summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/llvm-stress/llvm-stress.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/llvm-stress/llvm-stress.cpp')
-rw-r--r--contrib/llvm/tools/llvm-stress/llvm-stress.cpp720
1 files changed, 720 insertions, 0 deletions
diff --git a/contrib/llvm/tools/llvm-stress/llvm-stress.cpp b/contrib/llvm/tools/llvm-stress/llvm-stress.cpp
new file mode 100644
index 0000000..99d2afd
--- /dev/null
+++ b/contrib/llvm/tools/llvm-stress/llvm-stress.cpp
@@ -0,0 +1,720 @@
+//===-- llvm-stress.cpp - Generate random LL files to stress-test LLVM ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This program is a utility that generates random .ll files to stress-test
+// different components in LLVM.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/IRPrintingPasses.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/LegacyPassNameParser.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/IR/LegacyPassManager.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/PluginLoader.h"
+#include "llvm/Support/PrettyStackTrace.h"
+#include "llvm/Support/ToolOutputFile.h"
+#include <algorithm>
+#include <set>
+#include <sstream>
+#include <vector>
+
+namespace llvm {
+
+static cl::opt<unsigned> SeedCL("seed",
+ cl::desc("Seed used for randomness"), cl::init(0));
+static cl::opt<unsigned> SizeCL("size",
+ cl::desc("The estimated size of the generated function (# of instrs)"),
+ cl::init(100));
+static cl::opt<std::string>
+OutputFilename("o", cl::desc("Override output filename"),
+ cl::value_desc("filename"));
+
+namespace cl {
+template <> class parser<Type*> final : public basic_parser<Type*> {
+public:
+ parser(Option &O) : basic_parser(O) {}
+
+ // Parse options as IR types. Return true on error.
+ bool parse(Option &O, StringRef, StringRef Arg, Type *&Value) {
+ auto &Context = getGlobalContext();
+ if (Arg == "half") Value = Type::getHalfTy(Context);
+ else if (Arg == "fp128") Value = Type::getFP128Ty(Context);
+ else if (Arg == "x86_fp80") Value = Type::getX86_FP80Ty(Context);
+ else if (Arg == "ppc_fp128") Value = Type::getPPC_FP128Ty(Context);
+ else if (Arg == "x86_mmx") Value = Type::getX86_MMXTy(Context);
+ else if (Arg.startswith("i")) {
+ unsigned N = 0;
+ Arg.drop_front().getAsInteger(10, N);
+ if (N > 0)
+ Value = Type::getIntNTy(Context, N);
+ }
+
+ if (!Value)
+ return O.error("Invalid IR scalar type: '" + Arg + "'!");
+ return false;
+ }
+
+ const char *getValueName() const override { return "IR scalar type"; }
+};
+}
+
+
+static cl::list<Type*> AdditionalScalarTypes("types", cl::CommaSeparated,
+ cl::desc("Additional IR scalar types "
+ "(always includes i1, i8, i16, i32, i64, float and double)"));
+
+namespace {
+/// A utility class to provide a pseudo-random number generator which is
+/// the same across all platforms. This is somewhat close to the libc
+/// implementation. Note: This is not a cryptographically secure pseudorandom
+/// number generator.
+class Random {
+public:
+ /// C'tor
+ Random(unsigned _seed):Seed(_seed) {}
+
+ /// Return a random integer, up to a
+ /// maximum of 2**19 - 1.
+ uint32_t Rand() {
+ uint32_t Val = Seed + 0x000b07a1;
+ Seed = (Val * 0x3c7c0ac1);
+ // Only lowest 19 bits are random-ish.
+ return Seed & 0x7ffff;
+ }
+
+ /// Return a random 32 bit integer.
+ uint32_t Rand32() {
+ uint32_t Val = Rand();
+ Val &= 0xffff;
+ return Val | (Rand() << 16);
+ }
+
+ /// Return a random 64 bit integer.
+ uint64_t Rand64() {
+ uint64_t Val = Rand32();
+ return Val | (uint64_t(Rand32()) << 32);
+ }
+
+ /// Rand operator for STL algorithms.
+ ptrdiff_t operator()(ptrdiff_t y) {
+ return Rand64() % y;
+ }
+
+private:
+ unsigned Seed;
+};
+
+/// Generate an empty function with a default argument list.
+Function *GenEmptyFunction(Module *M) {
+ // Define a few arguments
+ LLVMContext &Context = M->getContext();
+ Type* ArgsTy[] = {
+ Type::getInt8PtrTy(Context),
+ Type::getInt32PtrTy(Context),
+ Type::getInt64PtrTy(Context),
+ Type::getInt32Ty(Context),
+ Type::getInt64Ty(Context),
+ Type::getInt8Ty(Context)
+ };
+
+ auto *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, false);
+ // Pick a unique name to describe the input parameters
+ Twine Name = "autogen_SD" + Twine{SeedCL};
+ auto *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage, Name, M);
+ Func->setCallingConv(CallingConv::C);
+ return Func;
+}
+
+/// A base class, implementing utilities needed for
+/// modifying and adding new random instructions.
+struct Modifier {
+ /// Used to store the randomly generated values.
+ typedef std::vector<Value*> PieceTable;
+
+public:
+ /// C'tor
+ Modifier(BasicBlock *Block, PieceTable *PT, Random *R):
+ BB(Block),PT(PT),Ran(R),Context(BB->getContext()) {}
+
+ /// virtual D'tor to silence warnings.
+ virtual ~Modifier() {}
+
+ /// Add a new instruction.
+ virtual void Act() = 0;
+ /// Add N new instructions,
+ virtual void ActN(unsigned n) {
+ for (unsigned i=0; i<n; ++i)
+ Act();
+ }
+
+protected:
+ /// Return a random value from the list of known values.
+ Value *getRandomVal() {
+ assert(PT->size());
+ return PT->at(Ran->Rand() % PT->size());
+ }
+
+ Constant *getRandomConstant(Type *Tp) {
+ if (Tp->isIntegerTy()) {
+ if (Ran->Rand() & 1)
+ return ConstantInt::getAllOnesValue(Tp);
+ return ConstantInt::getNullValue(Tp);
+ } else if (Tp->isFloatingPointTy()) {
+ if (Ran->Rand() & 1)
+ return ConstantFP::getAllOnesValue(Tp);
+ return ConstantFP::getNullValue(Tp);
+ }
+ return UndefValue::get(Tp);
+ }
+
+ /// Return a random value with a known type.
+ Value *getRandomValue(Type *Tp) {
+ unsigned index = Ran->Rand();
+ for (unsigned i=0; i<PT->size(); ++i) {
+ Value *V = PT->at((index + i) % PT->size());
+ if (V->getType() == Tp)
+ return V;
+ }
+
+ // If the requested type was not found, generate a constant value.
+ if (Tp->isIntegerTy()) {
+ if (Ran->Rand() & 1)
+ return ConstantInt::getAllOnesValue(Tp);
+ return ConstantInt::getNullValue(Tp);
+ } else if (Tp->isFloatingPointTy()) {
+ if (Ran->Rand() & 1)
+ return ConstantFP::getAllOnesValue(Tp);
+ return ConstantFP::getNullValue(Tp);
+ } else if (Tp->isVectorTy()) {
+ VectorType *VTp = cast<VectorType>(Tp);
+
+ std::vector<Constant*> TempValues;
+ TempValues.reserve(VTp->getNumElements());
+ for (unsigned i = 0; i < VTp->getNumElements(); ++i)
+ TempValues.push_back(getRandomConstant(VTp->getScalarType()));
+
+ ArrayRef<Constant*> VectorValue(TempValues);
+ return ConstantVector::get(VectorValue);
+ }
+
+ return UndefValue::get(Tp);
+ }
+
+ /// Return a random value of any pointer type.
+ Value *getRandomPointerValue() {
+ unsigned index = Ran->Rand();
+ for (unsigned i=0; i<PT->size(); ++i) {
+ Value *V = PT->at((index + i) % PT->size());
+ if (V->getType()->isPointerTy())
+ return V;
+ }
+ return UndefValue::get(pickPointerType());
+ }
+
+ /// Return a random value of any vector type.
+ Value *getRandomVectorValue() {
+ unsigned index = Ran->Rand();
+ for (unsigned i=0; i<PT->size(); ++i) {
+ Value *V = PT->at((index + i) % PT->size());
+ if (V->getType()->isVectorTy())
+ return V;
+ }
+ return UndefValue::get(pickVectorType());
+ }
+
+ /// Pick a random type.
+ Type *pickType() {
+ return (Ran->Rand() & 1 ? pickVectorType() : pickScalarType());
+ }
+
+ /// Pick a random pointer type.
+ Type *pickPointerType() {
+ Type *Ty = pickType();
+ return PointerType::get(Ty, 0);
+ }
+
+ /// Pick a random vector type.
+ Type *pickVectorType(unsigned len = (unsigned)-1) {
+ // Pick a random vector width in the range 2**0 to 2**4.
+ // by adding two randoms we are generating a normal-like distribution
+ // around 2**3.
+ unsigned width = 1<<((Ran->Rand() % 3) + (Ran->Rand() % 3));
+ Type *Ty;
+
+ // Vectors of x86mmx are illegal; keep trying till we get something else.
+ do {
+ Ty = pickScalarType();
+ } while (Ty->isX86_MMXTy());
+
+ if (len != (unsigned)-1)
+ width = len;
+ return VectorType::get(Ty, width);
+ }
+
+ /// Pick a random scalar type.
+ Type *pickScalarType() {
+ static std::vector<Type*> ScalarTypes;
+ if (ScalarTypes.empty()) {
+ ScalarTypes.assign({
+ Type::getInt1Ty(Context),
+ Type::getInt8Ty(Context),
+ Type::getInt16Ty(Context),
+ Type::getInt32Ty(Context),
+ Type::getInt64Ty(Context),
+ Type::getFloatTy(Context),
+ Type::getDoubleTy(Context)
+ });
+ ScalarTypes.insert(ScalarTypes.end(),
+ AdditionalScalarTypes.begin(), AdditionalScalarTypes.end());
+ }
+
+ return ScalarTypes[Ran->Rand() % ScalarTypes.size()];
+ }
+
+ /// Basic block to populate
+ BasicBlock *BB;
+ /// Value table
+ PieceTable *PT;
+ /// Random number generator
+ Random *Ran;
+ /// Context
+ LLVMContext &Context;
+};
+
+struct LoadModifier: public Modifier {
+ LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
+ void Act() override {
+ // Try to use predefined pointers. If non-exist, use undef pointer value;
+ Value *Ptr = getRandomPointerValue();
+ Value *V = new LoadInst(Ptr, "L", BB->getTerminator());
+ PT->push_back(V);
+ }
+};
+
+struct StoreModifier: public Modifier {
+ StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
+ void Act() override {
+ // Try to use predefined pointers. If non-exist, use undef pointer value;
+ Value *Ptr = getRandomPointerValue();
+ Type *Tp = Ptr->getType();
+ Value *Val = getRandomValue(Tp->getContainedType(0));
+ Type *ValTy = Val->getType();
+
+ // Do not store vectors of i1s because they are unsupported
+ // by the codegen.
+ if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1)
+ return;
+
+ new StoreInst(Val, Ptr, BB->getTerminator());
+ }
+};
+
+struct BinModifier: public Modifier {
+ BinModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
+
+ void Act() override {
+ Value *Val0 = getRandomVal();
+ Value *Val1 = getRandomValue(Val0->getType());
+
+ // Don't handle pointer types.
+ if (Val0->getType()->isPointerTy() ||
+ Val1->getType()->isPointerTy())
+ return;
+
+ // Don't handle i1 types.
+ if (Val0->getType()->getScalarSizeInBits() == 1)
+ return;
+
+
+ bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy();
+ Instruction* Term = BB->getTerminator();
+ unsigned R = Ran->Rand() % (isFloat ? 7 : 13);
+ Instruction::BinaryOps Op;
+
+ switch (R) {
+ default: llvm_unreachable("Invalid BinOp");
+ case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; }
+ case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; }
+ case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; }
+ case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; }
+ case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; }
+ case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; }
+ case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; }
+ case 7: {Op = Instruction::Shl; break; }
+ case 8: {Op = Instruction::LShr; break; }
+ case 9: {Op = Instruction::AShr; break; }
+ case 10:{Op = Instruction::And; break; }
+ case 11:{Op = Instruction::Or; break; }
+ case 12:{Op = Instruction::Xor; break; }
+ }
+
+ PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term));
+ }
+};
+
+/// Generate constant values.
+struct ConstModifier: public Modifier {
+ ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
+ void Act() override {
+ Type *Ty = pickType();
+
+ if (Ty->isVectorTy()) {
+ switch (Ran->Rand() % 2) {
+ case 0: if (Ty->getScalarType()->isIntegerTy())
+ return PT->push_back(ConstantVector::getAllOnesValue(Ty));
+ case 1: if (Ty->getScalarType()->isIntegerTy())
+ return PT->push_back(ConstantVector::getNullValue(Ty));
+ }
+ }
+
+ if (Ty->isFloatingPointTy()) {
+ // Generate 128 random bits, the size of the (currently)
+ // largest floating-point types.
+ uint64_t RandomBits[2];
+ for (unsigned i = 0; i < 2; ++i)
+ RandomBits[i] = Ran->Rand64();
+
+ APInt RandomInt(Ty->getPrimitiveSizeInBits(), makeArrayRef(RandomBits));
+ APFloat RandomFloat(Ty->getFltSemantics(), RandomInt);
+
+ if (Ran->Rand() & 1)
+ return PT->push_back(ConstantFP::getNullValue(Ty));
+ return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat));
+ }
+
+ if (Ty->isIntegerTy()) {
+ switch (Ran->Rand() % 7) {
+ case 0: if (Ty->isIntegerTy())
+ return PT->push_back(ConstantInt::get(Ty,
+ APInt::getAllOnesValue(Ty->getPrimitiveSizeInBits())));
+ case 1: if (Ty->isIntegerTy())
+ return PT->push_back(ConstantInt::get(Ty,
+ APInt::getNullValue(Ty->getPrimitiveSizeInBits())));
+ case 2: case 3: case 4: case 5:
+ case 6: if (Ty->isIntegerTy())
+ PT->push_back(ConstantInt::get(Ty, Ran->Rand()));
+ }
+ }
+
+ }
+};
+
+struct AllocaModifier: public Modifier {
+ AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R){}
+
+ void Act() override {
+ Type *Tp = pickType();
+ PT->push_back(new AllocaInst(Tp, "A", BB->getFirstNonPHI()));
+ }
+};
+
+struct ExtractElementModifier: public Modifier {
+ ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
+ Modifier(BB, PT, R) {}
+
+ void Act() override {
+ Value *Val0 = getRandomVectorValue();
+ Value *V = ExtractElementInst::Create(Val0,
+ ConstantInt::get(Type::getInt32Ty(BB->getContext()),
+ Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
+ "E", BB->getTerminator());
+ return PT->push_back(V);
+ }
+};
+
+struct ShuffModifier: public Modifier {
+ ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
+ void Act() override {
+
+ Value *Val0 = getRandomVectorValue();
+ Value *Val1 = getRandomValue(Val0->getType());
+
+ unsigned Width = cast<VectorType>(Val0->getType())->getNumElements();
+ std::vector<Constant*> Idxs;
+
+ Type *I32 = Type::getInt32Ty(BB->getContext());
+ for (unsigned i=0; i<Width; ++i) {
+ Constant *CI = ConstantInt::get(I32, Ran->Rand() % (Width*2));
+ // Pick some undef values.
+ if (!(Ran->Rand() % 5))
+ CI = UndefValue::get(I32);
+ Idxs.push_back(CI);
+ }
+
+ Constant *Mask = ConstantVector::get(Idxs);
+
+ Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff",
+ BB->getTerminator());
+ PT->push_back(V);
+ }
+};
+
+struct InsertElementModifier: public Modifier {
+ InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
+ Modifier(BB, PT, R) {}
+
+ void Act() override {
+ Value *Val0 = getRandomVectorValue();
+ Value *Val1 = getRandomValue(Val0->getType()->getScalarType());
+
+ Value *V = InsertElementInst::Create(Val0, Val1,
+ ConstantInt::get(Type::getInt32Ty(BB->getContext()),
+ Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
+ "I", BB->getTerminator());
+ return PT->push_back(V);
+ }
+
+};
+
+struct CastModifier: public Modifier {
+ CastModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
+ void Act() override {
+
+ Value *V = getRandomVal();
+ Type *VTy = V->getType();
+ Type *DestTy = pickScalarType();
+
+ // Handle vector casts vectors.
+ if (VTy->isVectorTy()) {
+ VectorType *VecTy = cast<VectorType>(VTy);
+ DestTy = pickVectorType(VecTy->getNumElements());
+ }
+
+ // no need to cast.
+ if (VTy == DestTy) return;
+
+ // Pointers:
+ if (VTy->isPointerTy()) {
+ if (!DestTy->isPointerTy())
+ DestTy = PointerType::get(DestTy, 0);
+ return PT->push_back(
+ new BitCastInst(V, DestTy, "PC", BB->getTerminator()));
+ }
+
+ unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits();
+ unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits();
+
+ // Generate lots of bitcasts.
+ if ((Ran->Rand() & 1) && VSize == DestSize) {
+ return PT->push_back(
+ new BitCastInst(V, DestTy, "BC", BB->getTerminator()));
+ }
+
+ // Both types are integers:
+ if (VTy->getScalarType()->isIntegerTy() &&
+ DestTy->getScalarType()->isIntegerTy()) {
+ if (VSize > DestSize) {
+ return PT->push_back(
+ new TruncInst(V, DestTy, "Tr", BB->getTerminator()));
+ } else {
+ assert(VSize < DestSize && "Different int types with the same size?");
+ if (Ran->Rand() & 1)
+ return PT->push_back(
+ new ZExtInst(V, DestTy, "ZE", BB->getTerminator()));
+ return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator()));
+ }
+ }
+
+ // Fp to int.
+ if (VTy->getScalarType()->isFloatingPointTy() &&
+ DestTy->getScalarType()->isIntegerTy()) {
+ if (Ran->Rand() & 1)
+ return PT->push_back(
+ new FPToSIInst(V, DestTy, "FC", BB->getTerminator()));
+ return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator()));
+ }
+
+ // Int to fp.
+ if (VTy->getScalarType()->isIntegerTy() &&
+ DestTy->getScalarType()->isFloatingPointTy()) {
+ if (Ran->Rand() & 1)
+ return PT->push_back(
+ new SIToFPInst(V, DestTy, "FC", BB->getTerminator()));
+ return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator()));
+
+ }
+
+ // Both floats.
+ if (VTy->getScalarType()->isFloatingPointTy() &&
+ DestTy->getScalarType()->isFloatingPointTy()) {
+ if (VSize > DestSize) {
+ return PT->push_back(
+ new FPTruncInst(V, DestTy, "Tr", BB->getTerminator()));
+ } else if (VSize < DestSize) {
+ return PT->push_back(
+ new FPExtInst(V, DestTy, "ZE", BB->getTerminator()));
+ }
+ // If VSize == DestSize, then the two types must be fp128 and ppc_fp128,
+ // for which there is no defined conversion. So do nothing.
+ }
+ }
+
+};
+
+struct SelectModifier: public Modifier {
+ SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R):
+ Modifier(BB, PT, R) {}
+
+ void Act() override {
+ // Try a bunch of different select configuration until a valid one is found.
+ Value *Val0 = getRandomVal();
+ Value *Val1 = getRandomValue(Val0->getType());
+
+ Type *CondTy = Type::getInt1Ty(Context);
+
+ // If the value type is a vector, and we allow vector select, then in 50%
+ // of the cases generate a vector select.
+ if (Val0->getType()->isVectorTy() && (Ran->Rand() % 1)) {
+ unsigned NumElem = cast<VectorType>(Val0->getType())->getNumElements();
+ CondTy = VectorType::get(CondTy, NumElem);
+ }
+
+ Value *Cond = getRandomValue(CondTy);
+ Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator());
+ return PT->push_back(V);
+ }
+};
+
+
+struct CmpModifier: public Modifier {
+ CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
+ void Act() override {
+
+ Value *Val0 = getRandomVal();
+ Value *Val1 = getRandomValue(Val0->getType());
+
+ if (Val0->getType()->isPointerTy()) return;
+ bool fp = Val0->getType()->getScalarType()->isFloatingPointTy();
+
+ int op;
+ if (fp) {
+ op = Ran->Rand() %
+ (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) +
+ CmpInst::FIRST_FCMP_PREDICATE;
+ } else {
+ op = Ran->Rand() %
+ (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) +
+ CmpInst::FIRST_ICMP_PREDICATE;
+ }
+
+ Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp,
+ (CmpInst::Predicate)op, Val0, Val1, "Cmp",
+ BB->getTerminator());
+ return PT->push_back(V);
+ }
+};
+
+} // end anonymous namespace
+
+static void FillFunction(Function *F, Random &R) {
+ // Create a legal entry block.
+ BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F);
+ ReturnInst::Create(F->getContext(), BB);
+
+ // Create the value table.
+ Modifier::PieceTable PT;
+
+ // Consider arguments as legal values.
+ for (auto &arg : F->args())
+ PT.push_back(&arg);
+
+ // List of modifiers which add new random instructions.
+ std::vector<std::unique_ptr<Modifier>> Modifiers;
+ Modifiers.emplace_back(new LoadModifier(BB, &PT, &R));
+ Modifiers.emplace_back(new StoreModifier(BB, &PT, &R));
+ auto SM = Modifiers.back().get();
+ Modifiers.emplace_back(new ExtractElementModifier(BB, &PT, &R));
+ Modifiers.emplace_back(new ShuffModifier(BB, &PT, &R));
+ Modifiers.emplace_back(new InsertElementModifier(BB, &PT, &R));
+ Modifiers.emplace_back(new BinModifier(BB, &PT, &R));
+ Modifiers.emplace_back(new CastModifier(BB, &PT, &R));
+ Modifiers.emplace_back(new SelectModifier(BB, &PT, &R));
+ Modifiers.emplace_back(new CmpModifier(BB, &PT, &R));
+
+ // Generate the random instructions
+ AllocaModifier{BB, &PT, &R}.ActN(5); // Throw in a few allocas
+ ConstModifier{BB, &PT, &R}.ActN(40); // Throw in a few constants
+
+ for (unsigned i = 0; i < SizeCL / Modifiers.size(); ++i)
+ for (auto &Mod : Modifiers)
+ Mod->Act();
+
+ SM->ActN(5); // Throw in a few stores.
+}
+
+static void IntroduceControlFlow(Function *F, Random &R) {
+ std::vector<Instruction*> BoolInst;
+ for (auto &Instr : F->front()) {
+ if (Instr.getType() == IntegerType::getInt1Ty(F->getContext()))
+ BoolInst.push_back(&Instr);
+ }
+
+ std::random_shuffle(BoolInst.begin(), BoolInst.end(), R);
+
+ for (auto *Instr : BoolInst) {
+ BasicBlock *Curr = Instr->getParent();
+ BasicBlock::iterator Loc = Instr->getIterator();
+ BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF");
+ Instr->moveBefore(Curr->getTerminator());
+ if (Curr != &F->getEntryBlock()) {
+ BranchInst::Create(Curr, Next, Instr, Curr->getTerminator());
+ Curr->getTerminator()->eraseFromParent();
+ }
+ }
+}
+
+}
+
+int main(int argc, char **argv) {
+ using namespace llvm;
+
+ // Init LLVM, call llvm_shutdown() on exit, parse args, etc.
+ PrettyStackTraceProgram X(argc, argv);
+ cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
+ llvm_shutdown_obj Y;
+
+ auto M = make_unique<Module>("/tmp/autogen.bc", getGlobalContext());
+ Function *F = GenEmptyFunction(M.get());
+
+ // Pick an initial seed value
+ Random R(SeedCL);
+ // Generate lots of random instructions inside a single basic block.
+ FillFunction(F, R);
+ // Break the basic block into many loops.
+ IntroduceControlFlow(F, R);
+
+ // Figure out what stream we are supposed to write to...
+ std::unique_ptr<tool_output_file> Out;
+ // Default to standard output.
+ if (OutputFilename.empty())
+ OutputFilename = "-";
+
+ std::error_code EC;
+ Out.reset(new tool_output_file(OutputFilename, EC, sys::fs::F_None));
+ if (EC) {
+ errs() << EC.message() << '\n';
+ return 1;
+ }
+
+ legacy::PassManager Passes;
+ Passes.add(createVerifierPass());
+ Passes.add(createPrintModulePass(Out->os()));
+ Passes.run(*M.get());
+ Out->keep();
+
+ return 0;
+}
OpenPOWER on IntegriCloud