diff options
Diffstat (limited to 'contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp')
-rw-r--r-- | contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp | 2371 |
1 files changed, 2371 insertions, 0 deletions
diff --git a/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp b/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp new file mode 100644 index 0000000..1d14037 --- /dev/null +++ b/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp @@ -0,0 +1,2371 @@ +//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This tablegen backend emits a target specifier matcher for converting parsed +// assembly operands in the MCInst structures. It also emits a matcher for +// custom operand parsing. +// +// Converting assembly operands into MCInst structures +// --------------------------------------------------- +// +// The input to the target specific matcher is a list of literal tokens and +// operands. The target specific parser should generally eliminate any syntax +// which is not relevant for matching; for example, comma tokens should have +// already been consumed and eliminated by the parser. Most instructions will +// end up with a single literal token (the instruction name) and some number of +// operands. +// +// Some example inputs, for X86: +// 'addl' (immediate ...) (register ...) +// 'add' (immediate ...) (memory ...) +// 'call' '*' %epc +// +// The assembly matcher is responsible for converting this input into a precise +// machine instruction (i.e., an instruction with a well defined encoding). This +// mapping has several properties which complicate matching: +// +// - It may be ambiguous; many architectures can legally encode particular +// variants of an instruction in different ways (for example, using a smaller +// encoding for small immediates). Such ambiguities should never be +// arbitrarily resolved by the assembler, the assembler is always responsible +// for choosing the "best" available instruction. +// +// - It may depend on the subtarget or the assembler context. Instructions +// which are invalid for the current mode, but otherwise unambiguous (e.g., +// an SSE instruction in a file being assembled for i486) should be accepted +// and rejected by the assembler front end. However, if the proper encoding +// for an instruction is dependent on the assembler context then the matcher +// is responsible for selecting the correct machine instruction for the +// current mode. +// +// The core matching algorithm attempts to exploit the regularity in most +// instruction sets to quickly determine the set of possibly matching +// instructions, and the simplify the generated code. Additionally, this helps +// to ensure that the ambiguities are intentionally resolved by the user. +// +// The matching is divided into two distinct phases: +// +// 1. Classification: Each operand is mapped to the unique set which (a) +// contains it, and (b) is the largest such subset for which a single +// instruction could match all members. +// +// For register classes, we can generate these subgroups automatically. For +// arbitrary operands, we expect the user to define the classes and their +// relations to one another (for example, 8-bit signed immediates as a +// subset of 32-bit immediates). +// +// By partitioning the operands in this way, we guarantee that for any +// tuple of classes, any single instruction must match either all or none +// of the sets of operands which could classify to that tuple. +// +// In addition, the subset relation amongst classes induces a partial order +// on such tuples, which we use to resolve ambiguities. +// +// 2. The input can now be treated as a tuple of classes (static tokens are +// simple singleton sets). Each such tuple should generally map to a single +// instruction (we currently ignore cases where this isn't true, whee!!!), +// which we can emit a simple matcher for. +// +// Custom Operand Parsing +// ---------------------- +// +// Some targets need a custom way to parse operands, some specific instructions +// can contain arguments that can represent processor flags and other kinds of +// identifiers that need to be mapped to specific valeus in the final encoded +// instructions. The target specific custom operand parsing works in the +// following way: +// +// 1. A operand match table is built, each entry contains a mnemonic, an +// operand class, a mask for all operand positions for that same +// class/mnemonic and target features to be checked while trying to match. +// +// 2. The operand matcher will try every possible entry with the same +// mnemonic and will check if the target feature for this mnemonic also +// matches. After that, if the operand to be matched has its index +// present in the mask, a successful match occurs. Otherwise, fallback +// to the regular operand parsing. +// +// 3. For a match success, each operand class that has a 'ParserMethod' +// becomes part of a switch from where the custom method is called. +// +//===----------------------------------------------------------------------===// + +#include "AsmMatcherEmitter.h" +#include "CodeGenTarget.h" +#include "Record.h" +#include "StringMatcher.h" +#include "llvm/ADT/OwningPtr.h" +#include "llvm/ADT/PointerUnion.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include <map> +#include <set> +using namespace llvm; + +static cl::opt<std::string> +MatchPrefix("match-prefix", cl::init(""), + cl::desc("Only match instructions with the given prefix")); + +namespace { +class AsmMatcherInfo; +struct SubtargetFeatureInfo; + +/// ClassInfo - Helper class for storing the information about a particular +/// class of operands which can be matched. +struct ClassInfo { + enum ClassInfoKind { + /// Invalid kind, for use as a sentinel value. + Invalid = 0, + + /// The class for a particular token. + Token, + + /// The (first) register class, subsequent register classes are + /// RegisterClass0+1, and so on. + RegisterClass0, + + /// The (first) user defined class, subsequent user defined classes are + /// UserClass0+1, and so on. + UserClass0 = 1<<16 + }; + + /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + + /// N) for the Nth user defined class. + unsigned Kind; + + /// SuperClasses - The super classes of this class. Note that for simplicities + /// sake user operands only record their immediate super class, while register + /// operands include all superclasses. + std::vector<ClassInfo*> SuperClasses; + + /// Name - The full class name, suitable for use in an enum. + std::string Name; + + /// ClassName - The unadorned generic name for this class (e.g., Token). + std::string ClassName; + + /// ValueName - The name of the value this class represents; for a token this + /// is the literal token string, for an operand it is the TableGen class (or + /// empty if this is a derived class). + std::string ValueName; + + /// PredicateMethod - The name of the operand method to test whether the + /// operand matches this class; this is not valid for Token or register kinds. + std::string PredicateMethod; + + /// RenderMethod - The name of the operand method to add this operand to an + /// MCInst; this is not valid for Token or register kinds. + std::string RenderMethod; + + /// ParserMethod - The name of the operand method to do a target specific + /// parsing on the operand. + std::string ParserMethod; + + /// For register classes, the records for all the registers in this class. + std::set<Record*> Registers; + +public: + /// isRegisterClass() - Check if this is a register class. + bool isRegisterClass() const { + return Kind >= RegisterClass0 && Kind < UserClass0; + } + + /// isUserClass() - Check if this is a user defined class. + bool isUserClass() const { + return Kind >= UserClass0; + } + + /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes + /// are related if they are in the same class hierarchy. + bool isRelatedTo(const ClassInfo &RHS) const { + // Tokens are only related to tokens. + if (Kind == Token || RHS.Kind == Token) + return Kind == Token && RHS.Kind == Token; + + // Registers classes are only related to registers classes, and only if + // their intersection is non-empty. + if (isRegisterClass() || RHS.isRegisterClass()) { + if (!isRegisterClass() || !RHS.isRegisterClass()) + return false; + + std::set<Record*> Tmp; + std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin()); + std::set_intersection(Registers.begin(), Registers.end(), + RHS.Registers.begin(), RHS.Registers.end(), + II); + + return !Tmp.empty(); + } + + // Otherwise we have two users operands; they are related if they are in the + // same class hierarchy. + // + // FIXME: This is an oversimplification, they should only be related if they + // intersect, however we don't have that information. + assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); + const ClassInfo *Root = this; + while (!Root->SuperClasses.empty()) + Root = Root->SuperClasses.front(); + + const ClassInfo *RHSRoot = &RHS; + while (!RHSRoot->SuperClasses.empty()) + RHSRoot = RHSRoot->SuperClasses.front(); + + return Root == RHSRoot; + } + + /// isSubsetOf - Test whether this class is a subset of \arg RHS; + bool isSubsetOf(const ClassInfo &RHS) const { + // This is a subset of RHS if it is the same class... + if (this == &RHS) + return true; + + // ... or if any of its super classes are a subset of RHS. + for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(), + ie = SuperClasses.end(); it != ie; ++it) + if ((*it)->isSubsetOf(RHS)) + return true; + + return false; + } + + /// operator< - Compare two classes. + bool operator<(const ClassInfo &RHS) const { + if (this == &RHS) + return false; + + // Unrelated classes can be ordered by kind. + if (!isRelatedTo(RHS)) + return Kind < RHS.Kind; + + switch (Kind) { + case Invalid: + assert(0 && "Invalid kind!"); + case Token: + // Tokens are comparable by value. + // + // FIXME: Compare by enum value. + return ValueName < RHS.ValueName; + + default: + // This class precedes the RHS if it is a proper subset of the RHS. + if (isSubsetOf(RHS)) + return true; + if (RHS.isSubsetOf(*this)) + return false; + + // Otherwise, order by name to ensure we have a total ordering. + return ValueName < RHS.ValueName; + } + } +}; + +/// MatchableInfo - Helper class for storing the necessary information for an +/// instruction or alias which is capable of being matched. +struct MatchableInfo { + struct AsmOperand { + /// Token - This is the token that the operand came from. + StringRef Token; + + /// The unique class instance this operand should match. + ClassInfo *Class; + + /// The operand name this is, if anything. + StringRef SrcOpName; + + /// The suboperand index within SrcOpName, or -1 for the entire operand. + int SubOpIdx; + + explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1) {} + }; + + /// ResOperand - This represents a single operand in the result instruction + /// generated by the match. In cases (like addressing modes) where a single + /// assembler operand expands to multiple MCOperands, this represents the + /// single assembler operand, not the MCOperand. + struct ResOperand { + enum { + /// RenderAsmOperand - This represents an operand result that is + /// generated by calling the render method on the assembly operand. The + /// corresponding AsmOperand is specified by AsmOperandNum. + RenderAsmOperand, + + /// TiedOperand - This represents a result operand that is a duplicate of + /// a previous result operand. + TiedOperand, + + /// ImmOperand - This represents an immediate value that is dumped into + /// the operand. + ImmOperand, + + /// RegOperand - This represents a fixed register that is dumped in. + RegOperand + } Kind; + + union { + /// This is the operand # in the AsmOperands list that this should be + /// copied from. + unsigned AsmOperandNum; + + /// TiedOperandNum - This is the (earlier) result operand that should be + /// copied from. + unsigned TiedOperandNum; + + /// ImmVal - This is the immediate value added to the instruction. + int64_t ImmVal; + + /// Register - This is the register record. + Record *Register; + }; + + /// MINumOperands - The number of MCInst operands populated by this + /// operand. + unsigned MINumOperands; + + static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { + ResOperand X; + X.Kind = RenderAsmOperand; + X.AsmOperandNum = AsmOpNum; + X.MINumOperands = NumOperands; + return X; + } + + static ResOperand getTiedOp(unsigned TiedOperandNum) { + ResOperand X; + X.Kind = TiedOperand; + X.TiedOperandNum = TiedOperandNum; + X.MINumOperands = 1; + return X; + } + + static ResOperand getImmOp(int64_t Val) { + ResOperand X; + X.Kind = ImmOperand; + X.ImmVal = Val; + X.MINumOperands = 1; + return X; + } + + static ResOperand getRegOp(Record *Reg) { + ResOperand X; + X.Kind = RegOperand; + X.Register = Reg; + X.MINumOperands = 1; + return X; + } + }; + + /// TheDef - This is the definition of the instruction or InstAlias that this + /// matchable came from. + Record *const TheDef; + + /// DefRec - This is the definition that it came from. + PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; + + const CodeGenInstruction *getResultInst() const { + if (DefRec.is<const CodeGenInstruction*>()) + return DefRec.get<const CodeGenInstruction*>(); + return DefRec.get<const CodeGenInstAlias*>()->ResultInst; + } + + /// ResOperands - This is the operand list that should be built for the result + /// MCInst. + std::vector<ResOperand> ResOperands; + + /// AsmString - The assembly string for this instruction (with variants + /// removed), e.g. "movsx $src, $dst". + std::string AsmString; + + /// Mnemonic - This is the first token of the matched instruction, its + /// mnemonic. + StringRef Mnemonic; + + /// AsmOperands - The textual operands that this instruction matches, + /// annotated with a class and where in the OperandList they were defined. + /// This directly corresponds to the tokenized AsmString after the mnemonic is + /// removed. + SmallVector<AsmOperand, 4> AsmOperands; + + /// Predicates - The required subtarget features to match this instruction. + SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures; + + /// ConversionFnKind - The enum value which is passed to the generated + /// ConvertToMCInst to convert parsed operands into an MCInst for this + /// function. + std::string ConversionFnKind; + + MatchableInfo(const CodeGenInstruction &CGI) + : TheDef(CGI.TheDef), DefRec(&CGI), AsmString(CGI.AsmString) { + } + + MatchableInfo(const CodeGenInstAlias *Alias) + : TheDef(Alias->TheDef), DefRec(Alias), AsmString(Alias->AsmString) { + } + + void Initialize(const AsmMatcherInfo &Info, + SmallPtrSet<Record*, 16> &SingletonRegisters); + + /// Validate - Return true if this matchable is a valid thing to match against + /// and perform a bunch of validity checking. + bool Validate(StringRef CommentDelimiter, bool Hack) const; + + /// getSingletonRegisterForAsmOperand - If the specified token is a singleton + /// register, return the Record for it, otherwise return null. + Record *getSingletonRegisterForAsmOperand(unsigned i, + const AsmMatcherInfo &Info) const; + + /// FindAsmOperand - Find the AsmOperand with the specified name and + /// suboperand index. + int FindAsmOperand(StringRef N, int SubOpIdx) const { + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) + if (N == AsmOperands[i].SrcOpName && + SubOpIdx == AsmOperands[i].SubOpIdx) + return i; + return -1; + } + + /// FindAsmOperandNamed - Find the first AsmOperand with the specified name. + /// This does not check the suboperand index. + int FindAsmOperandNamed(StringRef N) const { + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) + if (N == AsmOperands[i].SrcOpName) + return i; + return -1; + } + + void BuildInstructionResultOperands(); + void BuildAliasResultOperands(); + + /// operator< - Compare two matchables. + bool operator<(const MatchableInfo &RHS) const { + // The primary comparator is the instruction mnemonic. + if (Mnemonic != RHS.Mnemonic) + return Mnemonic < RHS.Mnemonic; + + if (AsmOperands.size() != RHS.AsmOperands.size()) + return AsmOperands.size() < RHS.AsmOperands.size(); + + // Compare lexicographically by operand. The matcher validates that other + // orderings wouldn't be ambiguous using \see CouldMatchAmbiguouslyWith(). + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { + if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) + return true; + if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) + return false; + } + + return false; + } + + /// CouldMatchAmbiguouslyWith - Check whether this matchable could + /// ambiguously match the same set of operands as \arg RHS (without being a + /// strictly superior match). + bool CouldMatchAmbiguouslyWith(const MatchableInfo &RHS) { + // The primary comparator is the instruction mnemonic. + if (Mnemonic != RHS.Mnemonic) + return false; + + // The number of operands is unambiguous. + if (AsmOperands.size() != RHS.AsmOperands.size()) + return false; + + // Otherwise, make sure the ordering of the two instructions is unambiguous + // by checking that either (a) a token or operand kind discriminates them, + // or (b) the ordering among equivalent kinds is consistent. + + // Tokens and operand kinds are unambiguous (assuming a correct target + // specific parser). + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) + if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || + AsmOperands[i].Class->Kind == ClassInfo::Token) + if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || + *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) + return false; + + // Otherwise, this operand could commute if all operands are equivalent, or + // there is a pair of operands that compare less than and a pair that + // compare greater than. + bool HasLT = false, HasGT = false; + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { + if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) + HasLT = true; + if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) + HasGT = true; + } + + return !(HasLT ^ HasGT); + } + + void dump(); + +private: + void TokenizeAsmString(const AsmMatcherInfo &Info); +}; + +/// SubtargetFeatureInfo - Helper class for storing information on a subtarget +/// feature which participates in instruction matching. +struct SubtargetFeatureInfo { + /// \brief The predicate record for this feature. + Record *TheDef; + + /// \brief An unique index assigned to represent this feature. + unsigned Index; + + SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {} + + /// \brief The name of the enumerated constant identifying this feature. + std::string getEnumName() const { + return "Feature_" + TheDef->getName(); + } +}; + +struct OperandMatchEntry { + unsigned OperandMask; + MatchableInfo* MI; + ClassInfo *CI; + + static OperandMatchEntry Create(MatchableInfo* mi, ClassInfo *ci, + unsigned opMask) { + OperandMatchEntry X; + X.OperandMask = opMask; + X.CI = ci; + X.MI = mi; + return X; + } +}; + + +class AsmMatcherInfo { +public: + /// Tracked Records + RecordKeeper &Records; + + /// The tablegen AsmParser record. + Record *AsmParser; + + /// Target - The target information. + CodeGenTarget &Target; + + /// The AsmParser "RegisterPrefix" value. + std::string RegisterPrefix; + + /// The classes which are needed for matching. + std::vector<ClassInfo*> Classes; + + /// The information on the matchables to match. + std::vector<MatchableInfo*> Matchables; + + /// Info for custom matching operands by user defined methods. + std::vector<OperandMatchEntry> OperandMatchInfo; + + /// Map of Register records to their class information. + std::map<Record*, ClassInfo*> RegisterClasses; + + /// Map of Predicate records to their subtarget information. + std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures; + +private: + /// Map of token to class information which has already been constructed. + std::map<std::string, ClassInfo*> TokenClasses; + + /// Map of RegisterClass records to their class information. + std::map<Record*, ClassInfo*> RegisterClassClasses; + + /// Map of AsmOperandClass records to their class information. + std::map<Record*, ClassInfo*> AsmOperandClasses; + +private: + /// getTokenClass - Lookup or create the class for the given token. + ClassInfo *getTokenClass(StringRef Token); + + /// getOperandClass - Lookup or create the class for the given operand. + ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, + int SubOpIdx = -1); + + /// BuildRegisterClasses - Build the ClassInfo* instances for register + /// classes. + void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters); + + /// BuildOperandClasses - Build the ClassInfo* instances for user defined + /// operand classes. + void BuildOperandClasses(); + + void BuildInstructionOperandReference(MatchableInfo *II, StringRef OpName, + unsigned AsmOpIdx); + void BuildAliasOperandReference(MatchableInfo *II, StringRef OpName, + MatchableInfo::AsmOperand &Op); + +public: + AsmMatcherInfo(Record *AsmParser, + CodeGenTarget &Target, + RecordKeeper &Records); + + /// BuildInfo - Construct the various tables used during matching. + void BuildInfo(); + + /// BuildOperandMatchInfo - Build the necessary information to handle user + /// defined operand parsing methods. + void BuildOperandMatchInfo(); + + /// getSubtargetFeature - Lookup or create the subtarget feature info for the + /// given operand. + SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { + assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); + std::map<Record*, SubtargetFeatureInfo*>::const_iterator I = + SubtargetFeatures.find(Def); + return I == SubtargetFeatures.end() ? 0 : I->second; + } + + RecordKeeper &getRecords() const { + return Records; + } +}; + +} + +void MatchableInfo::dump() { + errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; + + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { + AsmOperand &Op = AsmOperands[i]; + errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; + errs() << '\"' << Op.Token << "\"\n"; + } +} + +void MatchableInfo::Initialize(const AsmMatcherInfo &Info, + SmallPtrSet<Record*, 16> &SingletonRegisters) { + // TODO: Eventually support asmparser for Variant != 0. + AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, 0); + + TokenizeAsmString(Info); + + // Compute the require features. + std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates"); + for (unsigned i = 0, e = Predicates.size(); i != e; ++i) + if (SubtargetFeatureInfo *Feature = + Info.getSubtargetFeature(Predicates[i])) + RequiredFeatures.push_back(Feature); + + // Collect singleton registers, if used. + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { + if (Record *Reg = getSingletonRegisterForAsmOperand(i, Info)) + SingletonRegisters.insert(Reg); + } +} + +/// TokenizeAsmString - Tokenize a simplified assembly string. +void MatchableInfo::TokenizeAsmString(const AsmMatcherInfo &Info) { + StringRef String = AsmString; + unsigned Prev = 0; + bool InTok = true; + for (unsigned i = 0, e = String.size(); i != e; ++i) { + switch (String[i]) { + case '[': + case ']': + case '*': + case '!': + case ' ': + case '\t': + case ',': + if (InTok) { + AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); + InTok = false; + } + if (!isspace(String[i]) && String[i] != ',') + AsmOperands.push_back(AsmOperand(String.substr(i, 1))); + Prev = i + 1; + break; + + case '\\': + if (InTok) { + AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); + InTok = false; + } + ++i; + assert(i != String.size() && "Invalid quoted character"); + AsmOperands.push_back(AsmOperand(String.substr(i, 1))); + Prev = i + 1; + break; + + case '$': { + if (InTok) { + AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); + InTok = false; + } + + // If this isn't "${", treat like a normal token. + if (i + 1 == String.size() || String[i + 1] != '{') { + Prev = i; + break; + } + + StringRef::iterator End = std::find(String.begin() + i, String.end(),'}'); + assert(End != String.end() && "Missing brace in operand reference!"); + size_t EndPos = End - String.begin(); + AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1))); + Prev = EndPos + 1; + i = EndPos; + break; + } + + case '.': + if (InTok) + AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); + Prev = i; + InTok = true; + break; + + default: + InTok = true; + } + } + if (InTok && Prev != String.size()) + AsmOperands.push_back(AsmOperand(String.substr(Prev))); + + // The first token of the instruction is the mnemonic, which must be a + // simple string, not a $foo variable or a singleton register. + assert(!AsmOperands.empty() && "Instruction has no tokens?"); + Mnemonic = AsmOperands[0].Token; + if (Mnemonic[0] == '$' || getSingletonRegisterForAsmOperand(0, Info)) + throw TGError(TheDef->getLoc(), + "Invalid instruction mnemonic '" + Mnemonic.str() + "'!"); + + // Remove the first operand, it is tracked in the mnemonic field. + AsmOperands.erase(AsmOperands.begin()); +} + +bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const { + // Reject matchables with no .s string. + if (AsmString.empty()) + throw TGError(TheDef->getLoc(), "instruction with empty asm string"); + + // Reject any matchables with a newline in them, they should be marked + // isCodeGenOnly if they are pseudo instructions. + if (AsmString.find('\n') != std::string::npos) + throw TGError(TheDef->getLoc(), + "multiline instruction is not valid for the asmparser, " + "mark it isCodeGenOnly"); + + // Remove comments from the asm string. We know that the asmstring only + // has one line. + if (!CommentDelimiter.empty() && + StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) + throw TGError(TheDef->getLoc(), + "asmstring for instruction has comment character in it, " + "mark it isCodeGenOnly"); + + // Reject matchables with operand modifiers, these aren't something we can + // handle, the target should be refactored to use operands instead of + // modifiers. + // + // Also, check for instructions which reference the operand multiple times; + // this implies a constraint we would not honor. + std::set<std::string> OperandNames; + for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { + StringRef Tok = AsmOperands[i].Token; + if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) + throw TGError(TheDef->getLoc(), + "matchable with operand modifier '" + Tok.str() + + "' not supported by asm matcher. Mark isCodeGenOnly!"); + + // Verify that any operand is only mentioned once. + // We reject aliases and ignore instructions for now. + if (Tok[0] == '$' && !OperandNames.insert(Tok).second) { + if (!Hack) + throw TGError(TheDef->getLoc(), + "ERROR: matchable with tied operand '" + Tok.str() + + "' can never be matched!"); + // FIXME: Should reject these. The ARM backend hits this with $lane in a + // bunch of instructions. It is unclear what the right answer is. + DEBUG({ + errs() << "warning: '" << TheDef->getName() << "': " + << "ignoring instruction with tied operand '" + << Tok.str() << "'\n"; + }); + return false; + } + } + + return true; +} + +/// getSingletonRegisterForAsmOperand - If the specified token is a singleton +/// register, return the register name, otherwise return a null StringRef. +Record *MatchableInfo:: +getSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info) const{ + StringRef Tok = AsmOperands[i].Token; + if (!Tok.startswith(Info.RegisterPrefix)) + return 0; + + StringRef RegName = Tok.substr(Info.RegisterPrefix.size()); + if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) + return Reg->TheDef; + + // If there is no register prefix (i.e. "%" in "%eax"), then this may + // be some random non-register token, just ignore it. + if (Info.RegisterPrefix.empty()) + return 0; + + // Otherwise, we have something invalid prefixed with the register prefix, + // such as %foo. + std::string Err = "unable to find register for '" + RegName.str() + + "' (which matches register prefix)"; + throw TGError(TheDef->getLoc(), Err); +} + +static std::string getEnumNameForToken(StringRef Str) { + std::string Res; + + for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { + switch (*it) { + case '*': Res += "_STAR_"; break; + case '%': Res += "_PCT_"; break; + case ':': Res += "_COLON_"; break; + case '!': Res += "_EXCLAIM_"; break; + case '.': Res += "_DOT_"; break; + default: + if (isalnum(*it)) + Res += *it; + else + Res += "_" + utostr((unsigned) *it) + "_"; + } + } + + return Res; +} + +ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { + ClassInfo *&Entry = TokenClasses[Token]; + + if (!Entry) { + Entry = new ClassInfo(); + Entry->Kind = ClassInfo::Token; + Entry->ClassName = "Token"; + Entry->Name = "MCK_" + getEnumNameForToken(Token); + Entry->ValueName = Token; + Entry->PredicateMethod = "<invalid>"; + Entry->RenderMethod = "<invalid>"; + Entry->ParserMethod = ""; + Classes.push_back(Entry); + } + + return Entry; +} + +ClassInfo * +AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, + int SubOpIdx) { + Record *Rec = OI.Rec; + if (SubOpIdx != -1) + Rec = dynamic_cast<DefInit*>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); + + if (Rec->isSubClassOf("RegisterClass")) { + if (ClassInfo *CI = RegisterClassClasses[Rec]) + return CI; + throw TGError(Rec->getLoc(), "register class has no class info!"); + } + + assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); + Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); + if (ClassInfo *CI = AsmOperandClasses[MatchClass]) + return CI; + + throw TGError(Rec->getLoc(), "operand has no match class!"); +} + +void AsmMatcherInfo:: +BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) { + const std::vector<CodeGenRegister> &Registers = Target.getRegisters(); + const std::vector<CodeGenRegisterClass> &RegClassList = + Target.getRegisterClasses(); + + // The register sets used for matching. + std::set< std::set<Record*> > RegisterSets; + + // Gather the defined sets. + for (std::vector<CodeGenRegisterClass>::const_iterator it = + RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) + RegisterSets.insert(std::set<Record*>(it->Elements.begin(), + it->Elements.end())); + + // Add any required singleton sets. + for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(), + ie = SingletonRegisters.end(); it != ie; ++it) { + Record *Rec = *it; + RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1)); + } + + // Introduce derived sets where necessary (when a register does not determine + // a unique register set class), and build the mapping of registers to the set + // they should classify to. + std::map<Record*, std::set<Record*> > RegisterMap; + for (std::vector<CodeGenRegister>::const_iterator it = Registers.begin(), + ie = Registers.end(); it != ie; ++it) { + const CodeGenRegister &CGR = *it; + // Compute the intersection of all sets containing this register. + std::set<Record*> ContainingSet; + + for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(), + ie = RegisterSets.end(); it != ie; ++it) { + if (!it->count(CGR.TheDef)) + continue; + + if (ContainingSet.empty()) { + ContainingSet = *it; + continue; + } + + std::set<Record*> Tmp; + std::swap(Tmp, ContainingSet); + std::insert_iterator< std::set<Record*> > II(ContainingSet, + ContainingSet.begin()); + std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II); + } + + if (!ContainingSet.empty()) { + RegisterSets.insert(ContainingSet); + RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); + } + } + + // Construct the register classes. + std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses; + unsigned Index = 0; + for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(), + ie = RegisterSets.end(); it != ie; ++it, ++Index) { + ClassInfo *CI = new ClassInfo(); + CI->Kind = ClassInfo::RegisterClass0 + Index; + CI->ClassName = "Reg" + utostr(Index); + CI->Name = "MCK_Reg" + utostr(Index); + CI->ValueName = ""; + CI->PredicateMethod = ""; // unused + CI->RenderMethod = "addRegOperands"; + CI->Registers = *it; + Classes.push_back(CI); + RegisterSetClasses.insert(std::make_pair(*it, CI)); + } + + // Find the superclasses; we could compute only the subgroup lattice edges, + // but there isn't really a point. + for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(), + ie = RegisterSets.end(); it != ie; ++it) { + ClassInfo *CI = RegisterSetClasses[*it]; + for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(), + ie2 = RegisterSets.end(); it2 != ie2; ++it2) + if (*it != *it2 && + std::includes(it2->begin(), it2->end(), it->begin(), it->end())) + CI->SuperClasses.push_back(RegisterSetClasses[*it2]); + } + + // Name the register classes which correspond to a user defined RegisterClass. + for (std::vector<CodeGenRegisterClass>::const_iterator + it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) { + ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(), + it->Elements.end())]; + if (CI->ValueName.empty()) { + CI->ClassName = it->getName(); + CI->Name = "MCK_" + it->getName(); + CI->ValueName = it->getName(); + } else + CI->ValueName = CI->ValueName + "," + it->getName(); + + RegisterClassClasses.insert(std::make_pair(it->TheDef, CI)); + } + + // Populate the map for individual registers. + for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(), + ie = RegisterMap.end(); it != ie; ++it) + RegisterClasses[it->first] = RegisterSetClasses[it->second]; + + // Name the register classes which correspond to singleton registers. + for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(), + ie = SingletonRegisters.end(); it != ie; ++it) { + Record *Rec = *it; + ClassInfo *CI = RegisterClasses[Rec]; + assert(CI && "Missing singleton register class info!"); + + if (CI->ValueName.empty()) { + CI->ClassName = Rec->getName(); + CI->Name = "MCK_" + Rec->getName(); + CI->ValueName = Rec->getName(); + } else + CI->ValueName = CI->ValueName + "," + Rec->getName(); + } +} + +void AsmMatcherInfo::BuildOperandClasses() { + std::vector<Record*> AsmOperands = + Records.getAllDerivedDefinitions("AsmOperandClass"); + + // Pre-populate AsmOperandClasses map. + for (std::vector<Record*>::iterator it = AsmOperands.begin(), + ie = AsmOperands.end(); it != ie; ++it) + AsmOperandClasses[*it] = new ClassInfo(); + + unsigned Index = 0; + for (std::vector<Record*>::iterator it = AsmOperands.begin(), + ie = AsmOperands.end(); it != ie; ++it, ++Index) { + ClassInfo *CI = AsmOperandClasses[*it]; + CI->Kind = ClassInfo::UserClass0 + Index; + + ListInit *Supers = (*it)->getValueAsListInit("SuperClasses"); + for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) { + DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i)); + if (!DI) { + PrintError((*it)->getLoc(), "Invalid super class reference!"); + continue; + } + + ClassInfo *SC = AsmOperandClasses[DI->getDef()]; + if (!SC) + PrintError((*it)->getLoc(), "Invalid super class reference!"); + else + CI->SuperClasses.push_back(SC); + } + CI->ClassName = (*it)->getValueAsString("Name"); + CI->Name = "MCK_" + CI->ClassName; + CI->ValueName = (*it)->getName(); + + // Get or construct the predicate method name. + Init *PMName = (*it)->getValueInit("PredicateMethod"); + if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) { + CI->PredicateMethod = SI->getValue(); + } else { + assert(dynamic_cast<UnsetInit*>(PMName) && + "Unexpected PredicateMethod field!"); + CI->PredicateMethod = "is" + CI->ClassName; + } + + // Get or construct the render method name. + Init *RMName = (*it)->getValueInit("RenderMethod"); + if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) { + CI->RenderMethod = SI->getValue(); + } else { + assert(dynamic_cast<UnsetInit*>(RMName) && + "Unexpected RenderMethod field!"); + CI->RenderMethod = "add" + CI->ClassName + "Operands"; + } + + // Get the parse method name or leave it as empty. + Init *PRMName = (*it)->getValueInit("ParserMethod"); + if (StringInit *SI = dynamic_cast<StringInit*>(PRMName)) + CI->ParserMethod = SI->getValue(); + + AsmOperandClasses[*it] = CI; + Classes.push_back(CI); + } +} + +AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, + CodeGenTarget &target, + RecordKeeper &records) + : Records(records), AsmParser(asmParser), Target(target), + RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix")) { +} + +/// BuildOperandMatchInfo - Build the necessary information to handle user +/// defined operand parsing methods. +void AsmMatcherInfo::BuildOperandMatchInfo() { + + /// Map containing a mask with all operands indicies that can be found for + /// that class inside a instruction. + std::map<ClassInfo*, unsigned> OpClassMask; + + for (std::vector<MatchableInfo*>::const_iterator it = + Matchables.begin(), ie = Matchables.end(); + it != ie; ++it) { + MatchableInfo &II = **it; + OpClassMask.clear(); + + // Keep track of all operands of this instructions which belong to the + // same class. + for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) { + MatchableInfo::AsmOperand &Op = II.AsmOperands[i]; + if (Op.Class->ParserMethod.empty()) + continue; + unsigned &OperandMask = OpClassMask[Op.Class]; + OperandMask |= (1 << i); + } + + // Generate operand match info for each mnemonic/operand class pair. + for (std::map<ClassInfo*, unsigned>::iterator iit = OpClassMask.begin(), + iie = OpClassMask.end(); iit != iie; ++iit) { + unsigned OpMask = iit->second; + ClassInfo *CI = iit->first; + OperandMatchInfo.push_back(OperandMatchEntry::Create(&II, CI, OpMask)); + } + } +} + +void AsmMatcherInfo::BuildInfo() { + // Build information about all of the AssemblerPredicates. + std::vector<Record*> AllPredicates = + Records.getAllDerivedDefinitions("Predicate"); + for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) { + Record *Pred = AllPredicates[i]; + // Ignore predicates that are not intended for the assembler. + if (!Pred->getValueAsBit("AssemblerMatcherPredicate")) + continue; + + if (Pred->getName().empty()) + throw TGError(Pred->getLoc(), "Predicate has no name!"); + + unsigned FeatureNo = SubtargetFeatures.size(); + SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo); + assert(FeatureNo < 32 && "Too many subtarget features!"); + } + + StringRef CommentDelimiter = AsmParser->getValueAsString("CommentDelimiter"); + + // Parse the instructions; we need to do this first so that we can gather the + // singleton register classes. + SmallPtrSet<Record*, 16> SingletonRegisters; + for (CodeGenTarget::inst_iterator I = Target.inst_begin(), + E = Target.inst_end(); I != E; ++I) { + const CodeGenInstruction &CGI = **I; + + // If the tblgen -match-prefix option is specified (for tblgen hackers), + // filter the set of instructions we consider. + if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix)) + continue; + + // Ignore "codegen only" instructions. + if (CGI.TheDef->getValueAsBit("isCodeGenOnly")) + continue; + + // Validate the operand list to ensure we can handle this instruction. + for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { + const CGIOperandList::OperandInfo &OI = CGI.Operands[i]; + + // Validate tied operands. + if (OI.getTiedRegister() != -1) { + // If we have a tied operand that consists of multiple MCOperands, + // reject it. We reject aliases and ignore instructions for now. + if (OI.MINumOperands != 1) { + // FIXME: Should reject these. The ARM backend hits this with $lane + // in a bunch of instructions. It is unclear what the right answer is. + DEBUG({ + errs() << "warning: '" << CGI.TheDef->getName() << "': " + << "ignoring instruction with multi-operand tied operand '" + << OI.Name << "'\n"; + }); + continue; + } + } + } + + OwningPtr<MatchableInfo> II(new MatchableInfo(CGI)); + + II->Initialize(*this, SingletonRegisters); + + // Ignore instructions which shouldn't be matched and diagnose invalid + // instruction definitions with an error. + if (!II->Validate(CommentDelimiter, true)) + continue; + + // Ignore "Int_*" and "*_Int" instructions, which are internal aliases. + // + // FIXME: This is a total hack. + if (StringRef(II->TheDef->getName()).startswith("Int_") || + StringRef(II->TheDef->getName()).endswith("_Int")) + continue; + + Matchables.push_back(II.take()); + } + + // Parse all of the InstAlias definitions and stick them in the list of + // matchables. + std::vector<Record*> AllInstAliases = + Records.getAllDerivedDefinitions("InstAlias"); + for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { + CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target); + + // If the tblgen -match-prefix option is specified (for tblgen hackers), + // filter the set of instruction aliases we consider, based on the target + // instruction. + if (!StringRef(Alias->ResultInst->TheDef->getName()).startswith( + MatchPrefix)) + continue; + + OwningPtr<MatchableInfo> II(new MatchableInfo(Alias)); + + II->Initialize(*this, SingletonRegisters); + + // Validate the alias definitions. + II->Validate(CommentDelimiter, false); + + Matchables.push_back(II.take()); + } + + // Build info for the register classes. + BuildRegisterClasses(SingletonRegisters); + + // Build info for the user defined assembly operand classes. + BuildOperandClasses(); + + // Build the information about matchables, now that we have fully formed + // classes. + for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(), + ie = Matchables.end(); it != ie; ++it) { + MatchableInfo *II = *it; + + // Parse the tokens after the mnemonic. + // Note: BuildInstructionOperandReference may insert new AsmOperands, so + // don't precompute the loop bound. + for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { + MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; + StringRef Token = Op.Token; + + // Check for singleton registers. + if (Record *RegRecord = II->getSingletonRegisterForAsmOperand(i, *this)) { + Op.Class = RegisterClasses[RegRecord]; + assert(Op.Class && Op.Class->Registers.size() == 1 && + "Unexpected class for singleton register"); + continue; + } + + // Check for simple tokens. + if (Token[0] != '$') { + Op.Class = getTokenClass(Token); + continue; + } + + if (Token.size() > 1 && isdigit(Token[1])) { + Op.Class = getTokenClass(Token); + continue; + } + + // Otherwise this is an operand reference. + StringRef OperandName; + if (Token[1] == '{') + OperandName = Token.substr(2, Token.size() - 3); + else + OperandName = Token.substr(1); + + if (II->DefRec.is<const CodeGenInstruction*>()) + BuildInstructionOperandReference(II, OperandName, i); + else + BuildAliasOperandReference(II, OperandName, Op); + } + + if (II->DefRec.is<const CodeGenInstruction*>()) + II->BuildInstructionResultOperands(); + else + II->BuildAliasResultOperands(); + } + + // Reorder classes so that classes precede super classes. + std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>()); +} + +/// BuildInstructionOperandReference - The specified operand is a reference to a +/// named operand such as $src. Resolve the Class and OperandInfo pointers. +void AsmMatcherInfo:: +BuildInstructionOperandReference(MatchableInfo *II, + StringRef OperandName, + unsigned AsmOpIdx) { + const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); + const CGIOperandList &Operands = CGI.Operands; + MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; + + // Map this token to an operand. + unsigned Idx; + if (!Operands.hasOperandNamed(OperandName, Idx)) + throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" + + OperandName.str() + "'"); + + // If the instruction operand has multiple suboperands, but the parser + // match class for the asm operand is still the default "ImmAsmOperand", + // then handle each suboperand separately. + if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { + Record *Rec = Operands[Idx].Rec; + assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); + Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); + if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { + // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. + StringRef Token = Op->Token; // save this in case Op gets moved + for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { + MatchableInfo::AsmOperand NewAsmOp(Token); + NewAsmOp.SubOpIdx = SI; + II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); + } + // Replace Op with first suboperand. + Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved + Op->SubOpIdx = 0; + } + } + + // Set up the operand class. + Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); + + // If the named operand is tied, canonicalize it to the untied operand. + // For example, something like: + // (outs GPR:$dst), (ins GPR:$src) + // with an asmstring of + // "inc $src" + // we want to canonicalize to: + // "inc $dst" + // so that we know how to provide the $dst operand when filling in the result. + int OITied = Operands[Idx].getTiedRegister(); + if (OITied != -1) { + // The tied operand index is an MIOperand index, find the operand that + // contains it. + std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); + OperandName = Operands[Idx.first].Name; + Op->SubOpIdx = Idx.second; + } + + Op->SrcOpName = OperandName; +} + +/// BuildAliasOperandReference - When parsing an operand reference out of the +/// matching string (e.g. "movsx $src, $dst"), determine what the class of the +/// operand reference is by looking it up in the result pattern definition. +void AsmMatcherInfo::BuildAliasOperandReference(MatchableInfo *II, + StringRef OperandName, + MatchableInfo::AsmOperand &Op) { + const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); + + // Set up the operand class. + for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) + if (CGA.ResultOperands[i].isRecord() && + CGA.ResultOperands[i].getName() == OperandName) { + // It's safe to go with the first one we find, because CodeGenInstAlias + // validates that all operands with the same name have the same record. + unsigned ResultIdx = CGA.ResultInstOperandIndex[i].first; + Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; + Op.Class = getOperandClass(CGA.ResultInst->Operands[ResultIdx], + Op.SubOpIdx); + Op.SrcOpName = OperandName; + return; + } + + throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" + + OperandName.str() + "'"); +} + +void MatchableInfo::BuildInstructionResultOperands() { + const CodeGenInstruction *ResultInst = getResultInst(); + + // Loop over all operands of the result instruction, determining how to + // populate them. + for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { + const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i]; + + // If this is a tied operand, just copy from the previously handled operand. + int TiedOp = OpInfo.getTiedRegister(); + if (TiedOp != -1) { + ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); + continue; + } + + // Find out what operand from the asmparser this MCInst operand comes from. + int SrcOperand = FindAsmOperandNamed(OpInfo.Name); + if (OpInfo.Name.empty() || SrcOperand == -1) + throw TGError(TheDef->getLoc(), "Instruction '" + + TheDef->getName() + "' has operand '" + OpInfo.Name + + "' that doesn't appear in asm string!"); + + // Check if the one AsmOperand populates the entire operand. + unsigned NumOperands = OpInfo.MINumOperands; + if (AsmOperands[SrcOperand].SubOpIdx == -1) { + ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); + continue; + } + + // Add a separate ResOperand for each suboperand. + for (unsigned AI = 0; AI < NumOperands; ++AI) { + assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && + AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && + "unexpected AsmOperands for suboperands"); + ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); + } + } +} + +void MatchableInfo::BuildAliasResultOperands() { + const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); + const CodeGenInstruction *ResultInst = getResultInst(); + + // Loop over all operands of the result instruction, determining how to + // populate them. + unsigned AliasOpNo = 0; + unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); + for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { + const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; + + // If this is a tied operand, just copy from the previously handled operand. + int TiedOp = OpInfo->getTiedRegister(); + if (TiedOp != -1) { + ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); + continue; + } + + // Handle all the suboperands for this operand. + const std::string &OpName = OpInfo->Name; + for ( ; AliasOpNo < LastOpNo && + CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { + int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; + + // Find out what operand from the asmparser that this MCInst operand + // comes from. + switch (CGA.ResultOperands[AliasOpNo].Kind) { + default: assert(0 && "unexpected InstAlias operand kind"); + case CodeGenInstAlias::ResultOperand::K_Record: { + StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); + int SrcOperand = FindAsmOperand(Name, SubIdx); + if (SrcOperand == -1) + throw TGError(TheDef->getLoc(), "Instruction '" + + TheDef->getName() + "' has operand '" + OpName + + "' that doesn't appear in asm string!"); + unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); + ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, + NumOperands)); + break; + } + case CodeGenInstAlias::ResultOperand::K_Imm: { + int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); + ResOperands.push_back(ResOperand::getImmOp(ImmVal)); + break; + } + case CodeGenInstAlias::ResultOperand::K_Reg: { + Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); + ResOperands.push_back(ResOperand::getRegOp(Reg)); + break; + } + } + } + } +} + +static void EmitConvertToMCInst(CodeGenTarget &Target, StringRef ClassName, + std::vector<MatchableInfo*> &Infos, + raw_ostream &OS) { + // Write the convert function to a separate stream, so we can drop it after + // the enum. + std::string ConvertFnBody; + raw_string_ostream CvtOS(ConvertFnBody); + + // Function we have already generated. + std::set<std::string> GeneratedFns; + + // Start the unified conversion function. + CvtOS << "bool " << Target.getName() << ClassName << "::\n"; + CvtOS << "ConvertToMCInst(unsigned Kind, MCInst &Inst, " + << "unsigned Opcode,\n" + << " const SmallVectorImpl<MCParsedAsmOperand*" + << "> &Operands) {\n"; + CvtOS << " Inst.setOpcode(Opcode);\n"; + CvtOS << " switch (Kind) {\n"; + CvtOS << " default:\n"; + + // Start the enum, which we will generate inline. + + OS << "// Unified function for converting operands to MCInst instances.\n\n"; + OS << "enum ConversionKind {\n"; + + // TargetOperandClass - This is the target's operand class, like X86Operand. + std::string TargetOperandClass = Target.getName() + "Operand"; + + for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(), + ie = Infos.end(); it != ie; ++it) { + MatchableInfo &II = **it; + + // Check if we have a custom match function. + std::string AsmMatchConverter = + II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); + if (!AsmMatchConverter.empty()) { + std::string Signature = "ConvertCustom_" + AsmMatchConverter; + II.ConversionFnKind = Signature; + + // Check if we have already generated this signature. + if (!GeneratedFns.insert(Signature).second) + continue; + + // If not, emit it now. Add to the enum list. + OS << " " << Signature << ",\n"; + + CvtOS << " case " << Signature << ":\n"; + CvtOS << " return " << AsmMatchConverter + << "(Inst, Opcode, Operands);\n"; + continue; + } + + // Build the conversion function signature. + std::string Signature = "Convert"; + std::string CaseBody; + raw_string_ostream CaseOS(CaseBody); + + // Compute the convert enum and the case body. + for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) { + const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i]; + + // Generate code to populate each result operand. + switch (OpInfo.Kind) { + case MatchableInfo::ResOperand::RenderAsmOperand: { + // This comes from something we parsed. + MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum]; + + // Registers are always converted the same, don't duplicate the + // conversion function based on them. + Signature += "__"; + if (Op.Class->isRegisterClass()) + Signature += "Reg"; + else + Signature += Op.Class->ClassName; + Signature += utostr(OpInfo.MINumOperands); + Signature += "_" + itostr(OpInfo.AsmOperandNum); + + CaseOS << " ((" << TargetOperandClass << "*)Operands[" + << (OpInfo.AsmOperandNum+1) << "])->" << Op.Class->RenderMethod + << "(Inst, " << OpInfo.MINumOperands << ");\n"; + break; + } + + case MatchableInfo::ResOperand::TiedOperand: { + // If this operand is tied to a previous one, just copy the MCInst + // operand from the earlier one.We can only tie single MCOperand values. + //assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); + unsigned TiedOp = OpInfo.TiedOperandNum; + assert(i > TiedOp && "Tied operand precedes its target!"); + CaseOS << " Inst.addOperand(Inst.getOperand(" << TiedOp << "));\n"; + Signature += "__Tie" + utostr(TiedOp); + break; + } + case MatchableInfo::ResOperand::ImmOperand: { + int64_t Val = OpInfo.ImmVal; + CaseOS << " Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"; + Signature += "__imm" + itostr(Val); + break; + } + case MatchableInfo::ResOperand::RegOperand: { + if (OpInfo.Register == 0) { + CaseOS << " Inst.addOperand(MCOperand::CreateReg(0));\n"; + Signature += "__reg0"; + } else { + std::string N = getQualifiedName(OpInfo.Register); + CaseOS << " Inst.addOperand(MCOperand::CreateReg(" << N << "));\n"; + Signature += "__reg" + OpInfo.Register->getName(); + } + } + } + } + + II.ConversionFnKind = Signature; + + // Check if we have already generated this signature. + if (!GeneratedFns.insert(Signature).second) + continue; + + // If not, emit it now. Add to the enum list. + OS << " " << Signature << ",\n"; + + CvtOS << " case " << Signature << ":\n"; + CvtOS << CaseOS.str(); + CvtOS << " return true;\n"; + } + + // Finish the convert function. + + CvtOS << " }\n"; + CvtOS << " return false;\n"; + CvtOS << "}\n\n"; + + // Finish the enum, and drop the convert function after it. + + OS << " NumConversionVariants\n"; + OS << "};\n\n"; + + OS << CvtOS.str(); +} + +/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds. +static void EmitMatchClassEnumeration(CodeGenTarget &Target, + std::vector<ClassInfo*> &Infos, + raw_ostream &OS) { + OS << "namespace {\n\n"; + + OS << "/// MatchClassKind - The kinds of classes which participate in\n" + << "/// instruction matching.\n"; + OS << "enum MatchClassKind {\n"; + OS << " InvalidMatchClass = 0,\n"; + for (std::vector<ClassInfo*>::iterator it = Infos.begin(), + ie = Infos.end(); it != ie; ++it) { + ClassInfo &CI = **it; + OS << " " << CI.Name << ", // "; + if (CI.Kind == ClassInfo::Token) { + OS << "'" << CI.ValueName << "'\n"; + } else if (CI.isRegisterClass()) { + if (!CI.ValueName.empty()) + OS << "register class '" << CI.ValueName << "'\n"; + else + OS << "derived register class\n"; + } else { + OS << "user defined class '" << CI.ValueName << "'\n"; + } + } + OS << " NumMatchClassKinds\n"; + OS << "};\n\n"; + + OS << "}\n\n"; +} + +/// EmitValidateOperandClass - Emit the function to validate an operand class. +static void EmitValidateOperandClass(AsmMatcherInfo &Info, + raw_ostream &OS) { + OS << "static bool ValidateOperandClass(MCParsedAsmOperand *GOp, " + << "MatchClassKind Kind) {\n"; + OS << " " << Info.Target.getName() << "Operand &Operand = *(" + << Info.Target.getName() << "Operand*)GOp;\n"; + + // Check for Token operands first. + OS << " if (Operand.isToken())\n"; + OS << " return MatchTokenString(Operand.getToken()) == Kind;\n\n"; + + // Check for register operands, including sub-classes. + OS << " if (Operand.isReg()) {\n"; + OS << " MatchClassKind OpKind;\n"; + OS << " switch (Operand.getReg()) {\n"; + OS << " default: OpKind = InvalidMatchClass; break;\n"; + for (std::map<Record*, ClassInfo*>::iterator + it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end(); + it != ie; ++it) + OS << " case " << Info.Target.getName() << "::" + << it->first->getName() << ": OpKind = " << it->second->Name + << "; break;\n"; + OS << " }\n"; + OS << " return IsSubclass(OpKind, Kind);\n"; + OS << " }\n\n"; + + // Check the user classes. We don't care what order since we're only + // actually matching against one of them. + for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(), + ie = Info.Classes.end(); it != ie; ++it) { + ClassInfo &CI = **it; + + if (!CI.isUserClass()) + continue; + + OS << " // '" << CI.ClassName << "' class\n"; + OS << " if (Kind == " << CI.Name + << " && Operand." << CI.PredicateMethod << "()) {\n"; + OS << " return true;\n"; + OS << " }\n\n"; + } + + OS << " return false;\n"; + OS << "}\n\n"; +} + +/// EmitIsSubclass - Emit the subclass predicate function. +static void EmitIsSubclass(CodeGenTarget &Target, + std::vector<ClassInfo*> &Infos, + raw_ostream &OS) { + OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n"; + OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n"; + OS << " if (A == B)\n"; + OS << " return true;\n\n"; + + OS << " switch (A) {\n"; + OS << " default:\n"; + OS << " return false;\n"; + for (std::vector<ClassInfo*>::iterator it = Infos.begin(), + ie = Infos.end(); it != ie; ++it) { + ClassInfo &A = **it; + + if (A.Kind != ClassInfo::Token) { + std::vector<StringRef> SuperClasses; + for (std::vector<ClassInfo*>::iterator it = Infos.begin(), + ie = Infos.end(); it != ie; ++it) { + ClassInfo &B = **it; + + if (&A != &B && A.isSubsetOf(B)) + SuperClasses.push_back(B.Name); + } + + if (SuperClasses.empty()) + continue; + + OS << "\n case " << A.Name << ":\n"; + + if (SuperClasses.size() == 1) { + OS << " return B == " << SuperClasses.back() << ";\n"; + continue; + } + + OS << " switch (B) {\n"; + OS << " default: return false;\n"; + for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i) + OS << " case " << SuperClasses[i] << ": return true;\n"; + OS << " }\n"; + } + } + OS << " }\n"; + OS << "}\n\n"; +} + +/// EmitMatchTokenString - Emit the function to match a token string to the +/// appropriate match class value. +static void EmitMatchTokenString(CodeGenTarget &Target, + std::vector<ClassInfo*> &Infos, + raw_ostream &OS) { + // Construct the match list. + std::vector<StringMatcher::StringPair> Matches; + for (std::vector<ClassInfo*>::iterator it = Infos.begin(), + ie = Infos.end(); it != ie; ++it) { + ClassInfo &CI = **it; + + if (CI.Kind == ClassInfo::Token) + Matches.push_back(StringMatcher::StringPair(CI.ValueName, + "return " + CI.Name + ";")); + } + + OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n"; + + StringMatcher("Name", Matches, OS).Emit(); + + OS << " return InvalidMatchClass;\n"; + OS << "}\n\n"; +} + +/// EmitMatchRegisterName - Emit the function to match a string to the target +/// specific register enum. +static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, + raw_ostream &OS) { + // Construct the match list. + std::vector<StringMatcher::StringPair> Matches; + for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) { + const CodeGenRegister &Reg = Target.getRegisters()[i]; + if (Reg.TheDef->getValueAsString("AsmName").empty()) + continue; + + Matches.push_back(StringMatcher::StringPair( + Reg.TheDef->getValueAsString("AsmName"), + "return " + utostr(i + 1) + ";")); + } + + OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; + + StringMatcher("Name", Matches, OS).Emit(); + + OS << " return 0;\n"; + OS << "}\n\n"; +} + +/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag +/// definitions. +static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info, + raw_ostream &OS) { + OS << "// Flags for subtarget features that participate in " + << "instruction matching.\n"; + OS << "enum SubtargetFeatureFlag {\n"; + for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator + it = Info.SubtargetFeatures.begin(), + ie = Info.SubtargetFeatures.end(); it != ie; ++it) { + SubtargetFeatureInfo &SFI = *it->second; + OS << " " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n"; + } + OS << " Feature_None = 0\n"; + OS << "};\n\n"; +} + +/// EmitComputeAvailableFeatures - Emit the function to compute the list of +/// available features given a subtarget. +static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info, + raw_ostream &OS) { + std::string ClassName = + Info.AsmParser->getValueAsString("AsmParserClassName"); + + OS << "unsigned " << Info.Target.getName() << ClassName << "::\n" + << "ComputeAvailableFeatures(const " << Info.Target.getName() + << "Subtarget *Subtarget) const {\n"; + OS << " unsigned Features = 0;\n"; + for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator + it = Info.SubtargetFeatures.begin(), + ie = Info.SubtargetFeatures.end(); it != ie; ++it) { + SubtargetFeatureInfo &SFI = *it->second; + OS << " if (" << SFI.TheDef->getValueAsString("CondString") + << ")\n"; + OS << " Features |= " << SFI.getEnumName() << ";\n"; + } + OS << " return Features;\n"; + OS << "}\n\n"; +} + +static std::string GetAliasRequiredFeatures(Record *R, + const AsmMatcherInfo &Info) { + std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); + std::string Result; + unsigned NumFeatures = 0; + for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { + SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); + + if (F == 0) + throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + + "' is not marked as an AssemblerPredicate!"); + + if (NumFeatures) + Result += '|'; + + Result += F->getEnumName(); + ++NumFeatures; + } + + if (NumFeatures > 1) + Result = '(' + Result + ')'; + return Result; +} + +/// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions, +/// emit a function for them and return true, otherwise return false. +static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) { + // Ignore aliases when match-prefix is set. + if (!MatchPrefix.empty()) + return false; + + std::vector<Record*> Aliases = + Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); + if (Aliases.empty()) return false; + + OS << "static void ApplyMnemonicAliases(StringRef &Mnemonic, " + "unsigned Features) {\n"; + + // Keep track of all the aliases from a mnemonic. Use an std::map so that the + // iteration order of the map is stable. + std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; + + for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { + Record *R = Aliases[i]; + AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); + } + + // Process each alias a "from" mnemonic at a time, building the code executed + // by the string remapper. + std::vector<StringMatcher::StringPair> Cases; + for (std::map<std::string, std::vector<Record*> >::iterator + I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end(); + I != E; ++I) { + const std::vector<Record*> &ToVec = I->second; + + // Loop through each alias and emit code that handles each case. If there + // are two instructions without predicates, emit an error. If there is one, + // emit it last. + std::string MatchCode; + int AliasWithNoPredicate = -1; + + for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { + Record *R = ToVec[i]; + std::string FeatureMask = GetAliasRequiredFeatures(R, Info); + + // If this unconditionally matches, remember it for later and diagnose + // duplicates. + if (FeatureMask.empty()) { + if (AliasWithNoPredicate != -1) { + // We can't have two aliases from the same mnemonic with no predicate. + PrintError(ToVec[AliasWithNoPredicate]->getLoc(), + "two MnemonicAliases with the same 'from' mnemonic!"); + throw TGError(R->getLoc(), "this is the other MnemonicAlias."); + } + + AliasWithNoPredicate = i; + continue; + } + if (R->getValueAsString("ToMnemonic") == I->first) + throw TGError(R->getLoc(), "MnemonicAlias to the same string"); + + if (!MatchCode.empty()) + MatchCode += "else "; + MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; + MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n"; + } + + if (AliasWithNoPredicate != -1) { + Record *R = ToVec[AliasWithNoPredicate]; + if (!MatchCode.empty()) + MatchCode += "else\n "; + MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n"; + } + + MatchCode += "return;"; + + Cases.push_back(std::make_pair(I->first, MatchCode)); + } + + StringMatcher("Mnemonic", Cases, OS).Emit(); + OS << "}\n\n"; + + return true; +} + +static void EmitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, + const AsmMatcherInfo &Info, StringRef ClassName) { + // Emit the static custom operand parsing table; + OS << "namespace {\n"; + OS << " struct OperandMatchEntry {\n"; + OS << " const char *Mnemonic;\n"; + OS << " unsigned OperandMask;\n"; + OS << " MatchClassKind Class;\n"; + OS << " unsigned RequiredFeatures;\n"; + OS << " };\n\n"; + + OS << " // Predicate for searching for an opcode.\n"; + OS << " struct LessOpcodeOperand {\n"; + OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; + OS << " return StringRef(LHS.Mnemonic) < RHS;\n"; + OS << " }\n"; + OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; + OS << " return LHS < StringRef(RHS.Mnemonic);\n"; + OS << " }\n"; + OS << " bool operator()(const OperandMatchEntry &LHS,"; + OS << " const OperandMatchEntry &RHS) {\n"; + OS << " return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n"; + OS << " }\n"; + OS << " };\n"; + + OS << "} // end anonymous namespace.\n\n"; + + OS << "static const OperandMatchEntry OperandMatchTable[" + << Info.OperandMatchInfo.size() << "] = {\n"; + + OS << " /* Mnemonic, Operand List Mask, Operand Class, Features */\n"; + for (std::vector<OperandMatchEntry>::const_iterator it = + Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end(); + it != ie; ++it) { + const OperandMatchEntry &OMI = *it; + const MatchableInfo &II = *OMI.MI; + + OS << " { \"" << II.Mnemonic << "\"" + << ", " << OMI.OperandMask; + + OS << " /* "; + bool printComma = false; + for (int i = 0, e = 31; i !=e; ++i) + if (OMI.OperandMask & (1 << i)) { + if (printComma) + OS << ", "; + OS << i; + printComma = true; + } + OS << " */"; + + OS << ", " << OMI.CI->Name + << ", "; + + // Write the required features mask. + if (!II.RequiredFeatures.empty()) { + for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { + if (i) OS << "|"; + OS << II.RequiredFeatures[i]->getEnumName(); + } + } else + OS << "0"; + OS << " },\n"; + } + OS << "};\n\n"; + + // Emit the operand class switch to call the correct custom parser for + // the found operand class. + OS << Target.getName() << ClassName << "::OperandMatchResultTy " + << Target.getName() << ClassName << "::\n" + << "TryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>" + << " &Operands,\n unsigned MCK) {\n\n" + << " switch(MCK) {\n"; + + for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(), + ie = Info.Classes.end(); it != ie; ++it) { + ClassInfo *CI = *it; + if (CI->ParserMethod.empty()) + continue; + OS << " case " << CI->Name << ":\n" + << " return " << CI->ParserMethod << "(Operands);\n"; + } + + OS << " default:\n"; + OS << " return MatchOperand_NoMatch;\n"; + OS << " }\n"; + OS << " return MatchOperand_NoMatch;\n"; + OS << "}\n\n"; + + // Emit the static custom operand parser. This code is very similar with + // the other matcher. Also use MatchResultTy here just in case we go for + // a better error handling. + OS << Target.getName() << ClassName << "::OperandMatchResultTy " + << Target.getName() << ClassName << "::\n" + << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>" + << " &Operands,\n StringRef Mnemonic) {\n"; + + // Emit code to get the available features. + OS << " // Get the current feature set.\n"; + OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n"; + + OS << " // Get the next operand index.\n"; + OS << " unsigned NextOpNum = Operands.size()-1;\n"; + + // Emit code to search the table. + OS << " // Search the table.\n"; + OS << " std::pair<const OperandMatchEntry*, const OperandMatchEntry*>"; + OS << " MnemonicRange =\n"; + OS << " std::equal_range(OperandMatchTable, OperandMatchTable+" + << Info.OperandMatchInfo.size() << ", Mnemonic,\n" + << " LessOpcodeOperand());\n\n"; + + OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; + OS << " return MatchOperand_NoMatch;\n\n"; + + OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" + << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; + + OS << " // equal_range guarantees that instruction mnemonic matches.\n"; + OS << " assert(Mnemonic == it->Mnemonic);\n\n"; + + // Emit check that the required features are available. + OS << " // check if the available features match\n"; + OS << " if ((AvailableFeatures & it->RequiredFeatures) " + << "!= it->RequiredFeatures) {\n"; + OS << " continue;\n"; + OS << " }\n\n"; + + // Emit check to ensure the operand number matches. + OS << " // check if the operand in question has a custom parser.\n"; + OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; + OS << " continue;\n\n"; + + // Emit call to the custom parser method + OS << " // call custom parse method to handle the operand\n"; + OS << " OperandMatchResultTy Result = "; + OS << "TryCustomParseOperand(Operands, it->Class);\n"; + OS << " if (Result != MatchOperand_NoMatch)\n"; + OS << " return Result;\n"; + OS << " }\n\n"; + + OS << " // Okay, we had no match.\n"; + OS << " return MatchOperand_NoMatch;\n"; + OS << "}\n\n"; +} + +void AsmMatcherEmitter::run(raw_ostream &OS) { + CodeGenTarget Target(Records); + Record *AsmParser = Target.getAsmParser(); + std::string ClassName = AsmParser->getValueAsString("AsmParserClassName"); + + // Compute the information on the instructions to match. + AsmMatcherInfo Info(AsmParser, Target, Records); + Info.BuildInfo(); + + // Sort the instruction table using the partial order on classes. We use + // stable_sort to ensure that ambiguous instructions are still + // deterministically ordered. + std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), + less_ptr<MatchableInfo>()); + + DEBUG_WITH_TYPE("instruction_info", { + for (std::vector<MatchableInfo*>::iterator + it = Info.Matchables.begin(), ie = Info.Matchables.end(); + it != ie; ++it) + (*it)->dump(); + }); + + // Check for ambiguous matchables. + DEBUG_WITH_TYPE("ambiguous_instrs", { + unsigned NumAmbiguous = 0; + for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) { + for (unsigned j = i + 1; j != e; ++j) { + MatchableInfo &A = *Info.Matchables[i]; + MatchableInfo &B = *Info.Matchables[j]; + + if (A.CouldMatchAmbiguouslyWith(B)) { + errs() << "warning: ambiguous matchables:\n"; + A.dump(); + errs() << "\nis incomparable with:\n"; + B.dump(); + errs() << "\n\n"; + ++NumAmbiguous; + } + } + } + if (NumAmbiguous) + errs() << "warning: " << NumAmbiguous + << " ambiguous matchables!\n"; + }); + + // Compute the information on the custom operand parsing. + Info.BuildOperandMatchInfo(); + + // Write the output. + + EmitSourceFileHeader("Assembly Matcher Source Fragment", OS); + + // Information for the class declaration. + OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; + OS << "#undef GET_ASSEMBLER_HEADER\n"; + OS << " // This should be included into the middle of the declaration of\n"; + OS << " // your subclasses implementation of TargetAsmParser.\n"; + OS << " unsigned ComputeAvailableFeatures(const " << + Target.getName() << "Subtarget *Subtarget) const;\n"; + OS << " enum MatchResultTy {\n"; + OS << " Match_ConversionFail,\n"; + OS << " Match_InvalidOperand,\n"; + OS << " Match_MissingFeature,\n"; + OS << " Match_MnemonicFail,\n"; + OS << " Match_Success\n"; + OS << " };\n"; + OS << " bool ConvertToMCInst(unsigned Kind, MCInst &Inst, " + << "unsigned Opcode,\n" + << " const SmallVectorImpl<MCParsedAsmOperand*> " + << "&Operands);\n"; + OS << " bool MnemonicIsValid(StringRef Mnemonic);\n"; + OS << " MatchResultTy MatchInstructionImpl(\n"; + OS << " const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"; + OS << " MCInst &Inst, unsigned &ErrorInfo);\n"; + + if (Info.OperandMatchInfo.size()) { + OS << "\n enum OperandMatchResultTy {\n"; + OS << " MatchOperand_Success, // operand matched successfully\n"; + OS << " MatchOperand_NoMatch, // operand did not match\n"; + OS << " MatchOperand_ParseFail // operand matched but had errors\n"; + OS << " };\n"; + OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; + OS << " SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"; + OS << " StringRef Mnemonic);\n"; + + OS << " OperandMatchResultTy TryCustomParseOperand(\n"; + OS << " SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"; + OS << " unsigned MCK);\n\n"; + } + + OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; + + OS << "\n#ifdef GET_REGISTER_MATCHER\n"; + OS << "#undef GET_REGISTER_MATCHER\n\n"; + + // Emit the subtarget feature enumeration. + EmitSubtargetFeatureFlagEnumeration(Info, OS); + + // Emit the function to match a register name to number. + EmitMatchRegisterName(Target, AsmParser, OS); + + OS << "#endif // GET_REGISTER_MATCHER\n\n"; + + + OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; + OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; + + // Generate the function that remaps for mnemonic aliases. + bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info); + + // Generate the unified function to convert operands into an MCInst. + EmitConvertToMCInst(Target, ClassName, Info.Matchables, OS); + + // Emit the enumeration for classes which participate in matching. + EmitMatchClassEnumeration(Target, Info.Classes, OS); + + // Emit the routine to match token strings to their match class. + EmitMatchTokenString(Target, Info.Classes, OS); + + // Emit the subclass predicate routine. + EmitIsSubclass(Target, Info.Classes, OS); + + // Emit the routine to validate an operand against a match class. + EmitValidateOperandClass(Info, OS); + + // Emit the available features compute function. + EmitComputeAvailableFeatures(Info, OS); + + + size_t MaxNumOperands = 0; + for (std::vector<MatchableInfo*>::const_iterator it = + Info.Matchables.begin(), ie = Info.Matchables.end(); + it != ie; ++it) + MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size()); + + // Emit the static match table; unused classes get initalized to 0 which is + // guaranteed to be InvalidMatchClass. + // + // FIXME: We can reduce the size of this table very easily. First, we change + // it so that store the kinds in separate bit-fields for each index, which + // only needs to be the max width used for classes at that index (we also need + // to reject based on this during classification). If we then make sure to + // order the match kinds appropriately (putting mnemonics last), then we + // should only end up using a few bits for each class, especially the ones + // following the mnemonic. + OS << "namespace {\n"; + OS << " struct MatchEntry {\n"; + OS << " unsigned Opcode;\n"; + OS << " const char *Mnemonic;\n"; + OS << " ConversionKind ConvertFn;\n"; + OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n"; + OS << " unsigned RequiredFeatures;\n"; + OS << " };\n\n"; + + OS << " // Predicate for searching for an opcode.\n"; + OS << " struct LessOpcode {\n"; + OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; + OS << " return StringRef(LHS.Mnemonic) < RHS;\n"; + OS << " }\n"; + OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; + OS << " return LHS < StringRef(RHS.Mnemonic);\n"; + OS << " }\n"; + OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; + OS << " return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n"; + OS << " }\n"; + OS << " };\n"; + + OS << "} // end anonymous namespace.\n\n"; + + OS << "static const MatchEntry MatchTable[" + << Info.Matchables.size() << "] = {\n"; + + for (std::vector<MatchableInfo*>::const_iterator it = + Info.Matchables.begin(), ie = Info.Matchables.end(); + it != ie; ++it) { + MatchableInfo &II = **it; + + OS << " { " << Target.getName() << "::" + << II.getResultInst()->TheDef->getName() << ", \"" << II.Mnemonic << "\"" + << ", " << II.ConversionFnKind << ", { "; + for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) { + MatchableInfo::AsmOperand &Op = II.AsmOperands[i]; + + if (i) OS << ", "; + OS << Op.Class->Name; + } + OS << " }, "; + + // Write the required features mask. + if (!II.RequiredFeatures.empty()) { + for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { + if (i) OS << "|"; + OS << II.RequiredFeatures[i]->getEnumName(); + } + } else + OS << "0"; + + OS << "},\n"; + } + + OS << "};\n\n"; + + // A method to determine if a mnemonic is in the list. + OS << "bool " << Target.getName() << ClassName << "::\n" + << "MnemonicIsValid(StringRef Mnemonic) {\n"; + OS << " // Search the table.\n"; + OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n"; + OS << " std::equal_range(MatchTable, MatchTable+" + << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n"; + OS << " return MnemonicRange.first != MnemonicRange.second;\n"; + OS << "}\n\n"; + + // Finally, build the match function. + OS << Target.getName() << ClassName << "::MatchResultTy " + << Target.getName() << ClassName << "::\n" + << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>" + << " &Operands,\n"; + OS << " MCInst &Inst, unsigned &ErrorInfo) {\n"; + + // Emit code to get the available features. + OS << " // Get the current feature set.\n"; + OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n"; + + OS << " // Get the instruction mnemonic, which is the first token.\n"; + OS << " StringRef Mnemonic = ((" << Target.getName() + << "Operand*)Operands[0])->getToken();\n\n"; + + if (HasMnemonicAliases) { + OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; + OS << " ApplyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n"; + } + + // Emit code to compute the class list for this operand vector. + OS << " // Eliminate obvious mismatches.\n"; + OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n"; + OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n"; + OS << " return Match_InvalidOperand;\n"; + OS << " }\n\n"; + + OS << " // Some state to try to produce better error messages.\n"; + OS << " bool HadMatchOtherThanFeatures = false;\n\n"; + OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; + OS << " // wrong for all instances of the instruction.\n"; + OS << " ErrorInfo = ~0U;\n"; + + // Emit code to search the table. + OS << " // Search the table.\n"; + OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n"; + OS << " std::equal_range(MatchTable, MatchTable+" + << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n"; + + OS << " // Return a more specific error code if no mnemonics match.\n"; + OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; + OS << " return Match_MnemonicFail;\n\n"; + + OS << " for (const MatchEntry *it = MnemonicRange.first, " + << "*ie = MnemonicRange.second;\n"; + OS << " it != ie; ++it) {\n"; + + OS << " // equal_range guarantees that instruction mnemonic matches.\n"; + OS << " assert(Mnemonic == it->Mnemonic);\n"; + + // Emit check that the subclasses match. + OS << " bool OperandsValid = true;\n"; + OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n"; + OS << " if (i + 1 >= Operands.size()) {\n"; + OS << " OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n"; + OS << " break;"; + OS << " }\n"; + OS << " if (ValidateOperandClass(Operands[i+1], it->Classes[i]))\n"; + OS << " continue;\n"; + OS << " // If this operand is broken for all of the instances of this\n"; + OS << " // mnemonic, keep track of it so we can report loc info.\n"; + OS << " if (it == MnemonicRange.first || ErrorInfo <= i+1)\n"; + OS << " ErrorInfo = i+1;\n"; + OS << " // Otherwise, just reject this instance of the mnemonic.\n"; + OS << " OperandsValid = false;\n"; + OS << " break;\n"; + OS << " }\n\n"; + + OS << " if (!OperandsValid) continue;\n"; + + // Emit check that the required features are available. + OS << " if ((AvailableFeatures & it->RequiredFeatures) " + << "!= it->RequiredFeatures) {\n"; + OS << " HadMatchOtherThanFeatures = true;\n"; + OS << " continue;\n"; + OS << " }\n"; + OS << "\n"; + OS << " // We have selected a definite instruction, convert the parsed\n" + << " // operands into the appropriate MCInst.\n"; + OS << " if (!ConvertToMCInst(it->ConvertFn, Inst,\n" + << " it->Opcode, Operands))\n"; + OS << " return Match_ConversionFail;\n"; + OS << "\n"; + + // Call the post-processing function, if used. + std::string InsnCleanupFn = + AsmParser->getValueAsString("AsmParserInstCleanup"); + if (!InsnCleanupFn.empty()) + OS << " " << InsnCleanupFn << "(Inst);\n"; + + OS << " return Match_Success;\n"; + OS << " }\n\n"; + + OS << " // Okay, we had no match. Try to return a useful error code.\n"; + OS << " if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n"; + OS << " return Match_InvalidOperand;\n"; + OS << "}\n\n"; + + if (Info.OperandMatchInfo.size()) + EmitCustomOperandParsing(OS, Target, Info, ClassName); + + OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; +} |