 || isCommIntrinsic) &&
+ "Commutative but doesn't have 2 children!");
+ // Don't count children which are actually register references.
+ unsigned NC = 0;
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = N->getChild(i);
+ if (Child->isLeaf())
+ if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
+ Record *RR = DI->getDef();
+ if (RR->isSubClassOf("Register"))
+ continue;
+ }
+ NC++;
+ }
+ // Consider the commuted order.
+ if (isCommIntrinsic) {
+ // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
+ // operands are the commutative operands, and there might be more operands
+ // after those.
+ assert(NC >= 3 &&
+ "Commutative intrinsic should have at least 3 childrean!");
+ std::vector<std::vector<TreePatternNode*> > Variants;
+ Variants.push_back(ChildVariants[0]); // Intrinsic id.
+ Variants.push_back(ChildVariants[2]);
+ Variants.push_back(ChildVariants[1]);
+ for (unsigned i = 3; i != NC; ++i)
+ Variants.push_back(ChildVariants[i]);
+ CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
+ } else if (NC == 2)
+ CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
+ OutVariants, CDP, DepVars);
+ }
+}
+
+
+// GenerateVariants - Generate variants. For example, commutative patterns can
+// match multiple ways. Add them to PatternsToMatch as well.
+void CodeGenDAGPatterns::GenerateVariants() {
+ DEBUG(errs() << "Generating instruction variants.\n");
+
+ // Loop over all of the patterns we've collected, checking to see if we can
+ // generate variants of the instruction, through the exploitation of
+ // identities. This permits the target to provide aggressive matching without
+ // the .td file having to contain tons of variants of instructions.
+ //
+ // Note that this loop adds new patterns to the PatternsToMatch list, but we
+ // intentionally do not reconsider these. Any variants of added patterns have
+ // already been added.
+ //
+ for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
+ MultipleUseVarSet DepVars;
+ std::vector<TreePatternNode*> Variants;
+ FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
+ DEBUG(errs() << "Dependent/multiply used variables: ");
+ DEBUG(DumpDepVars(DepVars));
+ DEBUG(errs() << "\n");
+ GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
+ DepVars);
+
+ assert(!Variants.empty() && "Must create at least original variant!");
+ Variants.erase(Variants.begin()); // Remove the original pattern.
+
+ if (Variants.empty()) // No variants for this pattern.
+ continue;
+
+ DEBUG(errs() << "FOUND VARIANTS OF: ";
+ PatternsToMatch[i].getSrcPattern()->dump();
+ errs() << "\n");
+
+ for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
+ TreePatternNode *Variant = Variants[v];
+
+ DEBUG(errs() << " VAR#" << v << ": ";
+ Variant->dump();
+ errs() << "\n");
+
+ // Scan to see if an instruction or explicit pattern already matches this.
+ bool AlreadyExists = false;
+ for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
+ // Skip if the top level predicates do not match.
+ if (PatternsToMatch[i].getPredicates() !=
+ PatternsToMatch[p].getPredicates())
+ continue;
+ // Check to see if this variant already exists.
+ if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
+ DepVars)) {
+ DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
+ AlreadyExists = true;
+ break;
+ }
+ }
+ // If we already have it, ignore the variant.
+ if (AlreadyExists) continue;
+
+ // Otherwise, add it to the list of patterns we have.
+ PatternsToMatch.
+ push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
+ PatternsToMatch[i].getPredicates(),
+ Variant, PatternsToMatch[i].getDstPattern(),
+ PatternsToMatch[i].getDstRegs(),
+ PatternsToMatch[i].getAddedComplexity(),
+ Record::getNewUID()));
+ }
+
+ DEBUG(errs() << "\n");
+ }
+}
+
OpenPOWER on IntegriCloud