diff options
Diffstat (limited to 'contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp')
-rw-r--r-- | contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp | 1669 |
1 files changed, 1669 insertions, 0 deletions
diff --git a/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp b/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp new file mode 100644 index 0000000..4ba3df1 --- /dev/null +++ b/contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp @@ -0,0 +1,1669 @@ +//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This tablegen backend emits a target specifier matcher for converting parsed +// assembly operands in the MCInst structures. +// +// The input to the target specific matcher is a list of literal tokens and +// operands. The target specific parser should generally eliminate any syntax +// which is not relevant for matching; for example, comma tokens should have +// already been consumed and eliminated by the parser. Most instructions will +// end up with a single literal token (the instruction name) and some number of +// operands. +// +// Some example inputs, for X86: +// 'addl' (immediate ...) (register ...) +// 'add' (immediate ...) (memory ...) +// 'call' '*' %epc +// +// The assembly matcher is responsible for converting this input into a precise +// machine instruction (i.e., an instruction with a well defined encoding). This +// mapping has several properties which complicate matching: +// +// - It may be ambiguous; many architectures can legally encode particular +// variants of an instruction in different ways (for example, using a smaller +// encoding for small immediates). Such ambiguities should never be +// arbitrarily resolved by the assembler, the assembler is always responsible +// for choosing the "best" available instruction. +// +// - It may depend on the subtarget or the assembler context. Instructions +// which are invalid for the current mode, but otherwise unambiguous (e.g., +// an SSE instruction in a file being assembled for i486) should be accepted +// and rejected by the assembler front end. However, if the proper encoding +// for an instruction is dependent on the assembler context then the matcher +// is responsible for selecting the correct machine instruction for the +// current mode. +// +// The core matching algorithm attempts to exploit the regularity in most +// instruction sets to quickly determine the set of possibly matching +// instructions, and the simplify the generated code. Additionally, this helps +// to ensure that the ambiguities are intentionally resolved by the user. +// +// The matching is divided into two distinct phases: +// +// 1. Classification: Each operand is mapped to the unique set which (a) +// contains it, and (b) is the largest such subset for which a single +// instruction could match all members. +// +// For register classes, we can generate these subgroups automatically. For +// arbitrary operands, we expect the user to define the classes and their +// relations to one another (for example, 8-bit signed immediates as a +// subset of 32-bit immediates). +// +// By partitioning the operands in this way, we guarantee that for any +// tuple of classes, any single instruction must match either all or none +// of the sets of operands which could classify to that tuple. +// +// In addition, the subset relation amongst classes induces a partial order +// on such tuples, which we use to resolve ambiguities. +// +// FIXME: What do we do if a crazy case shows up where this is the wrong +// resolution? +// +// 2. The input can now be treated as a tuple of classes (static tokens are +// simple singleton sets). Each such tuple should generally map to a single +// instruction (we currently ignore cases where this isn't true, whee!!!), +// which we can emit a simple matcher for. +// +//===----------------------------------------------------------------------===// + +#include "AsmMatcherEmitter.h" +#include "CodeGenTarget.h" +#include "Record.h" +#include "llvm/ADT/OwningPtr.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include <list> +#include <map> +#include <set> +using namespace llvm; + +static cl::opt<std::string> +MatchPrefix("match-prefix", cl::init(""), + cl::desc("Only match instructions with the given prefix")); + +/// FlattenVariants - Flatten an .td file assembly string by selecting the +/// variant at index \arg N. +static std::string FlattenVariants(const std::string &AsmString, + unsigned N) { + StringRef Cur = AsmString; + std::string Res = ""; + + for (;;) { + // Find the start of the next variant string. + size_t VariantsStart = 0; + for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart) + if (Cur[VariantsStart] == '{' && + (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' && + Cur[VariantsStart-1] != '\\'))) + break; + + // Add the prefix to the result. + Res += Cur.slice(0, VariantsStart); + if (VariantsStart == Cur.size()) + break; + + ++VariantsStart; // Skip the '{'. + + // Scan to the end of the variants string. + size_t VariantsEnd = VariantsStart; + unsigned NestedBraces = 1; + for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) { + if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') { + if (--NestedBraces == 0) + break; + } else if (Cur[VariantsEnd] == '{') + ++NestedBraces; + } + + // Select the Nth variant (or empty). + StringRef Selection = Cur.slice(VariantsStart, VariantsEnd); + for (unsigned i = 0; i != N; ++i) + Selection = Selection.split('|').second; + Res += Selection.split('|').first; + + assert(VariantsEnd != Cur.size() && + "Unterminated variants in assembly string!"); + Cur = Cur.substr(VariantsEnd + 1); + } + + return Res; +} + +/// TokenizeAsmString - Tokenize a simplified assembly string. +static void TokenizeAsmString(StringRef AsmString, + SmallVectorImpl<StringRef> &Tokens) { + unsigned Prev = 0; + bool InTok = true; + for (unsigned i = 0, e = AsmString.size(); i != e; ++i) { + switch (AsmString[i]) { + case '[': + case ']': + case '*': + case '!': + case ' ': + case '\t': + case ',': + if (InTok) { + Tokens.push_back(AsmString.slice(Prev, i)); + InTok = false; + } + if (!isspace(AsmString[i]) && AsmString[i] != ',') + Tokens.push_back(AsmString.substr(i, 1)); + Prev = i + 1; + break; + + case '\\': + if (InTok) { + Tokens.push_back(AsmString.slice(Prev, i)); + InTok = false; + } + ++i; + assert(i != AsmString.size() && "Invalid quoted character"); + Tokens.push_back(AsmString.substr(i, 1)); + Prev = i + 1; + break; + + case '$': { + // If this isn't "${", treat like a normal token. + if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') { + if (InTok) { + Tokens.push_back(AsmString.slice(Prev, i)); + InTok = false; + } + Prev = i; + break; + } + + if (InTok) { + Tokens.push_back(AsmString.slice(Prev, i)); + InTok = false; + } + + StringRef::iterator End = + std::find(AsmString.begin() + i, AsmString.end(), '}'); + assert(End != AsmString.end() && "Missing brace in operand reference!"); + size_t EndPos = End - AsmString.begin(); + Tokens.push_back(AsmString.slice(i, EndPos+1)); + Prev = EndPos + 1; + i = EndPos; + break; + } + + default: + InTok = true; + } + } + if (InTok && Prev != AsmString.size()) + Tokens.push_back(AsmString.substr(Prev)); +} + +static bool IsAssemblerInstruction(StringRef Name, + const CodeGenInstruction &CGI, + const SmallVectorImpl<StringRef> &Tokens) { + // Ignore "codegen only" instructions. + if (CGI.TheDef->getValueAsBit("isCodeGenOnly")) + return false; + + // Ignore pseudo ops. + // + // FIXME: This is a hack; can we convert these instructions to set the + // "codegen only" bit instead? + if (const RecordVal *Form = CGI.TheDef->getValue("Form")) + if (Form->getValue()->getAsString() == "Pseudo") + return false; + + // Ignore "Int_*" and "*_Int" instructions, which are internal aliases. + // + // FIXME: This is a total hack. + if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int")) + return false; + + // Ignore instructions with no .s string. + // + // FIXME: What are these? + if (CGI.AsmString.empty()) + return false; + + // FIXME: Hack; ignore any instructions with a newline in them. + if (std::find(CGI.AsmString.begin(), + CGI.AsmString.end(), '\n') != CGI.AsmString.end()) + return false; + + // Ignore instructions with attributes, these are always fake instructions for + // simplifying codegen. + // + // FIXME: Is this true? + // + // Also, check for instructions which reference the operand multiple times; + // this implies a constraint we would not honor. + std::set<std::string> OperandNames; + for (unsigned i = 1, e = Tokens.size(); i < e; ++i) { + if (Tokens[i][0] == '$' && + std::find(Tokens[i].begin(), + Tokens[i].end(), ':') != Tokens[i].end()) { + DEBUG({ + errs() << "warning: '" << Name << "': " + << "ignoring instruction; operand with attribute '" + << Tokens[i] << "'\n"; + }); + return false; + } + + if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) { + std::string Err = "'" + Name.str() + "': " + + "invalid assembler instruction; tied operand '" + Tokens[i].str() + "'"; + throw TGError(CGI.TheDef->getLoc(), Err); + } + } + + return true; +} + +namespace { + +/// ClassInfo - Helper class for storing the information about a particular +/// class of operands which can be matched. +struct ClassInfo { + enum ClassInfoKind { + /// Invalid kind, for use as a sentinel value. + Invalid = 0, + + /// The class for a particular token. + Token, + + /// The (first) register class, subsequent register classes are + /// RegisterClass0+1, and so on. + RegisterClass0, + + /// The (first) user defined class, subsequent user defined classes are + /// UserClass0+1, and so on. + UserClass0 = 1<<16 + }; + + /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + + /// N) for the Nth user defined class. + unsigned Kind; + + /// SuperClasses - The super classes of this class. Note that for simplicities + /// sake user operands only record their immediate super class, while register + /// operands include all superclasses. + std::vector<ClassInfo*> SuperClasses; + + /// Name - The full class name, suitable for use in an enum. + std::string Name; + + /// ClassName - The unadorned generic name for this class (e.g., Token). + std::string ClassName; + + /// ValueName - The name of the value this class represents; for a token this + /// is the literal token string, for an operand it is the TableGen class (or + /// empty if this is a derived class). + std::string ValueName; + + /// PredicateMethod - The name of the operand method to test whether the + /// operand matches this class; this is not valid for Token or register kinds. + std::string PredicateMethod; + + /// RenderMethod - The name of the operand method to add this operand to an + /// MCInst; this is not valid for Token or register kinds. + std::string RenderMethod; + + /// For register classes, the records for all the registers in this class. + std::set<Record*> Registers; + +public: + /// isRegisterClass() - Check if this is a register class. + bool isRegisterClass() const { + return Kind >= RegisterClass0 && Kind < UserClass0; + } + + /// isUserClass() - Check if this is a user defined class. + bool isUserClass() const { + return Kind >= UserClass0; + } + + /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes + /// are related if they are in the same class hierarchy. + bool isRelatedTo(const ClassInfo &RHS) const { + // Tokens are only related to tokens. + if (Kind == Token || RHS.Kind == Token) + return Kind == Token && RHS.Kind == Token; + + // Registers classes are only related to registers classes, and only if + // their intersection is non-empty. + if (isRegisterClass() || RHS.isRegisterClass()) { + if (!isRegisterClass() || !RHS.isRegisterClass()) + return false; + + std::set<Record*> Tmp; + std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin()); + std::set_intersection(Registers.begin(), Registers.end(), + RHS.Registers.begin(), RHS.Registers.end(), + II); + + return !Tmp.empty(); + } + + // Otherwise we have two users operands; they are related if they are in the + // same class hierarchy. + // + // FIXME: This is an oversimplification, they should only be related if they + // intersect, however we don't have that information. + assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); + const ClassInfo *Root = this; + while (!Root->SuperClasses.empty()) + Root = Root->SuperClasses.front(); + + const ClassInfo *RHSRoot = &RHS; + while (!RHSRoot->SuperClasses.empty()) + RHSRoot = RHSRoot->SuperClasses.front(); + + return Root == RHSRoot; + } + + /// isSubsetOf - Test whether this class is a subset of \arg RHS; + bool isSubsetOf(const ClassInfo &RHS) const { + // This is a subset of RHS if it is the same class... + if (this == &RHS) + return true; + + // ... or if any of its super classes are a subset of RHS. + for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(), + ie = SuperClasses.end(); it != ie; ++it) + if ((*it)->isSubsetOf(RHS)) + return true; + + return false; + } + + /// operator< - Compare two classes. + bool operator<(const ClassInfo &RHS) const { + if (this == &RHS) + return false; + + // Unrelated classes can be ordered by kind. + if (!isRelatedTo(RHS)) + return Kind < RHS.Kind; + + switch (Kind) { + case Invalid: + assert(0 && "Invalid kind!"); + case Token: + // Tokens are comparable by value. + // + // FIXME: Compare by enum value. + return ValueName < RHS.ValueName; + + default: + // This class preceeds the RHS if it is a proper subset of the RHS. + if (isSubsetOf(RHS)) + return true; + if (RHS.isSubsetOf(*this)) + return false; + + // Otherwise, order by name to ensure we have a total ordering. + return ValueName < RHS.ValueName; + } + } +}; + +/// InstructionInfo - Helper class for storing the necessary information for an +/// instruction which is capable of being matched. +struct InstructionInfo { + struct Operand { + /// The unique class instance this operand should match. + ClassInfo *Class; + + /// The original operand this corresponds to, if any. + const CodeGenInstruction::OperandInfo *OperandInfo; + }; + + /// InstrName - The target name for this instruction. + std::string InstrName; + + /// Instr - The instruction this matches. + const CodeGenInstruction *Instr; + + /// AsmString - The assembly string for this instruction (with variants + /// removed). + std::string AsmString; + + /// Tokens - The tokenized assembly pattern that this instruction matches. + SmallVector<StringRef, 4> Tokens; + + /// Operands - The operands that this instruction matches. + SmallVector<Operand, 4> Operands; + + /// ConversionFnKind - The enum value which is passed to the generated + /// ConvertToMCInst to convert parsed operands into an MCInst for this + /// function. + std::string ConversionFnKind; + + /// operator< - Compare two instructions. + bool operator<(const InstructionInfo &RHS) const { + if (Operands.size() != RHS.Operands.size()) + return Operands.size() < RHS.Operands.size(); + + // Compare lexicographically by operand. The matcher validates that other + // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith(). + for (unsigned i = 0, e = Operands.size(); i != e; ++i) { + if (*Operands[i].Class < *RHS.Operands[i].Class) + return true; + if (*RHS.Operands[i].Class < *Operands[i].Class) + return false; + } + + return false; + } + + /// CouldMatchAmiguouslyWith - Check whether this instruction could + /// ambiguously match the same set of operands as \arg RHS (without being a + /// strictly superior match). + bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) { + // The number of operands is unambiguous. + if (Operands.size() != RHS.Operands.size()) + return false; + + // Otherwise, make sure the ordering of the two instructions is unambiguous + // by checking that either (a) a token or operand kind discriminates them, + // or (b) the ordering among equivalent kinds is consistent. + + // Tokens and operand kinds are unambiguous (assuming a correct target + // specific parser). + for (unsigned i = 0, e = Operands.size(); i != e; ++i) + if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind || + Operands[i].Class->Kind == ClassInfo::Token) + if (*Operands[i].Class < *RHS.Operands[i].Class || + *RHS.Operands[i].Class < *Operands[i].Class) + return false; + + // Otherwise, this operand could commute if all operands are equivalent, or + // there is a pair of operands that compare less than and a pair that + // compare greater than. + bool HasLT = false, HasGT = false; + for (unsigned i = 0, e = Operands.size(); i != e; ++i) { + if (*Operands[i].Class < *RHS.Operands[i].Class) + HasLT = true; + if (*RHS.Operands[i].Class < *Operands[i].Class) + HasGT = true; + } + + return !(HasLT ^ HasGT); + } + +public: + void dump(); +}; + +class AsmMatcherInfo { +public: + /// The tablegen AsmParser record. + Record *AsmParser; + + /// The AsmParser "CommentDelimiter" value. + std::string CommentDelimiter; + + /// The AsmParser "RegisterPrefix" value. + std::string RegisterPrefix; + + /// The classes which are needed for matching. + std::vector<ClassInfo*> Classes; + + /// The information on the instruction to match. + std::vector<InstructionInfo*> Instructions; + + /// Map of Register records to their class information. + std::map<Record*, ClassInfo*> RegisterClasses; + +private: + /// Map of token to class information which has already been constructed. + std::map<std::string, ClassInfo*> TokenClasses; + + /// Map of RegisterClass records to their class information. + std::map<Record*, ClassInfo*> RegisterClassClasses; + + /// Map of AsmOperandClass records to their class information. + std::map<Record*, ClassInfo*> AsmOperandClasses; + +private: + /// getTokenClass - Lookup or create the class for the given token. + ClassInfo *getTokenClass(StringRef Token); + + /// getOperandClass - Lookup or create the class for the given operand. + ClassInfo *getOperandClass(StringRef Token, + const CodeGenInstruction::OperandInfo &OI); + + /// BuildRegisterClasses - Build the ClassInfo* instances for register + /// classes. + void BuildRegisterClasses(CodeGenTarget &Target, + std::set<std::string> &SingletonRegisterNames); + + /// BuildOperandClasses - Build the ClassInfo* instances for user defined + /// operand classes. + void BuildOperandClasses(CodeGenTarget &Target); + +public: + AsmMatcherInfo(Record *_AsmParser); + + /// BuildInfo - Construct the various tables used during matching. + void BuildInfo(CodeGenTarget &Target); +}; + +} + +void InstructionInfo::dump() { + errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"' + << ", tokens:["; + for (unsigned i = 0, e = Tokens.size(); i != e; ++i) { + errs() << Tokens[i]; + if (i + 1 != e) + errs() << ", "; + } + errs() << "]\n"; + + for (unsigned i = 0, e = Operands.size(); i != e; ++i) { + Operand &Op = Operands[i]; + errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; + if (Op.Class->Kind == ClassInfo::Token) { + errs() << '\"' << Tokens[i] << "\"\n"; + continue; + } + + if (!Op.OperandInfo) { + errs() << "(singleton register)\n"; + continue; + } + + const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo; + errs() << OI.Name << " " << OI.Rec->getName() + << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n"; + } +} + +static std::string getEnumNameForToken(StringRef Str) { + std::string Res; + + for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { + switch (*it) { + case '*': Res += "_STAR_"; break; + case '%': Res += "_PCT_"; break; + case ':': Res += "_COLON_"; break; + + default: + if (isalnum(*it)) { + Res += *it; + } else { + Res += "_" + utostr((unsigned) *it) + "_"; + } + } + } + + return Res; +} + +/// getRegisterRecord - Get the register record for \arg name, or 0. +static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) { + for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) { + const CodeGenRegister &Reg = Target.getRegisters()[i]; + if (Name == Reg.TheDef->getValueAsString("AsmName")) + return Reg.TheDef; + } + + return 0; +} + +ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { + ClassInfo *&Entry = TokenClasses[Token]; + + if (!Entry) { + Entry = new ClassInfo(); + Entry->Kind = ClassInfo::Token; + Entry->ClassName = "Token"; + Entry->Name = "MCK_" + getEnumNameForToken(Token); + Entry->ValueName = Token; + Entry->PredicateMethod = "<invalid>"; + Entry->RenderMethod = "<invalid>"; + Classes.push_back(Entry); + } + + return Entry; +} + +ClassInfo * +AsmMatcherInfo::getOperandClass(StringRef Token, + const CodeGenInstruction::OperandInfo &OI) { + if (OI.Rec->isSubClassOf("RegisterClass")) { + ClassInfo *CI = RegisterClassClasses[OI.Rec]; + + if (!CI) { + PrintError(OI.Rec->getLoc(), "register class has no class info!"); + throw std::string("ERROR: Missing register class!"); + } + + return CI; + } + + assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!"); + Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass"); + ClassInfo *CI = AsmOperandClasses[MatchClass]; + + if (!CI) { + PrintError(OI.Rec->getLoc(), "operand has no match class!"); + throw std::string("ERROR: Missing match class!"); + } + + return CI; +} + +void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target, + std::set<std::string> + &SingletonRegisterNames) { + std::vector<CodeGenRegisterClass> RegisterClasses; + std::vector<CodeGenRegister> Registers; + + RegisterClasses = Target.getRegisterClasses(); + Registers = Target.getRegisters(); + + // The register sets used for matching. + std::set< std::set<Record*> > RegisterSets; + + // Gather the defined sets. + for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(), + ie = RegisterClasses.end(); it != ie; ++it) + RegisterSets.insert(std::set<Record*>(it->Elements.begin(), + it->Elements.end())); + + // Add any required singleton sets. + for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(), + ie = SingletonRegisterNames.end(); it != ie; ++it) + if (Record *Rec = getRegisterRecord(Target, *it)) + RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1)); + + // Introduce derived sets where necessary (when a register does not determine + // a unique register set class), and build the mapping of registers to the set + // they should classify to. + std::map<Record*, std::set<Record*> > RegisterMap; + for (std::vector<CodeGenRegister>::iterator it = Registers.begin(), + ie = Registers.end(); it != ie; ++it) { + CodeGenRegister &CGR = *it; + // Compute the intersection of all sets containing this register. + std::set<Record*> ContainingSet; + + for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(), + ie = RegisterSets.end(); it != ie; ++it) { + if (!it->count(CGR.TheDef)) + continue; + + if (ContainingSet.empty()) { + ContainingSet = *it; + } else { + std::set<Record*> Tmp; + std::swap(Tmp, ContainingSet); + std::insert_iterator< std::set<Record*> > II(ContainingSet, + ContainingSet.begin()); + std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), + II); + } + } + + if (!ContainingSet.empty()) { + RegisterSets.insert(ContainingSet); + RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); + } + } + + // Construct the register classes. + std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses; + unsigned Index = 0; + for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(), + ie = RegisterSets.end(); it != ie; ++it, ++Index) { + ClassInfo *CI = new ClassInfo(); + CI->Kind = ClassInfo::RegisterClass0 + Index; + CI->ClassName = "Reg" + utostr(Index); + CI->Name = "MCK_Reg" + utostr(Index); + CI->ValueName = ""; + CI->PredicateMethod = ""; // unused + CI->RenderMethod = "addRegOperands"; + CI->Registers = *it; + Classes.push_back(CI); + RegisterSetClasses.insert(std::make_pair(*it, CI)); + } + + // Find the superclasses; we could compute only the subgroup lattice edges, + // but there isn't really a point. + for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(), + ie = RegisterSets.end(); it != ie; ++it) { + ClassInfo *CI = RegisterSetClasses[*it]; + for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(), + ie2 = RegisterSets.end(); it2 != ie2; ++it2) + if (*it != *it2 && + std::includes(it2->begin(), it2->end(), it->begin(), it->end())) + CI->SuperClasses.push_back(RegisterSetClasses[*it2]); + } + + // Name the register classes which correspond to a user defined RegisterClass. + for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(), + ie = RegisterClasses.end(); it != ie; ++it) { + ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(), + it->Elements.end())]; + if (CI->ValueName.empty()) { + CI->ClassName = it->getName(); + CI->Name = "MCK_" + it->getName(); + CI->ValueName = it->getName(); + } else + CI->ValueName = CI->ValueName + "," + it->getName(); + + RegisterClassClasses.insert(std::make_pair(it->TheDef, CI)); + } + + // Populate the map for individual registers. + for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(), + ie = RegisterMap.end(); it != ie; ++it) + this->RegisterClasses[it->first] = RegisterSetClasses[it->second]; + + // Name the register classes which correspond to singleton registers. + for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(), + ie = SingletonRegisterNames.end(); it != ie; ++it) { + if (Record *Rec = getRegisterRecord(Target, *it)) { + ClassInfo *CI = this->RegisterClasses[Rec]; + assert(CI && "Missing singleton register class info!"); + + if (CI->ValueName.empty()) { + CI->ClassName = Rec->getName(); + CI->Name = "MCK_" + Rec->getName(); + CI->ValueName = Rec->getName(); + } else + CI->ValueName = CI->ValueName + "," + Rec->getName(); + } + } +} + +void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) { + std::vector<Record*> AsmOperands; + AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass"); + + // Pre-populate AsmOperandClasses map. + for (std::vector<Record*>::iterator it = AsmOperands.begin(), + ie = AsmOperands.end(); it != ie; ++it) + AsmOperandClasses[*it] = new ClassInfo(); + + unsigned Index = 0; + for (std::vector<Record*>::iterator it = AsmOperands.begin(), + ie = AsmOperands.end(); it != ie; ++it, ++Index) { + ClassInfo *CI = AsmOperandClasses[*it]; + CI->Kind = ClassInfo::UserClass0 + Index; + + ListInit *Supers = (*it)->getValueAsListInit("SuperClasses"); + for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) { + DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i)); + if (!DI) { + PrintError((*it)->getLoc(), "Invalid super class reference!"); + continue; + } + + ClassInfo *SC = AsmOperandClasses[DI->getDef()]; + if (!SC) + PrintError((*it)->getLoc(), "Invalid super class reference!"); + else + CI->SuperClasses.push_back(SC); + } + CI->ClassName = (*it)->getValueAsString("Name"); + CI->Name = "MCK_" + CI->ClassName; + CI->ValueName = (*it)->getName(); + + // Get or construct the predicate method name. + Init *PMName = (*it)->getValueInit("PredicateMethod"); + if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) { + CI->PredicateMethod = SI->getValue(); + } else { + assert(dynamic_cast<UnsetInit*>(PMName) && + "Unexpected PredicateMethod field!"); + CI->PredicateMethod = "is" + CI->ClassName; + } + + // Get or construct the render method name. + Init *RMName = (*it)->getValueInit("RenderMethod"); + if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) { + CI->RenderMethod = SI->getValue(); + } else { + assert(dynamic_cast<UnsetInit*>(RMName) && + "Unexpected RenderMethod field!"); + CI->RenderMethod = "add" + CI->ClassName + "Operands"; + } + + AsmOperandClasses[*it] = CI; + Classes.push_back(CI); + } +} + +AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser) + : AsmParser(_AsmParser), + CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")), + RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix")) +{ +} + +void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) { + // Parse the instructions; we need to do this first so that we can gather the + // singleton register classes. + std::set<std::string> SingletonRegisterNames; + + const std::vector<const CodeGenInstruction*> &InstrList = + Target.getInstructionsByEnumValue(); + + for (unsigned i = 0, e = InstrList.size(); i != e; ++i) { + const CodeGenInstruction &CGI = *InstrList[i]; + + if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix)) + continue; + + OwningPtr<InstructionInfo> II(new InstructionInfo()); + + II->InstrName = CGI.TheDef->getName(); + II->Instr = &CGI; + II->AsmString = FlattenVariants(CGI.AsmString, 0); + + // Remove comments from the asm string. + if (!CommentDelimiter.empty()) { + size_t Idx = StringRef(II->AsmString).find(CommentDelimiter); + if (Idx != StringRef::npos) + II->AsmString = II->AsmString.substr(0, Idx); + } + + TokenizeAsmString(II->AsmString, II->Tokens); + + // Ignore instructions which shouldn't be matched. + if (!IsAssemblerInstruction(CGI.TheDef->getName(), CGI, II->Tokens)) + continue; + + // Collect singleton registers, if used. + if (!RegisterPrefix.empty()) { + for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) { + if (II->Tokens[i].startswith(RegisterPrefix)) { + StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size()); + Record *Rec = getRegisterRecord(Target, RegName); + + if (!Rec) { + std::string Err = "unable to find register for '" + RegName.str() + + "' (which matches register prefix)"; + throw TGError(CGI.TheDef->getLoc(), Err); + } + + SingletonRegisterNames.insert(RegName); + } + } + } + + Instructions.push_back(II.take()); + } + + // Build info for the register classes. + BuildRegisterClasses(Target, SingletonRegisterNames); + + // Build info for the user defined assembly operand classes. + BuildOperandClasses(Target); + + // Build the instruction information. + for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(), + ie = Instructions.end(); it != ie; ++it) { + InstructionInfo *II = *it; + + for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) { + StringRef Token = II->Tokens[i]; + + // Check for singleton registers. + if (!RegisterPrefix.empty() && Token.startswith(RegisterPrefix)) { + StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size()); + InstructionInfo::Operand Op; + Op.Class = RegisterClasses[getRegisterRecord(Target, RegName)]; + Op.OperandInfo = 0; + assert(Op.Class && Op.Class->Registers.size() == 1 && + "Unexpected class for singleton register"); + II->Operands.push_back(Op); + continue; + } + + // Check for simple tokens. + if (Token[0] != '$') { + InstructionInfo::Operand Op; + Op.Class = getTokenClass(Token); + Op.OperandInfo = 0; + II->Operands.push_back(Op); + continue; + } + + // Otherwise this is an operand reference. + StringRef OperandName; + if (Token[1] == '{') + OperandName = Token.substr(2, Token.size() - 3); + else + OperandName = Token.substr(1); + + // Map this token to an operand. FIXME: Move elsewhere. + unsigned Idx; + try { + Idx = II->Instr->getOperandNamed(OperandName); + } catch(...) { + throw std::string("error: unable to find operand: '" + + OperandName.str() + "'"); + } + + // FIXME: This is annoying, the named operand may be tied (e.g., + // XCHG8rm). What we want is the untied operand, which we now have to + // grovel for. Only worry about this for single entry operands, we have to + // clean this up anyway. + const CodeGenInstruction::OperandInfo *OI = &II->Instr->OperandList[Idx]; + if (OI->Constraints[0].isTied()) { + unsigned TiedOp = OI->Constraints[0].getTiedOperand(); + + // The tied operand index is an MIOperand index, find the operand that + // contains it. + for (unsigned i = 0, e = II->Instr->OperandList.size(); i != e; ++i) { + if (II->Instr->OperandList[i].MIOperandNo == TiedOp) { + OI = &II->Instr->OperandList[i]; + break; + } + } + + assert(OI && "Unable to find tied operand target!"); + } + + InstructionInfo::Operand Op; + Op.Class = getOperandClass(Token, *OI); + Op.OperandInfo = OI; + II->Operands.push_back(Op); + } + } + + // Reorder classes so that classes preceed super classes. + std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>()); +} + +static std::pair<unsigned, unsigned> * +GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List, + unsigned Index) { + for (unsigned i = 0, e = List.size(); i != e; ++i) + if (Index == List[i].first) + return &List[i]; + + return 0; +} + +static void EmitConvertToMCInst(CodeGenTarget &Target, + std::vector<InstructionInfo*> &Infos, + raw_ostream &OS) { + // Write the convert function to a separate stream, so we can drop it after + // the enum. + std::string ConvertFnBody; + raw_string_ostream CvtOS(ConvertFnBody); + + // Function we have already generated. + std::set<std::string> GeneratedFns; + + // Start the unified conversion function. + + CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, " + << "unsigned Opcode,\n" + << " const SmallVectorImpl<MCParsedAsmOperand*" + << "> &Operands) {\n"; + CvtOS << " Inst.setOpcode(Opcode);\n"; + CvtOS << " switch (Kind) {\n"; + CvtOS << " default:\n"; + + // Start the enum, which we will generate inline. + + OS << "// Unified function for converting operants to MCInst instances.\n\n"; + OS << "enum ConversionKind {\n"; + + // TargetOperandClass - This is the target's operand class, like X86Operand. + std::string TargetOperandClass = Target.getName() + "Operand"; + + for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(), + ie = Infos.end(); it != ie; ++it) { + InstructionInfo &II = **it; + + // Order the (class) operands by the order to convert them into an MCInst. + SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList; + for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) { + InstructionInfo::Operand &Op = II.Operands[i]; + if (Op.OperandInfo) + MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i)); + } + + // Find any tied operands. + SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands; + for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) { + const CodeGenInstruction::OperandInfo &OpInfo = II.Instr->OperandList[i]; + for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) { + const CodeGenInstruction::ConstraintInfo &CI = OpInfo.Constraints[j]; + if (CI.isTied()) + TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j, + CI.getTiedOperand())); + } + } + + std::sort(MIOperandList.begin(), MIOperandList.end()); + + // Compute the total number of operands. + unsigned NumMIOperands = 0; + for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) { + const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i]; + NumMIOperands = std::max(NumMIOperands, + OI.MIOperandNo + OI.MINumOperands); + } + + // Build the conversion function signature. + std::string Signature = "Convert"; + unsigned CurIndex = 0; + for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) { + InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second]; + assert(CurIndex <= Op.OperandInfo->MIOperandNo && + "Duplicate match for instruction operand!"); + + // Skip operands which weren't matched by anything, this occurs when the + // .td file encodes "implicit" operands as explicit ones. + // + // FIXME: This should be removed from the MCInst structure. + for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) { + std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands, + CurIndex); + if (!Tie) + Signature += "__Imp"; + else + Signature += "__Tie" + utostr(Tie->second); + } + + Signature += "__"; + + // Registers are always converted the same, don't duplicate the conversion + // function based on them. + // + // FIXME: We could generalize this based on the render method, if it + // mattered. + if (Op.Class->isRegisterClass()) + Signature += "Reg"; + else + Signature += Op.Class->ClassName; + Signature += utostr(Op.OperandInfo->MINumOperands); + Signature += "_" + utostr(MIOperandList[i].second); + + CurIndex += Op.OperandInfo->MINumOperands; + } + + // Add any trailing implicit operands. + for (; CurIndex != NumMIOperands; ++CurIndex) { + std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands, + CurIndex); + if (!Tie) + Signature += "__Imp"; + else + Signature += "__Tie" + utostr(Tie->second); + } + + II.ConversionFnKind = Signature; + + // Check if we have already generated this signature. + if (!GeneratedFns.insert(Signature).second) + continue; + + // If not, emit it now. + + // Add to the enum list. + OS << " " << Signature << ",\n"; + + // And to the convert function. + CvtOS << " case " << Signature << ":\n"; + CurIndex = 0; + for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) { + InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second]; + + // Add the implicit operands. + for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) { + // See if this is a tied operand. + std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands, + CurIndex); + + if (!Tie) { + // If not, this is some implicit operand. Just assume it is a register + // for now. + CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n"; + } else { + // Copy the tied operand. + assert(Tie->first>Tie->second && "Tied operand preceeds its target!"); + CvtOS << " Inst.addOperand(Inst.getOperand(" + << Tie->second << "));\n"; + } + } + + CvtOS << " ((" << TargetOperandClass << "*)Operands[" + << MIOperandList[i].second + << "])->" << Op.Class->RenderMethod + << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n"; + CurIndex += Op.OperandInfo->MINumOperands; + } + + // And add trailing implicit operands. + for (; CurIndex != NumMIOperands; ++CurIndex) { + std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands, + CurIndex); + + if (!Tie) { + // If not, this is some implicit operand. Just assume it is a register + // for now. + CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n"; + } else { + // Copy the tied operand. + assert(Tie->first>Tie->second && "Tied operand preceeds its target!"); + CvtOS << " Inst.addOperand(Inst.getOperand(" + << Tie->second << "));\n"; + } + } + + CvtOS << " return;\n"; + } + + // Finish the convert function. + + CvtOS << " }\n"; + CvtOS << "}\n\n"; + + // Finish the enum, and drop the convert function after it. + + OS << " NumConversionVariants\n"; + OS << "};\n\n"; + + OS << CvtOS.str(); +} + +/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds. +static void EmitMatchClassEnumeration(CodeGenTarget &Target, + std::vector<ClassInfo*> &Infos, + raw_ostream &OS) { + OS << "namespace {\n\n"; + + OS << "/// MatchClassKind - The kinds of classes which participate in\n" + << "/// instruction matching.\n"; + OS << "enum MatchClassKind {\n"; + OS << " InvalidMatchClass = 0,\n"; + for (std::vector<ClassInfo*>::iterator it = Infos.begin(), + ie = Infos.end(); it != ie; ++it) { + ClassInfo &CI = **it; + OS << " " << CI.Name << ", // "; + if (CI.Kind == ClassInfo::Token) { + OS << "'" << CI.ValueName << "'\n"; + } else if (CI.isRegisterClass()) { + if (!CI.ValueName.empty()) + OS << "register class '" << CI.ValueName << "'\n"; + else + OS << "derived register class\n"; + } else { + OS << "user defined class '" << CI.ValueName << "'\n"; + } + } + OS << " NumMatchClassKinds\n"; + OS << "};\n\n"; + + OS << "}\n\n"; +} + +/// EmitClassifyOperand - Emit the function to classify an operand. +static void EmitClassifyOperand(CodeGenTarget &Target, + AsmMatcherInfo &Info, + raw_ostream &OS) { + OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n" + << " " << Target.getName() << "Operand &Operand = *(" + << Target.getName() << "Operand*)GOp;\n"; + + // Classify tokens. + OS << " if (Operand.isToken())\n"; + OS << " return MatchTokenString(Operand.getToken());\n\n"; + + // Classify registers. + // + // FIXME: Don't hardcode isReg, getReg. + OS << " if (Operand.isReg()) {\n"; + OS << " switch (Operand.getReg()) {\n"; + OS << " default: return InvalidMatchClass;\n"; + for (std::map<Record*, ClassInfo*>::iterator + it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end(); + it != ie; ++it) + OS << " case " << Target.getName() << "::" + << it->first->getName() << ": return " << it->second->Name << ";\n"; + OS << " }\n"; + OS << " }\n\n"; + + // Classify user defined operands. + for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(), + ie = Info.Classes.end(); it != ie; ++it) { + ClassInfo &CI = **it; + + if (!CI.isUserClass()) + continue; + + OS << " // '" << CI.ClassName << "' class"; + if (!CI.SuperClasses.empty()) { + OS << ", subclass of "; + for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) { + if (i) OS << ", "; + OS << "'" << CI.SuperClasses[i]->ClassName << "'"; + assert(CI < *CI.SuperClasses[i] && "Invalid class relation!"); + } + } + OS << "\n"; + + OS << " if (Operand." << CI.PredicateMethod << "()) {\n"; + + // Validate subclass relationships. + if (!CI.SuperClasses.empty()) { + for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) + OS << " assert(Operand." << CI.SuperClasses[i]->PredicateMethod + << "() && \"Invalid class relationship!\");\n"; + } + + OS << " return " << CI.Name << ";\n"; + OS << " }\n\n"; + } + OS << " return InvalidMatchClass;\n"; + OS << "}\n\n"; +} + +/// EmitIsSubclass - Emit the subclass predicate function. +static void EmitIsSubclass(CodeGenTarget &Target, + std::vector<ClassInfo*> &Infos, + raw_ostream &OS) { + OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n"; + OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n"; + OS << " if (A == B)\n"; + OS << " return true;\n\n"; + + OS << " switch (A) {\n"; + OS << " default:\n"; + OS << " return false;\n"; + for (std::vector<ClassInfo*>::iterator it = Infos.begin(), + ie = Infos.end(); it != ie; ++it) { + ClassInfo &A = **it; + + if (A.Kind != ClassInfo::Token) { + std::vector<StringRef> SuperClasses; + for (std::vector<ClassInfo*>::iterator it = Infos.begin(), + ie = Infos.end(); it != ie; ++it) { + ClassInfo &B = **it; + + if (&A != &B && A.isSubsetOf(B)) + SuperClasses.push_back(B.Name); + } + + if (SuperClasses.empty()) + continue; + + OS << "\n case " << A.Name << ":\n"; + + if (SuperClasses.size() == 1) { + OS << " return B == " << SuperClasses.back() << ";\n"; + continue; + } + + OS << " switch (B) {\n"; + OS << " default: return false;\n"; + for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i) + OS << " case " << SuperClasses[i] << ": return true;\n"; + OS << " }\n"; + } + } + OS << " }\n"; + OS << "}\n\n"; +} + +typedef std::pair<std::string, std::string> StringPair; + +/// FindFirstNonCommonLetter - Find the first character in the keys of the +/// string pairs that is not shared across the whole set of strings. All +/// strings are assumed to have the same length. +static unsigned +FindFirstNonCommonLetter(const std::vector<const StringPair*> &Matches) { + assert(!Matches.empty()); + for (unsigned i = 0, e = Matches[0]->first.size(); i != e; ++i) { + // Check to see if letter i is the same across the set. + char Letter = Matches[0]->first[i]; + + for (unsigned str = 0, e = Matches.size(); str != e; ++str) + if (Matches[str]->first[i] != Letter) + return i; + } + + return Matches[0]->first.size(); +} + +/// EmitStringMatcherForChar - Given a set of strings that are known to be the +/// same length and whose characters leading up to CharNo are the same, emit +/// code to verify that CharNo and later are the same. +/// +/// \return - True if control can leave the emitted code fragment. +static bool EmitStringMatcherForChar(const std::string &StrVariableName, + const std::vector<const StringPair*> &Matches, + unsigned CharNo, unsigned IndentCount, + raw_ostream &OS) { + assert(!Matches.empty() && "Must have at least one string to match!"); + std::string Indent(IndentCount*2+4, ' '); + + // If we have verified that the entire string matches, we're done: output the + // matching code. + if (CharNo == Matches[0]->first.size()) { + assert(Matches.size() == 1 && "Had duplicate keys to match on"); + + // FIXME: If Matches[0].first has embeded \n, this will be bad. + OS << Indent << Matches[0]->second << "\t // \"" << Matches[0]->first + << "\"\n"; + return false; + } + + // Bucket the matches by the character we are comparing. + std::map<char, std::vector<const StringPair*> > MatchesByLetter; + + for (unsigned i = 0, e = Matches.size(); i != e; ++i) + MatchesByLetter[Matches[i]->first[CharNo]].push_back(Matches[i]); + + + // If we have exactly one bucket to match, see how many characters are common + // across the whole set and match all of them at once. + if (MatchesByLetter.size() == 1) { + unsigned FirstNonCommonLetter = FindFirstNonCommonLetter(Matches); + unsigned NumChars = FirstNonCommonLetter-CharNo; + + // Emit code to break out if the prefix doesn't match. + if (NumChars == 1) { + // Do the comparison with if (Str[1] != 'f') + // FIXME: Need to escape general characters. + OS << Indent << "if (" << StrVariableName << "[" << CharNo << "] != '" + << Matches[0]->first[CharNo] << "')\n"; + OS << Indent << " break;\n"; + } else { + // Do the comparison with if (Str.substr(1,3) != "foo"). + // FIXME: Need to escape general strings. + OS << Indent << "if (" << StrVariableName << ".substr(" << CharNo << "," + << NumChars << ") != \""; + OS << Matches[0]->first.substr(CharNo, NumChars) << "\")\n"; + OS << Indent << " break;\n"; + } + + return EmitStringMatcherForChar(StrVariableName, Matches, + FirstNonCommonLetter, IndentCount, OS); + } + + // Otherwise, we have multiple possible things, emit a switch on the + // character. + OS << Indent << "switch (" << StrVariableName << "[" << CharNo << "]) {\n"; + OS << Indent << "default: break;\n"; + + for (std::map<char, std::vector<const StringPair*> >::iterator LI = + MatchesByLetter.begin(), E = MatchesByLetter.end(); LI != E; ++LI) { + // TODO: escape hard stuff (like \n) if we ever care about it. + OS << Indent << "case '" << LI->first << "':\t // " + << LI->second.size() << " strings to match.\n"; + if (EmitStringMatcherForChar(StrVariableName, LI->second, CharNo+1, + IndentCount+1, OS)) + OS << Indent << " break;\n"; + } + + OS << Indent << "}\n"; + return true; +} + + +/// EmitStringMatcher - Given a list of strings and code to execute when they +/// match, output a simple switch tree to classify the input string. +/// +/// If a match is found, the code in Vals[i].second is executed; control must +/// not exit this code fragment. If nothing matches, execution falls through. +/// +/// \param StrVariableName - The name of the variable to test. +static void EmitStringMatcher(const std::string &StrVariableName, + const std::vector<StringPair> &Matches, + raw_ostream &OS) { + // First level categorization: group strings by length. + std::map<unsigned, std::vector<const StringPair*> > MatchesByLength; + + for (unsigned i = 0, e = Matches.size(); i != e; ++i) + MatchesByLength[Matches[i].first.size()].push_back(&Matches[i]); + + // Output a switch statement on length and categorize the elements within each + // bin. + OS << " switch (" << StrVariableName << ".size()) {\n"; + OS << " default: break;\n"; + + for (std::map<unsigned, std::vector<const StringPair*> >::iterator LI = + MatchesByLength.begin(), E = MatchesByLength.end(); LI != E; ++LI) { + OS << " case " << LI->first << ":\t // " << LI->second.size() + << " strings to match.\n"; + if (EmitStringMatcherForChar(StrVariableName, LI->second, 0, 0, OS)) + OS << " break;\n"; + } + + OS << " }\n"; +} + + +/// EmitMatchTokenString - Emit the function to match a token string to the +/// appropriate match class value. +static void EmitMatchTokenString(CodeGenTarget &Target, + std::vector<ClassInfo*> &Infos, + raw_ostream &OS) { + // Construct the match list. + std::vector<StringPair> Matches; + for (std::vector<ClassInfo*>::iterator it = Infos.begin(), + ie = Infos.end(); it != ie; ++it) { + ClassInfo &CI = **it; + + if (CI.Kind == ClassInfo::Token) + Matches.push_back(StringPair(CI.ValueName, "return " + CI.Name + ";")); + } + + OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n"; + + EmitStringMatcher("Name", Matches, OS); + + OS << " return InvalidMatchClass;\n"; + OS << "}\n\n"; +} + +/// EmitMatchRegisterName - Emit the function to match a string to the target +/// specific register enum. +static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, + raw_ostream &OS) { + // Construct the match list. + std::vector<StringPair> Matches; + for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) { + const CodeGenRegister &Reg = Target.getRegisters()[i]; + if (Reg.TheDef->getValueAsString("AsmName").empty()) + continue; + + Matches.push_back(StringPair(Reg.TheDef->getValueAsString("AsmName"), + "return " + utostr(i + 1) + ";")); + } + + OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; + + EmitStringMatcher("Name", Matches, OS); + + OS << " return 0;\n"; + OS << "}\n\n"; +} + +void AsmMatcherEmitter::run(raw_ostream &OS) { + CodeGenTarget Target; + Record *AsmParser = Target.getAsmParser(); + std::string ClassName = AsmParser->getValueAsString("AsmParserClassName"); + + // Compute the information on the instructions to match. + AsmMatcherInfo Info(AsmParser); + Info.BuildInfo(Target); + + // Sort the instruction table using the partial order on classes. We use + // stable_sort to ensure that ambiguous instructions are still + // deterministically ordered. + std::stable_sort(Info.Instructions.begin(), Info.Instructions.end(), + less_ptr<InstructionInfo>()); + + DEBUG_WITH_TYPE("instruction_info", { + for (std::vector<InstructionInfo*>::iterator + it = Info.Instructions.begin(), ie = Info.Instructions.end(); + it != ie; ++it) + (*it)->dump(); + }); + + // Check for ambiguous instructions. + unsigned NumAmbiguous = 0; + for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) { + for (unsigned j = i + 1; j != e; ++j) { + InstructionInfo &A = *Info.Instructions[i]; + InstructionInfo &B = *Info.Instructions[j]; + + if (A.CouldMatchAmiguouslyWith(B)) { + DEBUG_WITH_TYPE("ambiguous_instrs", { + errs() << "warning: ambiguous instruction match:\n"; + A.dump(); + errs() << "\nis incomparable with:\n"; + B.dump(); + errs() << "\n\n"; + }); + ++NumAmbiguous; + } + } + } + if (NumAmbiguous) + DEBUG_WITH_TYPE("ambiguous_instrs", { + errs() << "warning: " << NumAmbiguous + << " ambiguous instructions!\n"; + }); + + // Write the output. + + EmitSourceFileHeader("Assembly Matcher Source Fragment", OS); + + // Emit the function to match a register name to number. + EmitMatchRegisterName(Target, AsmParser, OS); + + OS << "#ifndef REGISTERS_ONLY\n\n"; + + // Generate the unified function to convert operands into an MCInst. + EmitConvertToMCInst(Target, Info.Instructions, OS); + + // Emit the enumeration for classes which participate in matching. + EmitMatchClassEnumeration(Target, Info.Classes, OS); + + // Emit the routine to match token strings to their match class. + EmitMatchTokenString(Target, Info.Classes, OS); + + // Emit the routine to classify an operand. + EmitClassifyOperand(Target, Info, OS); + + // Emit the subclass predicate routine. + EmitIsSubclass(Target, Info.Classes, OS); + + // Finally, build the match function. + + size_t MaxNumOperands = 0; + for (std::vector<InstructionInfo*>::const_iterator it = + Info.Instructions.begin(), ie = Info.Instructions.end(); + it != ie; ++it) + MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size()); + + const std::string &MatchName = + AsmParser->getValueAsString("MatchInstructionName"); + OS << "bool " << Target.getName() << ClassName << "::\n" + << MatchName + << "(const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"; + OS.indent(MatchName.size() + 1); + OS << "MCInst &Inst) {\n"; + + // Emit the static match table; unused classes get initalized to 0 which is + // guaranteed to be InvalidMatchClass. + // + // FIXME: We can reduce the size of this table very easily. First, we change + // it so that store the kinds in separate bit-fields for each index, which + // only needs to be the max width used for classes at that index (we also need + // to reject based on this during classification). If we then make sure to + // order the match kinds appropriately (putting mnemonics last), then we + // should only end up using a few bits for each class, especially the ones + // following the mnemonic. + OS << " static const struct MatchEntry {\n"; + OS << " unsigned Opcode;\n"; + OS << " ConversionKind ConvertFn;\n"; + OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n"; + OS << " } MatchTable[" << Info.Instructions.size() << "] = {\n"; + + for (std::vector<InstructionInfo*>::const_iterator it = + Info.Instructions.begin(), ie = Info.Instructions.end(); + it != ie; ++it) { + InstructionInfo &II = **it; + + OS << " { " << Target.getName() << "::" << II.InstrName + << ", " << II.ConversionFnKind << ", { "; + for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) { + InstructionInfo::Operand &Op = II.Operands[i]; + + if (i) OS << ", "; + OS << Op.Class->Name; + } + OS << " } },\n"; + } + + OS << " };\n\n"; + + // Emit code to compute the class list for this operand vector. + OS << " // Eliminate obvious mismatches.\n"; + OS << " if (Operands.size() > " << MaxNumOperands << ")\n"; + OS << " return true;\n\n"; + + OS << " // Compute the class list for this operand vector.\n"; + OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n"; + OS << " for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n"; + OS << " Classes[i] = ClassifyOperand(Operands[i]);\n\n"; + + OS << " // Check for invalid operands before matching.\n"; + OS << " if (Classes[i] == InvalidMatchClass)\n"; + OS << " return true;\n"; + OS << " }\n\n"; + + OS << " // Mark unused classes.\n"; + OS << " for (unsigned i = Operands.size(), e = " << MaxNumOperands << "; " + << "i != e; ++i)\n"; + OS << " Classes[i] = InvalidMatchClass;\n\n"; + + // Emit code to search the table. + OS << " // Search the table.\n"; + OS << " for (const MatchEntry *it = MatchTable, " + << "*ie = MatchTable + " << Info.Instructions.size() + << "; it != ie; ++it) {\n"; + for (unsigned i = 0; i != MaxNumOperands; ++i) { + OS << " if (!IsSubclass(Classes[" + << i << "], it->Classes[" << i << "]))\n"; + OS << " continue;\n"; + } + OS << "\n"; + OS << " ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; + + // Call the post-processing function, if used. + std::string InsnCleanupFn = + AsmParser->getValueAsString("AsmParserInstCleanup"); + if (!InsnCleanupFn.empty()) + OS << " " << InsnCleanupFn << "(Inst);\n"; + + OS << " return false;\n"; + OS << " }\n\n"; + + OS << " return true;\n"; + OS << "}\n\n"; + + OS << "#endif // REGISTERS_ONLY\n"; +} |