summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp')
-rw-r--r--contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp2739
1 files changed, 2739 insertions, 0 deletions
diff --git a/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp b/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp
new file mode 100644
index 0000000..026d47f
--- /dev/null
+++ b/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp
@@ -0,0 +1,2739 @@
+//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This tablegen backend emits a target specifier matcher for converting parsed
+// assembly operands in the MCInst structures. It also emits a matcher for
+// custom operand parsing.
+//
+// Converting assembly operands into MCInst structures
+// ---------------------------------------------------
+//
+// The input to the target specific matcher is a list of literal tokens and
+// operands. The target specific parser should generally eliminate any syntax
+// which is not relevant for matching; for example, comma tokens should have
+// already been consumed and eliminated by the parser. Most instructions will
+// end up with a single literal token (the instruction name) and some number of
+// operands.
+//
+// Some example inputs, for X86:
+// 'addl' (immediate ...) (register ...)
+// 'add' (immediate ...) (memory ...)
+// 'call' '*' %epc
+//
+// The assembly matcher is responsible for converting this input into a precise
+// machine instruction (i.e., an instruction with a well defined encoding). This
+// mapping has several properties which complicate matching:
+//
+// - It may be ambiguous; many architectures can legally encode particular
+// variants of an instruction in different ways (for example, using a smaller
+// encoding for small immediates). Such ambiguities should never be
+// arbitrarily resolved by the assembler, the assembler is always responsible
+// for choosing the "best" available instruction.
+//
+// - It may depend on the subtarget or the assembler context. Instructions
+// which are invalid for the current mode, but otherwise unambiguous (e.g.,
+// an SSE instruction in a file being assembled for i486) should be accepted
+// and rejected by the assembler front end. However, if the proper encoding
+// for an instruction is dependent on the assembler context then the matcher
+// is responsible for selecting the correct machine instruction for the
+// current mode.
+//
+// The core matching algorithm attempts to exploit the regularity in most
+// instruction sets to quickly determine the set of possibly matching
+// instructions, and the simplify the generated code. Additionally, this helps
+// to ensure that the ambiguities are intentionally resolved by the user.
+//
+// The matching is divided into two distinct phases:
+//
+// 1. Classification: Each operand is mapped to the unique set which (a)
+// contains it, and (b) is the largest such subset for which a single
+// instruction could match all members.
+//
+// For register classes, we can generate these subgroups automatically. For
+// arbitrary operands, we expect the user to define the classes and their
+// relations to one another (for example, 8-bit signed immediates as a
+// subset of 32-bit immediates).
+//
+// By partitioning the operands in this way, we guarantee that for any
+// tuple of classes, any single instruction must match either all or none
+// of the sets of operands which could classify to that tuple.
+//
+// In addition, the subset relation amongst classes induces a partial order
+// on such tuples, which we use to resolve ambiguities.
+//
+// 2. The input can now be treated as a tuple of classes (static tokens are
+// simple singleton sets). Each such tuple should generally map to a single
+// instruction (we currently ignore cases where this isn't true, whee!!!),
+// which we can emit a simple matcher for.
+//
+// Custom Operand Parsing
+// ----------------------
+//
+// Some targets need a custom way to parse operands, some specific instructions
+// can contain arguments that can represent processor flags and other kinds of
+// identifiers that need to be mapped to specific valeus in the final encoded
+// instructions. The target specific custom operand parsing works in the
+// following way:
+//
+// 1. A operand match table is built, each entry contains a mnemonic, an
+// operand class, a mask for all operand positions for that same
+// class/mnemonic and target features to be checked while trying to match.
+//
+// 2. The operand matcher will try every possible entry with the same
+// mnemonic and will check if the target feature for this mnemonic also
+// matches. After that, if the operand to be matched has its index
+// present in the mask, a successful match occurs. Otherwise, fallback
+// to the regular operand parsing.
+//
+// 3. For a match success, each operand class that has a 'ParserMethod'
+// becomes part of a switch from where the custom method is called.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenTarget.h"
+#include "StringToOffsetTable.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/PointerUnion.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/TableGen/Error.h"
+#include "llvm/TableGen/Record.h"
+#include "llvm/TableGen/StringMatcher.h"
+#include "llvm/TableGen/TableGenBackend.h"
+#include <cassert>
+#include <map>
+#include <set>
+using namespace llvm;
+
+static cl::opt<std::string>
+MatchPrefix("match-prefix", cl::init(""),
+ cl::desc("Only match instructions with the given prefix"));
+
+namespace {
+class AsmMatcherInfo;
+struct SubtargetFeatureInfo;
+
+class AsmMatcherEmitter {
+ RecordKeeper &Records;
+public:
+ AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
+
+ void run(raw_ostream &o);
+};
+
+/// ClassInfo - Helper class for storing the information about a particular
+/// class of operands which can be matched.
+struct ClassInfo {
+ enum ClassInfoKind {
+ /// Invalid kind, for use as a sentinel value.
+ Invalid = 0,
+
+ /// The class for a particular token.
+ Token,
+
+ /// The (first) register class, subsequent register classes are
+ /// RegisterClass0+1, and so on.
+ RegisterClass0,
+
+ /// The (first) user defined class, subsequent user defined classes are
+ /// UserClass0+1, and so on.
+ UserClass0 = 1<<16
+ };
+
+ /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
+ /// N) for the Nth user defined class.
+ unsigned Kind;
+
+ /// SuperClasses - The super classes of this class. Note that for simplicities
+ /// sake user operands only record their immediate super class, while register
+ /// operands include all superclasses.
+ std::vector<ClassInfo*> SuperClasses;
+
+ /// Name - The full class name, suitable for use in an enum.
+ std::string Name;
+
+ /// ClassName - The unadorned generic name for this class (e.g., Token).
+ std::string ClassName;
+
+ /// ValueName - The name of the value this class represents; for a token this
+ /// is the literal token string, for an operand it is the TableGen class (or
+ /// empty if this is a derived class).
+ std::string ValueName;
+
+ /// PredicateMethod - The name of the operand method to test whether the
+ /// operand matches this class; this is not valid for Token or register kinds.
+ std::string PredicateMethod;
+
+ /// RenderMethod - The name of the operand method to add this operand to an
+ /// MCInst; this is not valid for Token or register kinds.
+ std::string RenderMethod;
+
+ /// ParserMethod - The name of the operand method to do a target specific
+ /// parsing on the operand.
+ std::string ParserMethod;
+
+ /// For register classes, the records for all the registers in this class.
+ std::set<Record*> Registers;
+
+ /// For custom match classes, he diagnostic kind for when the predicate fails.
+ std::string DiagnosticType;
+public:
+ /// isRegisterClass() - Check if this is a register class.
+ bool isRegisterClass() const {
+ return Kind >= RegisterClass0 && Kind < UserClass0;
+ }
+
+ /// isUserClass() - Check if this is a user defined class.
+ bool isUserClass() const {
+ return Kind >= UserClass0;
+ }
+
+ /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
+ /// are related if they are in the same class hierarchy.
+ bool isRelatedTo(const ClassInfo &RHS) const {
+ // Tokens are only related to tokens.
+ if (Kind == Token || RHS.Kind == Token)
+ return Kind == Token && RHS.Kind == Token;
+
+ // Registers classes are only related to registers classes, and only if
+ // their intersection is non-empty.
+ if (isRegisterClass() || RHS.isRegisterClass()) {
+ if (!isRegisterClass() || !RHS.isRegisterClass())
+ return false;
+
+ std::set<Record*> Tmp;
+ std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
+ std::set_intersection(Registers.begin(), Registers.end(),
+ RHS.Registers.begin(), RHS.Registers.end(),
+ II);
+
+ return !Tmp.empty();
+ }
+
+ // Otherwise we have two users operands; they are related if they are in the
+ // same class hierarchy.
+ //
+ // FIXME: This is an oversimplification, they should only be related if they
+ // intersect, however we don't have that information.
+ assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
+ const ClassInfo *Root = this;
+ while (!Root->SuperClasses.empty())
+ Root = Root->SuperClasses.front();
+
+ const ClassInfo *RHSRoot = &RHS;
+ while (!RHSRoot->SuperClasses.empty())
+ RHSRoot = RHSRoot->SuperClasses.front();
+
+ return Root == RHSRoot;
+ }
+
+ /// isSubsetOf - Test whether this class is a subset of \arg RHS;
+ bool isSubsetOf(const ClassInfo &RHS) const {
+ // This is a subset of RHS if it is the same class...
+ if (this == &RHS)
+ return true;
+
+ // ... or if any of its super classes are a subset of RHS.
+ for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
+ ie = SuperClasses.end(); it != ie; ++it)
+ if ((*it)->isSubsetOf(RHS))
+ return true;
+
+ return false;
+ }
+
+ /// operator< - Compare two classes.
+ bool operator<(const ClassInfo &RHS) const {
+ if (this == &RHS)
+ return false;
+
+ // Unrelated classes can be ordered by kind.
+ if (!isRelatedTo(RHS))
+ return Kind < RHS.Kind;
+
+ switch (Kind) {
+ case Invalid:
+ llvm_unreachable("Invalid kind!");
+
+ default:
+ // This class precedes the RHS if it is a proper subset of the RHS.
+ if (isSubsetOf(RHS))
+ return true;
+ if (RHS.isSubsetOf(*this))
+ return false;
+
+ // Otherwise, order by name to ensure we have a total ordering.
+ return ValueName < RHS.ValueName;
+ }
+ }
+};
+
+/// MatchableInfo - Helper class for storing the necessary information for an
+/// instruction or alias which is capable of being matched.
+struct MatchableInfo {
+ struct AsmOperand {
+ /// Token - This is the token that the operand came from.
+ StringRef Token;
+
+ /// The unique class instance this operand should match.
+ ClassInfo *Class;
+
+ /// The operand name this is, if anything.
+ StringRef SrcOpName;
+
+ /// The suboperand index within SrcOpName, or -1 for the entire operand.
+ int SubOpIdx;
+
+ /// Register record if this token is singleton register.
+ Record *SingletonReg;
+
+ explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
+ SingletonReg(0) {}
+ };
+
+ /// ResOperand - This represents a single operand in the result instruction
+ /// generated by the match. In cases (like addressing modes) where a single
+ /// assembler operand expands to multiple MCOperands, this represents the
+ /// single assembler operand, not the MCOperand.
+ struct ResOperand {
+ enum {
+ /// RenderAsmOperand - This represents an operand result that is
+ /// generated by calling the render method on the assembly operand. The
+ /// corresponding AsmOperand is specified by AsmOperandNum.
+ RenderAsmOperand,
+
+ /// TiedOperand - This represents a result operand that is a duplicate of
+ /// a previous result operand.
+ TiedOperand,
+
+ /// ImmOperand - This represents an immediate value that is dumped into
+ /// the operand.
+ ImmOperand,
+
+ /// RegOperand - This represents a fixed register that is dumped in.
+ RegOperand
+ } Kind;
+
+ union {
+ /// This is the operand # in the AsmOperands list that this should be
+ /// copied from.
+ unsigned AsmOperandNum;
+
+ /// TiedOperandNum - This is the (earlier) result operand that should be
+ /// copied from.
+ unsigned TiedOperandNum;
+
+ /// ImmVal - This is the immediate value added to the instruction.
+ int64_t ImmVal;
+
+ /// Register - This is the register record.
+ Record *Register;
+ };
+
+ /// MINumOperands - The number of MCInst operands populated by this
+ /// operand.
+ unsigned MINumOperands;
+
+ static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
+ ResOperand X;
+ X.Kind = RenderAsmOperand;
+ X.AsmOperandNum = AsmOpNum;
+ X.MINumOperands = NumOperands;
+ return X;
+ }
+
+ static ResOperand getTiedOp(unsigned TiedOperandNum) {
+ ResOperand X;
+ X.Kind = TiedOperand;
+ X.TiedOperandNum = TiedOperandNum;
+ X.MINumOperands = 1;
+ return X;
+ }
+
+ static ResOperand getImmOp(int64_t Val) {
+ ResOperand X;
+ X.Kind = ImmOperand;
+ X.ImmVal = Val;
+ X.MINumOperands = 1;
+ return X;
+ }
+
+ static ResOperand getRegOp(Record *Reg) {
+ ResOperand X;
+ X.Kind = RegOperand;
+ X.Register = Reg;
+ X.MINumOperands = 1;
+ return X;
+ }
+ };
+
+ /// AsmVariantID - Target's assembly syntax variant no.
+ int AsmVariantID;
+
+ /// TheDef - This is the definition of the instruction or InstAlias that this
+ /// matchable came from.
+ Record *const TheDef;
+
+ /// DefRec - This is the definition that it came from.
+ PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
+
+ const CodeGenInstruction *getResultInst() const {
+ if (DefRec.is<const CodeGenInstruction*>())
+ return DefRec.get<const CodeGenInstruction*>();
+ return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
+ }
+
+ /// ResOperands - This is the operand list that should be built for the result
+ /// MCInst.
+ SmallVector<ResOperand, 8> ResOperands;
+
+ /// AsmString - The assembly string for this instruction (with variants
+ /// removed), e.g. "movsx $src, $dst".
+ std::string AsmString;
+
+ /// Mnemonic - This is the first token of the matched instruction, its
+ /// mnemonic.
+ StringRef Mnemonic;
+
+ /// AsmOperands - The textual operands that this instruction matches,
+ /// annotated with a class and where in the OperandList they were defined.
+ /// This directly corresponds to the tokenized AsmString after the mnemonic is
+ /// removed.
+ SmallVector<AsmOperand, 8> AsmOperands;
+
+ /// Predicates - The required subtarget features to match this instruction.
+ SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
+
+ /// ConversionFnKind - The enum value which is passed to the generated
+ /// ConvertToMCInst to convert parsed operands into an MCInst for this
+ /// function.
+ std::string ConversionFnKind;
+
+ MatchableInfo(const CodeGenInstruction &CGI)
+ : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
+ AsmString(CGI.AsmString) {
+ }
+
+ MatchableInfo(const CodeGenInstAlias *Alias)
+ : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
+ AsmString(Alias->AsmString) {
+ }
+
+ // Two-operand aliases clone from the main matchable, but mark the second
+ // operand as a tied operand of the first for purposes of the assembler.
+ void formTwoOperandAlias(StringRef Constraint);
+
+ void initialize(const AsmMatcherInfo &Info,
+ SmallPtrSet<Record*, 16> &SingletonRegisters,
+ int AsmVariantNo, std::string &RegisterPrefix);
+
+ /// validate - Return true if this matchable is a valid thing to match against
+ /// and perform a bunch of validity checking.
+ bool validate(StringRef CommentDelimiter, bool Hack) const;
+
+ /// extractSingletonRegisterForAsmOperand - Extract singleton register,
+ /// if present, from specified token.
+ void
+ extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
+ std::string &RegisterPrefix);
+
+ /// findAsmOperand - Find the AsmOperand with the specified name and
+ /// suboperand index.
+ int findAsmOperand(StringRef N, int SubOpIdx) const {
+ for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
+ if (N == AsmOperands[i].SrcOpName &&
+ SubOpIdx == AsmOperands[i].SubOpIdx)
+ return i;
+ return -1;
+ }
+
+ /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
+ /// This does not check the suboperand index.
+ int findAsmOperandNamed(StringRef N) const {
+ for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
+ if (N == AsmOperands[i].SrcOpName)
+ return i;
+ return -1;
+ }
+
+ void buildInstructionResultOperands();
+ void buildAliasResultOperands();
+
+ /// operator< - Compare two matchables.
+ bool operator<(const MatchableInfo &RHS) const {
+ // The primary comparator is the instruction mnemonic.
+ if (Mnemonic != RHS.Mnemonic)
+ return Mnemonic < RHS.Mnemonic;
+
+ if (AsmOperands.size() != RHS.AsmOperands.size())
+ return AsmOperands.size() < RHS.AsmOperands.size();
+
+ // Compare lexicographically by operand. The matcher validates that other
+ // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
+ for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
+ if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
+ return true;
+ if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
+ return false;
+ }
+
+ return false;
+ }
+
+ /// couldMatchAmbiguouslyWith - Check whether this matchable could
+ /// ambiguously match the same set of operands as \arg RHS (without being a
+ /// strictly superior match).
+ bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
+ // The primary comparator is the instruction mnemonic.
+ if (Mnemonic != RHS.Mnemonic)
+ return false;
+
+ // The number of operands is unambiguous.
+ if (AsmOperands.size() != RHS.AsmOperands.size())
+ return false;
+
+ // Otherwise, make sure the ordering of the two instructions is unambiguous
+ // by checking that either (a) a token or operand kind discriminates them,
+ // or (b) the ordering among equivalent kinds is consistent.
+
+ // Tokens and operand kinds are unambiguous (assuming a correct target
+ // specific parser).
+ for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
+ if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
+ AsmOperands[i].Class->Kind == ClassInfo::Token)
+ if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
+ *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
+ return false;
+
+ // Otherwise, this operand could commute if all operands are equivalent, or
+ // there is a pair of operands that compare less than and a pair that
+ // compare greater than.
+ bool HasLT = false, HasGT = false;
+ for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
+ if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
+ HasLT = true;
+ if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
+ HasGT = true;
+ }
+
+ return !(HasLT ^ HasGT);
+ }
+
+ void dump();
+
+private:
+ void tokenizeAsmString(const AsmMatcherInfo &Info);
+};
+
+/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
+/// feature which participates in instruction matching.
+struct SubtargetFeatureInfo {
+ /// \brief The predicate record for this feature.
+ Record *TheDef;
+
+ /// \brief An unique index assigned to represent this feature.
+ unsigned Index;
+
+ SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
+
+ /// \brief The name of the enumerated constant identifying this feature.
+ std::string getEnumName() const {
+ return "Feature_" + TheDef->getName();
+ }
+};
+
+struct OperandMatchEntry {
+ unsigned OperandMask;
+ MatchableInfo* MI;
+ ClassInfo *CI;
+
+ static OperandMatchEntry create(MatchableInfo* mi, ClassInfo *ci,
+ unsigned opMask) {
+ OperandMatchEntry X;
+ X.OperandMask = opMask;
+ X.CI = ci;
+ X.MI = mi;
+ return X;
+ }
+};
+
+
+class AsmMatcherInfo {
+public:
+ /// Tracked Records
+ RecordKeeper &Records;
+
+ /// The tablegen AsmParser record.
+ Record *AsmParser;
+
+ /// Target - The target information.
+ CodeGenTarget &Target;
+
+ /// The classes which are needed for matching.
+ std::vector<ClassInfo*> Classes;
+
+ /// The information on the matchables to match.
+ std::vector<MatchableInfo*> Matchables;
+
+ /// Info for custom matching operands by user defined methods.
+ std::vector<OperandMatchEntry> OperandMatchInfo;
+
+ /// Map of Register records to their class information.
+ std::map<Record*, ClassInfo*> RegisterClasses;
+
+ /// Map of Predicate records to their subtarget information.
+ std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
+
+ /// Map of AsmOperandClass records to their class information.
+ std::map<Record*, ClassInfo*> AsmOperandClasses;
+
+private:
+ /// Map of token to class information which has already been constructed.
+ std::map<std::string, ClassInfo*> TokenClasses;
+
+ /// Map of RegisterClass records to their class information.
+ std::map<Record*, ClassInfo*> RegisterClassClasses;
+
+private:
+ /// getTokenClass - Lookup or create the class for the given token.
+ ClassInfo *getTokenClass(StringRef Token);
+
+ /// getOperandClass - Lookup or create the class for the given operand.
+ ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
+ int SubOpIdx);
+ ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
+
+ /// buildRegisterClasses - Build the ClassInfo* instances for register
+ /// classes.
+ void buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
+
+ /// buildOperandClasses - Build the ClassInfo* instances for user defined
+ /// operand classes.
+ void buildOperandClasses();
+
+ void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
+ unsigned AsmOpIdx);
+ void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
+ MatchableInfo::AsmOperand &Op);
+
+public:
+ AsmMatcherInfo(Record *AsmParser,
+ CodeGenTarget &Target,
+ RecordKeeper &Records);
+
+ /// buildInfo - Construct the various tables used during matching.
+ void buildInfo();
+
+ /// buildOperandMatchInfo - Build the necessary information to handle user
+ /// defined operand parsing methods.
+ void buildOperandMatchInfo();
+
+ /// getSubtargetFeature - Lookup or create the subtarget feature info for the
+ /// given operand.
+ SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
+ assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
+ std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
+ SubtargetFeatures.find(Def);
+ return I == SubtargetFeatures.end() ? 0 : I->second;
+ }
+
+ RecordKeeper &getRecords() const {
+ return Records;
+ }
+};
+
+} // End anonymous namespace
+
+void MatchableInfo::dump() {
+ errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
+
+ for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
+ AsmOperand &Op = AsmOperands[i];
+ errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
+ errs() << '\"' << Op.Token << "\"\n";
+ }
+}
+
+static std::pair<StringRef, StringRef>
+parseTwoOperandConstraint(StringRef S, SMLoc Loc) {
+ // Split via the '='.
+ std::pair<StringRef, StringRef> Ops = S.split('=');
+ if (Ops.second == "")
+ throw TGError(Loc, "missing '=' in two-operand alias constraint");
+ // Trim whitespace and the leading '$' on the operand names.
+ size_t start = Ops.first.find_first_of('$');
+ if (start == std::string::npos)
+ throw TGError(Loc, "expected '$' prefix on asm operand name");
+ Ops.first = Ops.first.slice(start + 1, std::string::npos);
+ size_t end = Ops.first.find_last_of(" \t");
+ Ops.first = Ops.first.slice(0, end);
+ // Now the second operand.
+ start = Ops.second.find_first_of('$');
+ if (start == std::string::npos)
+ throw TGError(Loc, "expected '$' prefix on asm operand name");
+ Ops.second = Ops.second.slice(start + 1, std::string::npos);
+ end = Ops.second.find_last_of(" \t");
+ Ops.first = Ops.first.slice(0, end);
+ return Ops;
+}
+
+void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
+ // Figure out which operands are aliased and mark them as tied.
+ std::pair<StringRef, StringRef> Ops =
+ parseTwoOperandConstraint(Constraint, TheDef->getLoc());
+
+ // Find the AsmOperands that refer to the operands we're aliasing.
+ int SrcAsmOperand = findAsmOperandNamed(Ops.first);
+ int DstAsmOperand = findAsmOperandNamed(Ops.second);
+ if (SrcAsmOperand == -1)
+ throw TGError(TheDef->getLoc(),
+ "unknown source two-operand alias operand '" +
+ Ops.first.str() + "'.");
+ if (DstAsmOperand == -1)
+ throw TGError(TheDef->getLoc(),
+ "unknown destination two-operand alias operand '" +
+ Ops.second.str() + "'.");
+
+ // Find the ResOperand that refers to the operand we're aliasing away
+ // and update it to refer to the combined operand instead.
+ for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
+ ResOperand &Op = ResOperands[i];
+ if (Op.Kind == ResOperand::RenderAsmOperand &&
+ Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
+ Op.AsmOperandNum = DstAsmOperand;
+ break;
+ }
+ }
+ // Remove the AsmOperand for the alias operand.
+ AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
+ // Adjust the ResOperand references to any AsmOperands that followed
+ // the one we just deleted.
+ for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
+ ResOperand &Op = ResOperands[i];
+ switch(Op.Kind) {
+ default:
+ // Nothing to do for operands that don't reference AsmOperands.
+ break;
+ case ResOperand::RenderAsmOperand:
+ if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
+ --Op.AsmOperandNum;
+ break;
+ case ResOperand::TiedOperand:
+ if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
+ --Op.TiedOperandNum;
+ break;
+ }
+ }
+}
+
+void MatchableInfo::initialize(const AsmMatcherInfo &Info,
+ SmallPtrSet<Record*, 16> &SingletonRegisters,
+ int AsmVariantNo, std::string &RegisterPrefix) {
+ AsmVariantID = AsmVariantNo;
+ AsmString =
+ CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
+
+ tokenizeAsmString(Info);
+
+ // Compute the require features.
+ std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
+ for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
+ if (SubtargetFeatureInfo *Feature =
+ Info.getSubtargetFeature(Predicates[i]))
+ RequiredFeatures.push_back(Feature);
+
+ // Collect singleton registers, if used.
+ for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
+ extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
+ if (Record *Reg = AsmOperands[i].SingletonReg)
+ SingletonRegisters.insert(Reg);
+ }
+}
+
+/// tokenizeAsmString - Tokenize a simplified assembly string.
+void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
+ StringRef String = AsmString;
+ unsigned Prev = 0;
+ bool InTok = true;
+ for (unsigned i = 0, e = String.size(); i != e; ++i) {
+ switch (String[i]) {
+ case '[':
+ case ']':
+ case '*':
+ case '!':
+ case ' ':
+ case '\t':
+ case ',':
+ if (InTok) {
+ AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
+ InTok = false;
+ }
+ if (!isspace(String[i]) && String[i] != ',')
+ AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
+ Prev = i + 1;
+ break;
+
+ case '\\':
+ if (InTok) {
+ AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
+ InTok = false;
+ }
+ ++i;
+ assert(i != String.size() && "Invalid quoted character");
+ AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
+ Prev = i + 1;
+ break;
+
+ case '$': {
+ if (InTok) {
+ AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
+ InTok = false;
+ }
+
+ // If this isn't "${", treat like a normal token.
+ if (i + 1 == String.size() || String[i + 1] != '{') {
+ Prev = i;
+ break;
+ }
+
+ StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
+ assert(End != String.end() && "Missing brace in operand reference!");
+ size_t EndPos = End - String.begin();
+ AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
+ Prev = EndPos + 1;
+ i = EndPos;
+ break;
+ }
+
+ case '.':
+ if (InTok)
+ AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
+ Prev = i;
+ InTok = true;
+ break;
+
+ default:
+ InTok = true;
+ }
+ }
+ if (InTok && Prev != String.size())
+ AsmOperands.push_back(AsmOperand(String.substr(Prev)));
+
+ // The first token of the instruction is the mnemonic, which must be a
+ // simple string, not a $foo variable or a singleton register.
+ if (AsmOperands.empty())
+ throw TGError(TheDef->getLoc(),
+ "Instruction '" + TheDef->getName() + "' has no tokens");
+ Mnemonic = AsmOperands[0].Token;
+ if (Mnemonic.empty())
+ throw TGError(TheDef->getLoc(),
+ "Missing instruction mnemonic");
+ // FIXME : Check and raise an error if it is a register.
+ if (Mnemonic[0] == '$')
+ throw TGError(TheDef->getLoc(),
+ "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
+
+ // Remove the first operand, it is tracked in the mnemonic field.
+ AsmOperands.erase(AsmOperands.begin());
+}
+
+bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
+ // Reject matchables with no .s string.
+ if (AsmString.empty())
+ throw TGError(TheDef->getLoc(), "instruction with empty asm string");
+
+ // Reject any matchables with a newline in them, they should be marked
+ // isCodeGenOnly if they are pseudo instructions.
+ if (AsmString.find('\n') != std::string::npos)
+ throw TGError(TheDef->getLoc(),
+ "multiline instruction is not valid for the asmparser, "
+ "mark it isCodeGenOnly");
+
+ // Remove comments from the asm string. We know that the asmstring only
+ // has one line.
+ if (!CommentDelimiter.empty() &&
+ StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
+ throw TGError(TheDef->getLoc(),
+ "asmstring for instruction has comment character in it, "
+ "mark it isCodeGenOnly");
+
+ // Reject matchables with operand modifiers, these aren't something we can
+ // handle, the target should be refactored to use operands instead of
+ // modifiers.
+ //
+ // Also, check for instructions which reference the operand multiple times;
+ // this implies a constraint we would not honor.
+ std::set<std::string> OperandNames;
+ for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
+ StringRef Tok = AsmOperands[i].Token;
+ if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
+ throw TGError(TheDef->getLoc(),
+ "matchable with operand modifier '" + Tok.str() +
+ "' not supported by asm matcher. Mark isCodeGenOnly!");
+
+ // Verify that any operand is only mentioned once.
+ // We reject aliases and ignore instructions for now.
+ if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
+ if (!Hack)
+ throw TGError(TheDef->getLoc(),
+ "ERROR: matchable with tied operand '" + Tok.str() +
+ "' can never be matched!");
+ // FIXME: Should reject these. The ARM backend hits this with $lane in a
+ // bunch of instructions. It is unclear what the right answer is.
+ DEBUG({
+ errs() << "warning: '" << TheDef->getName() << "': "
+ << "ignoring instruction with tied operand '"
+ << Tok.str() << "'\n";
+ });
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// extractSingletonRegisterForAsmOperand - Extract singleton register,
+/// if present, from specified token.
+void MatchableInfo::
+extractSingletonRegisterForAsmOperand(unsigned OperandNo,
+ const AsmMatcherInfo &Info,
+ std::string &RegisterPrefix) {
+ StringRef Tok = AsmOperands[OperandNo].Token;
+ if (RegisterPrefix.empty()) {
+ std::string LoweredTok = Tok.lower();
+ if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
+ AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
+ return;
+ }
+
+ if (!Tok.startswith(RegisterPrefix))
+ return;
+
+ StringRef RegName = Tok.substr(RegisterPrefix.size());
+ if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
+ AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
+
+ // If there is no register prefix (i.e. "%" in "%eax"), then this may
+ // be some random non-register token, just ignore it.
+ return;
+}
+
+static std::string getEnumNameForToken(StringRef Str) {
+ std::string Res;
+
+ for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
+ switch (*it) {
+ case '*': Res += "_STAR_"; break;
+ case '%': Res += "_PCT_"; break;
+ case ':': Res += "_COLON_"; break;
+ case '!': Res += "_EXCLAIM_"; break;
+ case '.': Res += "_DOT_"; break;
+ default:
+ if (isalnum(*it))
+ Res += *it;
+ else
+ Res += "_" + utostr((unsigned) *it) + "_";
+ }
+ }
+
+ return Res;
+}
+
+ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
+ ClassInfo *&Entry = TokenClasses[Token];
+
+ if (!Entry) {
+ Entry = new ClassInfo();
+ Entry->Kind = ClassInfo::Token;
+ Entry->ClassName = "Token";
+ Entry->Name = "MCK_" + getEnumNameForToken(Token);
+ Entry->ValueName = Token;
+ Entry->PredicateMethod = "<invalid>";
+ Entry->RenderMethod = "<invalid>";
+ Entry->ParserMethod = "";
+ Entry->DiagnosticType = "";
+ Classes.push_back(Entry);
+ }
+
+ return Entry;
+}
+
+ClassInfo *
+AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
+ int SubOpIdx) {
+ Record *Rec = OI.Rec;
+ if (SubOpIdx != -1)
+ Rec = dynamic_cast<DefInit*>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
+ return getOperandClass(Rec, SubOpIdx);
+}
+
+ClassInfo *
+AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
+ if (Rec->isSubClassOf("RegisterOperand")) {
+ // RegisterOperand may have an associated ParserMatchClass. If it does,
+ // use it, else just fall back to the underlying register class.
+ const RecordVal *R = Rec->getValue("ParserMatchClass");
+ if (R == 0 || R->getValue() == 0)
+ throw "Record `" + Rec->getName() +
+ "' does not have a ParserMatchClass!\n";
+
+ if (DefInit *DI= dynamic_cast<DefInit*>(R->getValue())) {
+ Record *MatchClass = DI->getDef();
+ if (ClassInfo *CI = AsmOperandClasses[MatchClass])
+ return CI;
+ }
+
+ // No custom match class. Just use the register class.
+ Record *ClassRec = Rec->getValueAsDef("RegClass");
+ if (!ClassRec)
+ throw TGError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
+ "' has no associated register class!\n");
+ if (ClassInfo *CI = RegisterClassClasses[ClassRec])
+ return CI;
+ throw TGError(Rec->getLoc(), "register class has no class info!");
+ }
+
+
+ if (Rec->isSubClassOf("RegisterClass")) {
+ if (ClassInfo *CI = RegisterClassClasses[Rec])
+ return CI;
+ throw TGError(Rec->getLoc(), "register class has no class info!");
+ }
+
+ assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
+ Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
+ if (ClassInfo *CI = AsmOperandClasses[MatchClass])
+ return CI;
+
+ throw TGError(Rec->getLoc(), "operand has no match class!");
+}
+
+void AsmMatcherInfo::
+buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
+ const std::vector<CodeGenRegister*> &Registers =
+ Target.getRegBank().getRegisters();
+ ArrayRef<CodeGenRegisterClass*> RegClassList =
+ Target.getRegBank().getRegClasses();
+
+ // The register sets used for matching.
+ std::set< std::set<Record*> > RegisterSets;
+
+ // Gather the defined sets.
+ for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
+ RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
+ RegisterSets.insert(std::set<Record*>(
+ (*it)->getOrder().begin(), (*it)->getOrder().end()));
+
+ // Add any required singleton sets.
+ for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
+ ie = SingletonRegisters.end(); it != ie; ++it) {
+ Record *Rec = *it;
+ RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
+ }
+
+ // Introduce derived sets where necessary (when a register does not determine
+ // a unique register set class), and build the mapping of registers to the set
+ // they should classify to.
+ std::map<Record*, std::set<Record*> > RegisterMap;
+ for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
+ ie = Registers.end(); it != ie; ++it) {
+ const CodeGenRegister &CGR = **it;
+ // Compute the intersection of all sets containing this register.
+ std::set<Record*> ContainingSet;
+
+ for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
+ ie = RegisterSets.end(); it != ie; ++it) {
+ if (!it->count(CGR.TheDef))
+ continue;
+
+ if (ContainingSet.empty()) {
+ ContainingSet = *it;
+ continue;
+ }
+
+ std::set<Record*> Tmp;
+ std::swap(Tmp, ContainingSet);
+ std::insert_iterator< std::set<Record*> > II(ContainingSet,
+ ContainingSet.begin());
+ std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
+ }
+
+ if (!ContainingSet.empty()) {
+ RegisterSets.insert(ContainingSet);
+ RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
+ }
+ }
+
+ // Construct the register classes.
+ std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
+ unsigned Index = 0;
+ for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
+ ie = RegisterSets.end(); it != ie; ++it, ++Index) {
+ ClassInfo *CI = new ClassInfo();
+ CI->Kind = ClassInfo::RegisterClass0 + Index;
+ CI->ClassName = "Reg" + utostr(Index);
+ CI->Name = "MCK_Reg" + utostr(Index);
+ CI->ValueName = "";
+ CI->PredicateMethod = ""; // unused
+ CI->RenderMethod = "addRegOperands";
+ CI->Registers = *it;
+ // FIXME: diagnostic type.
+ CI->DiagnosticType = "";
+ Classes.push_back(CI);
+ RegisterSetClasses.insert(std::make_pair(*it, CI));
+ }
+
+ // Find the superclasses; we could compute only the subgroup lattice edges,
+ // but there isn't really a point.
+ for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
+ ie = RegisterSets.end(); it != ie; ++it) {
+ ClassInfo *CI = RegisterSetClasses[*it];
+ for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
+ ie2 = RegisterSets.end(); it2 != ie2; ++it2)
+ if (*it != *it2 &&
+ std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
+ CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
+ }
+
+ // Name the register classes which correspond to a user defined RegisterClass.
+ for (ArrayRef<CodeGenRegisterClass*>::const_iterator
+ it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
+ const CodeGenRegisterClass &RC = **it;
+ // Def will be NULL for non-user defined register classes.
+ Record *Def = RC.getDef();
+ if (!Def)
+ continue;
+ ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(),
+ RC.getOrder().end())];
+ if (CI->ValueName.empty()) {
+ CI->ClassName = RC.getName();
+ CI->Name = "MCK_" + RC.getName();
+ CI->ValueName = RC.getName();
+ } else
+ CI->ValueName = CI->ValueName + "," + RC.getName();
+
+ RegisterClassClasses.insert(std::make_pair(Def, CI));
+ }
+
+ // Populate the map for individual registers.
+ for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
+ ie = RegisterMap.end(); it != ie; ++it)
+ RegisterClasses[it->first] = RegisterSetClasses[it->second];
+
+ // Name the register classes which correspond to singleton registers.
+ for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
+ ie = SingletonRegisters.end(); it != ie; ++it) {
+ Record *Rec = *it;
+ ClassInfo *CI = RegisterClasses[Rec];
+ assert(CI && "Missing singleton register class info!");
+
+ if (CI->ValueName.empty()) {
+ CI->ClassName = Rec->getName();
+ CI->Name = "MCK_" + Rec->getName();
+ CI->ValueName = Rec->getName();
+ } else
+ CI->ValueName = CI->ValueName + "," + Rec->getName();
+ }
+}
+
+void AsmMatcherInfo::buildOperandClasses() {
+ std::vector<Record*> AsmOperands =
+ Records.getAllDerivedDefinitions("AsmOperandClass");
+
+ // Pre-populate AsmOperandClasses map.
+ for (std::vector<Record*>::iterator it = AsmOperands.begin(),
+ ie = AsmOperands.end(); it != ie; ++it)
+ AsmOperandClasses[*it] = new ClassInfo();
+
+ unsigned Index = 0;
+ for (std::vector<Record*>::iterator it = AsmOperands.begin(),
+ ie = AsmOperands.end(); it != ie; ++it, ++Index) {
+ ClassInfo *CI = AsmOperandClasses[*it];
+ CI->Kind = ClassInfo::UserClass0 + Index;
+
+ ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
+ for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
+ DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
+ if (!DI) {
+ PrintError((*it)->getLoc(), "Invalid super class reference!");
+ continue;
+ }
+
+ ClassInfo *SC = AsmOperandClasses[DI->getDef()];
+ if (!SC)
+ PrintError((*it)->getLoc(), "Invalid super class reference!");
+ else
+ CI->SuperClasses.push_back(SC);
+ }
+ CI->ClassName = (*it)->getValueAsString("Name");
+ CI->Name = "MCK_" + CI->ClassName;
+ CI->ValueName = (*it)->getName();
+
+ // Get or construct the predicate method name.
+ Init *PMName = (*it)->getValueInit("PredicateMethod");
+ if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
+ CI->PredicateMethod = SI->getValue();
+ } else {
+ assert(dynamic_cast<UnsetInit*>(PMName) &&
+ "Unexpected PredicateMethod field!");
+ CI->PredicateMethod = "is" + CI->ClassName;
+ }
+
+ // Get or construct the render method name.
+ Init *RMName = (*it)->getValueInit("RenderMethod");
+ if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
+ CI->RenderMethod = SI->getValue();
+ } else {
+ assert(dynamic_cast<UnsetInit*>(RMName) &&
+ "Unexpected RenderMethod field!");
+ CI->RenderMethod = "add" + CI->ClassName + "Operands";
+ }
+
+ // Get the parse method name or leave it as empty.
+ Init *PRMName = (*it)->getValueInit("ParserMethod");
+ if (StringInit *SI = dynamic_cast<StringInit*>(PRMName))
+ CI->ParserMethod = SI->getValue();
+
+ // Get the diagnostic type or leave it as empty.
+ // Get the parse method name or leave it as empty.
+ Init *DiagnosticType = (*it)->getValueInit("DiagnosticType");
+ if (StringInit *SI = dynamic_cast<StringInit*>(DiagnosticType))
+ CI->DiagnosticType = SI->getValue();
+
+ AsmOperandClasses[*it] = CI;
+ Classes.push_back(CI);
+ }
+}
+
+AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
+ CodeGenTarget &target,
+ RecordKeeper &records)
+ : Records(records), AsmParser(asmParser), Target(target) {
+}
+
+/// buildOperandMatchInfo - Build the necessary information to handle user
+/// defined operand parsing methods.
+void AsmMatcherInfo::buildOperandMatchInfo() {
+
+ /// Map containing a mask with all operands indices that can be found for
+ /// that class inside a instruction.
+ std::map<ClassInfo*, unsigned> OpClassMask;
+
+ for (std::vector<MatchableInfo*>::const_iterator it =
+ Matchables.begin(), ie = Matchables.end();
+ it != ie; ++it) {
+ MatchableInfo &II = **it;
+ OpClassMask.clear();
+
+ // Keep track of all operands of this instructions which belong to the
+ // same class.
+ for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
+ MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
+ if (Op.Class->ParserMethod.empty())
+ continue;
+ unsigned &OperandMask = OpClassMask[Op.Class];
+ OperandMask |= (1 << i);
+ }
+
+ // Generate operand match info for each mnemonic/operand class pair.
+ for (std::map<ClassInfo*, unsigned>::iterator iit = OpClassMask.begin(),
+ iie = OpClassMask.end(); iit != iie; ++iit) {
+ unsigned OpMask = iit->second;
+ ClassInfo *CI = iit->first;
+ OperandMatchInfo.push_back(OperandMatchEntry::create(&II, CI, OpMask));
+ }
+ }
+}
+
+void AsmMatcherInfo::buildInfo() {
+ // Build information about all of the AssemblerPredicates.
+ std::vector<Record*> AllPredicates =
+ Records.getAllDerivedDefinitions("Predicate");
+ for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
+ Record *Pred = AllPredicates[i];
+ // Ignore predicates that are not intended for the assembler.
+ if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
+ continue;
+
+ if (Pred->getName().empty())
+ throw TGError(Pred->getLoc(), "Predicate has no name!");
+
+ unsigned FeatureNo = SubtargetFeatures.size();
+ SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
+ assert(FeatureNo < 32 && "Too many subtarget features!");
+ }
+
+ // Parse the instructions; we need to do this first so that we can gather the
+ // singleton register classes.
+ SmallPtrSet<Record*, 16> SingletonRegisters;
+ unsigned VariantCount = Target.getAsmParserVariantCount();
+ for (unsigned VC = 0; VC != VariantCount; ++VC) {
+ Record *AsmVariant = Target.getAsmParserVariant(VC);
+ std::string CommentDelimiter =
+ AsmVariant->getValueAsString("CommentDelimiter");
+ std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
+ int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
+
+ for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
+ E = Target.inst_end(); I != E; ++I) {
+ const CodeGenInstruction &CGI = **I;
+
+ // If the tblgen -match-prefix option is specified (for tblgen hackers),
+ // filter the set of instructions we consider.
+ if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
+ continue;
+
+ // Ignore "codegen only" instructions.
+ if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
+ continue;
+
+ // Validate the operand list to ensure we can handle this instruction.
+ for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
+ const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
+
+ // Validate tied operands.
+ if (OI.getTiedRegister() != -1) {
+ // If we have a tied operand that consists of multiple MCOperands,
+ // reject it. We reject aliases and ignore instructions for now.
+ if (OI.MINumOperands != 1) {
+ // FIXME: Should reject these. The ARM backend hits this with $lane
+ // in a bunch of instructions. The right answer is unclear.
+ DEBUG({
+ errs() << "warning: '" << CGI.TheDef->getName() << "': "
+ << "ignoring instruction with multi-operand tied operand '"
+ << OI.Name << "'\n";
+ });
+ continue;
+ }
+ }
+ }
+
+ OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
+
+ II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
+
+ // Ignore instructions which shouldn't be matched and diagnose invalid
+ // instruction definitions with an error.
+ if (!II->validate(CommentDelimiter, true))
+ continue;
+
+ // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
+ //
+ // FIXME: This is a total hack.
+ if (StringRef(II->TheDef->getName()).startswith("Int_") ||
+ StringRef(II->TheDef->getName()).endswith("_Int"))
+ continue;
+
+ Matchables.push_back(II.take());
+ }
+
+ // Parse all of the InstAlias definitions and stick them in the list of
+ // matchables.
+ std::vector<Record*> AllInstAliases =
+ Records.getAllDerivedDefinitions("InstAlias");
+ for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
+ CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
+
+ // If the tblgen -match-prefix option is specified (for tblgen hackers),
+ // filter the set of instruction aliases we consider, based on the target
+ // instruction.
+ if (!StringRef(Alias->ResultInst->TheDef->getName())
+ .startswith( MatchPrefix))
+ continue;
+
+ OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
+
+ II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
+
+ // Validate the alias definitions.
+ II->validate(CommentDelimiter, false);
+
+ Matchables.push_back(II.take());
+ }
+ }
+
+ // Build info for the register classes.
+ buildRegisterClasses(SingletonRegisters);
+
+ // Build info for the user defined assembly operand classes.
+ buildOperandClasses();
+
+ // Build the information about matchables, now that we have fully formed
+ // classes.
+ std::vector<MatchableInfo*> NewMatchables;
+ for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
+ ie = Matchables.end(); it != ie; ++it) {
+ MatchableInfo *II = *it;
+
+ // Parse the tokens after the mnemonic.
+ // Note: buildInstructionOperandReference may insert new AsmOperands, so
+ // don't precompute the loop bound.
+ for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
+ MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
+ StringRef Token = Op.Token;
+
+ // Check for singleton registers.
+ if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
+ Op.Class = RegisterClasses[RegRecord];
+ assert(Op.Class && Op.Class->Registers.size() == 1 &&
+ "Unexpected class for singleton register");
+ continue;
+ }
+
+ // Check for simple tokens.
+ if (Token[0] != '$') {
+ Op.Class = getTokenClass(Token);
+ continue;
+ }
+
+ if (Token.size() > 1 && isdigit(Token[1])) {
+ Op.Class = getTokenClass(Token);
+ continue;
+ }
+
+ // Otherwise this is an operand reference.
+ StringRef OperandName;
+ if (Token[1] == '{')
+ OperandName = Token.substr(2, Token.size() - 3);
+ else
+ OperandName = Token.substr(1);
+
+ if (II->DefRec.is<const CodeGenInstruction*>())
+ buildInstructionOperandReference(II, OperandName, i);
+ else
+ buildAliasOperandReference(II, OperandName, Op);
+ }
+
+ if (II->DefRec.is<const CodeGenInstruction*>()) {
+ II->buildInstructionResultOperands();
+ // If the instruction has a two-operand alias, build up the
+ // matchable here. We'll add them in bulk at the end to avoid
+ // confusing this loop.
+ std::string Constraint =
+ II->TheDef->getValueAsString("TwoOperandAliasConstraint");
+ if (Constraint != "") {
+ // Start by making a copy of the original matchable.
+ OwningPtr<MatchableInfo> AliasII(new MatchableInfo(*II));
+
+ // Adjust it to be a two-operand alias.
+ AliasII->formTwoOperandAlias(Constraint);
+
+ // Add the alias to the matchables list.
+ NewMatchables.push_back(AliasII.take());
+ }
+ } else
+ II->buildAliasResultOperands();
+ }
+ if (!NewMatchables.empty())
+ Matchables.insert(Matchables.end(), NewMatchables.begin(),
+ NewMatchables.end());
+
+ // Process token alias definitions and set up the associated superclass
+ // information.
+ std::vector<Record*> AllTokenAliases =
+ Records.getAllDerivedDefinitions("TokenAlias");
+ for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
+ Record *Rec = AllTokenAliases[i];
+ ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
+ ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
+ if (FromClass == ToClass)
+ throw TGError(Rec->getLoc(),
+ "error: Destination value identical to source value.");
+ FromClass->SuperClasses.push_back(ToClass);
+ }
+
+ // Reorder classes so that classes precede super classes.
+ std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
+}
+
+/// buildInstructionOperandReference - The specified operand is a reference to a
+/// named operand such as $src. Resolve the Class and OperandInfo pointers.
+void AsmMatcherInfo::
+buildInstructionOperandReference(MatchableInfo *II,
+ StringRef OperandName,
+ unsigned AsmOpIdx) {
+ const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
+ const CGIOperandList &Operands = CGI.Operands;
+ MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
+
+ // Map this token to an operand.
+ unsigned Idx;
+ if (!Operands.hasOperandNamed(OperandName, Idx))
+ throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
+ OperandName.str() + "'");
+
+ // If the instruction operand has multiple suboperands, but the parser
+ // match class for the asm operand is still the default "ImmAsmOperand",
+ // then handle each suboperand separately.
+ if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
+ Record *Rec = Operands[Idx].Rec;
+ assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
+ Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
+ if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
+ // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
+ StringRef Token = Op->Token; // save this in case Op gets moved
+ for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
+ MatchableInfo::AsmOperand NewAsmOp(Token);
+ NewAsmOp.SubOpIdx = SI;
+ II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
+ }
+ // Replace Op with first suboperand.
+ Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
+ Op->SubOpIdx = 0;
+ }
+ }
+
+ // Set up the operand class.
+ Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
+
+ // If the named operand is tied, canonicalize it to the untied operand.
+ // For example, something like:
+ // (outs GPR:$dst), (ins GPR:$src)
+ // with an asmstring of
+ // "inc $src"
+ // we want to canonicalize to:
+ // "inc $dst"
+ // so that we know how to provide the $dst operand when filling in the result.
+ int OITied = Operands[Idx].getTiedRegister();
+ if (OITied != -1) {
+ // The tied operand index is an MIOperand index, find the operand that
+ // contains it.
+ std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
+ OperandName = Operands[Idx.first].Name;
+ Op->SubOpIdx = Idx.second;
+ }
+
+ Op->SrcOpName = OperandName;
+}
+
+/// buildAliasOperandReference - When parsing an operand reference out of the
+/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
+/// operand reference is by looking it up in the result pattern definition.
+void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
+ StringRef OperandName,
+ MatchableInfo::AsmOperand &Op) {
+ const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
+
+ // Set up the operand class.
+ for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
+ if (CGA.ResultOperands[i].isRecord() &&
+ CGA.ResultOperands[i].getName() == OperandName) {
+ // It's safe to go with the first one we find, because CodeGenInstAlias
+ // validates that all operands with the same name have the same record.
+ Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
+ // Use the match class from the Alias definition, not the
+ // destination instruction, as we may have an immediate that's
+ // being munged by the match class.
+ Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
+ Op.SubOpIdx);
+ Op.SrcOpName = OperandName;
+ return;
+ }
+
+ throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
+ OperandName.str() + "'");
+}
+
+void MatchableInfo::buildInstructionResultOperands() {
+ const CodeGenInstruction *ResultInst = getResultInst();
+
+ // Loop over all operands of the result instruction, determining how to
+ // populate them.
+ for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
+ const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
+
+ // If this is a tied operand, just copy from the previously handled operand.
+ int TiedOp = OpInfo.getTiedRegister();
+ if (TiedOp != -1) {
+ ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
+ continue;
+ }
+
+ // Find out what operand from the asmparser this MCInst operand comes from.
+ int SrcOperand = findAsmOperandNamed(OpInfo.Name);
+ if (OpInfo.Name.empty() || SrcOperand == -1)
+ throw TGError(TheDef->getLoc(), "Instruction '" +
+ TheDef->getName() + "' has operand '" + OpInfo.Name +
+ "' that doesn't appear in asm string!");
+
+ // Check if the one AsmOperand populates the entire operand.
+ unsigned NumOperands = OpInfo.MINumOperands;
+ if (AsmOperands[SrcOperand].SubOpIdx == -1) {
+ ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
+ continue;
+ }
+
+ // Add a separate ResOperand for each suboperand.
+ for (unsigned AI = 0; AI < NumOperands; ++AI) {
+ assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
+ AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
+ "unexpected AsmOperands for suboperands");
+ ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
+ }
+ }
+}
+
+void MatchableInfo::buildAliasResultOperands() {
+ const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
+ const CodeGenInstruction *ResultInst = getResultInst();
+
+ // Loop over all operands of the result instruction, determining how to
+ // populate them.
+ unsigned AliasOpNo = 0;
+ unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
+ for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
+ const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
+
+ // If this is a tied operand, just copy from the previously handled operand.
+ int TiedOp = OpInfo->getTiedRegister();
+ if (TiedOp != -1) {
+ ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
+ continue;
+ }
+
+ // Handle all the suboperands for this operand.
+ const std::string &OpName = OpInfo->Name;
+ for ( ; AliasOpNo < LastOpNo &&
+ CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
+ int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
+
+ // Find out what operand from the asmparser that this MCInst operand
+ // comes from.
+ switch (CGA.ResultOperands[AliasOpNo].Kind) {
+ case CodeGenInstAlias::ResultOperand::K_Record: {
+ StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
+ int SrcOperand = findAsmOperand(Name, SubIdx);
+ if (SrcOperand == -1)
+ throw TGError(TheDef->getLoc(), "Instruction '" +
+ TheDef->getName() + "' has operand '" + OpName +
+ "' that doesn't appear in asm string!");
+ unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
+ ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
+ NumOperands));
+ break;
+ }
+ case CodeGenInstAlias::ResultOperand::K_Imm: {
+ int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
+ ResOperands.push_back(ResOperand::getImmOp(ImmVal));
+ break;
+ }
+ case CodeGenInstAlias::ResultOperand::K_Reg: {
+ Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
+ ResOperands.push_back(ResOperand::getRegOp(Reg));
+ break;
+ }
+ }
+ }
+ }
+}
+
+static void emitConvertToMCInst(CodeGenTarget &Target, StringRef ClassName,
+ std::vector<MatchableInfo*> &Infos,
+ raw_ostream &OS) {
+ // Write the convert function to a separate stream, so we can drop it after
+ // the enum.
+ std::string ConvertFnBody;
+ raw_string_ostream CvtOS(ConvertFnBody);
+
+ // Function we have already generated.
+ std::set<std::string> GeneratedFns;
+
+ // Start the unified conversion function.
+ CvtOS << "bool " << Target.getName() << ClassName << "::\n";
+ CvtOS << "ConvertToMCInst(unsigned Kind, MCInst &Inst, "
+ << "unsigned Opcode,\n"
+ << " const SmallVectorImpl<MCParsedAsmOperand*"
+ << "> &Operands) {\n";
+ CvtOS << " Inst.setOpcode(Opcode);\n";
+ CvtOS << " switch (Kind) {\n";
+ CvtOS << " default:\n";
+
+ // Start the enum, which we will generate inline.
+
+ OS << "// Unified function for converting operands to MCInst instances.\n\n";
+ OS << "enum ConversionKind {\n";
+
+ // TargetOperandClass - This is the target's operand class, like X86Operand.
+ std::string TargetOperandClass = Target.getName() + "Operand";
+
+ for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
+ ie = Infos.end(); it != ie; ++it) {
+ MatchableInfo &II = **it;
+
+ // Check if we have a custom match function.
+ std::string AsmMatchConverter =
+ II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
+ if (!AsmMatchConverter.empty()) {
+ std::string Signature = "ConvertCustom_" + AsmMatchConverter;
+ II.ConversionFnKind = Signature;
+
+ // Check if we have already generated this signature.
+ if (!GeneratedFns.insert(Signature).second)
+ continue;
+
+ // If not, emit it now. Add to the enum list.
+ OS << " " << Signature << ",\n";
+
+ CvtOS << " case " << Signature << ":\n";
+ CvtOS << " return " << AsmMatchConverter
+ << "(Inst, Opcode, Operands);\n";
+ continue;
+ }
+
+ // Build the conversion function signature.
+ std::string Signature = "Convert";
+ std::string CaseBody;
+ raw_string_ostream CaseOS(CaseBody);
+
+ // Compute the convert enum and the case body.
+ for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
+ const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
+
+ // Generate code to populate each result operand.
+ switch (OpInfo.Kind) {
+ case MatchableInfo::ResOperand::RenderAsmOperand: {
+ // This comes from something we parsed.
+ MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
+
+ // Registers are always converted the same, don't duplicate the
+ // conversion function based on them.
+ Signature += "__";
+ if (Op.Class->isRegisterClass())
+ Signature += "Reg";
+ else
+ Signature += Op.Class->ClassName;
+ Signature += utostr(OpInfo.MINumOperands);
+ Signature += "_" + itostr(OpInfo.AsmOperandNum);
+
+ CaseOS << " ((" << TargetOperandClass << "*)Operands["
+ << (OpInfo.AsmOperandNum+1) << "])->" << Op.Class->RenderMethod
+ << "(Inst, " << OpInfo.MINumOperands << ");\n";
+ break;
+ }
+
+ case MatchableInfo::ResOperand::TiedOperand: {
+ // If this operand is tied to a previous one, just copy the MCInst
+ // operand from the earlier one.We can only tie single MCOperand values.
+ //assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
+ unsigned TiedOp = OpInfo.TiedOperandNum;
+ assert(i > TiedOp && "Tied operand precedes its target!");
+ CaseOS << " Inst.addOperand(Inst.getOperand(" << TiedOp << "));\n";
+ Signature += "__Tie" + utostr(TiedOp);
+ break;
+ }
+ case MatchableInfo::ResOperand::ImmOperand: {
+ int64_t Val = OpInfo.ImmVal;
+ CaseOS << " Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n";
+ Signature += "__imm" + itostr(Val);
+ break;
+ }
+ case MatchableInfo::ResOperand::RegOperand: {
+ if (OpInfo.Register == 0) {
+ CaseOS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
+ Signature += "__reg0";
+ } else {
+ std::string N = getQualifiedName(OpInfo.Register);
+ CaseOS << " Inst.addOperand(MCOperand::CreateReg(" << N << "));\n";
+ Signature += "__reg" + OpInfo.Register->getName();
+ }
+ }
+ }
+ }
+
+ II.ConversionFnKind = Signature;
+
+ // Check if we have already generated this signature.
+ if (!GeneratedFns.insert(Signature).second)
+ continue;
+
+ // If not, emit it now. Add to the enum list.
+ OS << " " << Signature << ",\n";
+
+ CvtOS << " case " << Signature << ":\n";
+ CvtOS << CaseOS.str();
+ CvtOS << " return true;\n";
+ }
+
+ // Finish the convert function.
+
+ CvtOS << " }\n";
+ CvtOS << " return false;\n";
+ CvtOS << "}\n\n";
+
+ // Finish the enum, and drop the convert function after it.
+
+ OS << " NumConversionVariants\n";
+ OS << "};\n\n";
+
+ OS << CvtOS.str();
+}
+
+/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
+static void emitMatchClassEnumeration(CodeGenTarget &Target,
+ std::vector<ClassInfo*> &Infos,
+ raw_ostream &OS) {
+ OS << "namespace {\n\n";
+
+ OS << "/// MatchClassKind - The kinds of classes which participate in\n"
+ << "/// instruction matching.\n";
+ OS << "enum MatchClassKind {\n";
+ OS << " InvalidMatchClass = 0,\n";
+ for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
+ ie = Infos.end(); it != ie; ++it) {
+ ClassInfo &CI = **it;
+ OS << " " << CI.Name << ", // ";
+ if (CI.Kind == ClassInfo::Token) {
+ OS << "'" << CI.ValueName << "'\n";
+ } else if (CI.isRegisterClass()) {
+ if (!CI.ValueName.empty())
+ OS << "register class '" << CI.ValueName << "'\n";
+ else
+ OS << "derived register class\n";
+ } else {
+ OS << "user defined class '" << CI.ValueName << "'\n";
+ }
+ }
+ OS << " NumMatchClassKinds\n";
+ OS << "};\n\n";
+
+ OS << "}\n\n";
+}
+
+/// emitValidateOperandClass - Emit the function to validate an operand class.
+static void emitValidateOperandClass(AsmMatcherInfo &Info,
+ raw_ostream &OS) {
+ OS << "static unsigned validateOperandClass(MCParsedAsmOperand *GOp, "
+ << "MatchClassKind Kind) {\n";
+ OS << " " << Info.Target.getName() << "Operand &Operand = *("
+ << Info.Target.getName() << "Operand*)GOp;\n";
+
+ // The InvalidMatchClass is not to match any operand.
+ OS << " if (Kind == InvalidMatchClass)\n";
+ OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n";
+
+ // Check for Token operands first.
+ // FIXME: Use a more specific diagnostic type.
+ OS << " if (Operand.isToken())\n";
+ OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
+ << " MCTargetAsmParser::Match_Success :\n"
+ << " MCTargetAsmParser::Match_InvalidOperand;\n\n";
+
+ // Check the user classes. We don't care what order since we're only
+ // actually matching against one of them.
+ for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
+ ie = Info.Classes.end(); it != ie; ++it) {
+ ClassInfo &CI = **it;
+
+ if (!CI.isUserClass())
+ continue;
+
+ OS << " // '" << CI.ClassName << "' class\n";
+ OS << " if (Kind == " << CI.Name << ") {\n";
+ OS << " if (Operand." << CI.PredicateMethod << "())\n";
+ OS << " return MCTargetAsmParser::Match_Success;\n";
+ if (!CI.DiagnosticType.empty())
+ OS << " return " << Info.Target.getName() << "AsmParser::Match_"
+ << CI.DiagnosticType << ";\n";
+ OS << " }\n\n";
+ }
+
+ // Check for register operands, including sub-classes.
+ OS << " if (Operand.isReg()) {\n";
+ OS << " MatchClassKind OpKind;\n";
+ OS << " switch (Operand.getReg()) {\n";
+ OS << " default: OpKind = InvalidMatchClass; break;\n";
+ for (std::map<Record*, ClassInfo*>::iterator
+ it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
+ it != ie; ++it)
+ OS << " case " << Info.Target.getName() << "::"
+ << it->first->getName() << ": OpKind = " << it->second->Name
+ << "; break;\n";
+ OS << " }\n";
+ OS << " return isSubclass(OpKind, Kind) ? "
+ << "MCTargetAsmParser::Match_Success :\n "
+ << " MCTargetAsmParser::Match_InvalidOperand;\n }\n\n";
+
+ // Generic fallthrough match failure case for operands that don't have
+ // specialized diagnostic types.
+ OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
+ OS << "}\n\n";
+}
+
+/// emitIsSubclass - Emit the subclass predicate function.
+static void emitIsSubclass(CodeGenTarget &Target,
+ std::vector<ClassInfo*> &Infos,
+ raw_ostream &OS) {
+ OS << "/// isSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
+ OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
+ OS << " if (A == B)\n";
+ OS << " return true;\n\n";
+
+ OS << " switch (A) {\n";
+ OS << " default:\n";
+ OS << " return false;\n";
+ for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
+ ie = Infos.end(); it != ie; ++it) {
+ ClassInfo &A = **it;
+
+ std::vector<StringRef> SuperClasses;
+ for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
+ ie = Infos.end(); it != ie; ++it) {
+ ClassInfo &B = **it;
+
+ if (&A != &B && A.isSubsetOf(B))
+ SuperClasses.push_back(B.Name);
+ }
+
+ if (SuperClasses.empty())
+ continue;
+
+ OS << "\n case " << A.Name << ":\n";
+
+ if (SuperClasses.size() == 1) {
+ OS << " return B == " << SuperClasses.back() << ";\n";
+ continue;
+ }
+
+ OS << " switch (B) {\n";
+ OS << " default: return false;\n";
+ for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
+ OS << " case " << SuperClasses[i] << ": return true;\n";
+ OS << " }\n";
+ }
+ OS << " }\n";
+ OS << "}\n\n";
+}
+
+/// emitMatchTokenString - Emit the function to match a token string to the
+/// appropriate match class value.
+static void emitMatchTokenString(CodeGenTarget &Target,
+ std::vector<ClassInfo*> &Infos,
+ raw_ostream &OS) {
+ // Construct the match list.
+ std::vector<StringMatcher::StringPair> Matches;
+ for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
+ ie = Infos.end(); it != ie; ++it) {
+ ClassInfo &CI = **it;
+
+ if (CI.Kind == ClassInfo::Token)
+ Matches.push_back(StringMatcher::StringPair(CI.ValueName,
+ "return " + CI.Name + ";"));
+ }
+
+ OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
+
+ StringMatcher("Name", Matches, OS).Emit();
+
+ OS << " return InvalidMatchClass;\n";
+ OS << "}\n\n";
+}
+
+/// emitMatchRegisterName - Emit the function to match a string to the target
+/// specific register enum.
+static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
+ raw_ostream &OS) {
+ // Construct the match list.
+ std::vector<StringMatcher::StringPair> Matches;
+ const std::vector<CodeGenRegister*> &Regs =
+ Target.getRegBank().getRegisters();
+ for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
+ const CodeGenRegister *Reg = Regs[i];
+ if (Reg->TheDef->getValueAsString("AsmName").empty())
+ continue;
+
+ Matches.push_back(StringMatcher::StringPair(
+ Reg->TheDef->getValueAsString("AsmName"),
+ "return " + utostr(Reg->EnumValue) + ";"));
+ }
+
+ OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
+
+ StringMatcher("Name", Matches, OS).Emit();
+
+ OS << " return 0;\n";
+ OS << "}\n\n";
+}
+
+/// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
+/// definitions.
+static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
+ raw_ostream &OS) {
+ OS << "// Flags for subtarget features that participate in "
+ << "instruction matching.\n";
+ OS << "enum SubtargetFeatureFlag {\n";
+ for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
+ it = Info.SubtargetFeatures.begin(),
+ ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
+ SubtargetFeatureInfo &SFI = *it->second;
+ OS << " " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
+ }
+ OS << " Feature_None = 0\n";
+ OS << "};\n\n";
+}
+
+/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
+static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
+ // Get the set of diagnostic types from all of the operand classes.
+ std::set<StringRef> Types;
+ for (std::map<Record*, ClassInfo*>::const_iterator
+ I = Info.AsmOperandClasses.begin(),
+ E = Info.AsmOperandClasses.end(); I != E; ++I) {
+ if (!I->second->DiagnosticType.empty())
+ Types.insert(I->second->DiagnosticType);
+ }
+
+ if (Types.empty()) return;
+
+ // Now emit the enum entries.
+ for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
+ I != E; ++I)
+ OS << " Match_" << *I << ",\n";
+ OS << " END_OPERAND_DIAGNOSTIC_TYPES\n";
+}
+
+/// emitGetSubtargetFeatureName - Emit the helper function to get the
+/// user-level name for a subtarget feature.
+static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
+ OS << "// User-level names for subtarget features that participate in\n"
+ << "// instruction matching.\n"
+ << "static const char *getSubtargetFeatureName(unsigned Val) {\n"
+ << " switch(Val) {\n";
+ for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
+ it = Info.SubtargetFeatures.begin(),
+ ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
+ SubtargetFeatureInfo &SFI = *it->second;
+ // FIXME: Totally just a placeholder name to get the algorithm working.
+ OS << " case " << SFI.getEnumName() << ": return \""
+ << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
+ }
+ OS << " default: return \"(unknown)\";\n";
+ OS << " }\n}\n\n";
+}
+
+/// emitComputeAvailableFeatures - Emit the function to compute the list of
+/// available features given a subtarget.
+static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
+ raw_ostream &OS) {
+ std::string ClassName =
+ Info.AsmParser->getValueAsString("AsmParserClassName");
+
+ OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
+ << "ComputeAvailableFeatures(uint64_t FB) const {\n";
+ OS << " unsigned Features = 0;\n";
+ for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
+ it = Info.SubtargetFeatures.begin(),
+ ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
+ SubtargetFeatureInfo &SFI = *it->second;
+
+ OS << " if (";
+ std::string CondStorage =
+ SFI.TheDef->getValueAsString("AssemblerCondString");
+ StringRef Conds = CondStorage;
+ std::pair<StringRef,StringRef> Comma = Conds.split(',');
+ bool First = true;
+ do {
+ if (!First)
+ OS << " && ";
+
+ bool Neg = false;
+ StringRef Cond = Comma.first;
+ if (Cond[0] == '!') {
+ Neg = true;
+ Cond = Cond.substr(1);
+ }
+
+ OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
+ if (Neg)
+ OS << " == 0";
+ else
+ OS << " != 0";
+ OS << ")";
+
+ if (Comma.second.empty())
+ break;
+
+ First = false;
+ Comma = Comma.second.split(',');
+ } while (true);
+
+ OS << ")\n";
+ OS << " Features |= " << SFI.getEnumName() << ";\n";
+ }
+ OS << " return Features;\n";
+ OS << "}\n\n";
+}
+
+static std::string GetAliasRequiredFeatures(Record *R,
+ const AsmMatcherInfo &Info) {
+ std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
+ std::string Result;
+ unsigned NumFeatures = 0;
+ for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
+ SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
+
+ if (F == 0)
+ throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
+ "' is not marked as an AssemblerPredicate!");
+
+ if (NumFeatures)
+ Result += '|';
+
+ Result += F->getEnumName();
+ ++NumFeatures;
+ }
+
+ if (NumFeatures > 1)
+ Result = '(' + Result + ')';
+ return Result;
+}
+
+/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
+/// emit a function for them and return true, otherwise return false.
+static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
+ // Ignore aliases when match-prefix is set.
+ if (!MatchPrefix.empty())
+ return false;
+
+ std::vector<Record*> Aliases =
+ Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
+ if (Aliases.empty()) return false;
+
+ OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
+ "unsigned Features) {\n";
+
+ // Keep track of all the aliases from a mnemonic. Use an std::map so that the
+ // iteration order of the map is stable.
+ std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
+
+ for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
+ Record *R = Aliases[i];
+ AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
+ }
+
+ // Process each alias a "from" mnemonic at a time, building the code executed
+ // by the string remapper.
+ std::vector<StringMatcher::StringPair> Cases;
+ for (std::map<std::string, std::vector<Record*> >::iterator
+ I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
+ I != E; ++I) {
+ const std::vector<Record*> &ToVec = I->second;
+
+ // Loop through each alias and emit code that handles each case. If there
+ // are two instructions without predicates, emit an error. If there is one,
+ // emit it last.
+ std::string MatchCode;
+ int AliasWithNoPredicate = -1;
+
+ for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
+ Record *R = ToVec[i];
+ std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
+
+ // If this unconditionally matches, remember it for later and diagnose
+ // duplicates.
+ if (FeatureMask.empty()) {
+ if (AliasWithNoPredicate != -1) {
+ // We can't have two aliases from the same mnemonic with no predicate.
+ PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
+ "two MnemonicAliases with the same 'from' mnemonic!");
+ throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
+ }
+
+ AliasWithNoPredicate = i;
+ continue;
+ }
+ if (R->getValueAsString("ToMnemonic") == I->first)
+ throw TGError(R->getLoc(), "MnemonicAlias to the same string");
+
+ if (!MatchCode.empty())
+ MatchCode += "else ";
+ MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
+ MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
+ }
+
+ if (AliasWithNoPredicate != -1) {
+ Record *R = ToVec[AliasWithNoPredicate];
+ if (!MatchCode.empty())
+ MatchCode += "else\n ";
+ MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
+ }
+
+ MatchCode += "return;";
+
+ Cases.push_back(std::make_pair(I->first, MatchCode));
+ }
+
+ StringMatcher("Mnemonic", Cases, OS).Emit();
+ OS << "}\n\n";
+
+ return true;
+}
+
+static const char *getMinimalTypeForRange(uint64_t Range) {
+ assert(Range < 0xFFFFFFFFULL && "Enum too large");
+ if (Range > 0xFFFF)
+ return "uint32_t";
+ if (Range > 0xFF)
+ return "uint16_t";
+ return "uint8_t";
+}
+
+static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
+ const AsmMatcherInfo &Info, StringRef ClassName) {
+ // Emit the static custom operand parsing table;
+ OS << "namespace {\n";
+ OS << " struct OperandMatchEntry {\n";
+ OS << " static const char *const MnemonicTable;\n";
+ OS << " uint32_t OperandMask;\n";
+ OS << " uint32_t Mnemonic;\n";
+ OS << " " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
+ << " RequiredFeatures;\n";
+ OS << " " << getMinimalTypeForRange(Info.Classes.size())
+ << " Class;\n\n";
+ OS << " StringRef getMnemonic() const {\n";
+ OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
+ OS << " MnemonicTable[Mnemonic]);\n";
+ OS << " }\n";
+ OS << " };\n\n";
+
+ OS << " // Predicate for searching for an opcode.\n";
+ OS << " struct LessOpcodeOperand {\n";
+ OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
+ OS << " return LHS.getMnemonic() < RHS;\n";
+ OS << " }\n";
+ OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
+ OS << " return LHS < RHS.getMnemonic();\n";
+ OS << " }\n";
+ OS << " bool operator()(const OperandMatchEntry &LHS,";
+ OS << " const OperandMatchEntry &RHS) {\n";
+ OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
+ OS << " }\n";
+ OS << " };\n";
+
+ OS << "} // end anonymous namespace.\n\n";
+
+ StringToOffsetTable StringTable;
+
+ OS << "static const OperandMatchEntry OperandMatchTable["
+ << Info.OperandMatchInfo.size() << "] = {\n";
+
+ OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
+ for (std::vector<OperandMatchEntry>::const_iterator it =
+ Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
+ it != ie; ++it) {
+ const OperandMatchEntry &OMI = *it;
+ const MatchableInfo &II = *OMI.MI;
+
+ OS << " { " << OMI.OperandMask;
+
+ OS << " /* ";
+ bool printComma = false;
+ for (int i = 0, e = 31; i !=e; ++i)
+ if (OMI.OperandMask & (1 << i)) {
+ if (printComma)
+ OS << ", ";
+ OS << i;
+ printComma = true;
+ }
+ OS << " */";
+
+ // Store a pascal-style length byte in the mnemonic.
+ std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
+ OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
+ << " /* " << II.Mnemonic << " */, ";
+
+ // Write the required features mask.
+ if (!II.RequiredFeatures.empty()) {
+ for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
+ if (i) OS << "|";
+ OS << II.RequiredFeatures[i]->getEnumName();
+ }
+ } else
+ OS << "0";
+
+ OS << ", " << OMI.CI->Name;
+
+ OS << " },\n";
+ }
+ OS << "};\n\n";
+
+ OS << "const char *const OperandMatchEntry::MnemonicTable =\n";
+ StringTable.EmitString(OS);
+ OS << ";\n\n";
+
+ // Emit the operand class switch to call the correct custom parser for
+ // the found operand class.
+ OS << Target.getName() << ClassName << "::OperandMatchResultTy "
+ << Target.getName() << ClassName << "::\n"
+ << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
+ << " &Operands,\n unsigned MCK) {\n\n"
+ << " switch(MCK) {\n";
+
+ for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
+ ie = Info.Classes.end(); it != ie; ++it) {
+ ClassInfo *CI = *it;
+ if (CI->ParserMethod.empty())
+ continue;
+ OS << " case " << CI->Name << ":\n"
+ << " return " << CI->ParserMethod << "(Operands);\n";
+ }
+
+ OS << " default:\n";
+ OS << " return MatchOperand_NoMatch;\n";
+ OS << " }\n";
+ OS << " return MatchOperand_NoMatch;\n";
+ OS << "}\n\n";
+
+ // Emit the static custom operand parser. This code is very similar with
+ // the other matcher. Also use MatchResultTy here just in case we go for
+ // a better error handling.
+ OS << Target.getName() << ClassName << "::OperandMatchResultTy "
+ << Target.getName() << ClassName << "::\n"
+ << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
+ << " &Operands,\n StringRef Mnemonic) {\n";
+
+ // Emit code to get the available features.
+ OS << " // Get the current feature set.\n";
+ OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n";
+
+ OS << " // Get the next operand index.\n";
+ OS << " unsigned NextOpNum = Operands.size()-1;\n";
+
+ // Emit code to search the table.
+ OS << " // Search the table.\n";
+ OS << " std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
+ OS << " MnemonicRange =\n";
+ OS << " std::equal_range(OperandMatchTable, OperandMatchTable+"
+ << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
+ << " LessOpcodeOperand());\n\n";
+
+ OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
+ OS << " return MatchOperand_NoMatch;\n\n";
+
+ OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
+ << " *ie = MnemonicRange.second; it != ie; ++it) {\n";
+
+ OS << " // equal_range guarantees that instruction mnemonic matches.\n";
+ OS << " assert(Mnemonic == it->getMnemonic());\n\n";
+
+ // Emit check that the required features are available.
+ OS << " // check if the available features match\n";
+ OS << " if ((AvailableFeatures & it->RequiredFeatures) "
+ << "!= it->RequiredFeatures) {\n";
+ OS << " continue;\n";
+ OS << " }\n\n";
+
+ // Emit check to ensure the operand number matches.
+ OS << " // check if the operand in question has a custom parser.\n";
+ OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
+ OS << " continue;\n\n";
+
+ // Emit call to the custom parser method
+ OS << " // call custom parse method to handle the operand\n";
+ OS << " OperandMatchResultTy Result = ";
+ OS << "tryCustomParseOperand(Operands, it->Class);\n";
+ OS << " if (Result != MatchOperand_NoMatch)\n";
+ OS << " return Result;\n";
+ OS << " }\n\n";
+
+ OS << " // Okay, we had no match.\n";
+ OS << " return MatchOperand_NoMatch;\n";
+ OS << "}\n\n";
+}
+
+void AsmMatcherEmitter::run(raw_ostream &OS) {
+ CodeGenTarget Target(Records);
+ Record *AsmParser = Target.getAsmParser();
+ std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
+
+ // Compute the information on the instructions to match.
+ AsmMatcherInfo Info(AsmParser, Target, Records);
+ Info.buildInfo();
+
+ // Sort the instruction table using the partial order on classes. We use
+ // stable_sort to ensure that ambiguous instructions are still
+ // deterministically ordered.
+ std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
+ less_ptr<MatchableInfo>());
+
+ DEBUG_WITH_TYPE("instruction_info", {
+ for (std::vector<MatchableInfo*>::iterator
+ it = Info.Matchables.begin(), ie = Info.Matchables.end();
+ it != ie; ++it)
+ (*it)->dump();
+ });
+
+ // Check for ambiguous matchables.
+ DEBUG_WITH_TYPE("ambiguous_instrs", {
+ unsigned NumAmbiguous = 0;
+ for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
+ for (unsigned j = i + 1; j != e; ++j) {
+ MatchableInfo &A = *Info.Matchables[i];
+ MatchableInfo &B = *Info.Matchables[j];
+
+ if (A.couldMatchAmbiguouslyWith(B)) {
+ errs() << "warning: ambiguous matchables:\n";
+ A.dump();
+ errs() << "\nis incomparable with:\n";
+ B.dump();
+ errs() << "\n\n";
+ ++NumAmbiguous;
+ }
+ }
+ }
+ if (NumAmbiguous)
+ errs() << "warning: " << NumAmbiguous
+ << " ambiguous matchables!\n";
+ });
+
+ // Compute the information on the custom operand parsing.
+ Info.buildOperandMatchInfo();
+
+ // Write the output.
+
+ // Information for the class declaration.
+ OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
+ OS << "#undef GET_ASSEMBLER_HEADER\n";
+ OS << " // This should be included into the middle of the declaration of\n";
+ OS << " // your subclasses implementation of MCTargetAsmParser.\n";
+ OS << " unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
+ OS << " bool ConvertToMCInst(unsigned Kind, MCInst &Inst, "
+ << "unsigned Opcode,\n"
+ << " const SmallVectorImpl<MCParsedAsmOperand*> "
+ << "&Operands);\n";
+ OS << " bool MnemonicIsValid(StringRef Mnemonic);\n";
+ OS << " unsigned MatchInstructionImpl(\n";
+ OS << " const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
+ OS << " MCInst &Inst, unsigned &ErrorInfo, unsigned VariantID = 0);\n";
+
+ if (Info.OperandMatchInfo.size()) {
+ OS << "\n enum OperandMatchResultTy {\n";
+ OS << " MatchOperand_Success, // operand matched successfully\n";
+ OS << " MatchOperand_NoMatch, // operand did not match\n";
+ OS << " MatchOperand_ParseFail // operand matched but had errors\n";
+ OS << " };\n";
+ OS << " OperandMatchResultTy MatchOperandParserImpl(\n";
+ OS << " SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
+ OS << " StringRef Mnemonic);\n";
+
+ OS << " OperandMatchResultTy tryCustomParseOperand(\n";
+ OS << " SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
+ OS << " unsigned MCK);\n\n";
+ }
+
+ OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
+
+ // Emit the operand match diagnostic enum names.
+ OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
+ OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
+ emitOperandDiagnosticTypes(Info, OS);
+ OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
+
+
+ OS << "\n#ifdef GET_REGISTER_MATCHER\n";
+ OS << "#undef GET_REGISTER_MATCHER\n\n";
+
+ // Emit the subtarget feature enumeration.
+ emitSubtargetFeatureFlagEnumeration(Info, OS);
+
+ // Emit the function to match a register name to number.
+ emitMatchRegisterName(Target, AsmParser, OS);
+
+ OS << "#endif // GET_REGISTER_MATCHER\n\n";
+
+ OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
+ OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
+
+ // Generate the helper function to get the names for subtarget features.
+ emitGetSubtargetFeatureName(Info, OS);
+
+ OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
+
+ OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
+ OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
+
+ // Generate the function that remaps for mnemonic aliases.
+ bool HasMnemonicAliases = emitMnemonicAliases(OS, Info);
+
+ // Generate the unified function to convert operands into an MCInst.
+ emitConvertToMCInst(Target, ClassName, Info.Matchables, OS);
+
+ // Emit the enumeration for classes which participate in matching.
+ emitMatchClassEnumeration(Target, Info.Classes, OS);
+
+ // Emit the routine to match token strings to their match class.
+ emitMatchTokenString(Target, Info.Classes, OS);
+
+ // Emit the subclass predicate routine.
+ emitIsSubclass(Target, Info.Classes, OS);
+
+ // Emit the routine to validate an operand against a match class.
+ emitValidateOperandClass(Info, OS);
+
+ // Emit the available features compute function.
+ emitComputeAvailableFeatures(Info, OS);
+
+
+ size_t MaxNumOperands = 0;
+ for (std::vector<MatchableInfo*>::const_iterator it =
+ Info.Matchables.begin(), ie = Info.Matchables.end();
+ it != ie; ++it)
+ MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size());
+
+ // Emit the static match table; unused classes get initalized to 0 which is
+ // guaranteed to be InvalidMatchClass.
+ //
+ // FIXME: We can reduce the size of this table very easily. First, we change
+ // it so that store the kinds in separate bit-fields for each index, which
+ // only needs to be the max width used for classes at that index (we also need
+ // to reject based on this during classification). If we then make sure to
+ // order the match kinds appropriately (putting mnemonics last), then we
+ // should only end up using a few bits for each class, especially the ones
+ // following the mnemonic.
+ OS << "namespace {\n";
+ OS << " struct MatchEntry {\n";
+ OS << " static const char *const MnemonicTable;\n";
+ OS << " uint32_t Mnemonic;\n";
+ OS << " uint16_t Opcode;\n";
+ OS << " " << getMinimalTypeForRange(Info.Matchables.size())
+ << " ConvertFn;\n";
+ OS << " " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
+ << " RequiredFeatures;\n";
+ OS << " " << getMinimalTypeForRange(Info.Classes.size())
+ << " Classes[" << MaxNumOperands << "];\n";
+ OS << " uint8_t AsmVariantID;\n\n";
+ OS << " StringRef getMnemonic() const {\n";
+ OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
+ OS << " MnemonicTable[Mnemonic]);\n";
+ OS << " }\n";
+ OS << " };\n\n";
+
+ OS << " // Predicate for searching for an opcode.\n";
+ OS << " struct LessOpcode {\n";
+ OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
+ OS << " return LHS.getMnemonic() < RHS;\n";
+ OS << " }\n";
+ OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
+ OS << " return LHS < RHS.getMnemonic();\n";
+ OS << " }\n";
+ OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
+ OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
+ OS << " }\n";
+ OS << " };\n";
+
+ OS << "} // end anonymous namespace.\n\n";
+
+ StringToOffsetTable StringTable;
+
+ OS << "static const MatchEntry MatchTable["
+ << Info.Matchables.size() << "] = {\n";
+
+ for (std::vector<MatchableInfo*>::const_iterator it =
+ Info.Matchables.begin(), ie = Info.Matchables.end();
+ it != ie; ++it) {
+ MatchableInfo &II = **it;
+
+ // Store a pascal-style length byte in the mnemonic.
+ std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
+ OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
+ << " /* " << II.Mnemonic << " */, "
+ << Target.getName() << "::"
+ << II.getResultInst()->TheDef->getName() << ", "
+ << II.ConversionFnKind << ", ";
+
+ // Write the required features mask.
+ if (!II.RequiredFeatures.empty()) {
+ for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
+ if (i) OS << "|";
+ OS << II.RequiredFeatures[i]->getEnumName();
+ }
+ } else
+ OS << "0";
+
+ OS << ", { ";
+ for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
+ MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
+
+ if (i) OS << ", ";
+ OS << Op.Class->Name;
+ }
+ OS << " }, " << II.AsmVariantID;
+ OS << "},\n";
+ }
+
+ OS << "};\n\n";
+
+ OS << "const char *const MatchEntry::MnemonicTable =\n";
+ StringTable.EmitString(OS);
+ OS << ";\n\n";
+
+ // A method to determine if a mnemonic is in the list.
+ OS << "bool " << Target.getName() << ClassName << "::\n"
+ << "MnemonicIsValid(StringRef Mnemonic) {\n";
+ OS << " // Search the table.\n";
+ OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
+ OS << " std::equal_range(MatchTable, MatchTable+"
+ << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n";
+ OS << " return MnemonicRange.first != MnemonicRange.second;\n";
+ OS << "}\n\n";
+
+ // Finally, build the match function.
+ OS << "unsigned "
+ << Target.getName() << ClassName << "::\n"
+ << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
+ << " &Operands,\n";
+ OS << " MCInst &Inst, unsigned &ErrorInfo, ";
+ OS << "unsigned VariantID) {\n";
+
+ // Emit code to get the available features.
+ OS << " // Get the current feature set.\n";
+ OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n";
+
+ OS << " // Get the instruction mnemonic, which is the first token.\n";
+ OS << " StringRef Mnemonic = ((" << Target.getName()
+ << "Operand*)Operands[0])->getToken();\n\n";
+
+ if (HasMnemonicAliases) {
+ OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
+ OS << " // FIXME : Add an entry in AsmParserVariant to check this.\n";
+ OS << " if (!VariantID)\n";
+ OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
+ }
+
+ // Emit code to compute the class list for this operand vector.
+ OS << " // Eliminate obvious mismatches.\n";
+ OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
+ OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n";
+ OS << " return Match_InvalidOperand;\n";
+ OS << " }\n\n";
+
+ OS << " // Some state to try to produce better error messages.\n";
+ OS << " bool HadMatchOtherThanFeatures = false;\n";
+ OS << " bool HadMatchOtherThanPredicate = false;\n";
+ OS << " unsigned RetCode = Match_InvalidOperand;\n";
+ OS << " unsigned MissingFeatures = ~0U;\n";
+ OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
+ OS << " // wrong for all instances of the instruction.\n";
+ OS << " ErrorInfo = ~0U;\n";
+
+ // Emit code to search the table.
+ OS << " // Search the table.\n";
+ OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
+ OS << " std::equal_range(MatchTable, MatchTable+"
+ << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
+
+ OS << " // Return a more specific error code if no mnemonics match.\n";
+ OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
+ OS << " return Match_MnemonicFail;\n\n";
+
+ OS << " for (const MatchEntry *it = MnemonicRange.first, "
+ << "*ie = MnemonicRange.second;\n";
+ OS << " it != ie; ++it) {\n";
+
+ OS << " // equal_range guarantees that instruction mnemonic matches.\n";
+ OS << " assert(Mnemonic == it->getMnemonic());\n";
+
+ // Emit check that the subclasses match.
+ OS << " if (VariantID != it->AsmVariantID) continue;\n";
+ OS << " bool OperandsValid = true;\n";
+ OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
+ OS << " if (i + 1 >= Operands.size()) {\n";
+ OS << " OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
+ OS << " if (!OperandsValid) ErrorInfo = i + 1;\n";
+ OS << " break;\n";
+ OS << " }\n";
+ OS << " unsigned Diag = validateOperandClass(Operands[i+1],\n";
+ OS.indent(43);
+ OS << "(MatchClassKind)it->Classes[i]);\n";
+ OS << " if (Diag == Match_Success)\n";
+ OS << " continue;\n";
+ OS << " // If this operand is broken for all of the instances of this\n";
+ OS << " // mnemonic, keep track of it so we can report loc info.\n";
+ OS << " // If we already had a match that only failed due to a\n";
+ OS << " // target predicate, that diagnostic is preferred.\n";
+ OS << " if (!HadMatchOtherThanPredicate &&\n";
+ OS << " (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
+ OS << " ErrorInfo = i+1;\n";
+ OS << " // InvalidOperand is the default. Prefer specificity.\n";
+ OS << " if (Diag != Match_InvalidOperand)\n";
+ OS << " RetCode = Diag;\n";
+ OS << " }\n";
+ OS << " // Otherwise, just reject this instance of the mnemonic.\n";
+ OS << " OperandsValid = false;\n";
+ OS << " break;\n";
+ OS << " }\n\n";
+
+ OS << " if (!OperandsValid) continue;\n";
+
+ // Emit check that the required features are available.
+ OS << " if ((AvailableFeatures & it->RequiredFeatures) "
+ << "!= it->RequiredFeatures) {\n";
+ OS << " HadMatchOtherThanFeatures = true;\n";
+ OS << " unsigned NewMissingFeatures = it->RequiredFeatures & "
+ "~AvailableFeatures;\n";
+ OS << " if (CountPopulation_32(NewMissingFeatures) <= "
+ "CountPopulation_32(MissingFeatures))\n";
+ OS << " MissingFeatures = NewMissingFeatures;\n";
+ OS << " continue;\n";
+ OS << " }\n";
+ OS << "\n";
+ OS << " // We have selected a definite instruction, convert the parsed\n"
+ << " // operands into the appropriate MCInst.\n";
+ OS << " if (!ConvertToMCInst(it->ConvertFn, Inst,\n"
+ << " it->Opcode, Operands))\n";
+ OS << " return Match_ConversionFail;\n";
+ OS << "\n";
+
+ // Verify the instruction with the target-specific match predicate function.
+ OS << " // We have a potential match. Check the target predicate to\n"
+ << " // handle any context sensitive constraints.\n"
+ << " unsigned MatchResult;\n"
+ << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
+ << " Match_Success) {\n"
+ << " Inst.clear();\n"
+ << " RetCode = MatchResult;\n"
+ << " HadMatchOtherThanPredicate = true;\n"
+ << " continue;\n"
+ << " }\n\n";
+
+ // Call the post-processing function, if used.
+ std::string InsnCleanupFn =
+ AsmParser->getValueAsString("AsmParserInstCleanup");
+ if (!InsnCleanupFn.empty())
+ OS << " " << InsnCleanupFn << "(Inst);\n";
+
+ OS << " return Match_Success;\n";
+ OS << " }\n\n";
+
+ OS << " // Okay, we had no match. Try to return a useful error code.\n";
+ OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)";
+ OS << " return RetCode;\n";
+ OS << " // Missing feature matches return which features were missing\n";
+ OS << " ErrorInfo = MissingFeatures;\n";
+ OS << " return Match_MissingFeature;\n";
+ OS << "}\n\n";
+
+ if (Info.OperandMatchInfo.size())
+ emitCustomOperandParsing(OS, Target, Info, ClassName);
+
+ OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
+}
+
+namespace llvm {
+
+void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
+ emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
+ AsmMatcherEmitter(RK).run(OS);
+}
+
+} // End llvm namespace
OpenPOWER on IntegriCloud