diff options
Diffstat (limited to 'contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp')
-rw-r--r-- | contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp | 3082 |
1 files changed, 3082 insertions, 0 deletions
diff --git a/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp b/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp new file mode 100644 index 0000000..4177388 --- /dev/null +++ b/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp @@ -0,0 +1,3082 @@ +//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This tablegen backend emits a target specifier matcher for converting parsed +// assembly operands in the MCInst structures. It also emits a matcher for +// custom operand parsing. +// +// Converting assembly operands into MCInst structures +// --------------------------------------------------- +// +// The input to the target specific matcher is a list of literal tokens and +// operands. The target specific parser should generally eliminate any syntax +// which is not relevant for matching; for example, comma tokens should have +// already been consumed and eliminated by the parser. Most instructions will +// end up with a single literal token (the instruction name) and some number of +// operands. +// +// Some example inputs, for X86: +// 'addl' (immediate ...) (register ...) +// 'add' (immediate ...) (memory ...) +// 'call' '*' %epc +// +// The assembly matcher is responsible for converting this input into a precise +// machine instruction (i.e., an instruction with a well defined encoding). This +// mapping has several properties which complicate matching: +// +// - It may be ambiguous; many architectures can legally encode particular +// variants of an instruction in different ways (for example, using a smaller +// encoding for small immediates). Such ambiguities should never be +// arbitrarily resolved by the assembler, the assembler is always responsible +// for choosing the "best" available instruction. +// +// - It may depend on the subtarget or the assembler context. Instructions +// which are invalid for the current mode, but otherwise unambiguous (e.g., +// an SSE instruction in a file being assembled for i486) should be accepted +// and rejected by the assembler front end. However, if the proper encoding +// for an instruction is dependent on the assembler context then the matcher +// is responsible for selecting the correct machine instruction for the +// current mode. +// +// The core matching algorithm attempts to exploit the regularity in most +// instruction sets to quickly determine the set of possibly matching +// instructions, and the simplify the generated code. Additionally, this helps +// to ensure that the ambiguities are intentionally resolved by the user. +// +// The matching is divided into two distinct phases: +// +// 1. Classification: Each operand is mapped to the unique set which (a) +// contains it, and (b) is the largest such subset for which a single +// instruction could match all members. +// +// For register classes, we can generate these subgroups automatically. For +// arbitrary operands, we expect the user to define the classes and their +// relations to one another (for example, 8-bit signed immediates as a +// subset of 32-bit immediates). +// +// By partitioning the operands in this way, we guarantee that for any +// tuple of classes, any single instruction must match either all or none +// of the sets of operands which could classify to that tuple. +// +// In addition, the subset relation amongst classes induces a partial order +// on such tuples, which we use to resolve ambiguities. +// +// 2. The input can now be treated as a tuple of classes (static tokens are +// simple singleton sets). Each such tuple should generally map to a single +// instruction (we currently ignore cases where this isn't true, whee!!!), +// which we can emit a simple matcher for. +// +// Custom Operand Parsing +// ---------------------- +// +// Some targets need a custom way to parse operands, some specific instructions +// can contain arguments that can represent processor flags and other kinds of +// identifiers that need to be mapped to specific values in the final encoded +// instructions. The target specific custom operand parsing works in the +// following way: +// +// 1. A operand match table is built, each entry contains a mnemonic, an +// operand class, a mask for all operand positions for that same +// class/mnemonic and target features to be checked while trying to match. +// +// 2. The operand matcher will try every possible entry with the same +// mnemonic and will check if the target feature for this mnemonic also +// matches. After that, if the operand to be matched has its index +// present in the mask, a successful match occurs. Otherwise, fallback +// to the regular operand parsing. +// +// 3. For a match success, each operand class that has a 'ParserMethod' +// becomes part of a switch from where the custom method is called. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenTarget.h" +#include "llvm/ADT/PointerUnion.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/TableGen/Error.h" +#include "llvm/TableGen/Record.h" +#include "llvm/TableGen/StringMatcher.h" +#include "llvm/TableGen/StringToOffsetTable.h" +#include "llvm/TableGen/TableGenBackend.h" +#include <cassert> +#include <cctype> +#include <map> +#include <set> +#include <sstream> +#include <forward_list> +using namespace llvm; + +#define DEBUG_TYPE "asm-matcher-emitter" + +static cl::opt<std::string> +MatchPrefix("match-prefix", cl::init(""), + cl::desc("Only match instructions with the given prefix")); + +namespace { +class AsmMatcherInfo; +struct SubtargetFeatureInfo; + +// Register sets are used as keys in some second-order sets TableGen creates +// when generating its data structures. This means that the order of two +// RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and +// can even affect compiler output (at least seen in diagnostics produced when +// all matches fail). So we use a type that sorts them consistently. +typedef std::set<Record*, LessRecordByID> RegisterSet; + +class AsmMatcherEmitter { + RecordKeeper &Records; +public: + AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} + + void run(raw_ostream &o); +}; + +/// ClassInfo - Helper class for storing the information about a particular +/// class of operands which can be matched. +struct ClassInfo { + enum ClassInfoKind { + /// Invalid kind, for use as a sentinel value. + Invalid = 0, + + /// The class for a particular token. + Token, + + /// The (first) register class, subsequent register classes are + /// RegisterClass0+1, and so on. + RegisterClass0, + + /// The (first) user defined class, subsequent user defined classes are + /// UserClass0+1, and so on. + UserClass0 = 1<<16 + }; + + /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + + /// N) for the Nth user defined class. + unsigned Kind; + + /// SuperClasses - The super classes of this class. Note that for simplicities + /// sake user operands only record their immediate super class, while register + /// operands include all superclasses. + std::vector<ClassInfo*> SuperClasses; + + /// Name - The full class name, suitable for use in an enum. + std::string Name; + + /// ClassName - The unadorned generic name for this class (e.g., Token). + std::string ClassName; + + /// ValueName - The name of the value this class represents; for a token this + /// is the literal token string, for an operand it is the TableGen class (or + /// empty if this is a derived class). + std::string ValueName; + + /// PredicateMethod - The name of the operand method to test whether the + /// operand matches this class; this is not valid for Token or register kinds. + std::string PredicateMethod; + + /// RenderMethod - The name of the operand method to add this operand to an + /// MCInst; this is not valid for Token or register kinds. + std::string RenderMethod; + + /// ParserMethod - The name of the operand method to do a target specific + /// parsing on the operand. + std::string ParserMethod; + + /// For register classes: the records for all the registers in this class. + RegisterSet Registers; + + /// For custom match classes: the diagnostic kind for when the predicate fails. + std::string DiagnosticType; +public: + /// isRegisterClass() - Check if this is a register class. + bool isRegisterClass() const { + return Kind >= RegisterClass0 && Kind < UserClass0; + } + + /// isUserClass() - Check if this is a user defined class. + bool isUserClass() const { + return Kind >= UserClass0; + } + + /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes + /// are related if they are in the same class hierarchy. + bool isRelatedTo(const ClassInfo &RHS) const { + // Tokens are only related to tokens. + if (Kind == Token || RHS.Kind == Token) + return Kind == Token && RHS.Kind == Token; + + // Registers classes are only related to registers classes, and only if + // their intersection is non-empty. + if (isRegisterClass() || RHS.isRegisterClass()) { + if (!isRegisterClass() || !RHS.isRegisterClass()) + return false; + + RegisterSet Tmp; + std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); + std::set_intersection(Registers.begin(), Registers.end(), + RHS.Registers.begin(), RHS.Registers.end(), + II, LessRecordByID()); + + return !Tmp.empty(); + } + + // Otherwise we have two users operands; they are related if they are in the + // same class hierarchy. + // + // FIXME: This is an oversimplification, they should only be related if they + // intersect, however we don't have that information. + assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); + const ClassInfo *Root = this; + while (!Root->SuperClasses.empty()) + Root = Root->SuperClasses.front(); + + const ClassInfo *RHSRoot = &RHS; + while (!RHSRoot->SuperClasses.empty()) + RHSRoot = RHSRoot->SuperClasses.front(); + + return Root == RHSRoot; + } + + /// isSubsetOf - Test whether this class is a subset of \p RHS. + bool isSubsetOf(const ClassInfo &RHS) const { + // This is a subset of RHS if it is the same class... + if (this == &RHS) + return true; + + // ... or if any of its super classes are a subset of RHS. + for (const ClassInfo *CI : SuperClasses) + if (CI->isSubsetOf(RHS)) + return true; + + return false; + } + + /// operator< - Compare two classes. + // FIXME: This ordering seems to be broken. For example: + // u64 < i64, i64 < s8, s8 < u64, forming a cycle + // u64 is a subset of i64 + // i64 and s8 are not subsets of each other, so are ordered by name + // s8 and u64 are not subsets of each other, so are ordered by name + bool operator<(const ClassInfo &RHS) const { + if (this == &RHS) + return false; + + // Unrelated classes can be ordered by kind. + if (!isRelatedTo(RHS)) + return Kind < RHS.Kind; + + switch (Kind) { + case Invalid: + llvm_unreachable("Invalid kind!"); + + default: + // This class precedes the RHS if it is a proper subset of the RHS. + if (isSubsetOf(RHS)) + return true; + if (RHS.isSubsetOf(*this)) + return false; + + // Otherwise, order by name to ensure we have a total ordering. + return ValueName < RHS.ValueName; + } + } +}; + +class AsmVariantInfo { +public: + std::string RegisterPrefix; + std::string TokenizingCharacters; + std::string SeparatorCharacters; + std::string BreakCharacters; + int AsmVariantNo; +}; + +/// MatchableInfo - Helper class for storing the necessary information for an +/// instruction or alias which is capable of being matched. +struct MatchableInfo { + struct AsmOperand { + /// Token - This is the token that the operand came from. + StringRef Token; + + /// The unique class instance this operand should match. + ClassInfo *Class; + + /// The operand name this is, if anything. + StringRef SrcOpName; + + /// The suboperand index within SrcOpName, or -1 for the entire operand. + int SubOpIdx; + + /// Whether the token is "isolated", i.e., it is preceded and followed + /// by separators. + bool IsIsolatedToken; + + /// Register record if this token is singleton register. + Record *SingletonReg; + + explicit AsmOperand(bool IsIsolatedToken, StringRef T) + : Token(T), Class(nullptr), SubOpIdx(-1), + IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} + }; + + /// ResOperand - This represents a single operand in the result instruction + /// generated by the match. In cases (like addressing modes) where a single + /// assembler operand expands to multiple MCOperands, this represents the + /// single assembler operand, not the MCOperand. + struct ResOperand { + enum { + /// RenderAsmOperand - This represents an operand result that is + /// generated by calling the render method on the assembly operand. The + /// corresponding AsmOperand is specified by AsmOperandNum. + RenderAsmOperand, + + /// TiedOperand - This represents a result operand that is a duplicate of + /// a previous result operand. + TiedOperand, + + /// ImmOperand - This represents an immediate value that is dumped into + /// the operand. + ImmOperand, + + /// RegOperand - This represents a fixed register that is dumped in. + RegOperand + } Kind; + + union { + /// This is the operand # in the AsmOperands list that this should be + /// copied from. + unsigned AsmOperandNum; + + /// TiedOperandNum - This is the (earlier) result operand that should be + /// copied from. + unsigned TiedOperandNum; + + /// ImmVal - This is the immediate value added to the instruction. + int64_t ImmVal; + + /// Register - This is the register record. + Record *Register; + }; + + /// MINumOperands - The number of MCInst operands populated by this + /// operand. + unsigned MINumOperands; + + static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { + ResOperand X; + X.Kind = RenderAsmOperand; + X.AsmOperandNum = AsmOpNum; + X.MINumOperands = NumOperands; + return X; + } + + static ResOperand getTiedOp(unsigned TiedOperandNum) { + ResOperand X; + X.Kind = TiedOperand; + X.TiedOperandNum = TiedOperandNum; + X.MINumOperands = 1; + return X; + } + + static ResOperand getImmOp(int64_t Val) { + ResOperand X; + X.Kind = ImmOperand; + X.ImmVal = Val; + X.MINumOperands = 1; + return X; + } + + static ResOperand getRegOp(Record *Reg) { + ResOperand X; + X.Kind = RegOperand; + X.Register = Reg; + X.MINumOperands = 1; + return X; + } + }; + + /// AsmVariantID - Target's assembly syntax variant no. + int AsmVariantID; + + /// AsmString - The assembly string for this instruction (with variants + /// removed), e.g. "movsx $src, $dst". + std::string AsmString; + + /// TheDef - This is the definition of the instruction or InstAlias that this + /// matchable came from. + Record *const TheDef; + + /// DefRec - This is the definition that it came from. + PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; + + const CodeGenInstruction *getResultInst() const { + if (DefRec.is<const CodeGenInstruction*>()) + return DefRec.get<const CodeGenInstruction*>(); + return DefRec.get<const CodeGenInstAlias*>()->ResultInst; + } + + /// ResOperands - This is the operand list that should be built for the result + /// MCInst. + SmallVector<ResOperand, 8> ResOperands; + + /// Mnemonic - This is the first token of the matched instruction, its + /// mnemonic. + StringRef Mnemonic; + + /// AsmOperands - The textual operands that this instruction matches, + /// annotated with a class and where in the OperandList they were defined. + /// This directly corresponds to the tokenized AsmString after the mnemonic is + /// removed. + SmallVector<AsmOperand, 8> AsmOperands; + + /// Predicates - The required subtarget features to match this instruction. + SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; + + /// ConversionFnKind - The enum value which is passed to the generated + /// convertToMCInst to convert parsed operands into an MCInst for this + /// function. + std::string ConversionFnKind; + + /// If this instruction is deprecated in some form. + bool HasDeprecation; + + /// If this is an alias, this is use to determine whether or not to using + /// the conversion function defined by the instruction's AsmMatchConverter + /// or to use the function generated by the alias. + bool UseInstAsmMatchConverter; + + MatchableInfo(const CodeGenInstruction &CGI) + : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), + UseInstAsmMatchConverter(true) { + } + + MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) + : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), + DefRec(Alias.release()), + UseInstAsmMatchConverter( + TheDef->getValueAsBit("UseInstAsmMatchConverter")) { + } + + // Could remove this and the dtor if PointerUnion supported unique_ptr + // elements with a dynamic failure/assertion (like the one below) in the case + // where it was copied while being in an owning state. + MatchableInfo(const MatchableInfo &RHS) + : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), + TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), + Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), + RequiredFeatures(RHS.RequiredFeatures), + ConversionFnKind(RHS.ConversionFnKind), + HasDeprecation(RHS.HasDeprecation), + UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { + assert(!DefRec.is<const CodeGenInstAlias *>()); + } + + ~MatchableInfo() { + delete DefRec.dyn_cast<const CodeGenInstAlias*>(); + } + + // Two-operand aliases clone from the main matchable, but mark the second + // operand as a tied operand of the first for purposes of the assembler. + void formTwoOperandAlias(StringRef Constraint); + + void initialize(const AsmMatcherInfo &Info, + SmallPtrSetImpl<Record*> &SingletonRegisters, + AsmVariantInfo const &Variant); + + /// validate - Return true if this matchable is a valid thing to match against + /// and perform a bunch of validity checking. + bool validate(StringRef CommentDelimiter, bool Hack) const; + + /// findAsmOperand - Find the AsmOperand with the specified name and + /// suboperand index. + int findAsmOperand(StringRef N, int SubOpIdx) const { + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) + if (N == AsmOperands[i].SrcOpName && + SubOpIdx == AsmOperands[i].SubOpIdx) + return i; + return -1; + } + + /// findAsmOperandNamed - Find the first AsmOperand with the specified name. + /// This does not check the suboperand index. + int findAsmOperandNamed(StringRef N) const { + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) + if (N == AsmOperands[i].SrcOpName) + return i; + return -1; + } + + void buildInstructionResultOperands(); + void buildAliasResultOperands(); + + /// operator< - Compare two matchables. + bool operator<(const MatchableInfo &RHS) const { + // The primary comparator is the instruction mnemonic. + if (Mnemonic != RHS.Mnemonic) + return Mnemonic < RHS.Mnemonic; + + if (AsmOperands.size() != RHS.AsmOperands.size()) + return AsmOperands.size() < RHS.AsmOperands.size(); + + // Compare lexicographically by operand. The matcher validates that other + // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { + if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) + return true; + if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) + return false; + } + + // Give matches that require more features higher precedence. This is useful + // because we cannot define AssemblerPredicates with the negation of + // processor features. For example, ARM v6 "nop" may be either a HINT or + // MOV. With v6, we want to match HINT. The assembler has no way to + // predicate MOV under "NoV6", but HINT will always match first because it + // requires V6 while MOV does not. + if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) + return RequiredFeatures.size() > RHS.RequiredFeatures.size(); + + return false; + } + + /// couldMatchAmbiguouslyWith - Check whether this matchable could + /// ambiguously match the same set of operands as \p RHS (without being a + /// strictly superior match). + bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { + // The primary comparator is the instruction mnemonic. + if (Mnemonic != RHS.Mnemonic) + return false; + + // The number of operands is unambiguous. + if (AsmOperands.size() != RHS.AsmOperands.size()) + return false; + + // Otherwise, make sure the ordering of the two instructions is unambiguous + // by checking that either (a) a token or operand kind discriminates them, + // or (b) the ordering among equivalent kinds is consistent. + + // Tokens and operand kinds are unambiguous (assuming a correct target + // specific parser). + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) + if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || + AsmOperands[i].Class->Kind == ClassInfo::Token) + if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || + *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) + return false; + + // Otherwise, this operand could commute if all operands are equivalent, or + // there is a pair of operands that compare less than and a pair that + // compare greater than. + bool HasLT = false, HasGT = false; + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { + if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) + HasLT = true; + if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) + HasGT = true; + } + + return !(HasLT ^ HasGT); + } + + void dump() const; + +private: + void tokenizeAsmString(AsmMatcherInfo const &Info, + AsmVariantInfo const &Variant); + void addAsmOperand(size_t Start, size_t End, + std::string const &SeparatorCharacters); +}; + +/// SubtargetFeatureInfo - Helper class for storing information on a subtarget +/// feature which participates in instruction matching. +struct SubtargetFeatureInfo { + /// \brief The predicate record for this feature. + Record *TheDef; + + /// \brief An unique index assigned to represent this feature. + uint64_t Index; + + SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {} + + /// \brief The name of the enumerated constant identifying this feature. + std::string getEnumName() const { + return "Feature_" + TheDef->getName(); + } + + void dump() const { + errs() << getEnumName() << " " << Index << "\n"; + TheDef->dump(); + } +}; + +struct OperandMatchEntry { + unsigned OperandMask; + const MatchableInfo* MI; + ClassInfo *CI; + + static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, + unsigned opMask) { + OperandMatchEntry X; + X.OperandMask = opMask; + X.CI = ci; + X.MI = mi; + return X; + } +}; + + +class AsmMatcherInfo { +public: + /// Tracked Records + RecordKeeper &Records; + + /// The tablegen AsmParser record. + Record *AsmParser; + + /// Target - The target information. + CodeGenTarget &Target; + + /// The classes which are needed for matching. + std::forward_list<ClassInfo> Classes; + + /// The information on the matchables to match. + std::vector<std::unique_ptr<MatchableInfo>> Matchables; + + /// Info for custom matching operands by user defined methods. + std::vector<OperandMatchEntry> OperandMatchInfo; + + /// Map of Register records to their class information. + typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; + RegisterClassesTy RegisterClasses; + + /// Map of Predicate records to their subtarget information. + std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; + + /// Map of AsmOperandClass records to their class information. + std::map<Record*, ClassInfo*> AsmOperandClasses; + +private: + /// Map of token to class information which has already been constructed. + std::map<std::string, ClassInfo*> TokenClasses; + + /// Map of RegisterClass records to their class information. + std::map<Record*, ClassInfo*> RegisterClassClasses; + +private: + /// getTokenClass - Lookup or create the class for the given token. + ClassInfo *getTokenClass(StringRef Token); + + /// getOperandClass - Lookup or create the class for the given operand. + ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, + int SubOpIdx); + ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); + + /// buildRegisterClasses - Build the ClassInfo* instances for register + /// classes. + void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); + + /// buildOperandClasses - Build the ClassInfo* instances for user defined + /// operand classes. + void buildOperandClasses(); + + void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, + unsigned AsmOpIdx); + void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, + MatchableInfo::AsmOperand &Op); + +public: + AsmMatcherInfo(Record *AsmParser, + CodeGenTarget &Target, + RecordKeeper &Records); + + /// buildInfo - Construct the various tables used during matching. + void buildInfo(); + + /// buildOperandMatchInfo - Build the necessary information to handle user + /// defined operand parsing methods. + void buildOperandMatchInfo(); + + /// getSubtargetFeature - Lookup or create the subtarget feature info for the + /// given operand. + const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { + assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); + const auto &I = SubtargetFeatures.find(Def); + return I == SubtargetFeatures.end() ? nullptr : &I->second; + } + + RecordKeeper &getRecords() const { + return Records; + } +}; + +} // End anonymous namespace + +void MatchableInfo::dump() const { + errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; + + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { + const AsmOperand &Op = AsmOperands[i]; + errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; + errs() << '\"' << Op.Token << "\"\n"; + } +} + +static std::pair<StringRef, StringRef> +parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { + // Split via the '='. + std::pair<StringRef, StringRef> Ops = S.split('='); + if (Ops.second == "") + PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); + // Trim whitespace and the leading '$' on the operand names. + size_t start = Ops.first.find_first_of('$'); + if (start == std::string::npos) + PrintFatalError(Loc, "expected '$' prefix on asm operand name"); + Ops.first = Ops.first.slice(start + 1, std::string::npos); + size_t end = Ops.first.find_last_of(" \t"); + Ops.first = Ops.first.slice(0, end); + // Now the second operand. + start = Ops.second.find_first_of('$'); + if (start == std::string::npos) + PrintFatalError(Loc, "expected '$' prefix on asm operand name"); + Ops.second = Ops.second.slice(start + 1, std::string::npos); + end = Ops.second.find_last_of(" \t"); + Ops.first = Ops.first.slice(0, end); + return Ops; +} + +void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { + // Figure out which operands are aliased and mark them as tied. + std::pair<StringRef, StringRef> Ops = + parseTwoOperandConstraint(Constraint, TheDef->getLoc()); + + // Find the AsmOperands that refer to the operands we're aliasing. + int SrcAsmOperand = findAsmOperandNamed(Ops.first); + int DstAsmOperand = findAsmOperandNamed(Ops.second); + if (SrcAsmOperand == -1) + PrintFatalError(TheDef->getLoc(), + "unknown source two-operand alias operand '" + Ops.first + + "'."); + if (DstAsmOperand == -1) + PrintFatalError(TheDef->getLoc(), + "unknown destination two-operand alias operand '" + + Ops.second + "'."); + + // Find the ResOperand that refers to the operand we're aliasing away + // and update it to refer to the combined operand instead. + for (ResOperand &Op : ResOperands) { + if (Op.Kind == ResOperand::RenderAsmOperand && + Op.AsmOperandNum == (unsigned)SrcAsmOperand) { + Op.AsmOperandNum = DstAsmOperand; + break; + } + } + // Remove the AsmOperand for the alias operand. + AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); + // Adjust the ResOperand references to any AsmOperands that followed + // the one we just deleted. + for (ResOperand &Op : ResOperands) { + switch(Op.Kind) { + default: + // Nothing to do for operands that don't reference AsmOperands. + break; + case ResOperand::RenderAsmOperand: + if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) + --Op.AsmOperandNum; + break; + case ResOperand::TiedOperand: + if (Op.TiedOperandNum > (unsigned)SrcAsmOperand) + --Op.TiedOperandNum; + break; + } + } +} + +/// extractSingletonRegisterForAsmOperand - Extract singleton register, +/// if present, from specified token. +static void +extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, + const AsmMatcherInfo &Info, + StringRef RegisterPrefix) { + StringRef Tok = Op.Token; + + // If this token is not an isolated token, i.e., it isn't separated from + // other tokens (e.g. with whitespace), don't interpret it as a register name. + if (!Op.IsIsolatedToken) + return; + + if (RegisterPrefix.empty()) { + std::string LoweredTok = Tok.lower(); + if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) + Op.SingletonReg = Reg->TheDef; + return; + } + + if (!Tok.startswith(RegisterPrefix)) + return; + + StringRef RegName = Tok.substr(RegisterPrefix.size()); + if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) + Op.SingletonReg = Reg->TheDef; + + // If there is no register prefix (i.e. "%" in "%eax"), then this may + // be some random non-register token, just ignore it. + return; +} + +void MatchableInfo::initialize(const AsmMatcherInfo &Info, + SmallPtrSetImpl<Record*> &SingletonRegisters, + AsmVariantInfo const &Variant) { + AsmVariantID = Variant.AsmVariantNo; + AsmString = + CodeGenInstruction::FlattenAsmStringVariants(AsmString, + Variant.AsmVariantNo); + + tokenizeAsmString(Info, Variant); + + // Compute the require features. + for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) + if (const SubtargetFeatureInfo *Feature = + Info.getSubtargetFeature(Predicate)) + RequiredFeatures.push_back(Feature); + + // Collect singleton registers, if used. + for (MatchableInfo::AsmOperand &Op : AsmOperands) { + extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); + if (Record *Reg = Op.SingletonReg) + SingletonRegisters.insert(Reg); + } + + const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); + if (!DepMask) + DepMask = TheDef->getValue("ComplexDeprecationPredicate"); + + HasDeprecation = + DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; +} + +/// Append an AsmOperand for the given substring of AsmString. +void MatchableInfo::addAsmOperand(size_t Start, size_t End, + std::string const &Separators) { + StringRef String = AsmString; + // Look for separators before and after to figure out is this token is + // isolated. Accept '$$' as that's how we escape '$'. + bool IsIsolatedToken = + (!Start || Separators.find(String[Start - 1]) != StringRef::npos || + String.substr(Start - 1, 2) == "$$") && + (End >= String.size() || Separators.find(String[End]) != StringRef::npos); + AsmOperands.push_back(AsmOperand(IsIsolatedToken, String.slice(Start, End))); +} + +/// tokenizeAsmString - Tokenize a simplified assembly string. +void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, + AsmVariantInfo const &Variant) { + StringRef String = AsmString; + size_t Prev = 0; + bool InTok = false; + std::string Separators = Variant.TokenizingCharacters + + Variant.SeparatorCharacters; + for (size_t i = 0, e = String.size(); i != e; ++i) { + if(Variant.BreakCharacters.find(String[i]) != std::string::npos) { + if(InTok) { + addAsmOperand(Prev, i, Separators); + Prev = i; + } + InTok = true; + continue; + } + if(Variant.TokenizingCharacters.find(String[i]) != std::string::npos) { + if(InTok) { + addAsmOperand(Prev, i, Separators); + InTok = false; + } + addAsmOperand(i, i + 1, Separators); + Prev = i + 1; + continue; + } + if(Variant.SeparatorCharacters.find(String[i]) != std::string::npos) { + if(InTok) { + addAsmOperand(Prev, i, Separators); + InTok = false; + } + Prev = i + 1; + continue; + } + switch (String[i]) { + case '\\': + if (InTok) { + addAsmOperand(Prev, i, Separators); + InTok = false; + } + ++i; + assert(i != String.size() && "Invalid quoted character"); + addAsmOperand(i, i + 1, Separators); + Prev = i + 1; + break; + + case '$': { + if (InTok && Prev != i) { + addAsmOperand(Prev, i, Separators); + InTok = false; + } + + // If this isn't "${", start new identifier looking like "$xxx" + if (i + 1 == String.size() || String[i + 1] != '{') { + Prev = i; + break; + } + + size_t EndPos = String.find('}', i); + assert(EndPos != StringRef::npos && + "Missing brace in operand reference!"); + addAsmOperand(i, EndPos+1, Separators); + Prev = EndPos + 1; + i = EndPos; + break; + } + default: + InTok = true; + } + } + if (InTok && Prev != String.size()) + addAsmOperand(Prev, StringRef::npos, Separators); + + // The first token of the instruction is the mnemonic, which must be a + // simple string, not a $foo variable or a singleton register. + if (AsmOperands.empty()) + PrintFatalError(TheDef->getLoc(), + "Instruction '" + TheDef->getName() + "' has no tokens"); + assert(!AsmOperands[0].Token.empty()); + if (AsmOperands[0].Token[0] != '$') + Mnemonic = AsmOperands[0].Token; +} + +bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const { + // Reject matchables with no .s string. + if (AsmString.empty()) + PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); + + // Reject any matchables with a newline in them, they should be marked + // isCodeGenOnly if they are pseudo instructions. + if (AsmString.find('\n') != std::string::npos) + PrintFatalError(TheDef->getLoc(), + "multiline instruction is not valid for the asmparser, " + "mark it isCodeGenOnly"); + + // Remove comments from the asm string. We know that the asmstring only + // has one line. + if (!CommentDelimiter.empty() && + StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) + PrintFatalError(TheDef->getLoc(), + "asmstring for instruction has comment character in it, " + "mark it isCodeGenOnly"); + + // Reject matchables with operand modifiers, these aren't something we can + // handle, the target should be refactored to use operands instead of + // modifiers. + // + // Also, check for instructions which reference the operand multiple times; + // this implies a constraint we would not honor. + std::set<std::string> OperandNames; + for (const AsmOperand &Op : AsmOperands) { + StringRef Tok = Op.Token; + if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) + PrintFatalError(TheDef->getLoc(), + "matchable with operand modifier '" + Tok + + "' not supported by asm matcher. Mark isCodeGenOnly!"); + + // Verify that any operand is only mentioned once. + // We reject aliases and ignore instructions for now. + if (Tok[0] == '$' && !OperandNames.insert(Tok).second) { + if (!Hack) + PrintFatalError(TheDef->getLoc(), + "ERROR: matchable with tied operand '" + Tok + + "' can never be matched!"); + // FIXME: Should reject these. The ARM backend hits this with $lane in a + // bunch of instructions. It is unclear what the right answer is. + DEBUG({ + errs() << "warning: '" << TheDef->getName() << "': " + << "ignoring instruction with tied operand '" + << Tok << "'\n"; + }); + return false; + } + } + + return true; +} + +static std::string getEnumNameForToken(StringRef Str) { + std::string Res; + + for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { + switch (*it) { + case '*': Res += "_STAR_"; break; + case '%': Res += "_PCT_"; break; + case ':': Res += "_COLON_"; break; + case '!': Res += "_EXCLAIM_"; break; + case '.': Res += "_DOT_"; break; + case '<': Res += "_LT_"; break; + case '>': Res += "_GT_"; break; + case '-': Res += "_MINUS_"; break; + default: + if ((*it >= 'A' && *it <= 'Z') || + (*it >= 'a' && *it <= 'z') || + (*it >= '0' && *it <= '9')) + Res += *it; + else + Res += "_" + utostr((unsigned) *it) + "_"; + } + } + + return Res; +} + +ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { + ClassInfo *&Entry = TokenClasses[Token]; + + if (!Entry) { + Classes.emplace_front(); + Entry = &Classes.front(); + Entry->Kind = ClassInfo::Token; + Entry->ClassName = "Token"; + Entry->Name = "MCK_" + getEnumNameForToken(Token); + Entry->ValueName = Token; + Entry->PredicateMethod = "<invalid>"; + Entry->RenderMethod = "<invalid>"; + Entry->ParserMethod = ""; + Entry->DiagnosticType = ""; + } + + return Entry; +} + +ClassInfo * +AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, + int SubOpIdx) { + Record *Rec = OI.Rec; + if (SubOpIdx != -1) + Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); + return getOperandClass(Rec, SubOpIdx); +} + +ClassInfo * +AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { + if (Rec->isSubClassOf("RegisterOperand")) { + // RegisterOperand may have an associated ParserMatchClass. If it does, + // use it, else just fall back to the underlying register class. + const RecordVal *R = Rec->getValue("ParserMatchClass"); + if (!R || !R->getValue()) + PrintFatalError("Record `" + Rec->getName() + + "' does not have a ParserMatchClass!\n"); + + if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { + Record *MatchClass = DI->getDef(); + if (ClassInfo *CI = AsmOperandClasses[MatchClass]) + return CI; + } + + // No custom match class. Just use the register class. + Record *ClassRec = Rec->getValueAsDef("RegClass"); + if (!ClassRec) + PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + + "' has no associated register class!\n"); + if (ClassInfo *CI = RegisterClassClasses[ClassRec]) + return CI; + PrintFatalError(Rec->getLoc(), "register class has no class info!"); + } + + + if (Rec->isSubClassOf("RegisterClass")) { + if (ClassInfo *CI = RegisterClassClasses[Rec]) + return CI; + PrintFatalError(Rec->getLoc(), "register class has no class info!"); + } + + if (!Rec->isSubClassOf("Operand")) + PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + + "' does not derive from class Operand!\n"); + Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); + if (ClassInfo *CI = AsmOperandClasses[MatchClass]) + return CI; + + PrintFatalError(Rec->getLoc(), "operand has no match class!"); +} + +struct LessRegisterSet { + bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { + // std::set<T> defines its own compariso "operator<", but it + // performs a lexicographical comparison by T's innate comparison + // for some reason. We don't want non-deterministic pointer + // comparisons so use this instead. + return std::lexicographical_compare(LHS.begin(), LHS.end(), + RHS.begin(), RHS.end(), + LessRecordByID()); + } +}; + +void AsmMatcherInfo:: +buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { + const auto &Registers = Target.getRegBank().getRegisters(); + auto &RegClassList = Target.getRegBank().getRegClasses(); + + typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; + + // The register sets used for matching. + RegisterSetSet RegisterSets; + + // Gather the defined sets. + for (const CodeGenRegisterClass &RC : RegClassList) + RegisterSets.insert( + RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); + + // Add any required singleton sets. + for (Record *Rec : SingletonRegisters) { + RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); + } + + // Introduce derived sets where necessary (when a register does not determine + // a unique register set class), and build the mapping of registers to the set + // they should classify to. + std::map<Record*, RegisterSet> RegisterMap; + for (const CodeGenRegister &CGR : Registers) { + // Compute the intersection of all sets containing this register. + RegisterSet ContainingSet; + + for (const RegisterSet &RS : RegisterSets) { + if (!RS.count(CGR.TheDef)) + continue; + + if (ContainingSet.empty()) { + ContainingSet = RS; + continue; + } + + RegisterSet Tmp; + std::swap(Tmp, ContainingSet); + std::insert_iterator<RegisterSet> II(ContainingSet, + ContainingSet.begin()); + std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, + LessRecordByID()); + } + + if (!ContainingSet.empty()) { + RegisterSets.insert(ContainingSet); + RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); + } + } + + // Construct the register classes. + std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; + unsigned Index = 0; + for (const RegisterSet &RS : RegisterSets) { + Classes.emplace_front(); + ClassInfo *CI = &Classes.front(); + CI->Kind = ClassInfo::RegisterClass0 + Index; + CI->ClassName = "Reg" + utostr(Index); + CI->Name = "MCK_Reg" + utostr(Index); + CI->ValueName = ""; + CI->PredicateMethod = ""; // unused + CI->RenderMethod = "addRegOperands"; + CI->Registers = RS; + // FIXME: diagnostic type. + CI->DiagnosticType = ""; + RegisterSetClasses.insert(std::make_pair(RS, CI)); + ++Index; + } + + // Find the superclasses; we could compute only the subgroup lattice edges, + // but there isn't really a point. + for (const RegisterSet &RS : RegisterSets) { + ClassInfo *CI = RegisterSetClasses[RS]; + for (const RegisterSet &RS2 : RegisterSets) + if (RS != RS2 && + std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), + LessRecordByID())) + CI->SuperClasses.push_back(RegisterSetClasses[RS2]); + } + + // Name the register classes which correspond to a user defined RegisterClass. + for (const CodeGenRegisterClass &RC : RegClassList) { + // Def will be NULL for non-user defined register classes. + Record *Def = RC.getDef(); + if (!Def) + continue; + ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), + RC.getOrder().end())]; + if (CI->ValueName.empty()) { + CI->ClassName = RC.getName(); + CI->Name = "MCK_" + RC.getName(); + CI->ValueName = RC.getName(); + } else + CI->ValueName = CI->ValueName + "," + RC.getName(); + + RegisterClassClasses.insert(std::make_pair(Def, CI)); + } + + // Populate the map for individual registers. + for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(), + ie = RegisterMap.end(); it != ie; ++it) + RegisterClasses[it->first] = RegisterSetClasses[it->second]; + + // Name the register classes which correspond to singleton registers. + for (Record *Rec : SingletonRegisters) { + ClassInfo *CI = RegisterClasses[Rec]; + assert(CI && "Missing singleton register class info!"); + + if (CI->ValueName.empty()) { + CI->ClassName = Rec->getName(); + CI->Name = "MCK_" + Rec->getName(); + CI->ValueName = Rec->getName(); + } else + CI->ValueName = CI->ValueName + "," + Rec->getName(); + } +} + +void AsmMatcherInfo::buildOperandClasses() { + std::vector<Record*> AsmOperands = + Records.getAllDerivedDefinitions("AsmOperandClass"); + + // Pre-populate AsmOperandClasses map. + for (Record *Rec : AsmOperands) { + Classes.emplace_front(); + AsmOperandClasses[Rec] = &Classes.front(); + } + + unsigned Index = 0; + for (Record *Rec : AsmOperands) { + ClassInfo *CI = AsmOperandClasses[Rec]; + CI->Kind = ClassInfo::UserClass0 + Index; + + ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); + for (Init *I : Supers->getValues()) { + DefInit *DI = dyn_cast<DefInit>(I); + if (!DI) { + PrintError(Rec->getLoc(), "Invalid super class reference!"); + continue; + } + + ClassInfo *SC = AsmOperandClasses[DI->getDef()]; + if (!SC) + PrintError(Rec->getLoc(), "Invalid super class reference!"); + else + CI->SuperClasses.push_back(SC); + } + CI->ClassName = Rec->getValueAsString("Name"); + CI->Name = "MCK_" + CI->ClassName; + CI->ValueName = Rec->getName(); + + // Get or construct the predicate method name. + Init *PMName = Rec->getValueInit("PredicateMethod"); + if (StringInit *SI = dyn_cast<StringInit>(PMName)) { + CI->PredicateMethod = SI->getValue(); + } else { + assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); + CI->PredicateMethod = "is" + CI->ClassName; + } + + // Get or construct the render method name. + Init *RMName = Rec->getValueInit("RenderMethod"); + if (StringInit *SI = dyn_cast<StringInit>(RMName)) { + CI->RenderMethod = SI->getValue(); + } else { + assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); + CI->RenderMethod = "add" + CI->ClassName + "Operands"; + } + + // Get the parse method name or leave it as empty. + Init *PRMName = Rec->getValueInit("ParserMethod"); + if (StringInit *SI = dyn_cast<StringInit>(PRMName)) + CI->ParserMethod = SI->getValue(); + + // Get the diagnostic type or leave it as empty. + // Get the parse method name or leave it as empty. + Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); + if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) + CI->DiagnosticType = SI->getValue(); + + ++Index; + } +} + +AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, + CodeGenTarget &target, + RecordKeeper &records) + : Records(records), AsmParser(asmParser), Target(target) { +} + +/// buildOperandMatchInfo - Build the necessary information to handle user +/// defined operand parsing methods. +void AsmMatcherInfo::buildOperandMatchInfo() { + + /// Map containing a mask with all operands indices that can be found for + /// that class inside a instruction. + typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy; + OpClassMaskTy OpClassMask; + + for (const auto &MI : Matchables) { + OpClassMask.clear(); + + // Keep track of all operands of this instructions which belong to the + // same class. + for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { + const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; + if (Op.Class->ParserMethod.empty()) + continue; + unsigned &OperandMask = OpClassMask[Op.Class]; + OperandMask |= (1 << i); + } + + // Generate operand match info for each mnemonic/operand class pair. + for (const auto &OCM : OpClassMask) { + unsigned OpMask = OCM.second; + ClassInfo *CI = OCM.first; + OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, + OpMask)); + } + } +} + +void AsmMatcherInfo::buildInfo() { + // Build information about all of the AssemblerPredicates. + std::vector<Record*> AllPredicates = + Records.getAllDerivedDefinitions("Predicate"); + for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) { + Record *Pred = AllPredicates[i]; + // Ignore predicates that are not intended for the assembler. + if (!Pred->getValueAsBit("AssemblerMatcherPredicate")) + continue; + + if (Pred->getName().empty()) + PrintFatalError(Pred->getLoc(), "Predicate has no name!"); + + SubtargetFeatures.insert(std::make_pair( + Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size()))); + DEBUG(SubtargetFeatures.find(Pred)->second.dump()); + assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!"); + } + + // Parse the instructions; we need to do this first so that we can gather the + // singleton register classes. + SmallPtrSet<Record*, 16> SingletonRegisters; + unsigned VariantCount = Target.getAsmParserVariantCount(); + for (unsigned VC = 0; VC != VariantCount; ++VC) { + Record *AsmVariant = Target.getAsmParserVariant(VC); + std::string CommentDelimiter = + AsmVariant->getValueAsString("CommentDelimiter"); + AsmVariantInfo Variant; + Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); + Variant.TokenizingCharacters = + AsmVariant->getValueAsString("TokenizingCharacters"); + Variant.SeparatorCharacters = + AsmVariant->getValueAsString("SeparatorCharacters"); + Variant.BreakCharacters = + AsmVariant->getValueAsString("BreakCharacters"); + Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); + + for (const CodeGenInstruction *CGI : Target.instructions()) { + + // If the tblgen -match-prefix option is specified (for tblgen hackers), + // filter the set of instructions we consider. + if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) + continue; + + // Ignore "codegen only" instructions. + if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) + continue; + + auto II = llvm::make_unique<MatchableInfo>(*CGI); + + II->initialize(*this, SingletonRegisters, Variant); + + // Ignore instructions which shouldn't be matched and diagnose invalid + // instruction definitions with an error. + if (!II->validate(CommentDelimiter, true)) + continue; + + Matchables.push_back(std::move(II)); + } + + // Parse all of the InstAlias definitions and stick them in the list of + // matchables. + std::vector<Record*> AllInstAliases = + Records.getAllDerivedDefinitions("InstAlias"); + for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { + auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i], + Variant.AsmVariantNo, + Target); + + // If the tblgen -match-prefix option is specified (for tblgen hackers), + // filter the set of instruction aliases we consider, based on the target + // instruction. + if (!StringRef(Alias->ResultInst->TheDef->getName()) + .startswith( MatchPrefix)) + continue; + + auto II = llvm::make_unique<MatchableInfo>(std::move(Alias)); + + II->initialize(*this, SingletonRegisters, Variant); + + // Validate the alias definitions. + II->validate(CommentDelimiter, false); + + Matchables.push_back(std::move(II)); + } + } + + // Build info for the register classes. + buildRegisterClasses(SingletonRegisters); + + // Build info for the user defined assembly operand classes. + buildOperandClasses(); + + // Build the information about matchables, now that we have fully formed + // classes. + std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; + for (auto &II : Matchables) { + // Parse the tokens after the mnemonic. + // Note: buildInstructionOperandReference may insert new AsmOperands, so + // don't precompute the loop bound. + for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { + MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; + StringRef Token = Op.Token; + + // Check for singleton registers. + if (Record *RegRecord = Op.SingletonReg) { + Op.Class = RegisterClasses[RegRecord]; + assert(Op.Class && Op.Class->Registers.size() == 1 && + "Unexpected class for singleton register"); + continue; + } + + // Check for simple tokens. + if (Token[0] != '$') { + Op.Class = getTokenClass(Token); + continue; + } + + if (Token.size() > 1 && isdigit(Token[1])) { + Op.Class = getTokenClass(Token); + continue; + } + + // Otherwise this is an operand reference. + StringRef OperandName; + if (Token[1] == '{') + OperandName = Token.substr(2, Token.size() - 3); + else + OperandName = Token.substr(1); + + if (II->DefRec.is<const CodeGenInstruction*>()) + buildInstructionOperandReference(II.get(), OperandName, i); + else + buildAliasOperandReference(II.get(), OperandName, Op); + } + + if (II->DefRec.is<const CodeGenInstruction*>()) { + II->buildInstructionResultOperands(); + // If the instruction has a two-operand alias, build up the + // matchable here. We'll add them in bulk at the end to avoid + // confusing this loop. + std::string Constraint = + II->TheDef->getValueAsString("TwoOperandAliasConstraint"); + if (Constraint != "") { + // Start by making a copy of the original matchable. + auto AliasII = llvm::make_unique<MatchableInfo>(*II); + + // Adjust it to be a two-operand alias. + AliasII->formTwoOperandAlias(Constraint); + + // Add the alias to the matchables list. + NewMatchables.push_back(std::move(AliasII)); + } + } else + II->buildAliasResultOperands(); + } + if (!NewMatchables.empty()) + Matchables.insert(Matchables.end(), + std::make_move_iterator(NewMatchables.begin()), + std::make_move_iterator(NewMatchables.end())); + + // Process token alias definitions and set up the associated superclass + // information. + std::vector<Record*> AllTokenAliases = + Records.getAllDerivedDefinitions("TokenAlias"); + for (Record *Rec : AllTokenAliases) { + ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); + ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); + if (FromClass == ToClass) + PrintFatalError(Rec->getLoc(), + "error: Destination value identical to source value."); + FromClass->SuperClasses.push_back(ToClass); + } + + // Reorder classes so that classes precede super classes. + Classes.sort(); +} + +/// buildInstructionOperandReference - The specified operand is a reference to a +/// named operand such as $src. Resolve the Class and OperandInfo pointers. +void AsmMatcherInfo:: +buildInstructionOperandReference(MatchableInfo *II, + StringRef OperandName, + unsigned AsmOpIdx) { + const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); + const CGIOperandList &Operands = CGI.Operands; + MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; + + // Map this token to an operand. + unsigned Idx; + if (!Operands.hasOperandNamed(OperandName, Idx)) + PrintFatalError(II->TheDef->getLoc(), + "error: unable to find operand: '" + OperandName + "'"); + + // If the instruction operand has multiple suboperands, but the parser + // match class for the asm operand is still the default "ImmAsmOperand", + // then handle each suboperand separately. + if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { + Record *Rec = Operands[Idx].Rec; + assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); + Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); + if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { + // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. + StringRef Token = Op->Token; // save this in case Op gets moved + for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { + MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); + NewAsmOp.SubOpIdx = SI; + II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); + } + // Replace Op with first suboperand. + Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved + Op->SubOpIdx = 0; + } + } + + // Set up the operand class. + Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); + + // If the named operand is tied, canonicalize it to the untied operand. + // For example, something like: + // (outs GPR:$dst), (ins GPR:$src) + // with an asmstring of + // "inc $src" + // we want to canonicalize to: + // "inc $dst" + // so that we know how to provide the $dst operand when filling in the result. + int OITied = -1; + if (Operands[Idx].MINumOperands == 1) + OITied = Operands[Idx].getTiedRegister(); + if (OITied != -1) { + // The tied operand index is an MIOperand index, find the operand that + // contains it. + std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); + OperandName = Operands[Idx.first].Name; + Op->SubOpIdx = Idx.second; + } + + Op->SrcOpName = OperandName; +} + +/// buildAliasOperandReference - When parsing an operand reference out of the +/// matching string (e.g. "movsx $src, $dst"), determine what the class of the +/// operand reference is by looking it up in the result pattern definition. +void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, + StringRef OperandName, + MatchableInfo::AsmOperand &Op) { + const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); + + // Set up the operand class. + for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) + if (CGA.ResultOperands[i].isRecord() && + CGA.ResultOperands[i].getName() == OperandName) { + // It's safe to go with the first one we find, because CodeGenInstAlias + // validates that all operands with the same name have the same record. + Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; + // Use the match class from the Alias definition, not the + // destination instruction, as we may have an immediate that's + // being munged by the match class. + Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), + Op.SubOpIdx); + Op.SrcOpName = OperandName; + return; + } + + PrintFatalError(II->TheDef->getLoc(), + "error: unable to find operand: '" + OperandName + "'"); +} + +void MatchableInfo::buildInstructionResultOperands() { + const CodeGenInstruction *ResultInst = getResultInst(); + + // Loop over all operands of the result instruction, determining how to + // populate them. + for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { + // If this is a tied operand, just copy from the previously handled operand. + int TiedOp = -1; + if (OpInfo.MINumOperands == 1) + TiedOp = OpInfo.getTiedRegister(); + if (TiedOp != -1) { + ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); + continue; + } + + // Find out what operand from the asmparser this MCInst operand comes from. + int SrcOperand = findAsmOperandNamed(OpInfo.Name); + if (OpInfo.Name.empty() || SrcOperand == -1) { + // This may happen for operands that are tied to a suboperand of a + // complex operand. Simply use a dummy value here; nobody should + // use this operand slot. + // FIXME: The long term goal is for the MCOperand list to not contain + // tied operands at all. + ResOperands.push_back(ResOperand::getImmOp(0)); + continue; + } + + // Check if the one AsmOperand populates the entire operand. + unsigned NumOperands = OpInfo.MINumOperands; + if (AsmOperands[SrcOperand].SubOpIdx == -1) { + ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); + continue; + } + + // Add a separate ResOperand for each suboperand. + for (unsigned AI = 0; AI < NumOperands; ++AI) { + assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && + AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && + "unexpected AsmOperands for suboperands"); + ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); + } + } +} + +void MatchableInfo::buildAliasResultOperands() { + const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); + const CodeGenInstruction *ResultInst = getResultInst(); + + // Loop over all operands of the result instruction, determining how to + // populate them. + unsigned AliasOpNo = 0; + unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); + for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { + const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; + + // If this is a tied operand, just copy from the previously handled operand. + int TiedOp = -1; + if (OpInfo->MINumOperands == 1) + TiedOp = OpInfo->getTiedRegister(); + if (TiedOp != -1) { + ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); + continue; + } + + // Handle all the suboperands for this operand. + const std::string &OpName = OpInfo->Name; + for ( ; AliasOpNo < LastOpNo && + CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { + int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; + + // Find out what operand from the asmparser that this MCInst operand + // comes from. + switch (CGA.ResultOperands[AliasOpNo].Kind) { + case CodeGenInstAlias::ResultOperand::K_Record: { + StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); + int SrcOperand = findAsmOperand(Name, SubIdx); + if (SrcOperand == -1) + PrintFatalError(TheDef->getLoc(), "Instruction '" + + TheDef->getName() + "' has operand '" + OpName + + "' that doesn't appear in asm string!"); + unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); + ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, + NumOperands)); + break; + } + case CodeGenInstAlias::ResultOperand::K_Imm: { + int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); + ResOperands.push_back(ResOperand::getImmOp(ImmVal)); + break; + } + case CodeGenInstAlias::ResultOperand::K_Reg: { + Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); + ResOperands.push_back(ResOperand::getRegOp(Reg)); + break; + } + } + } + } +} + +static unsigned getConverterOperandID(const std::string &Name, + SmallSetVector<std::string, 16> &Table, + bool &IsNew) { + IsNew = Table.insert(Name); + + unsigned ID = IsNew ? Table.size() - 1 : + std::find(Table.begin(), Table.end(), Name) - Table.begin(); + + assert(ID < Table.size()); + + return ID; +} + + +static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, + std::vector<std::unique_ptr<MatchableInfo>> &Infos, + raw_ostream &OS) { + SmallSetVector<std::string, 16> OperandConversionKinds; + SmallSetVector<std::string, 16> InstructionConversionKinds; + std::vector<std::vector<uint8_t> > ConversionTable; + size_t MaxRowLength = 2; // minimum is custom converter plus terminator. + + // TargetOperandClass - This is the target's operand class, like X86Operand. + std::string TargetOperandClass = Target.getName() + "Operand"; + + // Write the convert function to a separate stream, so we can drop it after + // the enum. We'll build up the conversion handlers for the individual + // operand types opportunistically as we encounter them. + std::string ConvertFnBody; + raw_string_ostream CvtOS(ConvertFnBody); + // Start the unified conversion function. + CvtOS << "void " << Target.getName() << ClassName << "::\n" + << "convertToMCInst(unsigned Kind, MCInst &Inst, " + << "unsigned Opcode,\n" + << " const OperandVector" + << " &Operands) {\n" + << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" + << " const uint8_t *Converter = ConversionTable[Kind];\n" + << " Inst.setOpcode(Opcode);\n" + << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" + << " switch (*p) {\n" + << " default: llvm_unreachable(\"invalid conversion entry!\");\n" + << " case CVT_Reg:\n" + << " static_cast<" << TargetOperandClass + << "&>(*Operands[*(p + 1)]).addRegOperands(Inst, 1);\n" + << " break;\n" + << " case CVT_Tied:\n" + << " Inst.addOperand(Inst.getOperand(*(p + 1)));\n" + << " break;\n"; + + std::string OperandFnBody; + raw_string_ostream OpOS(OperandFnBody); + // Start the operand number lookup function. + OpOS << "void " << Target.getName() << ClassName << "::\n" + << "convertToMapAndConstraints(unsigned Kind,\n"; + OpOS.indent(27); + OpOS << "const OperandVector &Operands) {\n" + << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" + << " unsigned NumMCOperands = 0;\n" + << " const uint8_t *Converter = ConversionTable[Kind];\n" + << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" + << " switch (*p) {\n" + << " default: llvm_unreachable(\"invalid conversion entry!\");\n" + << " case CVT_Reg:\n" + << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" + << " Operands[*(p + 1)]->setConstraint(\"r\");\n" + << " ++NumMCOperands;\n" + << " break;\n" + << " case CVT_Tied:\n" + << " ++NumMCOperands;\n" + << " break;\n"; + + // Pre-populate the operand conversion kinds with the standard always + // available entries. + OperandConversionKinds.insert("CVT_Done"); + OperandConversionKinds.insert("CVT_Reg"); + OperandConversionKinds.insert("CVT_Tied"); + enum { CVT_Done, CVT_Reg, CVT_Tied }; + + for (auto &II : Infos) { + // Check if we have a custom match function. + std::string AsmMatchConverter = + II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); + if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { + std::string Signature = "ConvertCustom_" + AsmMatchConverter; + II->ConversionFnKind = Signature; + + // Check if we have already generated this signature. + if (!InstructionConversionKinds.insert(Signature)) + continue; + + // Remember this converter for the kind enum. + unsigned KindID = OperandConversionKinds.size(); + OperandConversionKinds.insert("CVT_" + + getEnumNameForToken(AsmMatchConverter)); + + // Add the converter row for this instruction. + ConversionTable.emplace_back(); + ConversionTable.back().push_back(KindID); + ConversionTable.back().push_back(CVT_Done); + + // Add the handler to the conversion driver function. + CvtOS << " case CVT_" + << getEnumNameForToken(AsmMatchConverter) << ":\n" + << " " << AsmMatchConverter << "(Inst, Operands);\n" + << " break;\n"; + + // FIXME: Handle the operand number lookup for custom match functions. + continue; + } + + // Build the conversion function signature. + std::string Signature = "Convert"; + + std::vector<uint8_t> ConversionRow; + + // Compute the convert enum and the case body. + MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); + + for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { + const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; + + // Generate code to populate each result operand. + switch (OpInfo.Kind) { + case MatchableInfo::ResOperand::RenderAsmOperand: { + // This comes from something we parsed. + const MatchableInfo::AsmOperand &Op = + II->AsmOperands[OpInfo.AsmOperandNum]; + + // Registers are always converted the same, don't duplicate the + // conversion function based on them. + Signature += "__"; + std::string Class; + Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; + Signature += Class; + Signature += utostr(OpInfo.MINumOperands); + Signature += "_" + itostr(OpInfo.AsmOperandNum); + + // Add the conversion kind, if necessary, and get the associated ID + // the index of its entry in the vector). + std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : + Op.Class->RenderMethod); + Name = getEnumNameForToken(Name); + + bool IsNewConverter = false; + unsigned ID = getConverterOperandID(Name, OperandConversionKinds, + IsNewConverter); + + // Add the operand entry to the instruction kind conversion row. + ConversionRow.push_back(ID); + ConversionRow.push_back(OpInfo.AsmOperandNum); + + if (!IsNewConverter) + break; + + // This is a new operand kind. Add a handler for it to the + // converter driver. + CvtOS << " case " << Name << ":\n" + << " static_cast<" << TargetOperandClass + << "&>(*Operands[*(p + 1)])." << Op.Class->RenderMethod + << "(Inst, " << OpInfo.MINumOperands << ");\n" + << " break;\n"; + + // Add a handler for the operand number lookup. + OpOS << " case " << Name << ":\n" + << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; + + if (Op.Class->isRegisterClass()) + OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; + else + OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; + OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" + << " break;\n"; + break; + } + case MatchableInfo::ResOperand::TiedOperand: { + // If this operand is tied to a previous one, just copy the MCInst + // operand from the earlier one.We can only tie single MCOperand values. + assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); + unsigned TiedOp = OpInfo.TiedOperandNum; + assert(i > TiedOp && "Tied operand precedes its target!"); + Signature += "__Tie" + utostr(TiedOp); + ConversionRow.push_back(CVT_Tied); + ConversionRow.push_back(TiedOp); + break; + } + case MatchableInfo::ResOperand::ImmOperand: { + int64_t Val = OpInfo.ImmVal; + std::string Ty = "imm_" + itostr(Val); + Ty = getEnumNameForToken(Ty); + Signature += "__" + Ty; + + std::string Name = "CVT_" + Ty; + bool IsNewConverter = false; + unsigned ID = getConverterOperandID(Name, OperandConversionKinds, + IsNewConverter); + // Add the operand entry to the instruction kind conversion row. + ConversionRow.push_back(ID); + ConversionRow.push_back(0); + + if (!IsNewConverter) + break; + + CvtOS << " case " << Name << ":\n" + << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" + << " break;\n"; + + OpOS << " case " << Name << ":\n" + << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" + << " Operands[*(p + 1)]->setConstraint(\"\");\n" + << " ++NumMCOperands;\n" + << " break;\n"; + break; + } + case MatchableInfo::ResOperand::RegOperand: { + std::string Reg, Name; + if (!OpInfo.Register) { + Name = "reg0"; + Reg = "0"; + } else { + Reg = getQualifiedName(OpInfo.Register); + Name = "reg" + OpInfo.Register->getName(); + } + Signature += "__" + Name; + Name = "CVT_" + Name; + bool IsNewConverter = false; + unsigned ID = getConverterOperandID(Name, OperandConversionKinds, + IsNewConverter); + // Add the operand entry to the instruction kind conversion row. + ConversionRow.push_back(ID); + ConversionRow.push_back(0); + + if (!IsNewConverter) + break; + CvtOS << " case " << Name << ":\n" + << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" + << " break;\n"; + + OpOS << " case " << Name << ":\n" + << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" + << " Operands[*(p + 1)]->setConstraint(\"m\");\n" + << " ++NumMCOperands;\n" + << " break;\n"; + } + } + } + + // If there were no operands, add to the signature to that effect + if (Signature == "Convert") + Signature += "_NoOperands"; + + II->ConversionFnKind = Signature; + + // Save the signature. If we already have it, don't add a new row + // to the table. + if (!InstructionConversionKinds.insert(Signature)) + continue; + + // Add the row to the table. + ConversionTable.push_back(std::move(ConversionRow)); + } + + // Finish up the converter driver function. + CvtOS << " }\n }\n}\n\n"; + + // Finish up the operand number lookup function. + OpOS << " }\n }\n}\n\n"; + + OS << "namespace {\n"; + + // Output the operand conversion kind enum. + OS << "enum OperatorConversionKind {\n"; + for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i) + OS << " " << OperandConversionKinds[i] << ",\n"; + OS << " CVT_NUM_CONVERTERS\n"; + OS << "};\n\n"; + + // Output the instruction conversion kind enum. + OS << "enum InstructionConversionKind {\n"; + for (const std::string &Signature : InstructionConversionKinds) + OS << " " << Signature << ",\n"; + OS << " CVT_NUM_SIGNATURES\n"; + OS << "};\n\n"; + + + OS << "} // end anonymous namespace\n\n"; + + // Output the conversion table. + OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" + << MaxRowLength << "] = {\n"; + + for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { + assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); + OS << " // " << InstructionConversionKinds[Row] << "\n"; + OS << " { "; + for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) + OS << OperandConversionKinds[ConversionTable[Row][i]] << ", " + << (unsigned)(ConversionTable[Row][i + 1]) << ", "; + OS << "CVT_Done },\n"; + } + + OS << "};\n\n"; + + // Spit out the conversion driver function. + OS << CvtOS.str(); + + // Spit out the operand number lookup function. + OS << OpOS.str(); +} + +/// emitMatchClassEnumeration - Emit the enumeration for match class kinds. +static void emitMatchClassEnumeration(CodeGenTarget &Target, + std::forward_list<ClassInfo> &Infos, + raw_ostream &OS) { + OS << "namespace {\n\n"; + + OS << "/// MatchClassKind - The kinds of classes which participate in\n" + << "/// instruction matching.\n"; + OS << "enum MatchClassKind {\n"; + OS << " InvalidMatchClass = 0,\n"; + for (const auto &CI : Infos) { + OS << " " << CI.Name << ", // "; + if (CI.Kind == ClassInfo::Token) { + OS << "'" << CI.ValueName << "'\n"; + } else if (CI.isRegisterClass()) { + if (!CI.ValueName.empty()) + OS << "register class '" << CI.ValueName << "'\n"; + else + OS << "derived register class\n"; + } else { + OS << "user defined class '" << CI.ValueName << "'\n"; + } + } + OS << " NumMatchClassKinds\n"; + OS << "};\n\n"; + + OS << "}\n\n"; +} + +/// emitValidateOperandClass - Emit the function to validate an operand class. +static void emitValidateOperandClass(AsmMatcherInfo &Info, + raw_ostream &OS) { + OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " + << "MatchClassKind Kind) {\n"; + OS << " " << Info.Target.getName() << "Operand &Operand = (" + << Info.Target.getName() << "Operand&)GOp;\n"; + + // The InvalidMatchClass is not to match any operand. + OS << " if (Kind == InvalidMatchClass)\n"; + OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; + + // Check for Token operands first. + // FIXME: Use a more specific diagnostic type. + OS << " if (Operand.isToken())\n"; + OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" + << " MCTargetAsmParser::Match_Success :\n" + << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; + + // Check the user classes. We don't care what order since we're only + // actually matching against one of them. + for (const auto &CI : Info.Classes) { + if (!CI.isUserClass()) + continue; + + OS << " // '" << CI.ClassName << "' class\n"; + OS << " if (Kind == " << CI.Name << ") {\n"; + OS << " if (Operand." << CI.PredicateMethod << "())\n"; + OS << " return MCTargetAsmParser::Match_Success;\n"; + if (!CI.DiagnosticType.empty()) + OS << " return " << Info.Target.getName() << "AsmParser::Match_" + << CI.DiagnosticType << ";\n"; + OS << " }\n\n"; + } + + // Check for register operands, including sub-classes. + OS << " if (Operand.isReg()) {\n"; + OS << " MatchClassKind OpKind;\n"; + OS << " switch (Operand.getReg()) {\n"; + OS << " default: OpKind = InvalidMatchClass; break;\n"; + for (const auto &RC : Info.RegisterClasses) + OS << " case " << Info.Target.getName() << "::" + << RC.first->getName() << ": OpKind = " << RC.second->Name + << "; break;\n"; + OS << " }\n"; + OS << " return isSubclass(OpKind, Kind) ? " + << "MCTargetAsmParser::Match_Success :\n " + << " MCTargetAsmParser::Match_InvalidOperand;\n }\n\n"; + + // Generic fallthrough match failure case for operands that don't have + // specialized diagnostic types. + OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; + OS << "}\n\n"; +} + +/// emitIsSubclass - Emit the subclass predicate function. +static void emitIsSubclass(CodeGenTarget &Target, + std::forward_list<ClassInfo> &Infos, + raw_ostream &OS) { + OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; + OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; + OS << " if (A == B)\n"; + OS << " return true;\n\n"; + + bool EmittedSwitch = false; + for (const auto &A : Infos) { + std::vector<StringRef> SuperClasses; + for (const auto &B : Infos) { + if (&A != &B && A.isSubsetOf(B)) + SuperClasses.push_back(B.Name); + } + + if (SuperClasses.empty()) + continue; + + // If this is the first SuperClass, emit the switch header. + if (!EmittedSwitch) { + OS << " switch (A) {\n"; + OS << " default:\n"; + OS << " return false;\n"; + EmittedSwitch = true; + } + + OS << "\n case " << A.Name << ":\n"; + + if (SuperClasses.size() == 1) { + OS << " return B == " << SuperClasses.back() << ";\n"; + continue; + } + + if (!SuperClasses.empty()) { + OS << " switch (B) {\n"; + OS << " default: return false;\n"; + for (StringRef SC : SuperClasses) + OS << " case " << SC << ": return true;\n"; + OS << " }\n"; + } else { + // No case statement to emit + OS << " return false;\n"; + } + } + OS << " }\n"; + + // If there were case statements emitted into the string stream write the + // default. + if (!EmittedSwitch) + OS << " return false;\n"; + + OS << "}\n\n"; +} + +/// emitMatchTokenString - Emit the function to match a token string to the +/// appropriate match class value. +static void emitMatchTokenString(CodeGenTarget &Target, + std::forward_list<ClassInfo> &Infos, + raw_ostream &OS) { + // Construct the match list. + std::vector<StringMatcher::StringPair> Matches; + for (const auto &CI : Infos) { + if (CI.Kind == ClassInfo::Token) + Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); + } + + OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; + + StringMatcher("Name", Matches, OS).Emit(); + + OS << " return InvalidMatchClass;\n"; + OS << "}\n\n"; +} + +/// emitMatchRegisterName - Emit the function to match a string to the target +/// specific register enum. +static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, + raw_ostream &OS) { + // Construct the match list. + std::vector<StringMatcher::StringPair> Matches; + const auto &Regs = Target.getRegBank().getRegisters(); + for (const CodeGenRegister &Reg : Regs) { + if (Reg.TheDef->getValueAsString("AsmName").empty()) + continue; + + Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"), + "return " + utostr(Reg.EnumValue) + ";"); + } + + OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; + + StringMatcher("Name", Matches, OS).Emit(); + + OS << " return 0;\n"; + OS << "}\n\n"; +} + +static const char *getMinimalTypeForRange(uint64_t Range) { + assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large"); + if (Range > 0xFFFFFFFFULL) + return "uint64_t"; + if (Range > 0xFFFF) + return "uint32_t"; + if (Range > 0xFF) + return "uint16_t"; + return "uint8_t"; +} + +static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) { + uint64_t MaxIndex = Info.SubtargetFeatures.size(); + if (MaxIndex > 0) + MaxIndex--; + return getMinimalTypeForRange(1ULL << MaxIndex); +} + +/// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag +/// definitions. +static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info, + raw_ostream &OS) { + OS << "// Flags for subtarget features that participate in " + << "instruction matching.\n"; + OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info) + << " {\n"; + for (const auto &SF : Info.SubtargetFeatures) { + const SubtargetFeatureInfo &SFI = SF.second; + OS << " " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n"; + } + OS << " Feature_None = 0\n"; + OS << "};\n\n"; +} + +/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. +static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { + // Get the set of diagnostic types from all of the operand classes. + std::set<StringRef> Types; + for (std::map<Record*, ClassInfo*>::const_iterator + I = Info.AsmOperandClasses.begin(), + E = Info.AsmOperandClasses.end(); I != E; ++I) { + if (!I->second->DiagnosticType.empty()) + Types.insert(I->second->DiagnosticType); + } + + if (Types.empty()) return; + + // Now emit the enum entries. + for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end(); + I != E; ++I) + OS << " Match_" << *I << ",\n"; + OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; +} + +/// emitGetSubtargetFeatureName - Emit the helper function to get the +/// user-level name for a subtarget feature. +static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { + OS << "// User-level names for subtarget features that participate in\n" + << "// instruction matching.\n" + << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; + if (!Info.SubtargetFeatures.empty()) { + OS << " switch(Val) {\n"; + for (const auto &SF : Info.SubtargetFeatures) { + const SubtargetFeatureInfo &SFI = SF.second; + // FIXME: Totally just a placeholder name to get the algorithm working. + OS << " case " << SFI.getEnumName() << ": return \"" + << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; + } + OS << " default: return \"(unknown)\";\n"; + OS << " }\n"; + } else { + // Nothing to emit, so skip the switch + OS << " return \"(unknown)\";\n"; + } + OS << "}\n\n"; +} + +/// emitComputeAvailableFeatures - Emit the function to compute the list of +/// available features given a subtarget. +static void emitComputeAvailableFeatures(AsmMatcherInfo &Info, + raw_ostream &OS) { + std::string ClassName = + Info.AsmParser->getValueAsString("AsmParserClassName"); + + OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n" + << "ComputeAvailableFeatures(const FeatureBitset& FB) const {\n"; + OS << " uint64_t Features = 0;\n"; + for (const auto &SF : Info.SubtargetFeatures) { + const SubtargetFeatureInfo &SFI = SF.second; + + OS << " if ("; + std::string CondStorage = + SFI.TheDef->getValueAsString("AssemblerCondString"); + StringRef Conds = CondStorage; + std::pair<StringRef,StringRef> Comma = Conds.split(','); + bool First = true; + do { + if (!First) + OS << " && "; + + bool Neg = false; + StringRef Cond = Comma.first; + if (Cond[0] == '!') { + Neg = true; + Cond = Cond.substr(1); + } + + OS << "("; + if (Neg) + OS << "!"; + OS << "FB[" << Info.Target.getName() << "::" << Cond << "])"; + + if (Comma.second.empty()) + break; + + First = false; + Comma = Comma.second.split(','); + } while (true); + + OS << ")\n"; + OS << " Features |= " << SFI.getEnumName() << ";\n"; + } + OS << " return Features;\n"; + OS << "}\n\n"; +} + +static std::string GetAliasRequiredFeatures(Record *R, + const AsmMatcherInfo &Info) { + std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); + std::string Result; + unsigned NumFeatures = 0; + for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { + const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); + + if (!F) + PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + + "' is not marked as an AssemblerPredicate!"); + + if (NumFeatures) + Result += '|'; + + Result += F->getEnumName(); + ++NumFeatures; + } + + if (NumFeatures > 1) + Result = '(' + Result + ')'; + return Result; +} + +static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, + std::vector<Record*> &Aliases, + unsigned Indent = 0, + StringRef AsmParserVariantName = StringRef()){ + // Keep track of all the aliases from a mnemonic. Use an std::map so that the + // iteration order of the map is stable. + std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; + + for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { + Record *R = Aliases[i]; + // FIXME: Allow AssemblerVariantName to be a comma separated list. + std::string AsmVariantName = R->getValueAsString("AsmVariantName"); + if (AsmVariantName != AsmParserVariantName) + continue; + AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); + } + if (AliasesFromMnemonic.empty()) + return; + + // Process each alias a "from" mnemonic at a time, building the code executed + // by the string remapper. + std::vector<StringMatcher::StringPair> Cases; + for (std::map<std::string, std::vector<Record*> >::iterator + I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end(); + I != E; ++I) { + const std::vector<Record*> &ToVec = I->second; + + // Loop through each alias and emit code that handles each case. If there + // are two instructions without predicates, emit an error. If there is one, + // emit it last. + std::string MatchCode; + int AliasWithNoPredicate = -1; + + for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { + Record *R = ToVec[i]; + std::string FeatureMask = GetAliasRequiredFeatures(R, Info); + + // If this unconditionally matches, remember it for later and diagnose + // duplicates. + if (FeatureMask.empty()) { + if (AliasWithNoPredicate != -1) { + // We can't have two aliases from the same mnemonic with no predicate. + PrintError(ToVec[AliasWithNoPredicate]->getLoc(), + "two MnemonicAliases with the same 'from' mnemonic!"); + PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); + } + + AliasWithNoPredicate = i; + continue; + } + if (R->getValueAsString("ToMnemonic") == I->first) + PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); + + if (!MatchCode.empty()) + MatchCode += "else "; + MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; + MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n"; + } + + if (AliasWithNoPredicate != -1) { + Record *R = ToVec[AliasWithNoPredicate]; + if (!MatchCode.empty()) + MatchCode += "else\n "; + MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n"; + } + + MatchCode += "return;"; + + Cases.push_back(std::make_pair(I->first, MatchCode)); + } + StringMatcher("Mnemonic", Cases, OS).Emit(Indent); +} + +/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, +/// emit a function for them and return true, otherwise return false. +static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, + CodeGenTarget &Target) { + // Ignore aliases when match-prefix is set. + if (!MatchPrefix.empty()) + return false; + + std::vector<Record*> Aliases = + Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); + if (Aliases.empty()) return false; + + OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " + "uint64_t Features, unsigned VariantID) {\n"; + OS << " switch (VariantID) {\n"; + unsigned VariantCount = Target.getAsmParserVariantCount(); + for (unsigned VC = 0; VC != VariantCount; ++VC) { + Record *AsmVariant = Target.getAsmParserVariant(VC); + int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); + std::string AsmParserVariantName = AsmVariant->getValueAsString("Name"); + OS << " case " << AsmParserVariantNo << ":\n"; + emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, + AsmParserVariantName); + OS << " break;\n"; + } + OS << " }\n"; + + // Emit aliases that apply to all variants. + emitMnemonicAliasVariant(OS, Info, Aliases); + + OS << "}\n\n"; + + return true; +} + +static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, + const AsmMatcherInfo &Info, StringRef ClassName, + StringToOffsetTable &StringTable, + unsigned MaxMnemonicIndex) { + unsigned MaxMask = 0; + for (std::vector<OperandMatchEntry>::const_iterator it = + Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end(); + it != ie; ++it) { + MaxMask |= it->OperandMask; + } + + // Emit the static custom operand parsing table; + OS << "namespace {\n"; + OS << " struct OperandMatchEntry {\n"; + OS << " " << getMinimalRequiredFeaturesType(Info) + << " RequiredFeatures;\n"; + OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) + << " Mnemonic;\n"; + OS << " " << getMinimalTypeForRange(std::distance( + Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; + OS << " " << getMinimalTypeForRange(MaxMask) + << " OperandMask;\n\n"; + OS << " StringRef getMnemonic() const {\n"; + OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; + OS << " MnemonicTable[Mnemonic]);\n"; + OS << " }\n"; + OS << " };\n\n"; + + OS << " // Predicate for searching for an opcode.\n"; + OS << " struct LessOpcodeOperand {\n"; + OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; + OS << " return LHS.getMnemonic() < RHS;\n"; + OS << " }\n"; + OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; + OS << " return LHS < RHS.getMnemonic();\n"; + OS << " }\n"; + OS << " bool operator()(const OperandMatchEntry &LHS,"; + OS << " const OperandMatchEntry &RHS) {\n"; + OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; + OS << " }\n"; + OS << " };\n"; + + OS << "} // end anonymous namespace.\n\n"; + + OS << "static const OperandMatchEntry OperandMatchTable[" + << Info.OperandMatchInfo.size() << "] = {\n"; + + OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n"; + for (std::vector<OperandMatchEntry>::const_iterator it = + Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end(); + it != ie; ++it) { + const OperandMatchEntry &OMI = *it; + const MatchableInfo &II = *OMI.MI; + + OS << " { "; + + // Write the required features mask. + if (!II.RequiredFeatures.empty()) { + for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { + if (i) OS << "|"; + OS << II.RequiredFeatures[i]->getEnumName(); + } + } else + OS << "0"; + + // Store a pascal-style length byte in the mnemonic. + std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); + OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false) + << " /* " << II.Mnemonic << " */, "; + + OS << OMI.CI->Name; + + OS << ", " << OMI.OperandMask; + OS << " /* "; + bool printComma = false; + for (int i = 0, e = 31; i !=e; ++i) + if (OMI.OperandMask & (1 << i)) { + if (printComma) + OS << ", "; + OS << i; + printComma = true; + } + OS << " */"; + + OS << " },\n"; + } + OS << "};\n\n"; + + // Emit the operand class switch to call the correct custom parser for + // the found operand class. + OS << Target.getName() << ClassName << "::OperandMatchResultTy " + << Target.getName() << ClassName << "::\n" + << "tryCustomParseOperand(OperandVector" + << " &Operands,\n unsigned MCK) {\n\n" + << " switch(MCK) {\n"; + + for (const auto &CI : Info.Classes) { + if (CI.ParserMethod.empty()) + continue; + OS << " case " << CI.Name << ":\n" + << " return " << CI.ParserMethod << "(Operands);\n"; + } + + OS << " default:\n"; + OS << " return MatchOperand_NoMatch;\n"; + OS << " }\n"; + OS << " return MatchOperand_NoMatch;\n"; + OS << "}\n\n"; + + // Emit the static custom operand parser. This code is very similar with + // the other matcher. Also use MatchResultTy here just in case we go for + // a better error handling. + OS << Target.getName() << ClassName << "::OperandMatchResultTy " + << Target.getName() << ClassName << "::\n" + << "MatchOperandParserImpl(OperandVector" + << " &Operands,\n StringRef Mnemonic) {\n"; + + // Emit code to get the available features. + OS << " // Get the current feature set.\n"; + OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; + + OS << " // Get the next operand index.\n"; + OS << " unsigned NextOpNum = Operands.size();\n"; + + // Emit code to search the table. + OS << " // Search the table.\n"; + OS << " std::pair<const OperandMatchEntry*, const OperandMatchEntry*>"; + OS << " MnemonicRange\n"; + OS << " (OperandMatchTable, OperandMatchTable+"; + OS << Info.OperandMatchInfo.size() << ");\n"; + OS << " if(!Mnemonic.empty())\n"; + OS << " MnemonicRange = std::equal_range(OperandMatchTable,"; + OS << " OperandMatchTable+" + << Info.OperandMatchInfo.size() << ", Mnemonic,\n" + << " LessOpcodeOperand());\n\n"; + + OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; + OS << " return MatchOperand_NoMatch;\n\n"; + + OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" + << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; + + OS << " // equal_range guarantees that instruction mnemonic matches.\n"; + OS << " assert(Mnemonic == it->getMnemonic());\n\n"; + + // Emit check that the required features are available. + OS << " // check if the available features match\n"; + OS << " if ((AvailableFeatures & it->RequiredFeatures) " + << "!= it->RequiredFeatures) {\n"; + OS << " continue;\n"; + OS << " }\n\n"; + + // Emit check to ensure the operand number matches. + OS << " // check if the operand in question has a custom parser.\n"; + OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; + OS << " continue;\n\n"; + + // Emit call to the custom parser method + OS << " // call custom parse method to handle the operand\n"; + OS << " OperandMatchResultTy Result = "; + OS << "tryCustomParseOperand(Operands, it->Class);\n"; + OS << " if (Result != MatchOperand_NoMatch)\n"; + OS << " return Result;\n"; + OS << " }\n\n"; + + OS << " // Okay, we had no match.\n"; + OS << " return MatchOperand_NoMatch;\n"; + OS << "}\n\n"; +} + +void AsmMatcherEmitter::run(raw_ostream &OS) { + CodeGenTarget Target(Records); + Record *AsmParser = Target.getAsmParser(); + std::string ClassName = AsmParser->getValueAsString("AsmParserClassName"); + + // Compute the information on the instructions to match. + AsmMatcherInfo Info(AsmParser, Target, Records); + Info.buildInfo(); + + // Sort the instruction table using the partial order on classes. We use + // stable_sort to ensure that ambiguous instructions are still + // deterministically ordered. + std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), + [](const std::unique_ptr<MatchableInfo> &a, + const std::unique_ptr<MatchableInfo> &b){ + return *a < *b;}); + + DEBUG_WITH_TYPE("instruction_info", { + for (const auto &MI : Info.Matchables) + MI->dump(); + }); + + // Check for ambiguous matchables. + DEBUG_WITH_TYPE("ambiguous_instrs", { + unsigned NumAmbiguous = 0; + for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; + ++I) { + for (auto J = std::next(I); J != E; ++J) { + const MatchableInfo &A = **I; + const MatchableInfo &B = **J; + + if (A.couldMatchAmbiguouslyWith(B)) { + errs() << "warning: ambiguous matchables:\n"; + A.dump(); + errs() << "\nis incomparable with:\n"; + B.dump(); + errs() << "\n\n"; + ++NumAmbiguous; + } + } + } + if (NumAmbiguous) + errs() << "warning: " << NumAmbiguous + << " ambiguous matchables!\n"; + }); + + // Compute the information on the custom operand parsing. + Info.buildOperandMatchInfo(); + + // Write the output. + + // Information for the class declaration. + OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; + OS << "#undef GET_ASSEMBLER_HEADER\n"; + OS << " // This should be included into the middle of the declaration of\n"; + OS << " // your subclasses implementation of MCTargetAsmParser.\n"; + OS << " uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n"; + OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " + << "unsigned Opcode,\n" + << " const OperandVector " + << "&Operands);\n"; + OS << " void convertToMapAndConstraints(unsigned Kind,\n "; + OS << " const OperandVector &Operands) override;\n"; + OS << " bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID);\n"; + OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" + << " MCInst &Inst,\n" + << " uint64_t &ErrorInfo," + << " bool matchingInlineAsm,\n" + << " unsigned VariantID = 0);\n"; + + if (!Info.OperandMatchInfo.empty()) { + OS << "\n enum OperandMatchResultTy {\n"; + OS << " MatchOperand_Success, // operand matched successfully\n"; + OS << " MatchOperand_NoMatch, // operand did not match\n"; + OS << " MatchOperand_ParseFail // operand matched but had errors\n"; + OS << " };\n"; + OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; + OS << " OperandVector &Operands,\n"; + OS << " StringRef Mnemonic);\n"; + + OS << " OperandMatchResultTy tryCustomParseOperand(\n"; + OS << " OperandVector &Operands,\n"; + OS << " unsigned MCK);\n\n"; + } + + OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; + + // Emit the operand match diagnostic enum names. + OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; + OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; + emitOperandDiagnosticTypes(Info, OS); + OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; + + + OS << "\n#ifdef GET_REGISTER_MATCHER\n"; + OS << "#undef GET_REGISTER_MATCHER\n\n"; + + // Emit the subtarget feature enumeration. + emitSubtargetFeatureFlagEnumeration(Info, OS); + + // Emit the function to match a register name to number. + // This should be omitted for Mips target + if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) + emitMatchRegisterName(Target, AsmParser, OS); + + OS << "#endif // GET_REGISTER_MATCHER\n\n"; + + OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; + OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; + + // Generate the helper function to get the names for subtarget features. + emitGetSubtargetFeatureName(Info, OS); + + OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; + + OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; + OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; + + // Generate the function that remaps for mnemonic aliases. + bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); + + // Generate the convertToMCInst function to convert operands into an MCInst. + // Also, generate the convertToMapAndConstraints function for MS-style inline + // assembly. The latter doesn't actually generate a MCInst. + emitConvertFuncs(Target, ClassName, Info.Matchables, OS); + + // Emit the enumeration for classes which participate in matching. + emitMatchClassEnumeration(Target, Info.Classes, OS); + + // Emit the routine to match token strings to their match class. + emitMatchTokenString(Target, Info.Classes, OS); + + // Emit the subclass predicate routine. + emitIsSubclass(Target, Info.Classes, OS); + + // Emit the routine to validate an operand against a match class. + emitValidateOperandClass(Info, OS); + + // Emit the available features compute function. + emitComputeAvailableFeatures(Info, OS); + + + StringToOffsetTable StringTable; + + size_t MaxNumOperands = 0; + unsigned MaxMnemonicIndex = 0; + bool HasDeprecation = false; + for (const auto &MI : Info.Matchables) { + MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); + HasDeprecation |= MI->HasDeprecation; + + // Store a pascal-style length byte in the mnemonic. + std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); + MaxMnemonicIndex = std::max(MaxMnemonicIndex, + StringTable.GetOrAddStringOffset(LenMnemonic, false)); + } + + OS << "static const char *const MnemonicTable =\n"; + StringTable.EmitString(OS); + OS << ";\n\n"; + + // Emit the static match table; unused classes get initalized to 0 which is + // guaranteed to be InvalidMatchClass. + // + // FIXME: We can reduce the size of this table very easily. First, we change + // it so that store the kinds in separate bit-fields for each index, which + // only needs to be the max width used for classes at that index (we also need + // to reject based on this during classification). If we then make sure to + // order the match kinds appropriately (putting mnemonics last), then we + // should only end up using a few bits for each class, especially the ones + // following the mnemonic. + OS << "namespace {\n"; + OS << " struct MatchEntry {\n"; + OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) + << " Mnemonic;\n"; + OS << " uint16_t Opcode;\n"; + OS << " " << getMinimalTypeForRange(Info.Matchables.size()) + << " ConvertFn;\n"; + OS << " " << getMinimalRequiredFeaturesType(Info) + << " RequiredFeatures;\n"; + OS << " " << getMinimalTypeForRange( + std::distance(Info.Classes.begin(), Info.Classes.end())) + << " Classes[" << MaxNumOperands << "];\n"; + OS << " StringRef getMnemonic() const {\n"; + OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; + OS << " MnemonicTable[Mnemonic]);\n"; + OS << " }\n"; + OS << " };\n\n"; + + OS << " // Predicate for searching for an opcode.\n"; + OS << " struct LessOpcode {\n"; + OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; + OS << " return LHS.getMnemonic() < RHS;\n"; + OS << " }\n"; + OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; + OS << " return LHS < RHS.getMnemonic();\n"; + OS << " }\n"; + OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; + OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; + OS << " }\n"; + OS << " };\n"; + + OS << "} // end anonymous namespace.\n\n"; + + unsigned VariantCount = Target.getAsmParserVariantCount(); + for (unsigned VC = 0; VC != VariantCount; ++VC) { + Record *AsmVariant = Target.getAsmParserVariant(VC); + int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); + + OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; + + for (const auto &MI : Info.Matchables) { + if (MI->AsmVariantID != AsmVariantNo) + continue; + + // Store a pascal-style length byte in the mnemonic. + std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); + OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) + << " /* " << MI->Mnemonic << " */, " + << Target.getName() << "::" + << MI->getResultInst()->TheDef->getName() << ", " + << MI->ConversionFnKind << ", "; + + // Write the required features mask. + if (!MI->RequiredFeatures.empty()) { + for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) { + if (i) OS << "|"; + OS << MI->RequiredFeatures[i]->getEnumName(); + } + } else + OS << "0"; + + OS << ", { "; + for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { + const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; + + if (i) OS << ", "; + OS << Op.Class->Name; + } + OS << " }, },\n"; + } + + OS << "};\n\n"; + } + + // A method to determine if a mnemonic is in the list. + OS << "bool " << Target.getName() << ClassName << "::\n" + << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n"; + OS << " // Find the appropriate table for this asm variant.\n"; + OS << " const MatchEntry *Start, *End;\n"; + OS << " switch (VariantID) {\n"; + OS << " default: llvm_unreachable(\"invalid variant!\");\n"; + for (unsigned VC = 0; VC != VariantCount; ++VC) { + Record *AsmVariant = Target.getAsmParserVariant(VC); + int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); + OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC + << "); End = std::end(MatchTable" << VC << "); break;\n"; + } + OS << " }\n"; + OS << " // Search the table.\n"; + OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n"; + OS << " std::equal_range(Start, End, Mnemonic, LessOpcode());\n"; + OS << " return MnemonicRange.first != MnemonicRange.second;\n"; + OS << "}\n\n"; + + // Finally, build the match function. + OS << "unsigned " << Target.getName() << ClassName << "::\n" + << "MatchInstructionImpl(const OperandVector &Operands,\n"; + OS << " MCInst &Inst, uint64_t &ErrorInfo,\n" + << " bool matchingInlineAsm, unsigned VariantID) {\n"; + + OS << " // Eliminate obvious mismatches.\n"; + OS << " if (Operands.size() > " << MaxNumOperands << ") {\n"; + OS << " ErrorInfo = " << MaxNumOperands << ";\n"; + OS << " return Match_InvalidOperand;\n"; + OS << " }\n\n"; + + // Emit code to get the available features. + OS << " // Get the current feature set.\n"; + OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; + + OS << " // Get the instruction mnemonic, which is the first token.\n"; + OS << " StringRef Mnemonic;\n"; + OS << " if (Operands[0]->isToken())\n"; + OS << " Mnemonic = ((" << Target.getName() + << "Operand&)*Operands[0]).getToken();\n\n"; + + if (HasMnemonicAliases) { + OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; + OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; + } + + // Emit code to compute the class list for this operand vector. + OS << " // Some state to try to produce better error messages.\n"; + OS << " bool HadMatchOtherThanFeatures = false;\n"; + OS << " bool HadMatchOtherThanPredicate = false;\n"; + OS << " unsigned RetCode = Match_InvalidOperand;\n"; + OS << " uint64_t MissingFeatures = ~0ULL;\n"; + OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; + OS << " // wrong for all instances of the instruction.\n"; + OS << " ErrorInfo = ~0ULL;\n"; + + // Emit code to search the table. + OS << " // Find the appropriate table for this asm variant.\n"; + OS << " const MatchEntry *Start, *End;\n"; + OS << " switch (VariantID) {\n"; + OS << " default: llvm_unreachable(\"invalid variant!\");\n"; + for (unsigned VC = 0; VC != VariantCount; ++VC) { + Record *AsmVariant = Target.getAsmParserVariant(VC); + int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); + OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC + << "); End = std::end(MatchTable" << VC << "); break;\n"; + } + OS << " }\n"; + OS << " // Search the table.\n"; + OS << " std::pair<const MatchEntry*, const MatchEntry*> " + "MnemonicRange(Start, End);\n"; + OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; + OS << " if (!Mnemonic.empty())\n"; + OS << " MnemonicRange = std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; + + OS << " // Return a more specific error code if no mnemonics match.\n"; + OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; + OS << " return Match_MnemonicFail;\n\n"; + + OS << " for (const MatchEntry *it = MnemonicRange.first, " + << "*ie = MnemonicRange.second;\n"; + OS << " it != ie; ++it) {\n"; + + // Emit check that the subclasses match. + OS << " bool OperandsValid = true;\n"; + OS << " for (unsigned i = SIndex; i != " << MaxNumOperands << "; ++i) {\n"; + OS << " auto Formal = static_cast<MatchClassKind>(it->Classes[i]);\n"; + OS << " if (i >= Operands.size()) {\n"; + OS << " OperandsValid = (Formal == " <<"InvalidMatchClass);\n"; + OS << " if (!OperandsValid) ErrorInfo = i;\n"; + OS << " break;\n"; + OS << " }\n"; + OS << " MCParsedAsmOperand &Actual = *Operands[i];\n"; + OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; + OS << " if (Diag == Match_Success)\n"; + OS << " continue;\n"; + OS << " // If the generic handler indicates an invalid operand\n"; + OS << " // failure, check for a special case.\n"; + OS << " if (Diag == Match_InvalidOperand) {\n"; + OS << " Diag = validateTargetOperandClass(Actual, Formal);\n"; + OS << " if (Diag == Match_Success)\n"; + OS << " continue;\n"; + OS << " }\n"; + OS << " // If this operand is broken for all of the instances of this\n"; + OS << " // mnemonic, keep track of it so we can report loc info.\n"; + OS << " // If we already had a match that only failed due to a\n"; + OS << " // target predicate, that diagnostic is preferred.\n"; + OS << " if (!HadMatchOtherThanPredicate &&\n"; + OS << " (it == MnemonicRange.first || ErrorInfo <= i)) {\n"; + OS << " ErrorInfo = i;\n"; + OS << " // InvalidOperand is the default. Prefer specificity.\n"; + OS << " if (Diag != Match_InvalidOperand)\n"; + OS << " RetCode = Diag;\n"; + OS << " }\n"; + OS << " // Otherwise, just reject this instance of the mnemonic.\n"; + OS << " OperandsValid = false;\n"; + OS << " break;\n"; + OS << " }\n\n"; + + OS << " if (!OperandsValid) continue;\n"; + + // Emit check that the required features are available. + OS << " if ((AvailableFeatures & it->RequiredFeatures) " + << "!= it->RequiredFeatures) {\n"; + OS << " HadMatchOtherThanFeatures = true;\n"; + OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & " + "~AvailableFeatures;\n"; + OS << " if (countPopulation(NewMissingFeatures) <=\n" + " countPopulation(MissingFeatures))\n"; + OS << " MissingFeatures = NewMissingFeatures;\n"; + OS << " continue;\n"; + OS << " }\n"; + OS << "\n"; + OS << " Inst.clear();\n\n"; + OS << " if (matchingInlineAsm) {\n"; + OS << " Inst.setOpcode(it->Opcode);\n"; + OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; + OS << " return Match_Success;\n"; + OS << " }\n\n"; + OS << " // We have selected a definite instruction, convert the parsed\n" + << " // operands into the appropriate MCInst.\n"; + OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; + OS << "\n"; + + // Verify the instruction with the target-specific match predicate function. + OS << " // We have a potential match. Check the target predicate to\n" + << " // handle any context sensitive constraints.\n" + << " unsigned MatchResult;\n" + << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" + << " Match_Success) {\n" + << " Inst.clear();\n" + << " RetCode = MatchResult;\n" + << " HadMatchOtherThanPredicate = true;\n" + << " continue;\n" + << " }\n\n"; + + // Call the post-processing function, if used. + std::string InsnCleanupFn = + AsmParser->getValueAsString("AsmParserInstCleanup"); + if (!InsnCleanupFn.empty()) + OS << " " << InsnCleanupFn << "(Inst);\n"; + + if (HasDeprecation) { + OS << " std::string Info;\n"; + OS << " if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; + OS << " SMLoc Loc = ((" << Target.getName() + << "Operand&)*Operands[0]).getStartLoc();\n"; + OS << " getParser().Warning(Loc, Info, None);\n"; + OS << " }\n"; + } + + OS << " return Match_Success;\n"; + OS << " }\n\n"; + + OS << " // Okay, we had no match. Try to return a useful error code.\n"; + OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; + OS << " return RetCode;\n\n"; + OS << " // Missing feature matches return which features were missing\n"; + OS << " ErrorInfo = MissingFeatures;\n"; + OS << " return Match_MissingFeature;\n"; + OS << "}\n\n"; + + if (!Info.OperandMatchInfo.empty()) + emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, + MaxMnemonicIndex); + + OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; +} + +namespace llvm { + +void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { + emitSourceFileHeader("Assembly Matcher Source Fragment", OS); + AsmMatcherEmitter(RK).run(OS); +} + +} // End llvm namespace |