diff options
Diffstat (limited to 'contrib/llvm/utils/TableGen/ARMDecoderEmitter.cpp')
-rw-r--r-- | contrib/llvm/utils/TableGen/ARMDecoderEmitter.cpp | 1790 |
1 files changed, 1790 insertions, 0 deletions
diff --git a/contrib/llvm/utils/TableGen/ARMDecoderEmitter.cpp b/contrib/llvm/utils/TableGen/ARMDecoderEmitter.cpp new file mode 100644 index 0000000..145b96d --- /dev/null +++ b/contrib/llvm/utils/TableGen/ARMDecoderEmitter.cpp @@ -0,0 +1,1790 @@ +//===------------ ARMDecoderEmitter.cpp - Decoder Generator ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file is part of the ARM Disassembler. +// It contains the tablegen backend that emits the decoder functions for ARM and +// Thumb. The disassembler core includes the auto-generated file, invokes the +// decoder functions, and builds up the MCInst based on the decoded Opcode. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "arm-decoder-emitter" + +#include "ARMDecoderEmitter.h" +#include "CodeGenTarget.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/TableGen/Record.h" + +#include <vector> +#include <map> +#include <string> + +using namespace llvm; + +///////////////////////////////////////////////////// +// // +// Enums and Utilities for ARM Instruction Format // +// // +///////////////////////////////////////////////////// + +#define ARM_FORMATS \ + ENTRY(ARM_FORMAT_PSEUDO, 0) \ + ENTRY(ARM_FORMAT_MULFRM, 1) \ + ENTRY(ARM_FORMAT_BRFRM, 2) \ + ENTRY(ARM_FORMAT_BRMISCFRM, 3) \ + ENTRY(ARM_FORMAT_DPFRM, 4) \ + ENTRY(ARM_FORMAT_DPSOREGREGFRM, 5) \ + ENTRY(ARM_FORMAT_LDFRM, 6) \ + ENTRY(ARM_FORMAT_STFRM, 7) \ + ENTRY(ARM_FORMAT_LDMISCFRM, 8) \ + ENTRY(ARM_FORMAT_STMISCFRM, 9) \ + ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \ + ENTRY(ARM_FORMAT_LDSTEXFRM, 11) \ + ENTRY(ARM_FORMAT_ARITHMISCFRM, 12) \ + ENTRY(ARM_FORMAT_SATFRM, 13) \ + ENTRY(ARM_FORMAT_EXTFRM, 14) \ + ENTRY(ARM_FORMAT_VFPUNARYFRM, 15) \ + ENTRY(ARM_FORMAT_VFPBINARYFRM, 16) \ + ENTRY(ARM_FORMAT_VFPCONV1FRM, 17) \ + ENTRY(ARM_FORMAT_VFPCONV2FRM, 18) \ + ENTRY(ARM_FORMAT_VFPCONV3FRM, 19) \ + ENTRY(ARM_FORMAT_VFPCONV4FRM, 20) \ + ENTRY(ARM_FORMAT_VFPCONV5FRM, 21) \ + ENTRY(ARM_FORMAT_VFPLDSTFRM, 22) \ + ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 23) \ + ENTRY(ARM_FORMAT_VFPMISCFRM, 24) \ + ENTRY(ARM_FORMAT_THUMBFRM, 25) \ + ENTRY(ARM_FORMAT_MISCFRM, 26) \ + ENTRY(ARM_FORMAT_NEONGETLNFRM, 27) \ + ENTRY(ARM_FORMAT_NEONSETLNFRM, 28) \ + ENTRY(ARM_FORMAT_NEONDUPFRM, 29) \ + ENTRY(ARM_FORMAT_NLdSt, 30) \ + ENTRY(ARM_FORMAT_N1RegModImm, 31) \ + ENTRY(ARM_FORMAT_N2Reg, 32) \ + ENTRY(ARM_FORMAT_NVCVT, 33) \ + ENTRY(ARM_FORMAT_NVecDupLn, 34) \ + ENTRY(ARM_FORMAT_N2RegVecShL, 35) \ + ENTRY(ARM_FORMAT_N2RegVecShR, 36) \ + ENTRY(ARM_FORMAT_N3Reg, 37) \ + ENTRY(ARM_FORMAT_N3RegVecSh, 38) \ + ENTRY(ARM_FORMAT_NVecExtract, 39) \ + ENTRY(ARM_FORMAT_NVecMulScalar, 40) \ + ENTRY(ARM_FORMAT_NVTBL, 41) \ + ENTRY(ARM_FORMAT_DPSOREGIMMFRM, 42) + +// ARM instruction format specifies the encoding used by the instruction. +#define ENTRY(n, v) n = v, +typedef enum { + ARM_FORMATS + ARM_FORMAT_NA +} ARMFormat; +#undef ENTRY + +// Converts enum to const char*. +static const char *stringForARMFormat(ARMFormat form) { +#define ENTRY(n, v) case n: return #n; + switch(form) { + ARM_FORMATS + case ARM_FORMAT_NA: + default: + return ""; + } +#undef ENTRY +} + +enum { + IndexModeNone = 0, + IndexModePre = 1, + IndexModePost = 2, + IndexModeUpd = 3 +}; + +///////////////////////// +// // +// Utility functions // +// // +///////////////////////// + +/// byteFromBitsInit - Return the byte value from a BitsInit. +/// Called from getByteField(). +static uint8_t byteFromBitsInit(BitsInit &init) { + int width = init.getNumBits(); + + assert(width <= 8 && "Field is too large for uint8_t!"); + + int index; + uint8_t mask = 0x01; + + uint8_t ret = 0; + + for (index = 0; index < width; index++) { + if (static_cast<BitInit*>(init.getBit(index))->getValue()) + ret |= mask; + + mask <<= 1; + } + + return ret; +} + +static uint8_t getByteField(const Record &def, const char *str) { + BitsInit *bits = def.getValueAsBitsInit(str); + return byteFromBitsInit(*bits); +} + +static BitsInit &getBitsField(const Record &def, const char *str) { + BitsInit *bits = def.getValueAsBitsInit(str); + return *bits; +} + +/// sameStringExceptSuffix - Return true if the two strings differ only in RHS's +/// suffix. ("VST4d8", "VST4d8_UPD", "_UPD") as input returns true. +static +bool sameStringExceptSuffix(const StringRef LHS, const StringRef RHS, + const StringRef Suffix) { + + if (RHS.startswith(LHS) && RHS.endswith(Suffix)) + return RHS.size() == LHS.size() + Suffix.size(); + + return false; +} + +/// thumbInstruction - Determine whether we have a Thumb instruction. +/// See also ARMInstrFormats.td. +static bool thumbInstruction(uint8_t Form) { + return Form == ARM_FORMAT_THUMBFRM; +} + +// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system +// for a bit value. +// +// BIT_UNFILTERED is used as the init value for a filter position. It is used +// only for filter processings. +typedef enum { + BIT_TRUE, // '1' + BIT_FALSE, // '0' + BIT_UNSET, // '?' + BIT_UNFILTERED // unfiltered +} bit_value_t; + +static bool ValueSet(bit_value_t V) { + return (V == BIT_TRUE || V == BIT_FALSE); +} +static bool ValueNotSet(bit_value_t V) { + return (V == BIT_UNSET); +} +static int Value(bit_value_t V) { + return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); +} +static bit_value_t bitFromBits(BitsInit &bits, unsigned index) { + if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index))) + return bit->getValue() ? BIT_TRUE : BIT_FALSE; + + // The bit is uninitialized. + return BIT_UNSET; +} +// Prints the bit value for each position. +static void dumpBits(raw_ostream &o, BitsInit &bits) { + unsigned index; + + for (index = bits.getNumBits(); index > 0; index--) { + switch (bitFromBits(bits, index - 1)) { + case BIT_TRUE: + o << "1"; + break; + case BIT_FALSE: + o << "0"; + break; + case BIT_UNSET: + o << "_"; + break; + default: + assert(0 && "unexpected return value from bitFromBits"); + } + } +} + +// Enums for the available target names. +typedef enum { + TARGET_ARM = 0, + TARGET_THUMB +} TARGET_NAME_t; + +// FIXME: Possibly auto-detected? +#define BIT_WIDTH 32 + +// Forward declaration. +class ARMFilterChooser; + +// Representation of the instruction to work on. +typedef bit_value_t insn_t[BIT_WIDTH]; + +/// Filter - Filter works with FilterChooser to produce the decoding tree for +/// the ISA. +/// +/// It is useful to think of a Filter as governing the switch stmts of the +/// decoding tree in a certain level. Each case stmt delegates to an inferior +/// FilterChooser to decide what further decoding logic to employ, or in another +/// words, what other remaining bits to look at. The FilterChooser eventually +/// chooses a best Filter to do its job. +/// +/// This recursive scheme ends when the number of Opcodes assigned to the +/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when +/// the Filter/FilterChooser combo does not know how to distinguish among the +/// Opcodes assigned. +/// +/// An example of a conflict is +/// +/// Conflict: +/// 111101000.00........00010000.... +/// 111101000.00........0001........ +/// 1111010...00........0001........ +/// 1111010...00.................... +/// 1111010......................... +/// 1111............................ +/// ................................ +/// VST4q8a 111101000_00________00010000____ +/// VST4q8b 111101000_00________00010000____ +/// +/// The Debug output shows the path that the decoding tree follows to reach the +/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced +/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters. +/// +/// The encoding info in the .td files does not specify this meta information, +/// which could have been used by the decoder to resolve the conflict. The +/// decoder could try to decode the even/odd register numbering and assign to +/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" +/// version and return the Opcode since the two have the same Asm format string. +class ARMFilter { +protected: + ARMFilterChooser *Owner; // points to the FilterChooser who owns this filter + unsigned StartBit; // the starting bit position + unsigned NumBits; // number of bits to filter + bool Mixed; // a mixed region contains both set and unset bits + + // Map of well-known segment value to the set of uid's with that value. + std::map<uint64_t, std::vector<unsigned> > FilteredInstructions; + + // Set of uid's with non-constant segment values. + std::vector<unsigned> VariableInstructions; + + // Map of well-known segment value to its delegate. + std::map<unsigned, ARMFilterChooser*> FilterChooserMap; + + // Number of instructions which fall under FilteredInstructions category. + unsigned NumFiltered; + + // Keeps track of the last opcode in the filtered bucket. + unsigned LastOpcFiltered; + + // Number of instructions which fall under VariableInstructions category. + unsigned NumVariable; + +public: + unsigned getNumFiltered() { return NumFiltered; } + unsigned getNumVariable() { return NumVariable; } + unsigned getSingletonOpc() { + assert(NumFiltered == 1); + return LastOpcFiltered; + } + // Return the filter chooser for the group of instructions without constant + // segment values. + ARMFilterChooser &getVariableFC() { + assert(NumFiltered == 1); + assert(FilterChooserMap.size() == 1); + return *(FilterChooserMap.find((unsigned)-1)->second); + } + + ARMFilter(const ARMFilter &f); + ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits, + bool mixed); + + ~ARMFilter(); + + // Divides the decoding task into sub tasks and delegates them to the + // inferior FilterChooser's. + // + // A special case arises when there's only one entry in the filtered + // instructions. In order to unambiguously decode the singleton, we need to + // match the remaining undecoded encoding bits against the singleton. + void recurse(); + + // Emit code to decode instructions given a segment or segments of bits. + void emit(raw_ostream &o, unsigned &Indentation); + + // Returns the number of fanout produced by the filter. More fanout implies + // the filter distinguishes more categories of instructions. + unsigned usefulness() const; +}; // End of class Filter + +// These are states of our finite state machines used in FilterChooser's +// filterProcessor() which produces the filter candidates to use. +typedef enum { + ATTR_NONE, + ATTR_FILTERED, + ATTR_ALL_SET, + ATTR_ALL_UNSET, + ATTR_MIXED +} bitAttr_t; + +/// ARMFilterChooser - FilterChooser chooses the best filter among a set of Filters +/// in order to perform the decoding of instructions at the current level. +/// +/// Decoding proceeds from the top down. Based on the well-known encoding bits +/// of instructions available, FilterChooser builds up the possible Filters that +/// can further the task of decoding by distinguishing among the remaining +/// candidate instructions. +/// +/// Once a filter has been chosen, it is called upon to divide the decoding task +/// into sub-tasks and delegates them to its inferior FilterChoosers for further +/// processings. +/// +/// It is useful to think of a Filter as governing the switch stmts of the +/// decoding tree. And each case is delegated to an inferior FilterChooser to +/// decide what further remaining bits to look at. +class ARMFilterChooser { + static TARGET_NAME_t TargetName; + +protected: + friend class ARMFilter; + + // Vector of codegen instructions to choose our filter. + const std::vector<const CodeGenInstruction*> &AllInstructions; + + // Vector of uid's for this filter chooser to work on. + const std::vector<unsigned> Opcodes; + + // Vector of candidate filters. + std::vector<ARMFilter> Filters; + + // Array of bit values passed down from our parent. + // Set to all BIT_UNFILTERED's for Parent == NULL. + bit_value_t FilterBitValues[BIT_WIDTH]; + + // Links to the FilterChooser above us in the decoding tree. + ARMFilterChooser *Parent; + + // Index of the best filter from Filters. + int BestIndex; + +public: + static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; } + + ARMFilterChooser(const ARMFilterChooser &FC) : + AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes), + Filters(FC.Filters), Parent(FC.Parent), BestIndex(FC.BestIndex) { + memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues)); + } + + ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts, + const std::vector<unsigned> &IDs) : + AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(NULL), + BestIndex(-1) { + for (unsigned i = 0; i < BIT_WIDTH; ++i) + FilterBitValues[i] = BIT_UNFILTERED; + + doFilter(); + } + + ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts, + const std::vector<unsigned> &IDs, + bit_value_t (&ParentFilterBitValues)[BIT_WIDTH], + ARMFilterChooser &parent) : + AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(&parent), + BestIndex(-1) { + for (unsigned i = 0; i < BIT_WIDTH; ++i) + FilterBitValues[i] = ParentFilterBitValues[i]; + + doFilter(); + } + + // The top level filter chooser has NULL as its parent. + bool isTopLevel() { return Parent == NULL; } + + // This provides an opportunity for target specific code emission. + void emitTopHook(raw_ostream &o); + + // Emit the top level typedef and decodeInstruction() function. + void emitTop(raw_ostream &o, unsigned &Indentation); + + // This provides an opportunity for target specific code emission after + // emitTop(). + void emitBot(raw_ostream &o, unsigned &Indentation); + +protected: + // Populates the insn given the uid. + void insnWithID(insn_t &Insn, unsigned Opcode) const { + if (AllInstructions[Opcode]->isPseudo) + return; + + BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); + + for (unsigned i = 0; i < BIT_WIDTH; ++i) + Insn[i] = bitFromBits(Bits, i); + + // Set Inst{21} to 1 (wback) when IndexModeBits == IndexModeUpd. + Record *R = AllInstructions[Opcode]->TheDef; + if (R->getValue("IndexModeBits") && + getByteField(*R, "IndexModeBits") == IndexModeUpd) + Insn[21] = BIT_TRUE; + } + + // Returns the record name. + const std::string &nameWithID(unsigned Opcode) const { + return AllInstructions[Opcode]->TheDef->getName(); + } + + // Populates the field of the insn given the start position and the number of + // consecutive bits to scan for. + // + // Returns false if there exists any uninitialized bit value in the range. + // Returns true, otherwise. + bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, + unsigned NumBits) const; + + /// dumpFilterArray - dumpFilterArray prints out debugging info for the given + /// filter array as a series of chars. + void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]); + + /// dumpStack - dumpStack traverses the filter chooser chain and calls + /// dumpFilterArray on each filter chooser up to the top level one. + void dumpStack(raw_ostream &o, const char *prefix); + + ARMFilter &bestFilter() { + assert(BestIndex != -1 && "BestIndex not set"); + return Filters[BestIndex]; + } + + // Called from Filter::recurse() when singleton exists. For debug purpose. + void SingletonExists(unsigned Opc); + + bool PositionFiltered(unsigned i) { + return ValueSet(FilterBitValues[i]); + } + + // Calculates the island(s) needed to decode the instruction. + // This returns a lit of undecoded bits of an instructions, for example, + // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be + // decoded bits in order to verify that the instruction matches the Opcode. + unsigned getIslands(std::vector<unsigned> &StartBits, + std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, + insn_t &Insn); + + // The purpose of this function is for the API client to detect possible + // Load/Store Coprocessor instructions. If the coprocessor number is of + // the instruction is either 10 or 11, the decoder should not report the + // instruction as LDC/LDC2/STC/STC2, but should match against Advanced SIMD or + // VFP instructions. + bool LdStCopEncoding1(unsigned Opc) { + const std::string &Name = nameWithID(Opc); + if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" || + Name == "LDC_POST" || Name == "LDC_PRE" || + Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" || + Name == "LDCL_POST" || Name == "LDCL_PRE" || + Name == "STC_OFFSET" || Name == "STC_OPTION" || + Name == "STC_POST" || Name == "STC_PRE" || + Name == "STCL_OFFSET" || Name == "STCL_OPTION" || + Name == "STCL_POST" || Name == "STCL_PRE") + return true; + else + return false; + } + + // Emits code to decode the singleton. Return true if we have matched all the + // well-known bits. + bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc); + + // Emits code to decode the singleton, and then to decode the rest. + void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, + ARMFilter &Best); + + // Assign a single filter and run with it. + void runSingleFilter(ARMFilterChooser &owner, unsigned startBit, + unsigned numBit, bool mixed); + + // reportRegion is a helper function for filterProcessor to mark a region as + // eligible for use as a filter region. + void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, + bool AllowMixed); + + // FilterProcessor scans the well-known encoding bits of the instructions and + // builds up a list of candidate filters. It chooses the best filter and + // recursively descends down the decoding tree. + bool filterProcessor(bool AllowMixed, bool Greedy = true); + + // Decides on the best configuration of filter(s) to use in order to decode + // the instructions. A conflict of instructions may occur, in which case we + // dump the conflict set to the standard error. + void doFilter(); + + // Emits code to decode our share of instructions. Returns true if the + // emitted code causes a return, which occurs if we know how to decode + // the instruction at this level or the instruction is not decodeable. + bool emit(raw_ostream &o, unsigned &Indentation); +}; + +/////////////////////////// +// // +// Filter Implmenetation // +// // +/////////////////////////// + +ARMFilter::ARMFilter(const ARMFilter &f) : + Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), + FilteredInstructions(f.FilteredInstructions), + VariableInstructions(f.VariableInstructions), + FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered), + LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) { +} + +ARMFilter::ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits, + bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits), + Mixed(mixed) { + assert(StartBit + NumBits - 1 < BIT_WIDTH); + + NumFiltered = 0; + LastOpcFiltered = 0; + NumVariable = 0; + + for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { + insn_t Insn; + + // Populates the insn given the uid. + Owner->insnWithID(Insn, Owner->Opcodes[i]); + + uint64_t Field; + // Scans the segment for possibly well-specified encoding bits. + bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); + + if (ok) { + // The encoding bits are well-known. Lets add the uid of the + // instruction into the bucket keyed off the constant field value. + LastOpcFiltered = Owner->Opcodes[i]; + FilteredInstructions[Field].push_back(LastOpcFiltered); + ++NumFiltered; + } else { + // Some of the encoding bit(s) are unspecfied. This contributes to + // one additional member of "Variable" instructions. + VariableInstructions.push_back(Owner->Opcodes[i]); + ++NumVariable; + } + } + + assert((FilteredInstructions.size() + VariableInstructions.size() > 0) + && "Filter returns no instruction categories"); +} + +ARMFilter::~ARMFilter() { + std::map<unsigned, ARMFilterChooser*>::iterator filterIterator; + for (filterIterator = FilterChooserMap.begin(); + filterIterator != FilterChooserMap.end(); + filterIterator++) { + delete filterIterator->second; + } +} + +// Divides the decoding task into sub tasks and delegates them to the +// inferior FilterChooser's. +// +// A special case arises when there's only one entry in the filtered +// instructions. In order to unambiguously decode the singleton, we need to +// match the remaining undecoded encoding bits against the singleton. +void ARMFilter::recurse() { + std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator; + + bit_value_t BitValueArray[BIT_WIDTH]; + // Starts by inheriting our parent filter chooser's filter bit values. + memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray)); + + unsigned bitIndex; + + if (VariableInstructions.size()) { + // Conservatively marks each segment position as BIT_UNSET. + for (bitIndex = 0; bitIndex < NumBits; bitIndex++) + BitValueArray[StartBit + bitIndex] = BIT_UNSET; + + // Delegates to an inferior filter chooser for further processing on this + // group of instructions whose segment values are variable. + FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>( + (unsigned)-1, + new ARMFilterChooser(Owner->AllInstructions, + VariableInstructions, + BitValueArray, + *Owner) + )); + } + + // No need to recurse for a singleton filtered instruction. + // See also Filter::emit(). + if (getNumFiltered() == 1) { + //Owner->SingletonExists(LastOpcFiltered); + assert(FilterChooserMap.size() == 1); + return; + } + + // Otherwise, create sub choosers. + for (mapIterator = FilteredInstructions.begin(); + mapIterator != FilteredInstructions.end(); + mapIterator++) { + + // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. + for (bitIndex = 0; bitIndex < NumBits; bitIndex++) { + if (mapIterator->first & (1ULL << bitIndex)) + BitValueArray[StartBit + bitIndex] = BIT_TRUE; + else + BitValueArray[StartBit + bitIndex] = BIT_FALSE; + } + + // Delegates to an inferior filter chooser for further processing on this + // category of instructions. + FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>( + mapIterator->first, + new ARMFilterChooser(Owner->AllInstructions, + mapIterator->second, + BitValueArray, + *Owner) + )); + } +} + +// Emit code to decode instructions given a segment or segments of bits. +void ARMFilter::emit(raw_ostream &o, unsigned &Indentation) { + o.indent(Indentation) << "// Check Inst{"; + + if (NumBits > 1) + o << (StartBit + NumBits - 1) << '-'; + + o << StartBit << "} ...\n"; + + o.indent(Indentation) << "switch (fieldFromInstruction(insn, " + << StartBit << ", " << NumBits << ")) {\n"; + + std::map<unsigned, ARMFilterChooser*>::iterator filterIterator; + + bool DefaultCase = false; + for (filterIterator = FilterChooserMap.begin(); + filterIterator != FilterChooserMap.end(); + filterIterator++) { + + // Field value -1 implies a non-empty set of variable instructions. + // See also recurse(). + if (filterIterator->first == (unsigned)-1) { + DefaultCase = true; + + o.indent(Indentation) << "default:\n"; + o.indent(Indentation) << " break; // fallthrough\n"; + + // Closing curly brace for the switch statement. + // This is unconventional because we want the default processing to be + // performed for the fallthrough cases as well, i.e., when the "cases" + // did not prove a decoded instruction. + o.indent(Indentation) << "}\n"; + + } else + o.indent(Indentation) << "case " << filterIterator->first << ":\n"; + + // We arrive at a category of instructions with the same segment value. + // Now delegate to the sub filter chooser for further decodings. + // The case may fallthrough, which happens if the remaining well-known + // encoding bits do not match exactly. + if (!DefaultCase) { ++Indentation; ++Indentation; } + + bool finished = filterIterator->second->emit(o, Indentation); + // For top level default case, there's no need for a break statement. + if (Owner->isTopLevel() && DefaultCase) + break; + if (!finished) + o.indent(Indentation) << "break;\n"; + + if (!DefaultCase) { --Indentation; --Indentation; } + } + + // If there is no default case, we still need to supply a closing brace. + if (!DefaultCase) { + // Closing curly brace for the switch statement. + o.indent(Indentation) << "}\n"; + } +} + +// Returns the number of fanout produced by the filter. More fanout implies +// the filter distinguishes more categories of instructions. +unsigned ARMFilter::usefulness() const { + if (VariableInstructions.size()) + return FilteredInstructions.size(); + else + return FilteredInstructions.size() + 1; +} + +////////////////////////////////// +// // +// Filterchooser Implementation // +// // +////////////////////////////////// + +// Define the symbol here. +TARGET_NAME_t ARMFilterChooser::TargetName; + +// This provides an opportunity for target specific code emission. +void ARMFilterChooser::emitTopHook(raw_ostream &o) { + if (TargetName == TARGET_ARM) { + // Emit code that references the ARMFormat data type. + o << "static const ARMFormat ARMFormats[] = {\n"; + for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) { + const Record &Def = *(AllInstructions[i]->TheDef); + const std::string &Name = Def.getName(); + if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb")) + o.indent(2) << + stringForARMFormat((ARMFormat)getByteField(Def, "Form")); + else + o << " ARM_FORMAT_NA"; + + o << ",\t// Inst #" << i << " = " << Name << '\n'; + } + o << " ARM_FORMAT_NA\t// Unreachable.\n"; + o << "};\n\n"; + } +} + +// Emit the top level typedef and decodeInstruction() function. +void ARMFilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) { + // Run the target specific emit hook. + emitTopHook(o); + + switch (BIT_WIDTH) { + case 8: + o.indent(Indentation) << "typedef uint8_t field_t;\n"; + break; + case 16: + o.indent(Indentation) << "typedef uint16_t field_t;\n"; + break; + case 32: + o.indent(Indentation) << "typedef uint32_t field_t;\n"; + break; + case 64: + o.indent(Indentation) << "typedef uint64_t field_t;\n"; + break; + default: + assert(0 && "Unexpected instruction size!"); + } + + o << '\n'; + + o.indent(Indentation) << "static field_t " << + "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n"; + + o.indent(Indentation) << "{\n"; + + ++Indentation; ++Indentation; + o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH + << " && \"Instruction field out of bounds!\");\n"; + o << '\n'; + o.indent(Indentation) << "field_t fieldMask;\n"; + o << '\n'; + o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n"; + + ++Indentation; ++Indentation; + o.indent(Indentation) << "fieldMask = (field_t)-1;\n"; + --Indentation; --Indentation; + + o.indent(Indentation) << "else\n"; + + ++Indentation; ++Indentation; + o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n"; + --Indentation; --Indentation; + + o << '\n'; + o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n"; + --Indentation; --Indentation; + + o.indent(Indentation) << "}\n"; + + o << '\n'; + + o.indent(Indentation) <<"static uint16_t decodeInstruction(field_t insn) {\n"; + + ++Indentation; ++Indentation; + // Emits code to decode the instructions. + emit(o, Indentation); + + o << '\n'; + o.indent(Indentation) << "return 0;\n"; + --Indentation; --Indentation; + + o.indent(Indentation) << "}\n"; + + o << '\n'; +} + +// This provides an opportunity for target specific code emission after +// emitTop(). +void ARMFilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) { + if (TargetName != TARGET_THUMB) return; + + // Emit code that decodes the Thumb ISA. + o.indent(Indentation) + << "static uint16_t decodeThumbInstruction(field_t insn) {\n"; + + ++Indentation; ++Indentation; + + // Emits code to decode the instructions. + emit(o, Indentation); + + o << '\n'; + o.indent(Indentation) << "return 0;\n"; + + --Indentation; --Indentation; + + o.indent(Indentation) << "}\n"; +} + +// Populates the field of the insn given the start position and the number of +// consecutive bits to scan for. +// +// Returns false if and on the first uninitialized bit value encountered. +// Returns true, otherwise. +bool ARMFilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, + unsigned StartBit, unsigned NumBits) const { + Field = 0; + + for (unsigned i = 0; i < NumBits; ++i) { + if (Insn[StartBit + i] == BIT_UNSET) + return false; + + if (Insn[StartBit + i] == BIT_TRUE) + Field = Field | (1ULL << i); + } + + return true; +} + +/// dumpFilterArray - dumpFilterArray prints out debugging info for the given +/// filter array as a series of chars. +void ARMFilterChooser::dumpFilterArray(raw_ostream &o, + bit_value_t (&filter)[BIT_WIDTH]) { + unsigned bitIndex; + + for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) { + switch (filter[bitIndex - 1]) { + case BIT_UNFILTERED: + o << "."; + break; + case BIT_UNSET: + o << "_"; + break; + case BIT_TRUE: + o << "1"; + break; + case BIT_FALSE: + o << "0"; + break; + } + } +} + +/// dumpStack - dumpStack traverses the filter chooser chain and calls +/// dumpFilterArray on each filter chooser up to the top level one. +void ARMFilterChooser::dumpStack(raw_ostream &o, const char *prefix) { + ARMFilterChooser *current = this; + + while (current) { + o << prefix; + dumpFilterArray(o, current->FilterBitValues); + o << '\n'; + current = current->Parent; + } +} + +// Called from Filter::recurse() when singleton exists. For debug purpose. +void ARMFilterChooser::SingletonExists(unsigned Opc) { + insn_t Insn0; + insnWithID(Insn0, Opc); + + errs() << "Singleton exists: " << nameWithID(Opc) + << " with its decoding dominating "; + for (unsigned i = 0; i < Opcodes.size(); ++i) { + if (Opcodes[i] == Opc) continue; + errs() << nameWithID(Opcodes[i]) << ' '; + } + errs() << '\n'; + + dumpStack(errs(), "\t\t"); + for (unsigned i = 0; i < Opcodes.size(); i++) { + const std::string &Name = nameWithID(Opcodes[i]); + + errs() << '\t' << Name << " "; + dumpBits(errs(), + getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); + errs() << '\n'; + } +} + +// Calculates the island(s) needed to decode the instruction. +// This returns a list of undecoded bits of an instructions, for example, +// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be +// decoded bits in order to verify that the instruction matches the Opcode. +unsigned ARMFilterChooser::getIslands(std::vector<unsigned> &StartBits, + std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, + insn_t &Insn) { + unsigned Num, BitNo; + Num = BitNo = 0; + + uint64_t FieldVal = 0; + + // 0: Init + // 1: Water (the bit value does not affect decoding) + // 2: Island (well-known bit value needed for decoding) + int State = 0; + int Val = -1; + + for (unsigned i = 0; i < BIT_WIDTH; ++i) { + Val = Value(Insn[i]); + bool Filtered = PositionFiltered(i); + switch (State) { + default: + assert(0 && "Unreachable code!"); + break; + case 0: + case 1: + if (Filtered || Val == -1) + State = 1; // Still in Water + else { + State = 2; // Into the Island + BitNo = 0; + StartBits.push_back(i); + FieldVal = Val; + } + break; + case 2: + if (Filtered || Val == -1) { + State = 1; // Into the Water + EndBits.push_back(i - 1); + FieldVals.push_back(FieldVal); + ++Num; + } else { + State = 2; // Still in Island + ++BitNo; + FieldVal = FieldVal | Val << BitNo; + } + break; + } + } + // If we are still in Island after the loop, do some housekeeping. + if (State == 2) { + EndBits.push_back(BIT_WIDTH - 1); + FieldVals.push_back(FieldVal); + ++Num; + } + + assert(StartBits.size() == Num && EndBits.size() == Num && + FieldVals.size() == Num); + return Num; +} + +// Emits code to decode the singleton. Return true if we have matched all the +// well-known bits. +bool ARMFilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, + unsigned Opc) { + std::vector<unsigned> StartBits; + std::vector<unsigned> EndBits; + std::vector<uint64_t> FieldVals; + insn_t Insn; + insnWithID(Insn, Opc); + + // This provides a good opportunity to check for possible Ld/St Coprocessor + // Opcode and escapes if the coproc # is either 10 or 11. It is a NEON/VFP + // instruction is disguise. + if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) { + o.indent(Indentation); + // A8.6.51 & A8.6.188 + // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape. + o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n"; + } + + // Look for islands of undecoded bits of the singleton. + getIslands(StartBits, EndBits, FieldVals, Insn); + + unsigned Size = StartBits.size(); + unsigned I, NumBits; + + // If we have matched all the well-known bits, just issue a return. + if (Size == 0) { + o.indent(Indentation) << "return " << Opc << "; // " << nameWithID(Opc) + << '\n'; + return true; + } + + // Otherwise, there are more decodings to be done! + + // Emit code to match the island(s) for the singleton. + o.indent(Indentation) << "// Check "; + + for (I = Size; I != 0; --I) { + o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} "; + if (I > 1) + o << "&& "; + else + o << "for singleton decoding...\n"; + } + + o.indent(Indentation) << "if ("; + + for (I = Size; I != 0; --I) { + NumBits = EndBits[I-1] - StartBits[I-1] + 1; + o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits + << ") == " << FieldVals[I-1]; + if (I > 1) + o << " && "; + else + o << ")\n"; + } + + o.indent(Indentation) << " return " << Opc << "; // " << nameWithID(Opc) + << '\n'; + + return false; +} + +// Emits code to decode the singleton, and then to decode the rest. +void ARMFilterChooser::emitSingletonDecoder(raw_ostream &o, + unsigned &Indentation, + ARMFilter &Best) { + + unsigned Opc = Best.getSingletonOpc(); + + emitSingletonDecoder(o, Indentation, Opc); + + // Emit code for the rest. + o.indent(Indentation) << "else\n"; + + Indentation += 2; + Best.getVariableFC().emit(o, Indentation); + Indentation -= 2; +} + +// Assign a single filter and run with it. Top level API client can initialize +// with a single filter to start the filtering process. +void ARMFilterChooser::runSingleFilter(ARMFilterChooser &owner, + unsigned startBit, + unsigned numBit, bool mixed) { + Filters.clear(); + ARMFilter F(*this, startBit, numBit, true); + Filters.push_back(F); + BestIndex = 0; // Sole Filter instance to choose from. + bestFilter().recurse(); +} + +// reportRegion is a helper function for filterProcessor to mark a region as +// eligible for use as a filter region. +void ARMFilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, + unsigned BitIndex, bool AllowMixed) { + if (RA == ATTR_MIXED && AllowMixed) + Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, true)); + else if (RA == ATTR_ALL_SET && !AllowMixed) + Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, false)); +} + +// FilterProcessor scans the well-known encoding bits of the instructions and +// builds up a list of candidate filters. It chooses the best filter and +// recursively descends down the decoding tree. +bool ARMFilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { + Filters.clear(); + BestIndex = -1; + unsigned numInstructions = Opcodes.size(); + + assert(numInstructions && "Filter created with no instructions"); + + // No further filtering is necessary. + if (numInstructions == 1) + return true; + + // Heuristics. See also doFilter()'s "Heuristics" comment when num of + // instructions is 3. + if (AllowMixed && !Greedy) { + assert(numInstructions == 3); + + for (unsigned i = 0; i < Opcodes.size(); ++i) { + std::vector<unsigned> StartBits; + std::vector<unsigned> EndBits; + std::vector<uint64_t> FieldVals; + insn_t Insn; + + insnWithID(Insn, Opcodes[i]); + + // Look for islands of undecoded bits of any instruction. + if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { + // Found an instruction with island(s). Now just assign a filter. + runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1, + true); + return true; + } + } + } + + unsigned BitIndex, InsnIndex; + + // We maintain BIT_WIDTH copies of the bitAttrs automaton. + // The automaton consumes the corresponding bit from each + // instruction. + // + // Input symbols: 0, 1, and _ (unset). + // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. + // Initial state: NONE. + // + // (NONE) ------- [01] -> (ALL_SET) + // (NONE) ------- _ ----> (ALL_UNSET) + // (ALL_SET) ---- [01] -> (ALL_SET) + // (ALL_SET) ---- _ ----> (MIXED) + // (ALL_UNSET) -- [01] -> (MIXED) + // (ALL_UNSET) -- _ ----> (ALL_UNSET) + // (MIXED) ------ . ----> (MIXED) + // (FILTERED)---- . ----> (FILTERED) + + bitAttr_t bitAttrs[BIT_WIDTH]; + + // FILTERED bit positions provide no entropy and are not worthy of pursuing. + // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. + for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) + if (FilterBitValues[BitIndex] == BIT_TRUE || + FilterBitValues[BitIndex] == BIT_FALSE) + bitAttrs[BitIndex] = ATTR_FILTERED; + else + bitAttrs[BitIndex] = ATTR_NONE; + + for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { + insn_t insn; + + insnWithID(insn, Opcodes[InsnIndex]); + + for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) { + switch (bitAttrs[BitIndex]) { + case ATTR_NONE: + if (insn[BitIndex] == BIT_UNSET) + bitAttrs[BitIndex] = ATTR_ALL_UNSET; + else + bitAttrs[BitIndex] = ATTR_ALL_SET; + break; + case ATTR_ALL_SET: + if (insn[BitIndex] == BIT_UNSET) + bitAttrs[BitIndex] = ATTR_MIXED; + break; + case ATTR_ALL_UNSET: + if (insn[BitIndex] != BIT_UNSET) + bitAttrs[BitIndex] = ATTR_MIXED; + break; + case ATTR_MIXED: + case ATTR_FILTERED: + break; + } + } + } + + // The regionAttr automaton consumes the bitAttrs automatons' state, + // lowest-to-highest. + // + // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) + // States: NONE, ALL_SET, MIXED + // Initial state: NONE + // + // (NONE) ----- F --> (NONE) + // (NONE) ----- S --> (ALL_SET) ; and set region start + // (NONE) ----- U --> (NONE) + // (NONE) ----- M --> (MIXED) ; and set region start + // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region + // (ALL_SET) -- S --> (ALL_SET) + // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region + // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region + // (MIXED) ---- F --> (NONE) ; and report a MIXED region + // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region + // (MIXED) ---- U --> (NONE) ; and report a MIXED region + // (MIXED) ---- M --> (MIXED) + + bitAttr_t RA = ATTR_NONE; + unsigned StartBit = 0; + + for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) { + bitAttr_t bitAttr = bitAttrs[BitIndex]; + + assert(bitAttr != ATTR_NONE && "Bit without attributes"); + + switch (RA) { + case ATTR_NONE: + switch (bitAttr) { + case ATTR_FILTERED: + break; + case ATTR_ALL_SET: + StartBit = BitIndex; + RA = ATTR_ALL_SET; + break; + case ATTR_ALL_UNSET: + break; + case ATTR_MIXED: + StartBit = BitIndex; + RA = ATTR_MIXED; + break; + default: + assert(0 && "Unexpected bitAttr!"); + } + break; + case ATTR_ALL_SET: + switch (bitAttr) { + case ATTR_FILTERED: + reportRegion(RA, StartBit, BitIndex, AllowMixed); + RA = ATTR_NONE; + break; + case ATTR_ALL_SET: + break; + case ATTR_ALL_UNSET: + reportRegion(RA, StartBit, BitIndex, AllowMixed); + RA = ATTR_NONE; + break; + case ATTR_MIXED: + reportRegion(RA, StartBit, BitIndex, AllowMixed); + StartBit = BitIndex; + RA = ATTR_MIXED; + break; + default: + assert(0 && "Unexpected bitAttr!"); + } + break; + case ATTR_MIXED: + switch (bitAttr) { + case ATTR_FILTERED: + reportRegion(RA, StartBit, BitIndex, AllowMixed); + StartBit = BitIndex; + RA = ATTR_NONE; + break; + case ATTR_ALL_SET: + reportRegion(RA, StartBit, BitIndex, AllowMixed); + StartBit = BitIndex; + RA = ATTR_ALL_SET; + break; + case ATTR_ALL_UNSET: + reportRegion(RA, StartBit, BitIndex, AllowMixed); + RA = ATTR_NONE; + break; + case ATTR_MIXED: + break; + default: + assert(0 && "Unexpected bitAttr!"); + } + break; + case ATTR_ALL_UNSET: + assert(0 && "regionAttr state machine has no ATTR_UNSET state"); + case ATTR_FILTERED: + assert(0 && "regionAttr state machine has no ATTR_FILTERED state"); + } + } + + // At the end, if we're still in ALL_SET or MIXED states, report a region + switch (RA) { + case ATTR_NONE: + break; + case ATTR_FILTERED: + break; + case ATTR_ALL_SET: + reportRegion(RA, StartBit, BitIndex, AllowMixed); + break; + case ATTR_ALL_UNSET: + break; + case ATTR_MIXED: + reportRegion(RA, StartBit, BitIndex, AllowMixed); + break; + } + + // We have finished with the filter processings. Now it's time to choose + // the best performing filter. + BestIndex = 0; + bool AllUseless = true; + unsigned BestScore = 0; + + for (unsigned i = 0, e = Filters.size(); i != e; ++i) { + unsigned Usefulness = Filters[i].usefulness(); + + if (Usefulness) + AllUseless = false; + + if (Usefulness > BestScore) { + BestIndex = i; + BestScore = Usefulness; + } + } + + if (!AllUseless) + bestFilter().recurse(); + + return !AllUseless; +} // end of FilterChooser::filterProcessor(bool) + +// Decides on the best configuration of filter(s) to use in order to decode +// the instructions. A conflict of instructions may occur, in which case we +// dump the conflict set to the standard error. +void ARMFilterChooser::doFilter() { + unsigned Num = Opcodes.size(); + assert(Num && "FilterChooser created with no instructions"); + + // Heuristics: Use Inst{31-28} as the top level filter for ARM ISA. + if (TargetName == TARGET_ARM && Parent == NULL) { + runSingleFilter(*this, 28, 4, false); + return; + } + + // Try regions of consecutive known bit values first. + if (filterProcessor(false)) + return; + + // Then regions of mixed bits (both known and unitialized bit values allowed). + if (filterProcessor(true)) + return; + + // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where + // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a + // well-known encoding pattern. In such case, we backtrack and scan for the + // the very first consecutive ATTR_ALL_SET region and assign a filter to it. + if (Num == 3 && filterProcessor(true, false)) + return; + + // If we come to here, the instruction decoding has failed. + // Set the BestIndex to -1 to indicate so. + BestIndex = -1; +} + +// Emits code to decode our share of instructions. Returns true if the +// emitted code causes a return, which occurs if we know how to decode +// the instruction at this level or the instruction is not decodeable. +bool ARMFilterChooser::emit(raw_ostream &o, unsigned &Indentation) { + if (Opcodes.size() == 1) + // There is only one instruction in the set, which is great! + // Call emitSingletonDecoder() to see whether there are any remaining + // encodings bits. + return emitSingletonDecoder(o, Indentation, Opcodes[0]); + + // Choose the best filter to do the decodings! + if (BestIndex != -1) { + ARMFilter &Best = bestFilter(); + if (Best.getNumFiltered() == 1) + emitSingletonDecoder(o, Indentation, Best); + else + bestFilter().emit(o, Indentation); + return false; + } + + // If we reach here, there is a conflict in decoding. Let's resolve the known + // conflicts! + if ((TargetName == TARGET_ARM || TargetName == TARGET_THUMB) && + Opcodes.size() == 2) { + // Resolve the known conflict sets: + // + // 1. source registers are identical => VMOVDneon; otherwise => VORRd + // 2. source registers are identical => VMOVQ; otherwise => VORRq + // 3. LDR, LDRcp => return LDR for now. + // FIXME: How can we distinguish between LDR and LDRcp? Do we need to? + // 4. tLDMIA, tLDMIA_UPD => Rn = Inst{10-8}, reglist = Inst{7-0}, + // wback = registers<Rn> = 0 + // NOTE: (tLDM, tLDM_UPD) resolution must come before Advanced SIMD + // addressing mode resolution!!! + // 5. VLD[234]LN*/VST[234]LN* vs. VLD[234]LN*_UPD/VST[234]LN*_UPD conflicts + // are resolved returning the non-UPD versions of the instructions if the + // Rm field, i.e., Inst{3-0} is 0b1111. This is specified in A7.7.1 + // Advanced SIMD addressing mode. + const std::string &name1 = nameWithID(Opcodes[0]); + const std::string &name2 = nameWithID(Opcodes[1]); + if ((name1 == "VMOVDneon" && name2 == "VORRd") || + (name1 == "VMOVQ" && name2 == "VORRq")) { + // Inserting the opening curly brace for this case block. + --Indentation; --Indentation; + o.indent(Indentation) << "{\n"; + ++Indentation; ++Indentation; + + o.indent(Indentation) + << "field_t N = fieldFromInstruction(insn, 7, 1), " + << "M = fieldFromInstruction(insn, 5, 1);\n"; + o.indent(Indentation) + << "field_t Vn = fieldFromInstruction(insn, 16, 4), " + << "Vm = fieldFromInstruction(insn, 0, 4);\n"; + o.indent(Indentation) + << "return (N == M && Vn == Vm) ? " + << Opcodes[0] << " /* " << name1 << " */ : " + << Opcodes[1] << " /* " << name2 << " */ ;\n"; + + // Inserting the closing curly brace for this case block. + --Indentation; --Indentation; + o.indent(Indentation) << "}\n"; + ++Indentation; ++Indentation; + + return true; + } + if (name1 == "LDR" && name2 == "LDRcp") { + o.indent(Indentation) + << "return " << Opcodes[0] + << "; // Returning LDR for {LDR, LDRcp}\n"; + return true; + } + if (name1 == "tLDMIA" && name2 == "tLDMIA_UPD") { + // Inserting the opening curly brace for this case block. + --Indentation; --Indentation; + o.indent(Indentation) << "{\n"; + ++Indentation; ++Indentation; + + o.indent(Indentation) + << "unsigned Rn = fieldFromInstruction(insn, 8, 3), " + << "list = fieldFromInstruction(insn, 0, 8);\n"; + o.indent(Indentation) + << "return ((list >> Rn) & 1) == 0 ? " + << Opcodes[1] << " /* " << name2 << " */ : " + << Opcodes[0] << " /* " << name1 << " */ ;\n"; + + // Inserting the closing curly brace for this case block. + --Indentation; --Indentation; + o.indent(Indentation) << "}\n"; + ++Indentation; ++Indentation; + + return true; + } + if (sameStringExceptSuffix(name1, name2, "_UPD")) { + o.indent(Indentation) + << "return fieldFromInstruction(insn, 0, 4) == 15 ? " << Opcodes[0] + << " /* " << name1 << " */ : " << Opcodes[1] << "/* " << name2 + << " */ ; // Advanced SIMD addressing mode\n"; + return true; + } + + // Otherwise, it does not belong to the known conflict sets. + } + + // We don't know how to decode these instructions! Return 0 and dump the + // conflict set! + o.indent(Indentation) << "return 0;" << " // Conflict set: "; + for (int i = 0, N = Opcodes.size(); i < N; ++i) { + o << nameWithID(Opcodes[i]); + if (i < (N - 1)) + o << ", "; + else + o << '\n'; + } + + // Print out useful conflict information for postmortem analysis. + errs() << "Decoding Conflict:\n"; + + dumpStack(errs(), "\t\t"); + + for (unsigned i = 0; i < Opcodes.size(); i++) { + const std::string &Name = nameWithID(Opcodes[i]); + + errs() << '\t' << Name << " "; + dumpBits(errs(), + getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); + errs() << '\n'; + } + + return true; +} + + +//////////////////////////////////////////// +// // +// ARMDEBackend // +// (Helper class for ARMDecoderEmitter) // +// // +//////////////////////////////////////////// + +class ARMDecoderEmitter::ARMDEBackend { +public: + ARMDEBackend(ARMDecoderEmitter &frontend, RecordKeeper &Records) : + NumberedInstructions(), + Opcodes(), + Frontend(frontend), + Target(Records), + FC(NULL) + { + if (Target.getName() == "ARM") + TargetName = TARGET_ARM; + else { + errs() << "Target name " << Target.getName() << " not recognized\n"; + assert(0 && "Unknown target"); + } + + // Populate the instructions for our TargetName. + populateInstructions(); + } + + ~ARMDEBackend() { + if (FC) { + delete FC; + FC = NULL; + } + } + + void getInstructionsByEnumValue(std::vector<const CodeGenInstruction*> + &NumberedInstructions) { + // We must emit the PHI opcode first... + std::string Namespace = Target.getInstNamespace(); + assert(!Namespace.empty() && "No instructions defined."); + + NumberedInstructions = Target.getInstructionsByEnumValue(); + } + + bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN); + + void populateInstructions(); + + // Emits disassembler code for instruction decoding. This delegates to the + // FilterChooser instance to do the heavy lifting. + void emit(raw_ostream &o); + +protected: + std::vector<const CodeGenInstruction*> NumberedInstructions; + std::vector<unsigned> Opcodes; + // Special case for the ARM chip, which supports ARM and Thumb ISAs. + // Opcodes2 will be populated with the Thumb opcodes. + std::vector<unsigned> Opcodes2; + ARMDecoderEmitter &Frontend; + CodeGenTarget Target; + ARMFilterChooser *FC; + + TARGET_NAME_t TargetName; +}; + +bool ARMDecoderEmitter:: +ARMDEBackend::populateInstruction(const CodeGenInstruction &CGI, + TARGET_NAME_t TN) { + const Record &Def = *CGI.TheDef; + const StringRef Name = Def.getName(); + uint8_t Form = getByteField(Def, "Form"); + + BitsInit &Bits = getBitsField(Def, "Inst"); + + // If all the bit positions are not specified; do not decode this instruction. + // We are bound to fail! For proper disassembly, the well-known encoding bits + // of the instruction must be fully specified. + // + // This also removes pseudo instructions from considerations of disassembly, + // which is a better design and less fragile than the name matchings. + if (Bits.allInComplete()) return false; + + // Ignore "asm parser only" instructions. + if (Def.getValueAsBit("isAsmParserOnly")) + return false; + + if (TN == TARGET_ARM) { + if (Form == ARM_FORMAT_PSEUDO) + return false; + if (thumbInstruction(Form)) + return false; + + // Tail calls are other patterns that generate existing instructions. + if (Name == "TCRETURNdi" || Name == "TCRETURNdiND" || + Name == "TCRETURNri" || Name == "TCRETURNriND" || + Name == "TAILJMPd" || Name == "TAILJMPdt" || + Name == "TAILJMPdND" || Name == "TAILJMPdNDt" || + Name == "TAILJMPr" || Name == "TAILJMPrND" || + Name == "MOVr_TC") + return false; + + // Delegate ADR disassembly to the more generic ADDri/SUBri instructions. + if (Name == "ADR") + return false; + + // + // The following special cases are for conflict resolutions. + // + + // A8-598: VEXT + // Vector Extract extracts elements from the bottom end of the second + // operand vector and the top end of the first, concatenates them and + // places the result in the destination vector. The elements of the + // vectors are treated as being 8-bit bitfields. There is no distinction + // between data types. The size of the operation can be specified in + // assembler as vext.size. If the value is 16, 32, or 64, the syntax is + // a pseudo-instruction for a VEXT instruction specifying the equivalent + // number of bytes. + // + // Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8; + // variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8. + if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" || + Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf") + return false; + } else if (TN == TARGET_THUMB) { + if (!thumbInstruction(Form)) + return false; + + // A8.6.25 BX. Use the generic tBX_Rm, ignore tBX_RET and tBX_RET_vararg. + if (Name == "tBX_RET" || Name == "tBX_RET_vararg") + return false; + + // Ignore tADR, prefer tADDrPCi. + if (Name == "tADR") + return false; + + // Delegate t2ADR disassembly to the more generic t2ADDri12/t2SUBri12 + // instructions. + if (Name == "t2ADR") + return false; + + // Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr. + // Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s]. + // Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s]. + if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" || + Name == "t2SUBrSPs" || Name == "t2ADDrSPs") + return false; + + // FIXME: Use ldr.n to work around a Darwin assembler bug. + // Introduce a workaround with tLDRpciDIS opcode. + if (Name == "tLDRpci") + return false; + + // Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST. + if (Name == "t2LDRDpci") + return false; + + // Resolve conflicts: + // + // t2LDMIA_RET conflict with t2LDM (ditto) + // tMOVCCi conflicts with tMOVi8 + // tMOVCCr conflicts with tMOVgpr2gpr + // tLDRcp conflicts with tLDRspi + // t2MOVCCi16 conflicts with tMOVi16 + if (Name == "t2LDMIA_RET" || + Name == "tMOVCCi" || Name == "tMOVCCr" || + Name == "tLDRcp" || + Name == "t2MOVCCi16") + return false; + } + + DEBUG({ + // Dumps the instruction encoding format. + switch (TargetName) { + case TARGET_ARM: + case TARGET_THUMB: + errs() << Name << " " << stringForARMFormat((ARMFormat)Form); + break; + } + + errs() << " "; + + // Dumps the instruction encoding bits. + dumpBits(errs(), Bits); + + errs() << '\n'; + + // Dumps the list of operand info. + for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { + const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; + const std::string &OperandName = Info.Name; + const Record &OperandDef = *Info.Rec; + + errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; + } + }); + + return true; +} + +void ARMDecoderEmitter::ARMDEBackend::populateInstructions() { + getInstructionsByEnumValue(NumberedInstructions); + + unsigned numUIDs = NumberedInstructions.size(); + if (TargetName == TARGET_ARM) { + for (unsigned uid = 0; uid < numUIDs; uid++) { + // filter out intrinsics + if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM")) + continue; + + if (populateInstruction(*NumberedInstructions[uid], TargetName)) + Opcodes.push_back(uid); + } + + // Special handling for the ARM chip, which supports two modes of execution. + // This branch handles the Thumb opcodes. + for (unsigned uid = 0; uid < numUIDs; uid++) { + // filter out intrinsics + if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM") + && !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb")) + continue; + + if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB)) + Opcodes2.push_back(uid); + } + + return; + } + + // For other targets. + for (unsigned uid = 0; uid < numUIDs; uid++) { + Record *R = NumberedInstructions[uid]->TheDef; + if (R->getValueAsString("Namespace") == "TargetOpcode") + continue; + + if (populateInstruction(*NumberedInstructions[uid], TargetName)) + Opcodes.push_back(uid); + } +} + +// Emits disassembler code for instruction decoding. This delegates to the +// FilterChooser instance to do the heavy lifting. +void ARMDecoderEmitter::ARMDEBackend::emit(raw_ostream &o) { + switch (TargetName) { + case TARGET_ARM: + Frontend.EmitSourceFileHeader("ARM/Thumb Decoders", o); + break; + default: + assert(0 && "Unreachable code!"); + } + + o << "#include \"llvm/Support/DataTypes.h\"\n"; + o << "#include <assert.h>\n"; + o << '\n'; + o << "namespace llvm {\n\n"; + + ARMFilterChooser::setTargetName(TargetName); + + switch (TargetName) { + case TARGET_ARM: { + // Emit common utility and ARM ISA decoder. + FC = new ARMFilterChooser(NumberedInstructions, Opcodes); + // Reset indentation level. + unsigned Indentation = 0; + FC->emitTop(o, Indentation); + delete FC; + + // Emit Thumb ISA decoder as well. + ARMFilterChooser::setTargetName(TARGET_THUMB); + FC = new ARMFilterChooser(NumberedInstructions, Opcodes2); + // Reset indentation level. + Indentation = 0; + FC->emitBot(o, Indentation); + break; + } + default: + assert(0 && "Unreachable code!"); + } + + o << "\n} // End llvm namespace \n"; +} + +///////////////////////// +// Backend interface // +///////////////////////// + +void ARMDecoderEmitter::initBackend() +{ + Backend = new ARMDEBackend(*this, Records); +} + +void ARMDecoderEmitter::run(raw_ostream &o) +{ + Backend->emit(o); +} + +void ARMDecoderEmitter::shutdownBackend() +{ + delete Backend; + Backend = NULL; +} |