diff options
Diffstat (limited to 'contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp')
-rw-r--r-- | contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp | 3021 |
1 files changed, 3021 insertions, 0 deletions
diff --git a/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp b/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp new file mode 100644 index 0000000..878ed09 --- /dev/null +++ b/contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp @@ -0,0 +1,3021 @@ +//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the CodeGenDAGPatterns class, which is used to read and +// represent the patterns present in a .td file for instructions. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenDAGPatterns.h" +#include "Record.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/Debug.h" +#include <set> +#include <algorithm> +using namespace llvm; + +//===----------------------------------------------------------------------===// +// EEVT::TypeSet Implementation +//===----------------------------------------------------------------------===// + +static inline bool isInteger(MVT::SimpleValueType VT) { + return EVT(VT).isInteger(); +} +static inline bool isFloatingPoint(MVT::SimpleValueType VT) { + return EVT(VT).isFloatingPoint(); +} +static inline bool isVector(MVT::SimpleValueType VT) { + return EVT(VT).isVector(); +} +static inline bool isScalar(MVT::SimpleValueType VT) { + return !EVT(VT).isVector(); +} + +EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { + if (VT == MVT::iAny) + EnforceInteger(TP); + else if (VT == MVT::fAny) + EnforceFloatingPoint(TP); + else if (VT == MVT::vAny) + EnforceVector(TP); + else { + assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || + VT == MVT::iPTRAny) && "Not a concrete type!"); + TypeVec.push_back(VT); + } +} + + +EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { + assert(!VTList.empty() && "empty list?"); + TypeVec.append(VTList.begin(), VTList.end()); + + if (!VTList.empty()) + assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && + VTList[0] != MVT::fAny); + + // Verify no duplicates. + array_pod_sort(TypeVec.begin(), TypeVec.end()); + assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); +} + +/// FillWithPossibleTypes - Set to all legal types and return true, only valid +/// on completely unknown type sets. +bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, + bool (*Pred)(MVT::SimpleValueType), + const char *PredicateName) { + assert(isCompletelyUnknown()); + const std::vector<MVT::SimpleValueType> &LegalTypes = + TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); + + for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) + if (Pred == 0 || Pred(LegalTypes[i])) + TypeVec.push_back(LegalTypes[i]); + + // If we have nothing that matches the predicate, bail out. + if (TypeVec.empty()) + TP.error("Type inference contradiction found, no " + + std::string(PredicateName) + " types found"); + // No need to sort with one element. + if (TypeVec.size() == 1) return true; + + // Remove duplicates. + array_pod_sort(TypeVec.begin(), TypeVec.end()); + TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); + + return true; +} + +/// hasIntegerTypes - Return true if this TypeSet contains iAny or an +/// integer value type. +bool EEVT::TypeSet::hasIntegerTypes() const { + for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) + if (isInteger(TypeVec[i])) + return true; + return false; +} + +/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or +/// a floating point value type. +bool EEVT::TypeSet::hasFloatingPointTypes() const { + for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) + if (isFloatingPoint(TypeVec[i])) + return true; + return false; +} + +/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector +/// value type. +bool EEVT::TypeSet::hasVectorTypes() const { + for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) + if (isVector(TypeVec[i])) + return true; + return false; +} + + +std::string EEVT::TypeSet::getName() const { + if (TypeVec.empty()) return "<empty>"; + + std::string Result; + + for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { + std::string VTName = llvm::getEnumName(TypeVec[i]); + // Strip off MVT:: prefix if present. + if (VTName.substr(0,5) == "MVT::") + VTName = VTName.substr(5); + if (i) Result += ':'; + Result += VTName; + } + + if (TypeVec.size() == 1) + return Result; + return "{" + Result + "}"; +} + +/// MergeInTypeInfo - This merges in type information from the specified +/// argument. If 'this' changes, it returns true. If the two types are +/// contradictory (e.g. merge f32 into i32) then this throws an exception. +bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ + if (InVT.isCompletelyUnknown() || *this == InVT) + return false; + + if (isCompletelyUnknown()) { + *this = InVT; + return true; + } + + assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); + + // Handle the abstract cases, seeing if we can resolve them better. + switch (TypeVec[0]) { + default: break; + case MVT::iPTR: + case MVT::iPTRAny: + if (InVT.hasIntegerTypes()) { + EEVT::TypeSet InCopy(InVT); + InCopy.EnforceInteger(TP); + InCopy.EnforceScalar(TP); + + if (InCopy.isConcrete()) { + // If the RHS has one integer type, upgrade iPTR to i32. + TypeVec[0] = InVT.TypeVec[0]; + return true; + } + + // If the input has multiple scalar integers, this doesn't add any info. + if (!InCopy.isCompletelyUnknown()) + return false; + } + break; + } + + // If the input constraint is iAny/iPTR and this is an integer type list, + // remove non-integer types from the list. + if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && + hasIntegerTypes()) { + bool MadeChange = EnforceInteger(TP); + + // If we're merging in iPTR/iPTRAny and the node currently has a list of + // multiple different integer types, replace them with a single iPTR. + if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && + TypeVec.size() != 1) { + TypeVec.resize(1); + TypeVec[0] = InVT.TypeVec[0]; + MadeChange = true; + } + + return MadeChange; + } + + // If this is a type list and the RHS is a typelist as well, eliminate entries + // from this list that aren't in the other one. + bool MadeChange = false; + TypeSet InputSet(*this); + + for (unsigned i = 0; i != TypeVec.size(); ++i) { + bool InInVT = false; + for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) + if (TypeVec[i] == InVT.TypeVec[j]) { + InInVT = true; + break; + } + + if (InInVT) continue; + TypeVec.erase(TypeVec.begin()+i--); + MadeChange = true; + } + + // If we removed all of our types, we have a type contradiction. + if (!TypeVec.empty()) + return MadeChange; + + // FIXME: Really want an SMLoc here! + TP.error("Type inference contradiction found, merging '" + + InVT.getName() + "' into '" + InputSet.getName() + "'"); + return true; // unreachable +} + +/// EnforceInteger - Remove all non-integer types from this set. +bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { + // If we know nothing, then get the full set. + if (TypeVec.empty()) + return FillWithPossibleTypes(TP, isInteger, "integer"); + if (!hasFloatingPointTypes()) + return false; + + TypeSet InputSet(*this); + + // Filter out all the fp types. + for (unsigned i = 0; i != TypeVec.size(); ++i) + if (!isInteger(TypeVec[i])) + TypeVec.erase(TypeVec.begin()+i--); + + if (TypeVec.empty()) + TP.error("Type inference contradiction found, '" + + InputSet.getName() + "' needs to be integer"); + return true; +} + +/// EnforceFloatingPoint - Remove all integer types from this set. +bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { + // If we know nothing, then get the full set. + if (TypeVec.empty()) + return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); + + if (!hasIntegerTypes()) + return false; + + TypeSet InputSet(*this); + + // Filter out all the fp types. + for (unsigned i = 0; i != TypeVec.size(); ++i) + if (!isFloatingPoint(TypeVec[i])) + TypeVec.erase(TypeVec.begin()+i--); + + if (TypeVec.empty()) + TP.error("Type inference contradiction found, '" + + InputSet.getName() + "' needs to be floating point"); + return true; +} + +/// EnforceScalar - Remove all vector types from this. +bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { + // If we know nothing, then get the full set. + if (TypeVec.empty()) + return FillWithPossibleTypes(TP, isScalar, "scalar"); + + if (!hasVectorTypes()) + return false; + + TypeSet InputSet(*this); + + // Filter out all the vector types. + for (unsigned i = 0; i != TypeVec.size(); ++i) + if (!isScalar(TypeVec[i])) + TypeVec.erase(TypeVec.begin()+i--); + + if (TypeVec.empty()) + TP.error("Type inference contradiction found, '" + + InputSet.getName() + "' needs to be scalar"); + return true; +} + +/// EnforceVector - Remove all vector types from this. +bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { + // If we know nothing, then get the full set. + if (TypeVec.empty()) + return FillWithPossibleTypes(TP, isVector, "vector"); + + TypeSet InputSet(*this); + bool MadeChange = false; + + // Filter out all the scalar types. + for (unsigned i = 0; i != TypeVec.size(); ++i) + if (!isVector(TypeVec[i])) { + TypeVec.erase(TypeVec.begin()+i--); + MadeChange = true; + } + + if (TypeVec.empty()) + TP.error("Type inference contradiction found, '" + + InputSet.getName() + "' needs to be a vector"); + return MadeChange; +} + + + +/// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update +/// this an other based on this information. +bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { + // Both operands must be integer or FP, but we don't care which. + bool MadeChange = false; + + if (isCompletelyUnknown()) + MadeChange = FillWithPossibleTypes(TP); + + if (Other.isCompletelyUnknown()) + MadeChange = Other.FillWithPossibleTypes(TP); + + // If one side is known to be integer or known to be FP but the other side has + // no information, get at least the type integrality info in there. + if (!hasFloatingPointTypes()) + MadeChange |= Other.EnforceInteger(TP); + else if (!hasIntegerTypes()) + MadeChange |= Other.EnforceFloatingPoint(TP); + if (!Other.hasFloatingPointTypes()) + MadeChange |= EnforceInteger(TP); + else if (!Other.hasIntegerTypes()) + MadeChange |= EnforceFloatingPoint(TP); + + assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && + "Should have a type list now"); + + // If one contains vectors but the other doesn't pull vectors out. + if (!hasVectorTypes()) + MadeChange |= Other.EnforceScalar(TP); + if (!hasVectorTypes()) + MadeChange |= EnforceScalar(TP); + + // This code does not currently handle nodes which have multiple types, + // where some types are integer, and some are fp. Assert that this is not + // the case. + assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && + !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && + "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); + + // Okay, find the smallest type from the current set and remove it from the + // largest set. + MVT::SimpleValueType Smallest = TypeVec[0]; + for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) + if (TypeVec[i] < Smallest) + Smallest = TypeVec[i]; + + // If this is the only type in the large set, the constraint can never be + // satisfied. + if (Other.TypeVec.size() == 1 && Other.TypeVec[0] == Smallest) + TP.error("Type inference contradiction found, '" + + Other.getName() + "' has nothing larger than '" + getName() +"'!"); + + SmallVector<MVT::SimpleValueType, 2>::iterator TVI = + std::find(Other.TypeVec.begin(), Other.TypeVec.end(), Smallest); + if (TVI != Other.TypeVec.end()) { + Other.TypeVec.erase(TVI); + MadeChange = true; + } + + // Okay, find the largest type in the Other set and remove it from the + // current set. + MVT::SimpleValueType Largest = Other.TypeVec[0]; + for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) + if (Other.TypeVec[i] > Largest) + Largest = Other.TypeVec[i]; + + // If this is the only type in the small set, the constraint can never be + // satisfied. + if (TypeVec.size() == 1 && TypeVec[0] == Largest) + TP.error("Type inference contradiction found, '" + + getName() + "' has nothing smaller than '" + Other.getName()+"'!"); + + TVI = std::find(TypeVec.begin(), TypeVec.end(), Largest); + if (TVI != TypeVec.end()) { + TypeVec.erase(TVI); + MadeChange = true; + } + + return MadeChange; +} + +/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type +/// whose element is specified by VTOperand. +bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, + TreePattern &TP) { + // "This" must be a vector and "VTOperand" must be a scalar. + bool MadeChange = false; + MadeChange |= EnforceVector(TP); + MadeChange |= VTOperand.EnforceScalar(TP); + + // If we know the vector type, it forces the scalar to agree. + if (isConcrete()) { + EVT IVT = getConcrete(); + IVT = IVT.getVectorElementType(); + return MadeChange | + VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); + } + + // If the scalar type is known, filter out vector types whose element types + // disagree. + if (!VTOperand.isConcrete()) + return MadeChange; + + MVT::SimpleValueType VT = VTOperand.getConcrete(); + + TypeSet InputSet(*this); + + // Filter out all the types which don't have the right element type. + for (unsigned i = 0; i != TypeVec.size(); ++i) { + assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); + if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { + TypeVec.erase(TypeVec.begin()+i--); + MadeChange = true; + } + } + + if (TypeVec.empty()) // FIXME: Really want an SMLoc here! + TP.error("Type inference contradiction found, forcing '" + + InputSet.getName() + "' to have a vector element"); + return MadeChange; +} + +//===----------------------------------------------------------------------===// +// Helpers for working with extended types. + +bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { + return LHS->getID() < RHS->getID(); +} + +/// Dependent variable map for CodeGenDAGPattern variant generation +typedef std::map<std::string, int> DepVarMap; + +/// Const iterator shorthand for DepVarMap +typedef DepVarMap::const_iterator DepVarMap_citer; + +namespace { +void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { + if (N->isLeaf()) { + if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) { + DepMap[N->getName()]++; + } + } else { + for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) + FindDepVarsOf(N->getChild(i), DepMap); + } +} + +//! Find dependent variables within child patterns +/*! + */ +void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { + DepVarMap depcounts; + FindDepVarsOf(N, depcounts); + for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { + if (i->second > 1) { // std::pair<std::string, int> + DepVars.insert(i->first); + } + } +} + +//! Dump the dependent variable set: +void DumpDepVars(MultipleUseVarSet &DepVars) { + if (DepVars.empty()) { + DEBUG(errs() << "<empty set>"); + } else { + DEBUG(errs() << "[ "); + for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end(); + i != e; ++i) { + DEBUG(errs() << (*i) << " "); + } + DEBUG(errs() << "]"); + } +} +} + +//===----------------------------------------------------------------------===// +// PatternToMatch implementation +// + + +/// getPatternSize - Return the 'size' of this pattern. We want to match large +/// patterns before small ones. This is used to determine the size of a +/// pattern. +static unsigned getPatternSize(const TreePatternNode *P, + const CodeGenDAGPatterns &CGP) { + unsigned Size = 3; // The node itself. + // If the root node is a ConstantSDNode, increases its size. + // e.g. (set R32:$dst, 0). + if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) + Size += 2; + + // FIXME: This is a hack to statically increase the priority of patterns + // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. + // Later we can allow complexity / cost for each pattern to be (optionally) + // specified. To get best possible pattern match we'll need to dynamically + // calculate the complexity of all patterns a dag can potentially map to. + const ComplexPattern *AM = P->getComplexPatternInfo(CGP); + if (AM) + Size += AM->getNumOperands() * 3; + + // If this node has some predicate function that must match, it adds to the + // complexity of this node. + if (!P->getPredicateFns().empty()) + ++Size; + + // Count children in the count if they are also nodes. + for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { + TreePatternNode *Child = P->getChild(i); + if (!Child->isLeaf() && Child->getNumTypes() && + Child->getType(0) != MVT::Other) + Size += getPatternSize(Child, CGP); + else if (Child->isLeaf()) { + if (dynamic_cast<IntInit*>(Child->getLeafValue())) + Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). + else if (Child->getComplexPatternInfo(CGP)) + Size += getPatternSize(Child, CGP); + else if (!Child->getPredicateFns().empty()) + ++Size; + } + } + + return Size; +} + +/// Compute the complexity metric for the input pattern. This roughly +/// corresponds to the number of nodes that are covered. +unsigned PatternToMatch:: +getPatternComplexity(const CodeGenDAGPatterns &CGP) const { + return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); +} + + +/// getPredicateCheck - Return a single string containing all of this +/// pattern's predicates concatenated with "&&" operators. +/// +std::string PatternToMatch::getPredicateCheck() const { + std::string PredicateCheck; + for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { + if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { + Record *Def = Pred->getDef(); + if (!Def->isSubClassOf("Predicate")) { +#ifndef NDEBUG + Def->dump(); +#endif + assert(0 && "Unknown predicate type!"); + } + if (!PredicateCheck.empty()) + PredicateCheck += " && "; + PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; + } + } + + return PredicateCheck; +} + +//===----------------------------------------------------------------------===// +// SDTypeConstraint implementation +// + +SDTypeConstraint::SDTypeConstraint(Record *R) { + OperandNo = R->getValueAsInt("OperandNum"); + + if (R->isSubClassOf("SDTCisVT")) { + ConstraintType = SDTCisVT; + x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); + if (x.SDTCisVT_Info.VT == MVT::isVoid) + throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); + + } else if (R->isSubClassOf("SDTCisPtrTy")) { + ConstraintType = SDTCisPtrTy; + } else if (R->isSubClassOf("SDTCisInt")) { + ConstraintType = SDTCisInt; + } else if (R->isSubClassOf("SDTCisFP")) { + ConstraintType = SDTCisFP; + } else if (R->isSubClassOf("SDTCisVec")) { + ConstraintType = SDTCisVec; + } else if (R->isSubClassOf("SDTCisSameAs")) { + ConstraintType = SDTCisSameAs; + x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); + } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { + ConstraintType = SDTCisVTSmallerThanOp; + x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = + R->getValueAsInt("OtherOperandNum"); + } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { + ConstraintType = SDTCisOpSmallerThanOp; + x.SDTCisOpSmallerThanOp_Info.BigOperandNum = + R->getValueAsInt("BigOperandNum"); + } else if (R->isSubClassOf("SDTCisEltOfVec")) { + ConstraintType = SDTCisEltOfVec; + x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); + } else { + errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; + exit(1); + } +} + +/// getOperandNum - Return the node corresponding to operand #OpNo in tree +/// N, and the result number in ResNo. +static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, + const SDNodeInfo &NodeInfo, + unsigned &ResNo) { + unsigned NumResults = NodeInfo.getNumResults(); + if (OpNo < NumResults) { + ResNo = OpNo; + return N; + } + + OpNo -= NumResults; + + if (OpNo >= N->getNumChildren()) { + errs() << "Invalid operand number in type constraint " + << (OpNo+NumResults) << " "; + N->dump(); + errs() << '\n'; + exit(1); + } + + return N->getChild(OpNo); +} + +/// ApplyTypeConstraint - Given a node in a pattern, apply this type +/// constraint to the nodes operands. This returns true if it makes a +/// change, false otherwise. If a type contradiction is found, throw an +/// exception. +bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, + const SDNodeInfo &NodeInfo, + TreePattern &TP) const { + unsigned ResNo = 0; // The result number being referenced. + TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); + + switch (ConstraintType) { + default: assert(0 && "Unknown constraint type!"); + case SDTCisVT: + // Operand must be a particular type. + return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); + case SDTCisPtrTy: + // Operand must be same as target pointer type. + return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); + case SDTCisInt: + // Require it to be one of the legal integer VTs. + return NodeToApply->getExtType(ResNo).EnforceInteger(TP); + case SDTCisFP: + // Require it to be one of the legal fp VTs. + return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); + case SDTCisVec: + // Require it to be one of the legal vector VTs. + return NodeToApply->getExtType(ResNo).EnforceVector(TP); + case SDTCisSameAs: { + unsigned OResNo = 0; + TreePatternNode *OtherNode = + getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); + return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| + OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); + } + case SDTCisVTSmallerThanOp: { + // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must + // have an integer type that is smaller than the VT. + if (!NodeToApply->isLeaf() || + !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || + !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() + ->isSubClassOf("ValueType")) + TP.error(N->getOperator()->getName() + " expects a VT operand!"); + MVT::SimpleValueType VT = + getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); + + EEVT::TypeSet TypeListTmp(VT, TP); + + unsigned OResNo = 0; + TreePatternNode *OtherNode = + getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, + OResNo); + + return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); + } + case SDTCisOpSmallerThanOp: { + unsigned BResNo = 0; + TreePatternNode *BigOperand = + getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, + BResNo); + return NodeToApply->getExtType(ResNo). + EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); + } + case SDTCisEltOfVec: { + unsigned VResNo = 0; + TreePatternNode *VecOperand = + getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, + VResNo); + + // Filter vector types out of VecOperand that don't have the right element + // type. + return VecOperand->getExtType(VResNo). + EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); + } + } + return false; +} + +//===----------------------------------------------------------------------===// +// SDNodeInfo implementation +// +SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { + EnumName = R->getValueAsString("Opcode"); + SDClassName = R->getValueAsString("SDClass"); + Record *TypeProfile = R->getValueAsDef("TypeProfile"); + NumResults = TypeProfile->getValueAsInt("NumResults"); + NumOperands = TypeProfile->getValueAsInt("NumOperands"); + + // Parse the properties. + Properties = 0; + std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); + for (unsigned i = 0, e = PropList.size(); i != e; ++i) { + if (PropList[i]->getName() == "SDNPCommutative") { + Properties |= 1 << SDNPCommutative; + } else if (PropList[i]->getName() == "SDNPAssociative") { + Properties |= 1 << SDNPAssociative; + } else if (PropList[i]->getName() == "SDNPHasChain") { + Properties |= 1 << SDNPHasChain; + } else if (PropList[i]->getName() == "SDNPOutFlag") { + Properties |= 1 << SDNPOutFlag; + } else if (PropList[i]->getName() == "SDNPInFlag") { + Properties |= 1 << SDNPInFlag; + } else if (PropList[i]->getName() == "SDNPOptInFlag") { + Properties |= 1 << SDNPOptInFlag; + } else if (PropList[i]->getName() == "SDNPMayStore") { + Properties |= 1 << SDNPMayStore; + } else if (PropList[i]->getName() == "SDNPMayLoad") { + Properties |= 1 << SDNPMayLoad; + } else if (PropList[i]->getName() == "SDNPSideEffect") { + Properties |= 1 << SDNPSideEffect; + } else if (PropList[i]->getName() == "SDNPMemOperand") { + Properties |= 1 << SDNPMemOperand; + } else if (PropList[i]->getName() == "SDNPVariadic") { + Properties |= 1 << SDNPVariadic; + } else { + errs() << "Unknown SD Node property '" << PropList[i]->getName() + << "' on node '" << R->getName() << "'!\n"; + exit(1); + } + } + + + // Parse the type constraints. + std::vector<Record*> ConstraintList = + TypeProfile->getValueAsListOfDefs("Constraints"); + TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); +} + +/// getKnownType - If the type constraints on this node imply a fixed type +/// (e.g. all stores return void, etc), then return it as an +/// MVT::SimpleValueType. Otherwise, return EEVT::Other. +MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { + unsigned NumResults = getNumResults(); + assert(NumResults <= 1 && + "We only work with nodes with zero or one result so far!"); + assert(ResNo == 0 && "Only handles single result nodes so far"); + + for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { + // Make sure that this applies to the correct node result. + if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # + continue; + + switch (TypeConstraints[i].ConstraintType) { + default: break; + case SDTypeConstraint::SDTCisVT: + return TypeConstraints[i].x.SDTCisVT_Info.VT; + case SDTypeConstraint::SDTCisPtrTy: + return MVT::iPTR; + } + } + return MVT::Other; +} + +//===----------------------------------------------------------------------===// +// TreePatternNode implementation +// + +TreePatternNode::~TreePatternNode() { +#if 0 // FIXME: implement refcounted tree nodes! + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + delete getChild(i); +#endif +} + +static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { + if (Operator->getName() == "set" || + Operator->getName() == "implicit") + return 0; // All return nothing. + + if (Operator->isSubClassOf("Intrinsic")) + return CDP.getIntrinsic(Operator).IS.RetVTs.size(); + + if (Operator->isSubClassOf("SDNode")) + return CDP.getSDNodeInfo(Operator).getNumResults(); + + if (Operator->isSubClassOf("PatFrag")) { + // If we've already parsed this pattern fragment, get it. Otherwise, handle + // the forward reference case where one pattern fragment references another + // before it is processed. + if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) + return PFRec->getOnlyTree()->getNumTypes(); + + // Get the result tree. + DagInit *Tree = Operator->getValueAsDag("Fragment"); + Record *Op = 0; + if (Tree && dynamic_cast<DefInit*>(Tree->getOperator())) + Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef(); + assert(Op && "Invalid Fragment"); + return GetNumNodeResults(Op, CDP); + } + + if (Operator->isSubClassOf("Instruction")) { + CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); + + // FIXME: Should allow access to all the results here. + unsigned NumDefsToAdd = InstInfo.NumDefs ? 1 : 0; + + // Add on one implicit def if it has a resolvable type. + if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) + ++NumDefsToAdd; + return NumDefsToAdd; + } + + if (Operator->isSubClassOf("SDNodeXForm")) + return 1; // FIXME: Generalize SDNodeXForm + + Operator->dump(); + errs() << "Unhandled node in GetNumNodeResults\n"; + exit(1); +} + +void TreePatternNode::print(raw_ostream &OS) const { + if (isLeaf()) + OS << *getLeafValue(); + else + OS << '(' << getOperator()->getName(); + + for (unsigned i = 0, e = Types.size(); i != e; ++i) + OS << ':' << getExtType(i).getName(); + + if (!isLeaf()) { + if (getNumChildren() != 0) { + OS << " "; + getChild(0)->print(OS); + for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { + OS << ", "; + getChild(i)->print(OS); + } + } + OS << ")"; + } + + for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) + OS << "<<P:" << PredicateFns[i] << ">>"; + if (TransformFn) + OS << "<<X:" << TransformFn->getName() << ">>"; + if (!getName().empty()) + OS << ":$" << getName(); + +} +void TreePatternNode::dump() const { + print(errs()); +} + +/// isIsomorphicTo - Return true if this node is recursively +/// isomorphic to the specified node. For this comparison, the node's +/// entire state is considered. The assigned name is ignored, since +/// nodes with differing names are considered isomorphic. However, if +/// the assigned name is present in the dependent variable set, then +/// the assigned name is considered significant and the node is +/// isomorphic if the names match. +bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, + const MultipleUseVarSet &DepVars) const { + if (N == this) return true; + if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || + getPredicateFns() != N->getPredicateFns() || + getTransformFn() != N->getTransformFn()) + return false; + + if (isLeaf()) { + if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { + if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { + return ((DI->getDef() == NDI->getDef()) + && (DepVars.find(getName()) == DepVars.end() + || getName() == N->getName())); + } + } + return getLeafValue() == N->getLeafValue(); + } + + if (N->getOperator() != getOperator() || + N->getNumChildren() != getNumChildren()) return false; + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) + return false; + return true; +} + +/// clone - Make a copy of this tree and all of its children. +/// +TreePatternNode *TreePatternNode::clone() const { + TreePatternNode *New; + if (isLeaf()) { + New = new TreePatternNode(getLeafValue(), getNumTypes()); + } else { + std::vector<TreePatternNode*> CChildren; + CChildren.reserve(Children.size()); + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + CChildren.push_back(getChild(i)->clone()); + New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); + } + New->setName(getName()); + New->Types = Types; + New->setPredicateFns(getPredicateFns()); + New->setTransformFn(getTransformFn()); + return New; +} + +/// RemoveAllTypes - Recursively strip all the types of this tree. +void TreePatternNode::RemoveAllTypes() { + for (unsigned i = 0, e = Types.size(); i != e; ++i) + Types[i] = EEVT::TypeSet(); // Reset to unknown type. + if (isLeaf()) return; + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + getChild(i)->RemoveAllTypes(); +} + + +/// SubstituteFormalArguments - Replace the formal arguments in this tree +/// with actual values specified by ArgMap. +void TreePatternNode:: +SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { + if (isLeaf()) return; + + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { + TreePatternNode *Child = getChild(i); + if (Child->isLeaf()) { + Init *Val = Child->getLeafValue(); + if (dynamic_cast<DefInit*>(Val) && + static_cast<DefInit*>(Val)->getDef()->getName() == "node") { + // We found a use of a formal argument, replace it with its value. + TreePatternNode *NewChild = ArgMap[Child->getName()]; + assert(NewChild && "Couldn't find formal argument!"); + assert((Child->getPredicateFns().empty() || + NewChild->getPredicateFns() == Child->getPredicateFns()) && + "Non-empty child predicate clobbered!"); + setChild(i, NewChild); + } + } else { + getChild(i)->SubstituteFormalArguments(ArgMap); + } + } +} + + +/// InlinePatternFragments - If this pattern refers to any pattern +/// fragments, inline them into place, giving us a pattern without any +/// PatFrag references. +TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { + if (isLeaf()) return this; // nothing to do. + Record *Op = getOperator(); + + if (!Op->isSubClassOf("PatFrag")) { + // Just recursively inline children nodes. + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { + TreePatternNode *Child = getChild(i); + TreePatternNode *NewChild = Child->InlinePatternFragments(TP); + + assert((Child->getPredicateFns().empty() || + NewChild->getPredicateFns() == Child->getPredicateFns()) && + "Non-empty child predicate clobbered!"); + + setChild(i, NewChild); + } + return this; + } + + // Otherwise, we found a reference to a fragment. First, look up its + // TreePattern record. + TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); + + // Verify that we are passing the right number of operands. + if (Frag->getNumArgs() != Children.size()) + TP.error("'" + Op->getName() + "' fragment requires " + + utostr(Frag->getNumArgs()) + " operands!"); + + TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); + + std::string Code = Op->getValueAsCode("Predicate"); + if (!Code.empty()) + FragTree->addPredicateFn("Predicate_"+Op->getName()); + + // Resolve formal arguments to their actual value. + if (Frag->getNumArgs()) { + // Compute the map of formal to actual arguments. + std::map<std::string, TreePatternNode*> ArgMap; + for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) + ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); + + FragTree->SubstituteFormalArguments(ArgMap); + } + + FragTree->setName(getName()); + for (unsigned i = 0, e = Types.size(); i != e; ++i) + FragTree->UpdateNodeType(i, getExtType(i), TP); + + // Transfer in the old predicates. + for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) + FragTree->addPredicateFn(getPredicateFns()[i]); + + // Get a new copy of this fragment to stitch into here. + //delete this; // FIXME: implement refcounting! + + // The fragment we inlined could have recursive inlining that is needed. See + // if there are any pattern fragments in it and inline them as needed. + return FragTree->InlinePatternFragments(TP); +} + +/// getImplicitType - Check to see if the specified record has an implicit +/// type which should be applied to it. This will infer the type of register +/// references from the register file information, for example. +/// +static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, + bool NotRegisters, TreePattern &TP) { + // Check to see if this is a register or a register class. + if (R->isSubClassOf("RegisterClass")) { + assert(ResNo == 0 && "Regclass ref only has one result!"); + if (NotRegisters) + return EEVT::TypeSet(); // Unknown. + const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); + return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); + } + + if (R->isSubClassOf("PatFrag")) { + assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); + // Pattern fragment types will be resolved when they are inlined. + return EEVT::TypeSet(); // Unknown. + } + + if (R->isSubClassOf("Register")) { + assert(ResNo == 0 && "Registers only produce one result!"); + if (NotRegisters) + return EEVT::TypeSet(); // Unknown. + const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); + return EEVT::TypeSet(T.getRegisterVTs(R)); + } + + if (R->isSubClassOf("SubRegIndex")) { + assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); + return EEVT::TypeSet(); + } + + if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { + assert(ResNo == 0 && "This node only has one result!"); + // Using a VTSDNode or CondCodeSDNode. + return EEVT::TypeSet(MVT::Other, TP); + } + + if (R->isSubClassOf("ComplexPattern")) { + assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); + if (NotRegisters) + return EEVT::TypeSet(); // Unknown. + return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), + TP); + } + if (R->isSubClassOf("PointerLikeRegClass")) { + assert(ResNo == 0 && "Regclass can only have one result!"); + return EEVT::TypeSet(MVT::iPTR, TP); + } + + if (R->getName() == "node" || R->getName() == "srcvalue" || + R->getName() == "zero_reg") { + // Placeholder. + return EEVT::TypeSet(); // Unknown. + } + + TP.error("Unknown node flavor used in pattern: " + R->getName()); + return EEVT::TypeSet(MVT::Other, TP); +} + + +/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the +/// CodeGenIntrinsic information for it, otherwise return a null pointer. +const CodeGenIntrinsic *TreePatternNode:: +getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { + if (getOperator() != CDP.get_intrinsic_void_sdnode() && + getOperator() != CDP.get_intrinsic_w_chain_sdnode() && + getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) + return 0; + + unsigned IID = + dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); + return &CDP.getIntrinsicInfo(IID); +} + +/// getComplexPatternInfo - If this node corresponds to a ComplexPattern, +/// return the ComplexPattern information, otherwise return null. +const ComplexPattern * +TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { + if (!isLeaf()) return 0; + + DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); + if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) + return &CGP.getComplexPattern(DI->getDef()); + return 0; +} + +/// NodeHasProperty - Return true if this node has the specified property. +bool TreePatternNode::NodeHasProperty(SDNP Property, + const CodeGenDAGPatterns &CGP) const { + if (isLeaf()) { + if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) + return CP->hasProperty(Property); + return false; + } + + Record *Operator = getOperator(); + if (!Operator->isSubClassOf("SDNode")) return false; + + return CGP.getSDNodeInfo(Operator).hasProperty(Property); +} + + + + +/// TreeHasProperty - Return true if any node in this tree has the specified +/// property. +bool TreePatternNode::TreeHasProperty(SDNP Property, + const CodeGenDAGPatterns &CGP) const { + if (NodeHasProperty(Property, CGP)) + return true; + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + if (getChild(i)->TreeHasProperty(Property, CGP)) + return true; + return false; +} + +/// isCommutativeIntrinsic - Return true if the node corresponds to a +/// commutative intrinsic. +bool +TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { + if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) + return Int->isCommutative; + return false; +} + + +/// ApplyTypeConstraints - Apply all of the type constraints relevant to +/// this node and its children in the tree. This returns true if it makes a +/// change, false otherwise. If a type contradiction is found, throw an +/// exception. +bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { + CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); + if (isLeaf()) { + if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { + // If it's a regclass or something else known, include the type. + bool MadeChange = false; + for (unsigned i = 0, e = Types.size(); i != e; ++i) + MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, + NotRegisters, TP), TP); + return MadeChange; + } + + if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { + assert(Types.size() == 1 && "Invalid IntInit"); + + // Int inits are always integers. :) + bool MadeChange = Types[0].EnforceInteger(TP); + + if (!Types[0].isConcrete()) + return MadeChange; + + MVT::SimpleValueType VT = getType(0); + if (VT == MVT::iPTR || VT == MVT::iPTRAny) + return MadeChange; + + unsigned Size = EVT(VT).getSizeInBits(); + // Make sure that the value is representable for this type. + if (Size >= 32) return MadeChange; + + int Val = (II->getValue() << (32-Size)) >> (32-Size); + if (Val == II->getValue()) return MadeChange; + + // If sign-extended doesn't fit, does it fit as unsigned? + unsigned ValueMask; + unsigned UnsignedVal; + ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); + UnsignedVal = unsigned(II->getValue()); + + if ((ValueMask & UnsignedVal) == UnsignedVal) + return MadeChange; + + TP.error("Integer value '" + itostr(II->getValue())+ + "' is out of range for type '" + getEnumName(getType(0)) + "'!"); + return MadeChange; + } + return false; + } + + // special handling for set, which isn't really an SDNode. + if (getOperator()->getName() == "set") { + assert(getNumTypes() == 0 && "Set doesn't produce a value"); + assert(getNumChildren() >= 2 && "Missing RHS of a set?"); + unsigned NC = getNumChildren(); + + TreePatternNode *SetVal = getChild(NC-1); + bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); + + for (unsigned i = 0; i < NC-1; ++i) { + TreePatternNode *Child = getChild(i); + MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); + + // Types of operands must match. + MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); + MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); + } + return MadeChange; + } + + if (getOperator()->getName() == "implicit") { + assert(getNumTypes() == 0 && "Node doesn't produce a value"); + + bool MadeChange = false; + for (unsigned i = 0; i < getNumChildren(); ++i) + MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); + return MadeChange; + } + + if (getOperator()->getName() == "COPY_TO_REGCLASS") { + bool MadeChange = false; + MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); + MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); + + assert(getChild(0)->getNumTypes() == 1 && + getChild(1)->getNumTypes() == 1 && "Unhandled case"); + + // child #1 of COPY_TO_REGCLASS should be a register class. We don't care + // what type it gets, so if it didn't get a concrete type just give it the + // first viable type from the reg class. + if (!getChild(1)->hasTypeSet(0) && + !getChild(1)->getExtType(0).isCompletelyUnknown()) { + MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; + MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); + } + return MadeChange; + } + + if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { + bool MadeChange = false; + + // Apply the result type to the node. + unsigned NumRetVTs = Int->IS.RetVTs.size(); + unsigned NumParamVTs = Int->IS.ParamVTs.size(); + + for (unsigned i = 0, e = NumRetVTs; i != e; ++i) + MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); + + if (getNumChildren() != NumParamVTs + 1) + TP.error("Intrinsic '" + Int->Name + "' expects " + + utostr(NumParamVTs) + " operands, not " + + utostr(getNumChildren() - 1) + " operands!"); + + // Apply type info to the intrinsic ID. + MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); + + for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { + MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); + + MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; + assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); + MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); + } + return MadeChange; + } + + if (getOperator()->isSubClassOf("SDNode")) { + const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); + + // Check that the number of operands is sane. Negative operands -> varargs. + if (NI.getNumOperands() >= 0 && + getNumChildren() != (unsigned)NI.getNumOperands()) + TP.error(getOperator()->getName() + " node requires exactly " + + itostr(NI.getNumOperands()) + " operands!"); + + bool MadeChange = NI.ApplyTypeConstraints(this, TP); + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); + return MadeChange; + } + + if (getOperator()->isSubClassOf("Instruction")) { + const DAGInstruction &Inst = CDP.getInstruction(getOperator()); + CodeGenInstruction &InstInfo = + CDP.getTargetInfo().getInstruction(getOperator()); + + bool MadeChange = false; + + // Apply the result types to the node, these come from the things in the + // (outs) list of the instruction. + // FIXME: Cap at one result so far. + unsigned NumResultsToAdd = InstInfo.NumDefs ? 1 : 0; + for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { + Record *ResultNode = Inst.getResult(ResNo); + + if (ResultNode->isSubClassOf("PointerLikeRegClass")) { + MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); + } else if (ResultNode->getName() == "unknown") { + // Nothing to do. + } else { + assert(ResultNode->isSubClassOf("RegisterClass") && + "Operands should be register classes!"); + const CodeGenRegisterClass &RC = + CDP.getTargetInfo().getRegisterClass(ResultNode); + MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); + } + } + + // If the instruction has implicit defs, we apply the first one as a result. + // FIXME: This sucks, it should apply all implicit defs. + if (!InstInfo.ImplicitDefs.empty()) { + unsigned ResNo = NumResultsToAdd; + + // FIXME: Generalize to multiple possible types and multiple possible + // ImplicitDefs. + MVT::SimpleValueType VT = + InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); + + if (VT != MVT::Other) + MadeChange |= UpdateNodeType(ResNo, VT, TP); + } + + // If this is an INSERT_SUBREG, constrain the source and destination VTs to + // be the same. + if (getOperator()->getName() == "INSERT_SUBREG") { + assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); + MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); + MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); + } + + unsigned ChildNo = 0; + for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { + Record *OperandNode = Inst.getOperand(i); + + // If the instruction expects a predicate or optional def operand, we + // codegen this by setting the operand to it's default value if it has a + // non-empty DefaultOps field. + if ((OperandNode->isSubClassOf("PredicateOperand") || + OperandNode->isSubClassOf("OptionalDefOperand")) && + !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) + continue; + + // Verify that we didn't run out of provided operands. + if (ChildNo >= getNumChildren()) + TP.error("Instruction '" + getOperator()->getName() + + "' expects more operands than were provided."); + + MVT::SimpleValueType VT; + TreePatternNode *Child = getChild(ChildNo++); + unsigned ChildResNo = 0; // Instructions always use res #0 of their op. + + if (OperandNode->isSubClassOf("RegisterClass")) { + const CodeGenRegisterClass &RC = + CDP.getTargetInfo().getRegisterClass(OperandNode); + MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); + } else if (OperandNode->isSubClassOf("Operand")) { + VT = getValueType(OperandNode->getValueAsDef("Type")); + MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); + } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { + MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); + } else if (OperandNode->getName() == "unknown") { + // Nothing to do. + } else { + assert(0 && "Unknown operand type!"); + abort(); + } + MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); + } + + if (ChildNo != getNumChildren()) + TP.error("Instruction '" + getOperator()->getName() + + "' was provided too many operands!"); + + return MadeChange; + } + + assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); + + // Node transforms always take one operand. + if (getNumChildren() != 1) + TP.error("Node transform '" + getOperator()->getName() + + "' requires one operand!"); + + bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); + + + // If either the output or input of the xform does not have exact + // type info. We assume they must be the same. Otherwise, it is perfectly + // legal to transform from one type to a completely different type. +#if 0 + if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { + bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); + MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); + return MadeChange; + } +#endif + return MadeChange; +} + +/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the +/// RHS of a commutative operation, not the on LHS. +static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { + if (!N->isLeaf() && N->getOperator()->getName() == "imm") + return true; + if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) + return true; + return false; +} + + +/// canPatternMatch - If it is impossible for this pattern to match on this +/// target, fill in Reason and return false. Otherwise, return true. This is +/// used as a sanity check for .td files (to prevent people from writing stuff +/// that can never possibly work), and to prevent the pattern permuter from +/// generating stuff that is useless. +bool TreePatternNode::canPatternMatch(std::string &Reason, + const CodeGenDAGPatterns &CDP) { + if (isLeaf()) return true; + + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + if (!getChild(i)->canPatternMatch(Reason, CDP)) + return false; + + // If this is an intrinsic, handle cases that would make it not match. For + // example, if an operand is required to be an immediate. + if (getOperator()->isSubClassOf("Intrinsic")) { + // TODO: + return true; + } + + // If this node is a commutative operator, check that the LHS isn't an + // immediate. + const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); + bool isCommIntrinsic = isCommutativeIntrinsic(CDP); + if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { + // Scan all of the operands of the node and make sure that only the last one + // is a constant node, unless the RHS also is. + if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { + bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. + for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) + if (OnlyOnRHSOfCommutative(getChild(i))) { + Reason="Immediate value must be on the RHS of commutative operators!"; + return false; + } + } + } + + return true; +} + +//===----------------------------------------------------------------------===// +// TreePattern implementation +// + +TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, + CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ + isInputPattern = isInput; + for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) + Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); +} + +TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, + CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ + isInputPattern = isInput; + Trees.push_back(ParseTreePattern(Pat, "")); +} + +TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, + CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ + isInputPattern = isInput; + Trees.push_back(Pat); +} + +void TreePattern::error(const std::string &Msg) const { + dump(); + throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); +} + +void TreePattern::ComputeNamedNodes() { + for (unsigned i = 0, e = Trees.size(); i != e; ++i) + ComputeNamedNodes(Trees[i]); +} + +void TreePattern::ComputeNamedNodes(TreePatternNode *N) { + if (!N->getName().empty()) + NamedNodes[N->getName()].push_back(N); + + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) + ComputeNamedNodes(N->getChild(i)); +} + + +TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ + if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) { + Record *R = DI->getDef(); + + // Direct reference to a leaf DagNode or PatFrag? Turn it into a + // TreePatternNode if its own. For example: + /// (foo GPR, imm) -> (foo GPR, (imm)) + if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) + return ParseTreePattern(new DagInit(DI, "", + std::vector<std::pair<Init*, std::string> >()), + OpName); + + // Input argument? + TreePatternNode *Res = new TreePatternNode(DI, 1); + if (R->getName() == "node" && !OpName.empty()) { + if (OpName.empty()) + error("'node' argument requires a name to match with operand list"); + Args.push_back(OpName); + } + + Res->setName(OpName); + return Res; + } + + if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) { + if (!OpName.empty()) + error("Constant int argument should not have a name!"); + return new TreePatternNode(II, 1); + } + + if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) { + // Turn this into an IntInit. + Init *II = BI->convertInitializerTo(new IntRecTy()); + if (II == 0 || !dynamic_cast<IntInit*>(II)) + error("Bits value must be constants!"); + return ParseTreePattern(II, OpName); + } + + DagInit *Dag = dynamic_cast<DagInit*>(TheInit); + if (!Dag) { + TheInit->dump(); + error("Pattern has unexpected init kind!"); + } + DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); + if (!OpDef) error("Pattern has unexpected operator type!"); + Record *Operator = OpDef->getDef(); + + if (Operator->isSubClassOf("ValueType")) { + // If the operator is a ValueType, then this must be "type cast" of a leaf + // node. + if (Dag->getNumArgs() != 1) + error("Type cast only takes one operand!"); + + TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); + + // Apply the type cast. + assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); + New->UpdateNodeType(0, getValueType(Operator), *this); + + if (!OpName.empty()) + error("ValueType cast should not have a name!"); + return New; + } + + // Verify that this is something that makes sense for an operator. + if (!Operator->isSubClassOf("PatFrag") && + !Operator->isSubClassOf("SDNode") && + !Operator->isSubClassOf("Instruction") && + !Operator->isSubClassOf("SDNodeXForm") && + !Operator->isSubClassOf("Intrinsic") && + Operator->getName() != "set" && + Operator->getName() != "implicit") + error("Unrecognized node '" + Operator->getName() + "'!"); + + // Check to see if this is something that is illegal in an input pattern. + if (isInputPattern) { + if (Operator->isSubClassOf("Instruction") || + Operator->isSubClassOf("SDNodeXForm")) + error("Cannot use '" + Operator->getName() + "' in an input pattern!"); + } else { + if (Operator->isSubClassOf("Intrinsic")) + error("Cannot use '" + Operator->getName() + "' in an output pattern!"); + + if (Operator->isSubClassOf("SDNode") && + Operator->getName() != "imm" && + Operator->getName() != "fpimm" && + Operator->getName() != "tglobaltlsaddr" && + Operator->getName() != "tconstpool" && + Operator->getName() != "tjumptable" && + Operator->getName() != "tframeindex" && + Operator->getName() != "texternalsym" && + Operator->getName() != "tblockaddress" && + Operator->getName() != "tglobaladdr" && + Operator->getName() != "bb" && + Operator->getName() != "vt") + error("Cannot use '" + Operator->getName() + "' in an output pattern!"); + } + + std::vector<TreePatternNode*> Children; + + // Parse all the operands. + for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) + Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); + + // If the operator is an intrinsic, then this is just syntactic sugar for for + // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and + // convert the intrinsic name to a number. + if (Operator->isSubClassOf("Intrinsic")) { + const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); + unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; + + // If this intrinsic returns void, it must have side-effects and thus a + // chain. + if (Int.IS.RetVTs.empty()) + Operator = getDAGPatterns().get_intrinsic_void_sdnode(); + else if (Int.ModRef != CodeGenIntrinsic::NoMem) + // Has side-effects, requires chain. + Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); + else // Otherwise, no chain. + Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); + + TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1); + Children.insert(Children.begin(), IIDNode); + } + + unsigned NumResults = GetNumNodeResults(Operator, CDP); + TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); + Result->setName(OpName); + + if (!Dag->getName().empty()) { + assert(Result->getName().empty()); + Result->setName(Dag->getName()); + } + return Result; +} + +/// SimplifyTree - See if we can simplify this tree to eliminate something that +/// will never match in favor of something obvious that will. This is here +/// strictly as a convenience to target authors because it allows them to write +/// more type generic things and have useless type casts fold away. +/// +/// This returns true if any change is made. +static bool SimplifyTree(TreePatternNode *&N) { + if (N->isLeaf()) + return false; + + // If we have a bitconvert with a resolved type and if the source and + // destination types are the same, then the bitconvert is useless, remove it. + if (N->getOperator()->getName() == "bitconvert" && + N->getExtType(0).isConcrete() && + N->getExtType(0) == N->getChild(0)->getExtType(0) && + N->getName().empty()) { + N = N->getChild(0); + SimplifyTree(N); + return true; + } + + // Walk all children. + bool MadeChange = false; + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { + TreePatternNode *Child = N->getChild(i); + MadeChange |= SimplifyTree(Child); + N->setChild(i, Child); + } + return MadeChange; +} + + + +/// InferAllTypes - Infer/propagate as many types throughout the expression +/// patterns as possible. Return true if all types are inferred, false +/// otherwise. Throw an exception if a type contradiction is found. +bool TreePattern:: +InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { + if (NamedNodes.empty()) + ComputeNamedNodes(); + + bool MadeChange = true; + while (MadeChange) { + MadeChange = false; + for (unsigned i = 0, e = Trees.size(); i != e; ++i) { + MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); + MadeChange |= SimplifyTree(Trees[i]); + } + + // If there are constraints on our named nodes, apply them. + for (StringMap<SmallVector<TreePatternNode*,1> >::iterator + I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { + SmallVectorImpl<TreePatternNode*> &Nodes = I->second; + + // If we have input named node types, propagate their types to the named + // values here. + if (InNamedTypes) { + // FIXME: Should be error? + assert(InNamedTypes->count(I->getKey()) && + "Named node in output pattern but not input pattern?"); + + const SmallVectorImpl<TreePatternNode*> &InNodes = + InNamedTypes->find(I->getKey())->second; + + // The input types should be fully resolved by now. + for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { + // If this node is a register class, and it is the root of the pattern + // then we're mapping something onto an input register. We allow + // changing the type of the input register in this case. This allows + // us to match things like: + // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; + if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { + DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue()); + if (DI && DI->getDef()->isSubClassOf("RegisterClass")) + continue; + } + + assert(Nodes[i]->getNumTypes() == 1 && + InNodes[0]->getNumTypes() == 1 && + "FIXME: cannot name multiple result nodes yet"); + MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), + *this); + } + } + + // If there are multiple nodes with the same name, they must all have the + // same type. + if (I->second.size() > 1) { + for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { + TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; + assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && + "FIXME: cannot name multiple result nodes yet"); + + MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); + MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); + } + } + } + } + + bool HasUnresolvedTypes = false; + for (unsigned i = 0, e = Trees.size(); i != e; ++i) + HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); + return !HasUnresolvedTypes; +} + +void TreePattern::print(raw_ostream &OS) const { + OS << getRecord()->getName(); + if (!Args.empty()) { + OS << "(" << Args[0]; + for (unsigned i = 1, e = Args.size(); i != e; ++i) + OS << ", " << Args[i]; + OS << ")"; + } + OS << ": "; + + if (Trees.size() > 1) + OS << "[\n"; + for (unsigned i = 0, e = Trees.size(); i != e; ++i) { + OS << "\t"; + Trees[i]->print(OS); + OS << "\n"; + } + + if (Trees.size() > 1) + OS << "]\n"; +} + +void TreePattern::dump() const { print(errs()); } + +//===----------------------------------------------------------------------===// +// CodeGenDAGPatterns implementation +// + +CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) { + Intrinsics = LoadIntrinsics(Records, false); + TgtIntrinsics = LoadIntrinsics(Records, true); + ParseNodeInfo(); + ParseNodeTransforms(); + ParseComplexPatterns(); + ParsePatternFragments(); + ParseDefaultOperands(); + ParseInstructions(); + ParsePatterns(); + + // Generate variants. For example, commutative patterns can match + // multiple ways. Add them to PatternsToMatch as well. + GenerateVariants(); + + // Infer instruction flags. For example, we can detect loads, + // stores, and side effects in many cases by examining an + // instruction's pattern. + InferInstructionFlags(); +} + +CodeGenDAGPatterns::~CodeGenDAGPatterns() { + for (pf_iterator I = PatternFragments.begin(), + E = PatternFragments.end(); I != E; ++I) + delete I->second; +} + + +Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { + Record *N = Records.getDef(Name); + if (!N || !N->isSubClassOf("SDNode")) { + errs() << "Error getting SDNode '" << Name << "'!\n"; + exit(1); + } + return N; +} + +// Parse all of the SDNode definitions for the target, populating SDNodes. +void CodeGenDAGPatterns::ParseNodeInfo() { + std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); + while (!Nodes.empty()) { + SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); + Nodes.pop_back(); + } + + // Get the builtin intrinsic nodes. + intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); + intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); + intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); +} + +/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms +/// map, and emit them to the file as functions. +void CodeGenDAGPatterns::ParseNodeTransforms() { + std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); + while (!Xforms.empty()) { + Record *XFormNode = Xforms.back(); + Record *SDNode = XFormNode->getValueAsDef("Opcode"); + std::string Code = XFormNode->getValueAsCode("XFormFunction"); + SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); + + Xforms.pop_back(); + } +} + +void CodeGenDAGPatterns::ParseComplexPatterns() { + std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); + while (!AMs.empty()) { + ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); + AMs.pop_back(); + } +} + + +/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td +/// file, building up the PatternFragments map. After we've collected them all, +/// inline fragments together as necessary, so that there are no references left +/// inside a pattern fragment to a pattern fragment. +/// +void CodeGenDAGPatterns::ParsePatternFragments() { + std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); + + // First step, parse all of the fragments. + for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { + DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); + TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); + PatternFragments[Fragments[i]] = P; + + // Validate the argument list, converting it to set, to discard duplicates. + std::vector<std::string> &Args = P->getArgList(); + std::set<std::string> OperandsSet(Args.begin(), Args.end()); + + if (OperandsSet.count("")) + P->error("Cannot have unnamed 'node' values in pattern fragment!"); + + // Parse the operands list. + DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); + DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); + // Special cases: ops == outs == ins. Different names are used to + // improve readability. + if (!OpsOp || + (OpsOp->getDef()->getName() != "ops" && + OpsOp->getDef()->getName() != "outs" && + OpsOp->getDef()->getName() != "ins")) + P->error("Operands list should start with '(ops ... '!"); + + // Copy over the arguments. + Args.clear(); + for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { + if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || + static_cast<DefInit*>(OpsList->getArg(j))-> + getDef()->getName() != "node") + P->error("Operands list should all be 'node' values."); + if (OpsList->getArgName(j).empty()) + P->error("Operands list should have names for each operand!"); + if (!OperandsSet.count(OpsList->getArgName(j))) + P->error("'" + OpsList->getArgName(j) + + "' does not occur in pattern or was multiply specified!"); + OperandsSet.erase(OpsList->getArgName(j)); + Args.push_back(OpsList->getArgName(j)); + } + + if (!OperandsSet.empty()) + P->error("Operands list does not contain an entry for operand '" + + *OperandsSet.begin() + "'!"); + + // If there is a code init for this fragment, keep track of the fact that + // this fragment uses it. + std::string Code = Fragments[i]->getValueAsCode("Predicate"); + if (!Code.empty()) + P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName()); + + // If there is a node transformation corresponding to this, keep track of + // it. + Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); + if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? + P->getOnlyTree()->setTransformFn(Transform); + } + + // Now that we've parsed all of the tree fragments, do a closure on them so + // that there are not references to PatFrags left inside of them. + for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { + TreePattern *ThePat = PatternFragments[Fragments[i]]; + ThePat->InlinePatternFragments(); + + // Infer as many types as possible. Don't worry about it if we don't infer + // all of them, some may depend on the inputs of the pattern. + try { + ThePat->InferAllTypes(); + } catch (...) { + // If this pattern fragment is not supported by this target (no types can + // satisfy its constraints), just ignore it. If the bogus pattern is + // actually used by instructions, the type consistency error will be + // reported there. + } + + // If debugging, print out the pattern fragment result. + DEBUG(ThePat->dump()); + } +} + +void CodeGenDAGPatterns::ParseDefaultOperands() { + std::vector<Record*> DefaultOps[2]; + DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); + DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); + + // Find some SDNode. + assert(!SDNodes.empty() && "No SDNodes parsed?"); + Init *SomeSDNode = new DefInit(SDNodes.begin()->first); + + for (unsigned iter = 0; iter != 2; ++iter) { + for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { + DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); + + // Clone the DefaultInfo dag node, changing the operator from 'ops' to + // SomeSDnode so that we can parse this. + std::vector<std::pair<Init*, std::string> > Ops; + for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) + Ops.push_back(std::make_pair(DefaultInfo->getArg(op), + DefaultInfo->getArgName(op))); + DagInit *DI = new DagInit(SomeSDNode, "", Ops); + + // Create a TreePattern to parse this. + TreePattern P(DefaultOps[iter][i], DI, false, *this); + assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); + + // Copy the operands over into a DAGDefaultOperand. + DAGDefaultOperand DefaultOpInfo; + + TreePatternNode *T = P.getTree(0); + for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { + TreePatternNode *TPN = T->getChild(op); + while (TPN->ApplyTypeConstraints(P, false)) + /* Resolve all types */; + + if (TPN->ContainsUnresolvedType()) { + if (iter == 0) + throw "Value #" + utostr(i) + " of PredicateOperand '" + + DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; + else + throw "Value #" + utostr(i) + " of OptionalDefOperand '" + + DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; + } + DefaultOpInfo.DefaultOps.push_back(TPN); + } + + // Insert it into the DefaultOperands map so we can find it later. + DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; + } + } +} + +/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an +/// instruction input. Return true if this is a real use. +static bool HandleUse(TreePattern *I, TreePatternNode *Pat, + std::map<std::string, TreePatternNode*> &InstInputs) { + // No name -> not interesting. + if (Pat->getName().empty()) { + if (Pat->isLeaf()) { + DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); + if (DI && DI->getDef()->isSubClassOf("RegisterClass")) + I->error("Input " + DI->getDef()->getName() + " must be named!"); + } + return false; + } + + Record *Rec; + if (Pat->isLeaf()) { + DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); + if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); + Rec = DI->getDef(); + } else { + Rec = Pat->getOperator(); + } + + // SRCVALUE nodes are ignored. + if (Rec->getName() == "srcvalue") + return false; + + TreePatternNode *&Slot = InstInputs[Pat->getName()]; + if (!Slot) { + Slot = Pat; + return true; + } + Record *SlotRec; + if (Slot->isLeaf()) { + SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); + } else { + assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); + SlotRec = Slot->getOperator(); + } + + // Ensure that the inputs agree if we've already seen this input. + if (Rec != SlotRec) + I->error("All $" + Pat->getName() + " inputs must agree with each other"); + if (Slot->getExtTypes() != Pat->getExtTypes()) + I->error("All $" + Pat->getName() + " inputs must agree with each other"); + return true; +} + +/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is +/// part of "I", the instruction), computing the set of inputs and outputs of +/// the pattern. Report errors if we see anything naughty. +void CodeGenDAGPatterns:: +FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, + std::map<std::string, TreePatternNode*> &InstInputs, + std::map<std::string, TreePatternNode*>&InstResults, + std::vector<Record*> &InstImpResults) { + if (Pat->isLeaf()) { + bool isUse = HandleUse(I, Pat, InstInputs); + if (!isUse && Pat->getTransformFn()) + I->error("Cannot specify a transform function for a non-input value!"); + return; + } + + if (Pat->getOperator()->getName() == "implicit") { + for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { + TreePatternNode *Dest = Pat->getChild(i); + if (!Dest->isLeaf()) + I->error("implicitly defined value should be a register!"); + + DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); + if (!Val || !Val->getDef()->isSubClassOf("Register")) + I->error("implicitly defined value should be a register!"); + InstImpResults.push_back(Val->getDef()); + } + return; + } + + if (Pat->getOperator()->getName() != "set") { + // If this is not a set, verify that the children nodes are not void typed, + // and recurse. + for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { + if (Pat->getChild(i)->getNumTypes() == 0) + I->error("Cannot have void nodes inside of patterns!"); + FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, + InstImpResults); + } + + // If this is a non-leaf node with no children, treat it basically as if + // it were a leaf. This handles nodes like (imm). + bool isUse = HandleUse(I, Pat, InstInputs); + + if (!isUse && Pat->getTransformFn()) + I->error("Cannot specify a transform function for a non-input value!"); + return; + } + + // Otherwise, this is a set, validate and collect instruction results. + if (Pat->getNumChildren() == 0) + I->error("set requires operands!"); + + if (Pat->getTransformFn()) + I->error("Cannot specify a transform function on a set node!"); + + // Check the set destinations. + unsigned NumDests = Pat->getNumChildren()-1; + for (unsigned i = 0; i != NumDests; ++i) { + TreePatternNode *Dest = Pat->getChild(i); + if (!Dest->isLeaf()) + I->error("set destination should be a register!"); + + DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); + if (!Val) + I->error("set destination should be a register!"); + + if (Val->getDef()->isSubClassOf("RegisterClass") || + Val->getDef()->isSubClassOf("PointerLikeRegClass")) { + if (Dest->getName().empty()) + I->error("set destination must have a name!"); + if (InstResults.count(Dest->getName())) + I->error("cannot set '" + Dest->getName() +"' multiple times"); + InstResults[Dest->getName()] = Dest; + } else if (Val->getDef()->isSubClassOf("Register")) { + InstImpResults.push_back(Val->getDef()); + } else { + I->error("set destination should be a register!"); + } + } + + // Verify and collect info from the computation. + FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), + InstInputs, InstResults, InstImpResults); +} + +//===----------------------------------------------------------------------===// +// Instruction Analysis +//===----------------------------------------------------------------------===// + +class InstAnalyzer { + const CodeGenDAGPatterns &CDP; + bool &mayStore; + bool &mayLoad; + bool &HasSideEffects; + bool &IsVariadic; +public: + InstAnalyzer(const CodeGenDAGPatterns &cdp, + bool &maystore, bool &mayload, bool &hse, bool &isv) + : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse), + IsVariadic(isv) { + } + + /// Analyze - Analyze the specified instruction, returning true if the + /// instruction had a pattern. + bool Analyze(Record *InstRecord) { + const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); + if (Pattern == 0) { + HasSideEffects = 1; + return false; // No pattern. + } + + // FIXME: Assume only the first tree is the pattern. The others are clobber + // nodes. + AnalyzeNode(Pattern->getTree(0)); + return true; + } + +private: + void AnalyzeNode(const TreePatternNode *N) { + if (N->isLeaf()) { + if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { + Record *LeafRec = DI->getDef(); + // Handle ComplexPattern leaves. + if (LeafRec->isSubClassOf("ComplexPattern")) { + const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); + if (CP.hasProperty(SDNPMayStore)) mayStore = true; + if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; + if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; + } + } + return; + } + + // Analyze children. + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) + AnalyzeNode(N->getChild(i)); + + // Ignore set nodes, which are not SDNodes. + if (N->getOperator()->getName() == "set") + return; + + // Get information about the SDNode for the operator. + const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); + + // Notice properties of the node. + if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; + if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; + if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; + if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true; + + if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { + // If this is an intrinsic, analyze it. + if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) + mayLoad = true;// These may load memory. + + if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem) + mayStore = true;// Intrinsics that can write to memory are 'mayStore'. + + if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem) + // WriteMem intrinsics can have other strange effects. + HasSideEffects = true; + } + } + +}; + +static void InferFromPattern(const CodeGenInstruction &Inst, + bool &MayStore, bool &MayLoad, + bool &HasSideEffects, bool &IsVariadic, + const CodeGenDAGPatterns &CDP) { + MayStore = MayLoad = HasSideEffects = IsVariadic = false; + + bool HadPattern = + InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects, IsVariadic) + .Analyze(Inst.TheDef); + + // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. + if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. + // If we decided that this is a store from the pattern, then the .td file + // entry is redundant. + if (MayStore) + fprintf(stderr, + "Warning: mayStore flag explicitly set on instruction '%s'" + " but flag already inferred from pattern.\n", + Inst.TheDef->getName().c_str()); + MayStore = true; + } + + if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. + // If we decided that this is a load from the pattern, then the .td file + // entry is redundant. + if (MayLoad) + fprintf(stderr, + "Warning: mayLoad flag explicitly set on instruction '%s'" + " but flag already inferred from pattern.\n", + Inst.TheDef->getName().c_str()); + MayLoad = true; + } + + if (Inst.neverHasSideEffects) { + if (HadPattern) + fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " + "which already has a pattern\n", Inst.TheDef->getName().c_str()); + HasSideEffects = false; + } + + if (Inst.hasSideEffects) { + if (HasSideEffects) + fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " + "which already inferred this.\n", Inst.TheDef->getName().c_str()); + HasSideEffects = true; + } + + if (Inst.isVariadic) + IsVariadic = true; // Can warn if we want. +} + +/// ParseInstructions - Parse all of the instructions, inlining and resolving +/// any fragments involved. This populates the Instructions list with fully +/// resolved instructions. +void CodeGenDAGPatterns::ParseInstructions() { + std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); + + for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { + ListInit *LI = 0; + + if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) + LI = Instrs[i]->getValueAsListInit("Pattern"); + + // If there is no pattern, only collect minimal information about the + // instruction for its operand list. We have to assume that there is one + // result, as we have no detailed info. + if (!LI || LI->getSize() == 0) { + std::vector<Record*> Results; + std::vector<Record*> Operands; + + CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); + + if (InstInfo.OperandList.size() != 0) { + if (InstInfo.NumDefs == 0) { + // These produce no results + for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) + Operands.push_back(InstInfo.OperandList[j].Rec); + } else { + // Assume the first operand is the result. + Results.push_back(InstInfo.OperandList[0].Rec); + + // The rest are inputs. + for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) + Operands.push_back(InstInfo.OperandList[j].Rec); + } + } + + // Create and insert the instruction. + std::vector<Record*> ImpResults; + Instructions.insert(std::make_pair(Instrs[i], + DAGInstruction(0, Results, Operands, ImpResults))); + continue; // no pattern. + } + + // Parse the instruction. + TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); + // Inline pattern fragments into it. + I->InlinePatternFragments(); + + // Infer as many types as possible. If we cannot infer all of them, we can + // never do anything with this instruction pattern: report it to the user. + if (!I->InferAllTypes()) + I->error("Could not infer all types in pattern!"); + + // InstInputs - Keep track of all of the inputs of the instruction, along + // with the record they are declared as. + std::map<std::string, TreePatternNode*> InstInputs; + + // InstResults - Keep track of all the virtual registers that are 'set' + // in the instruction, including what reg class they are. + std::map<std::string, TreePatternNode*> InstResults; + + std::vector<Record*> InstImpResults; + + // Verify that the top-level forms in the instruction are of void type, and + // fill in the InstResults map. + for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { + TreePatternNode *Pat = I->getTree(j); + if (Pat->getNumTypes() != 0) + I->error("Top-level forms in instruction pattern should have" + " void types"); + + // Find inputs and outputs, and verify the structure of the uses/defs. + FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, + InstImpResults); + } + + // Now that we have inputs and outputs of the pattern, inspect the operands + // list for the instruction. This determines the order that operands are + // added to the machine instruction the node corresponds to. + unsigned NumResults = InstResults.size(); + + // Parse the operands list from the (ops) list, validating it. + assert(I->getArgList().empty() && "Args list should still be empty here!"); + CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); + + // Check that all of the results occur first in the list. + std::vector<Record*> Results; + TreePatternNode *Res0Node = 0; + for (unsigned i = 0; i != NumResults; ++i) { + if (i == CGI.OperandList.size()) + I->error("'" + InstResults.begin()->first + + "' set but does not appear in operand list!"); + const std::string &OpName = CGI.OperandList[i].Name; + + // Check that it exists in InstResults. + TreePatternNode *RNode = InstResults[OpName]; + if (RNode == 0) + I->error("Operand $" + OpName + " does not exist in operand list!"); + + if (i == 0) + Res0Node = RNode; + Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); + if (R == 0) + I->error("Operand $" + OpName + " should be a set destination: all " + "outputs must occur before inputs in operand list!"); + + if (CGI.OperandList[i].Rec != R) + I->error("Operand $" + OpName + " class mismatch!"); + + // Remember the return type. + Results.push_back(CGI.OperandList[i].Rec); + + // Okay, this one checks out. + InstResults.erase(OpName); + } + + // Loop over the inputs next. Make a copy of InstInputs so we can destroy + // the copy while we're checking the inputs. + std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); + + std::vector<TreePatternNode*> ResultNodeOperands; + std::vector<Record*> Operands; + for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { + CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; + const std::string &OpName = Op.Name; + if (OpName.empty()) + I->error("Operand #" + utostr(i) + " in operands list has no name!"); + + if (!InstInputsCheck.count(OpName)) { + // If this is an predicate operand or optional def operand with an + // DefaultOps set filled in, we can ignore this. When we codegen it, + // we will do so as always executed. + if (Op.Rec->isSubClassOf("PredicateOperand") || + Op.Rec->isSubClassOf("OptionalDefOperand")) { + // Does it have a non-empty DefaultOps field? If so, ignore this + // operand. + if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) + continue; + } + I->error("Operand $" + OpName + + " does not appear in the instruction pattern"); + } + TreePatternNode *InVal = InstInputsCheck[OpName]; + InstInputsCheck.erase(OpName); // It occurred, remove from map. + + if (InVal->isLeaf() && + dynamic_cast<DefInit*>(InVal->getLeafValue())) { + Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); + if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) + I->error("Operand $" + OpName + "'s register class disagrees" + " between the operand and pattern"); + } + Operands.push_back(Op.Rec); + + // Construct the result for the dest-pattern operand list. + TreePatternNode *OpNode = InVal->clone(); + + // No predicate is useful on the result. + OpNode->clearPredicateFns(); + + // Promote the xform function to be an explicit node if set. + if (Record *Xform = OpNode->getTransformFn()) { + OpNode->setTransformFn(0); + std::vector<TreePatternNode*> Children; + Children.push_back(OpNode); + OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); + } + + ResultNodeOperands.push_back(OpNode); + } + + if (!InstInputsCheck.empty()) + I->error("Input operand $" + InstInputsCheck.begin()->first + + " occurs in pattern but not in operands list!"); + + TreePatternNode *ResultPattern = + new TreePatternNode(I->getRecord(), ResultNodeOperands, + GetNumNodeResults(I->getRecord(), *this)); + // Copy fully inferred output node type to instruction result pattern. + for (unsigned i = 0; i != NumResults; ++i) + ResultPattern->setType(i, Res0Node->getExtType(i)); + + // Create and insert the instruction. + // FIXME: InstImpResults should not be part of DAGInstruction. + DAGInstruction TheInst(I, Results, Operands, InstImpResults); + Instructions.insert(std::make_pair(I->getRecord(), TheInst)); + + // Use a temporary tree pattern to infer all types and make sure that the + // constructed result is correct. This depends on the instruction already + // being inserted into the Instructions map. + TreePattern Temp(I->getRecord(), ResultPattern, false, *this); + Temp.InferAllTypes(&I->getNamedNodesMap()); + + DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; + TheInsertedInst.setResultPattern(Temp.getOnlyTree()); + + DEBUG(I->dump()); + } + + // If we can, convert the instructions to be patterns that are matched! + for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = + Instructions.begin(), + E = Instructions.end(); II != E; ++II) { + DAGInstruction &TheInst = II->second; + const TreePattern *I = TheInst.getPattern(); + if (I == 0) continue; // No pattern. + + // FIXME: Assume only the first tree is the pattern. The others are clobber + // nodes. + TreePatternNode *Pattern = I->getTree(0); + TreePatternNode *SrcPattern; + if (Pattern->getOperator()->getName() == "set") { + SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); + } else{ + // Not a set (store or something?) + SrcPattern = Pattern; + } + + Record *Instr = II->first; + AddPatternToMatch(I, + PatternToMatch(Instr->getValueAsListInit("Predicates"), + SrcPattern, + TheInst.getResultPattern(), + TheInst.getImpResults(), + Instr->getValueAsInt("AddedComplexity"), + Instr->getID())); + } +} + + +typedef std::pair<const TreePatternNode*, unsigned> NameRecord; + +static void FindNames(const TreePatternNode *P, + std::map<std::string, NameRecord> &Names, + const TreePattern *PatternTop) { + if (!P->getName().empty()) { + NameRecord &Rec = Names[P->getName()]; + // If this is the first instance of the name, remember the node. + if (Rec.second++ == 0) + Rec.first = P; + else if (Rec.first->getExtTypes() != P->getExtTypes()) + PatternTop->error("repetition of value: $" + P->getName() + + " where different uses have different types!"); + } + + if (!P->isLeaf()) { + for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) + FindNames(P->getChild(i), Names, PatternTop); + } +} + +void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, + const PatternToMatch &PTM) { + // Do some sanity checking on the pattern we're about to match. + std::string Reason; + if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) + Pattern->error("Pattern can never match: " + Reason); + + // If the source pattern's root is a complex pattern, that complex pattern + // must specify the nodes it can potentially match. + if (const ComplexPattern *CP = + PTM.getSrcPattern()->getComplexPatternInfo(*this)) + if (CP->getRootNodes().empty()) + Pattern->error("ComplexPattern at root must specify list of opcodes it" + " could match"); + + + // Find all of the named values in the input and output, ensure they have the + // same type. + std::map<std::string, NameRecord> SrcNames, DstNames; + FindNames(PTM.getSrcPattern(), SrcNames, Pattern); + FindNames(PTM.getDstPattern(), DstNames, Pattern); + + // Scan all of the named values in the destination pattern, rejecting them if + // they don't exist in the input pattern. + for (std::map<std::string, NameRecord>::iterator + I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { + if (SrcNames[I->first].first == 0) + Pattern->error("Pattern has input without matching name in output: $" + + I->first); + } + + // Scan all of the named values in the source pattern, rejecting them if the + // name isn't used in the dest, and isn't used to tie two values together. + for (std::map<std::string, NameRecord>::iterator + I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) + if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) + Pattern->error("Pattern has dead named input: $" + I->first); + + PatternsToMatch.push_back(PTM); +} + + + +void CodeGenDAGPatterns::InferInstructionFlags() { + const std::vector<const CodeGenInstruction*> &Instructions = + Target.getInstructionsByEnumValue(); + for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { + CodeGenInstruction &InstInfo = + const_cast<CodeGenInstruction &>(*Instructions[i]); + // Determine properties of the instruction from its pattern. + bool MayStore, MayLoad, HasSideEffects, IsVariadic; + InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, IsVariadic, + *this); + InstInfo.mayStore = MayStore; + InstInfo.mayLoad = MayLoad; + InstInfo.hasSideEffects = HasSideEffects; + InstInfo.isVariadic = IsVariadic; + } +} + +/// Given a pattern result with an unresolved type, see if we can find one +/// instruction with an unresolved result type. Force this result type to an +/// arbitrary element if it's possible types to converge results. +static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { + if (N->isLeaf()) + return false; + + // Analyze children. + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) + if (ForceArbitraryInstResultType(N->getChild(i), TP)) + return true; + + if (!N->getOperator()->isSubClassOf("Instruction")) + return false; + + // If this type is already concrete or completely unknown we can't do + // anything. + for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { + if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) + continue; + + // Otherwise, force its type to the first possibility (an arbitrary choice). + if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) + return true; + } + + return false; +} + +void CodeGenDAGPatterns::ParsePatterns() { + std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); + + for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { + Record *CurPattern = Patterns[i]; + DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); + TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); + + // Inline pattern fragments into it. + Pattern->InlinePatternFragments(); + + ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); + if (LI->getSize() == 0) continue; // no pattern. + + // Parse the instruction. + TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); + + // Inline pattern fragments into it. + Result->InlinePatternFragments(); + + if (Result->getNumTrees() != 1) + Result->error("Cannot handle instructions producing instructions " + "with temporaries yet!"); + + bool IterateInference; + bool InferredAllPatternTypes, InferredAllResultTypes; + do { + // Infer as many types as possible. If we cannot infer all of them, we + // can never do anything with this pattern: report it to the user. + InferredAllPatternTypes = + Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); + + // Infer as many types as possible. If we cannot infer all of them, we + // can never do anything with this pattern: report it to the user. + InferredAllResultTypes = + Result->InferAllTypes(&Pattern->getNamedNodesMap()); + + IterateInference = false; + + // Apply the type of the result to the source pattern. This helps us + // resolve cases where the input type is known to be a pointer type (which + // is considered resolved), but the result knows it needs to be 32- or + // 64-bits. Infer the other way for good measure. + for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), + Pattern->getTree(0)->getNumTypes()); + i != e; ++i) { + IterateInference = Pattern->getTree(0)-> + UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); + IterateInference |= Result->getTree(0)-> + UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); + } + + // If our iteration has converged and the input pattern's types are fully + // resolved but the result pattern is not fully resolved, we may have a + // situation where we have two instructions in the result pattern and + // the instructions require a common register class, but don't care about + // what actual MVT is used. This is actually a bug in our modelling: + // output patterns should have register classes, not MVTs. + // + // In any case, to handle this, we just go through and disambiguate some + // arbitrary types to the result pattern's nodes. + if (!IterateInference && InferredAllPatternTypes && + !InferredAllResultTypes) + IterateInference = ForceArbitraryInstResultType(Result->getTree(0), + *Result); + } while (IterateInference); + + // Verify that we inferred enough types that we can do something with the + // pattern and result. If these fire the user has to add type casts. + if (!InferredAllPatternTypes) + Pattern->error("Could not infer all types in pattern!"); + if (!InferredAllResultTypes) { + Pattern->dump(); + Result->error("Could not infer all types in pattern result!"); + } + + // Validate that the input pattern is correct. + std::map<std::string, TreePatternNode*> InstInputs; + std::map<std::string, TreePatternNode*> InstResults; + std::vector<Record*> InstImpResults; + for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) + FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), + InstInputs, InstResults, + InstImpResults); + + // Promote the xform function to be an explicit node if set. + TreePatternNode *DstPattern = Result->getOnlyTree(); + std::vector<TreePatternNode*> ResultNodeOperands; + for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { + TreePatternNode *OpNode = DstPattern->getChild(ii); + if (Record *Xform = OpNode->getTransformFn()) { + OpNode->setTransformFn(0); + std::vector<TreePatternNode*> Children; + Children.push_back(OpNode); + OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); + } + ResultNodeOperands.push_back(OpNode); + } + DstPattern = Result->getOnlyTree(); + if (!DstPattern->isLeaf()) + DstPattern = new TreePatternNode(DstPattern->getOperator(), + ResultNodeOperands, + DstPattern->getNumTypes()); + + for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) + DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); + + TreePattern Temp(Result->getRecord(), DstPattern, false, *this); + Temp.InferAllTypes(); + + + AddPatternToMatch(Pattern, + PatternToMatch(CurPattern->getValueAsListInit("Predicates"), + Pattern->getTree(0), + Temp.getOnlyTree(), InstImpResults, + CurPattern->getValueAsInt("AddedComplexity"), + CurPattern->getID())); + } +} + +/// CombineChildVariants - Given a bunch of permutations of each child of the +/// 'operator' node, put them together in all possible ways. +static void CombineChildVariants(TreePatternNode *Orig, + const std::vector<std::vector<TreePatternNode*> > &ChildVariants, + std::vector<TreePatternNode*> &OutVariants, + CodeGenDAGPatterns &CDP, + const MultipleUseVarSet &DepVars) { + // Make sure that each operand has at least one variant to choose from. + for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) + if (ChildVariants[i].empty()) + return; + + // The end result is an all-pairs construction of the resultant pattern. + std::vector<unsigned> Idxs; + Idxs.resize(ChildVariants.size()); + bool NotDone; + do { +#ifndef NDEBUG + DEBUG(if (!Idxs.empty()) { + errs() << Orig->getOperator()->getName() << ": Idxs = [ "; + for (unsigned i = 0; i < Idxs.size(); ++i) { + errs() << Idxs[i] << " "; + } + errs() << "]\n"; + }); +#endif + // Create the variant and add it to the output list. + std::vector<TreePatternNode*> NewChildren; + for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) + NewChildren.push_back(ChildVariants[i][Idxs[i]]); + TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, + Orig->getNumTypes()); + + // Copy over properties. + R->setName(Orig->getName()); + R->setPredicateFns(Orig->getPredicateFns()); + R->setTransformFn(Orig->getTransformFn()); + for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) + R->setType(i, Orig->getExtType(i)); + + // If this pattern cannot match, do not include it as a variant. + std::string ErrString; + if (!R->canPatternMatch(ErrString, CDP)) { + delete R; + } else { + bool AlreadyExists = false; + + // Scan to see if this pattern has already been emitted. We can get + // duplication due to things like commuting: + // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) + // which are the same pattern. Ignore the dups. + for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) + if (R->isIsomorphicTo(OutVariants[i], DepVars)) { + AlreadyExists = true; + break; + } + + if (AlreadyExists) + delete R; + else + OutVariants.push_back(R); + } + + // Increment indices to the next permutation by incrementing the + // indicies from last index backward, e.g., generate the sequence + // [0, 0], [0, 1], [1, 0], [1, 1]. + int IdxsIdx; + for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { + if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) + Idxs[IdxsIdx] = 0; + else + break; + } + NotDone = (IdxsIdx >= 0); + } while (NotDone); +} + +/// CombineChildVariants - A helper function for binary operators. +/// +static void CombineChildVariants(TreePatternNode *Orig, + const std::vector<TreePatternNode*> &LHS, + const std::vector<TreePatternNode*> &RHS, + std::vector<TreePatternNode*> &OutVariants, + CodeGenDAGPatterns &CDP, + const MultipleUseVarSet &DepVars) { + std::vector<std::vector<TreePatternNode*> > ChildVariants; + ChildVariants.push_back(LHS); + ChildVariants.push_back(RHS); + CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); +} + + +static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, + std::vector<TreePatternNode *> &Children) { + assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); + Record *Operator = N->getOperator(); + + // Only permit raw nodes. + if (!N->getName().empty() || !N->getPredicateFns().empty() || + N->getTransformFn()) { + Children.push_back(N); + return; + } + + if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) + Children.push_back(N->getChild(0)); + else + GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); + + if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) + Children.push_back(N->getChild(1)); + else + GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); +} + +/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of +/// the (potentially recursive) pattern by using algebraic laws. +/// +static void GenerateVariantsOf(TreePatternNode *N, + std::vector<TreePatternNode*> &OutVariants, + CodeGenDAGPatterns &CDP, + const MultipleUseVarSet &DepVars) { + // We cannot permute leaves. + if (N->isLeaf()) { + OutVariants.push_back(N); + return; + } + + // Look up interesting info about the node. + const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); + + // If this node is associative, re-associate. + if (NodeInfo.hasProperty(SDNPAssociative)) { + // Re-associate by pulling together all of the linked operators + std::vector<TreePatternNode*> MaximalChildren; + GatherChildrenOfAssociativeOpcode(N, MaximalChildren); + + // Only handle child sizes of 3. Otherwise we'll end up trying too many + // permutations. + if (MaximalChildren.size() == 3) { + // Find the variants of all of our maximal children. + std::vector<TreePatternNode*> AVariants, BVariants, CVariants; + GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); + GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); + GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); + + // There are only two ways we can permute the tree: + // (A op B) op C and A op (B op C) + // Within these forms, we can also permute A/B/C. + + // Generate legal pair permutations of A/B/C. + std::vector<TreePatternNode*> ABVariants; + std::vector<TreePatternNode*> BAVariants; + std::vector<TreePatternNode*> ACVariants; + std::vector<TreePatternNode*> CAVariants; + std::vector<TreePatternNode*> BCVariants; + std::vector<TreePatternNode*> CBVariants; + CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); + CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); + CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); + CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); + CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); + CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); + + // Combine those into the result: (x op x) op x + CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); + CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); + CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); + CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); + CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); + CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); + + // Combine those into the result: x op (x op x) + CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); + CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); + CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); + CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); + CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); + CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); + return; + } + } + + // Compute permutations of all children. + std::vector<std::vector<TreePatternNode*> > ChildVariants; + ChildVariants.resize(N->getNumChildren()); + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) + GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); + + // Build all permutations based on how the children were formed. + CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); + + // If this node is commutative, consider the commuted order. + bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); + if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { + assert((N->getNumChildren()==2 || isCommIntrinsic) && + "Commutative but doesn't have 2 children!"); + // Don't count children which are actually register references. + unsigned NC = 0; + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { + TreePatternNode *Child = N->getChild(i); + if (Child->isLeaf()) + if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { + Record *RR = DI->getDef(); + if (RR->isSubClassOf("Register")) + continue; + } + NC++; + } + // Consider the commuted order. + if (isCommIntrinsic) { + // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd + // operands are the commutative operands, and there might be more operands + // after those. + assert(NC >= 3 && + "Commutative intrinsic should have at least 3 childrean!"); + std::vector<std::vector<TreePatternNode*> > Variants; + Variants.push_back(ChildVariants[0]); // Intrinsic id. + Variants.push_back(ChildVariants[2]); + Variants.push_back(ChildVariants[1]); + for (unsigned i = 3; i != NC; ++i) + Variants.push_back(ChildVariants[i]); + CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); + } else if (NC == 2) + CombineChildVariants(N, ChildVariants[1], ChildVariants[0], + OutVariants, CDP, DepVars); + } +} + + +// GenerateVariants - Generate variants. For example, commutative patterns can +// match multiple ways. Add them to PatternsToMatch as well. +void CodeGenDAGPatterns::GenerateVariants() { + DEBUG(errs() << "Generating instruction variants.\n"); + + // Loop over all of the patterns we've collected, checking to see if we can + // generate variants of the instruction, through the exploitation of + // identities. This permits the target to provide aggressive matching without + // the .td file having to contain tons of variants of instructions. + // + // Note that this loop adds new patterns to the PatternsToMatch list, but we + // intentionally do not reconsider these. Any variants of added patterns have + // already been added. + // + for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { + MultipleUseVarSet DepVars; + std::vector<TreePatternNode*> Variants; + FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); + DEBUG(errs() << "Dependent/multiply used variables: "); + DEBUG(DumpDepVars(DepVars)); + DEBUG(errs() << "\n"); + GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars); + + assert(!Variants.empty() && "Must create at least original variant!"); + Variants.erase(Variants.begin()); // Remove the original pattern. + + if (Variants.empty()) // No variants for this pattern. + continue; + + DEBUG(errs() << "FOUND VARIANTS OF: "; + PatternsToMatch[i].getSrcPattern()->dump(); + errs() << "\n"); + + for (unsigned v = 0, e = Variants.size(); v != e; ++v) { + TreePatternNode *Variant = Variants[v]; + + DEBUG(errs() << " VAR#" << v << ": "; + Variant->dump(); + errs() << "\n"); + + // Scan to see if an instruction or explicit pattern already matches this. + bool AlreadyExists = false; + for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { + // Skip if the top level predicates do not match. + if (PatternsToMatch[i].getPredicates() != + PatternsToMatch[p].getPredicates()) + continue; + // Check to see if this variant already exists. + if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) { + DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); + AlreadyExists = true; + break; + } + } + // If we already have it, ignore the variant. + if (AlreadyExists) continue; + + // Otherwise, add it to the list of patterns we have. + PatternsToMatch. + push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), + Variant, PatternsToMatch[i].getDstPattern(), + PatternsToMatch[i].getDstRegs(), + PatternsToMatch[i].getAddedComplexity(), + Record::getNewUID())); + } + + DEBUG(errs() << "\n"); + } +} + |