diff options
Diffstat (limited to 'contrib/llvm/tools/llvm-objdump')
-rw-r--r-- | contrib/llvm/tools/llvm-objdump/COFFDump.cpp | 550 | ||||
-rw-r--r-- | contrib/llvm/tools/llvm-objdump/ELFDump.cpp | 94 | ||||
-rw-r--r-- | contrib/llvm/tools/llvm-objdump/MachODump.cpp | 4902 | ||||
-rw-r--r-- | contrib/llvm/tools/llvm-objdump/llvm-objdump.cpp | 904 | ||||
-rw-r--r-- | contrib/llvm/tools/llvm-objdump/llvm-objdump.h | 62 |
5 files changed, 6512 insertions, 0 deletions
diff --git a/contrib/llvm/tools/llvm-objdump/COFFDump.cpp b/contrib/llvm/tools/llvm-objdump/COFFDump.cpp new file mode 100644 index 0000000..4a20b91 --- /dev/null +++ b/contrib/llvm/tools/llvm-objdump/COFFDump.cpp @@ -0,0 +1,550 @@ +//===-- COFFDump.cpp - COFF-specific dumper ---------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// \brief This file implements the COFF-specific dumper for llvm-objdump. +/// It outputs the Win64 EH data structures as plain text. +/// The encoding of the unwind codes is described in MSDN: +/// http://msdn.microsoft.com/en-us/library/ck9asaa9.aspx +/// +//===----------------------------------------------------------------------===// + +#include "llvm-objdump.h" +#include "llvm/Object/COFF.h" +#include "llvm/Object/ObjectFile.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/SourceMgr.h" +#include "llvm/Support/Win64EH.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cstring> +#include <system_error> + +using namespace llvm; +using namespace object; +using namespace llvm::Win64EH; + +// Returns the name of the unwind code. +static StringRef getUnwindCodeTypeName(uint8_t Code) { + switch(Code) { + default: llvm_unreachable("Invalid unwind code"); + case UOP_PushNonVol: return "UOP_PushNonVol"; + case UOP_AllocLarge: return "UOP_AllocLarge"; + case UOP_AllocSmall: return "UOP_AllocSmall"; + case UOP_SetFPReg: return "UOP_SetFPReg"; + case UOP_SaveNonVol: return "UOP_SaveNonVol"; + case UOP_SaveNonVolBig: return "UOP_SaveNonVolBig"; + case UOP_SaveXMM128: return "UOP_SaveXMM128"; + case UOP_SaveXMM128Big: return "UOP_SaveXMM128Big"; + case UOP_PushMachFrame: return "UOP_PushMachFrame"; + } +} + +// Returns the name of a referenced register. +static StringRef getUnwindRegisterName(uint8_t Reg) { + switch(Reg) { + default: llvm_unreachable("Invalid register"); + case 0: return "RAX"; + case 1: return "RCX"; + case 2: return "RDX"; + case 3: return "RBX"; + case 4: return "RSP"; + case 5: return "RBP"; + case 6: return "RSI"; + case 7: return "RDI"; + case 8: return "R8"; + case 9: return "R9"; + case 10: return "R10"; + case 11: return "R11"; + case 12: return "R12"; + case 13: return "R13"; + case 14: return "R14"; + case 15: return "R15"; + } +} + +// Calculates the number of array slots required for the unwind code. +static unsigned getNumUsedSlots(const UnwindCode &UnwindCode) { + switch (UnwindCode.getUnwindOp()) { + default: llvm_unreachable("Invalid unwind code"); + case UOP_PushNonVol: + case UOP_AllocSmall: + case UOP_SetFPReg: + case UOP_PushMachFrame: + return 1; + case UOP_SaveNonVol: + case UOP_SaveXMM128: + return 2; + case UOP_SaveNonVolBig: + case UOP_SaveXMM128Big: + return 3; + case UOP_AllocLarge: + return (UnwindCode.getOpInfo() == 0) ? 2 : 3; + } +} + +// Prints one unwind code. Because an unwind code can occupy up to 3 slots in +// the unwind codes array, this function requires that the correct number of +// slots is provided. +static void printUnwindCode(ArrayRef<UnwindCode> UCs) { + assert(UCs.size() >= getNumUsedSlots(UCs[0])); + outs() << format(" 0x%02x: ", unsigned(UCs[0].u.CodeOffset)) + << getUnwindCodeTypeName(UCs[0].getUnwindOp()); + switch (UCs[0].getUnwindOp()) { + case UOP_PushNonVol: + outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo()); + break; + case UOP_AllocLarge: + if (UCs[0].getOpInfo() == 0) { + outs() << " " << UCs[1].FrameOffset; + } else { + outs() << " " << UCs[1].FrameOffset + + (static_cast<uint32_t>(UCs[2].FrameOffset) << 16); + } + break; + case UOP_AllocSmall: + outs() << " " << ((UCs[0].getOpInfo() + 1) * 8); + break; + case UOP_SetFPReg: + outs() << " "; + break; + case UOP_SaveNonVol: + outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo()) + << format(" [0x%04x]", 8 * UCs[1].FrameOffset); + break; + case UOP_SaveNonVolBig: + outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo()) + << format(" [0x%08x]", UCs[1].FrameOffset + + (static_cast<uint32_t>(UCs[2].FrameOffset) << 16)); + break; + case UOP_SaveXMM128: + outs() << " XMM" << static_cast<uint32_t>(UCs[0].getOpInfo()) + << format(" [0x%04x]", 16 * UCs[1].FrameOffset); + break; + case UOP_SaveXMM128Big: + outs() << " XMM" << UCs[0].getOpInfo() + << format(" [0x%08x]", UCs[1].FrameOffset + + (static_cast<uint32_t>(UCs[2].FrameOffset) << 16)); + break; + case UOP_PushMachFrame: + outs() << " " << (UCs[0].getOpInfo() ? "w/o" : "w") + << " error code"; + break; + } + outs() << "\n"; +} + +static void printAllUnwindCodes(ArrayRef<UnwindCode> UCs) { + for (const UnwindCode *I = UCs.begin(), *E = UCs.end(); I < E; ) { + unsigned UsedSlots = getNumUsedSlots(*I); + if (UsedSlots > UCs.size()) { + outs() << "Unwind data corrupted: Encountered unwind op " + << getUnwindCodeTypeName((*I).getUnwindOp()) + << " which requires " << UsedSlots + << " slots, but only " << UCs.size() + << " remaining in buffer"; + return ; + } + printUnwindCode(ArrayRef<UnwindCode>(I, E)); + I += UsedSlots; + } +} + +// Given a symbol sym this functions returns the address and section of it. +static std::error_code +resolveSectionAndAddress(const COFFObjectFile *Obj, const SymbolRef &Sym, + const coff_section *&ResolvedSection, + uint64_t &ResolvedAddr) { + if (std::error_code EC = Sym.getAddress(ResolvedAddr)) + return EC; + section_iterator iter(Obj->section_begin()); + if (std::error_code EC = Sym.getSection(iter)) + return EC; + ResolvedSection = Obj->getCOFFSection(*iter); + return object_error::success; +} + +// Given a vector of relocations for a section and an offset into this section +// the function returns the symbol used for the relocation at the offset. +static std::error_code resolveSymbol(const std::vector<RelocationRef> &Rels, + uint64_t Offset, SymbolRef &Sym) { + for (std::vector<RelocationRef>::const_iterator I = Rels.begin(), + E = Rels.end(); + I != E; ++I) { + uint64_t Ofs; + if (std::error_code EC = I->getOffset(Ofs)) + return EC; + if (Ofs == Offset) { + Sym = *I->getSymbol(); + return object_error::success; + } + } + return object_error::parse_failed; +} + +// Given a vector of relocations for a section and an offset into this section +// the function resolves the symbol used for the relocation at the offset and +// returns the section content and the address inside the content pointed to +// by the symbol. +static std::error_code +getSectionContents(const COFFObjectFile *Obj, + const std::vector<RelocationRef> &Rels, uint64_t Offset, + ArrayRef<uint8_t> &Contents, uint64_t &Addr) { + SymbolRef Sym; + if (std::error_code EC = resolveSymbol(Rels, Offset, Sym)) + return EC; + const coff_section *Section; + if (std::error_code EC = resolveSectionAndAddress(Obj, Sym, Section, Addr)) + return EC; + if (std::error_code EC = Obj->getSectionContents(Section, Contents)) + return EC; + return object_error::success; +} + +// Given a vector of relocations for a section and an offset into this section +// the function returns the name of the symbol used for the relocation at the +// offset. +static std::error_code resolveSymbolName(const std::vector<RelocationRef> &Rels, + uint64_t Offset, StringRef &Name) { + SymbolRef Sym; + if (std::error_code EC = resolveSymbol(Rels, Offset, Sym)) + return EC; + if (std::error_code EC = Sym.getName(Name)) + return EC; + return object_error::success; +} + +static void printCOFFSymbolAddress(llvm::raw_ostream &Out, + const std::vector<RelocationRef> &Rels, + uint64_t Offset, uint32_t Disp) { + StringRef Sym; + if (!resolveSymbolName(Rels, Offset, Sym)) { + Out << Sym; + if (Disp > 0) + Out << format(" + 0x%04x", Disp); + } else { + Out << format("0x%04x", Disp); + } +} + +static void +printSEHTable(const COFFObjectFile *Obj, uint32_t TableVA, int Count) { + if (Count == 0) + return; + + const pe32_header *PE32Header; + if (error(Obj->getPE32Header(PE32Header))) + return; + uint32_t ImageBase = PE32Header->ImageBase; + uintptr_t IntPtr = 0; + if (error(Obj->getVaPtr(TableVA, IntPtr))) + return; + const support::ulittle32_t *P = (const support::ulittle32_t *)IntPtr; + outs() << "SEH Table:"; + for (int I = 0; I < Count; ++I) + outs() << format(" 0x%x", P[I] + ImageBase); + outs() << "\n\n"; +} + +static void printLoadConfiguration(const COFFObjectFile *Obj) { + // Skip if it's not executable. + const pe32_header *PE32Header; + if (error(Obj->getPE32Header(PE32Header))) + return; + if (!PE32Header) + return; + + // Currently only x86 is supported + if (Obj->getMachine() != COFF::IMAGE_FILE_MACHINE_I386) + return; + + const data_directory *DataDir; + if (error(Obj->getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataDir))) + return; + uintptr_t IntPtr = 0; + if (DataDir->RelativeVirtualAddress == 0) + return; + if (error(Obj->getRvaPtr(DataDir->RelativeVirtualAddress, IntPtr))) + return; + + auto *LoadConf = reinterpret_cast<const coff_load_configuration32 *>(IntPtr); + outs() << "Load configuration:" + << "\n Timestamp: " << LoadConf->TimeDateStamp + << "\n Major Version: " << LoadConf->MajorVersion + << "\n Minor Version: " << LoadConf->MinorVersion + << "\n GlobalFlags Clear: " << LoadConf->GlobalFlagsClear + << "\n GlobalFlags Set: " << LoadConf->GlobalFlagsSet + << "\n Critical Section Default Timeout: " << LoadConf->CriticalSectionDefaultTimeout + << "\n Decommit Free Block Threshold: " << LoadConf->DeCommitFreeBlockThreshold + << "\n Decommit Total Free Threshold: " << LoadConf->DeCommitTotalFreeThreshold + << "\n Lock Prefix Table: " << LoadConf->LockPrefixTable + << "\n Maximum Allocation Size: " << LoadConf->MaximumAllocationSize + << "\n Virtual Memory Threshold: " << LoadConf->VirtualMemoryThreshold + << "\n Process Affinity Mask: " << LoadConf->ProcessAffinityMask + << "\n Process Heap Flags: " << LoadConf->ProcessHeapFlags + << "\n CSD Version: " << LoadConf->CSDVersion + << "\n Security Cookie: " << LoadConf->SecurityCookie + << "\n SEH Table: " << LoadConf->SEHandlerTable + << "\n SEH Count: " << LoadConf->SEHandlerCount + << "\n\n"; + printSEHTable(Obj, LoadConf->SEHandlerTable, LoadConf->SEHandlerCount); + outs() << "\n"; +} + +// Prints import tables. The import table is a table containing the list of +// DLL name and symbol names which will be linked by the loader. +static void printImportTables(const COFFObjectFile *Obj) { + import_directory_iterator I = Obj->import_directory_begin(); + import_directory_iterator E = Obj->import_directory_end(); + if (I == E) + return; + outs() << "The Import Tables:\n"; + for (; I != E; I = ++I) { + const import_directory_table_entry *Dir; + StringRef Name; + if (I->getImportTableEntry(Dir)) return; + if (I->getName(Name)) return; + + outs() << format(" lookup %08x time %08x fwd %08x name %08x addr %08x\n\n", + static_cast<uint32_t>(Dir->ImportLookupTableRVA), + static_cast<uint32_t>(Dir->TimeDateStamp), + static_cast<uint32_t>(Dir->ForwarderChain), + static_cast<uint32_t>(Dir->NameRVA), + static_cast<uint32_t>(Dir->ImportAddressTableRVA)); + outs() << " DLL Name: " << Name << "\n"; + outs() << " Hint/Ord Name\n"; + const import_lookup_table_entry32 *entry; + if (I->getImportLookupEntry(entry)) + return; + for (; entry->Data; ++entry) { + if (entry->isOrdinal()) { + outs() << format(" % 6d\n", entry->getOrdinal()); + continue; + } + uint16_t Hint; + StringRef Name; + if (Obj->getHintName(entry->getHintNameRVA(), Hint, Name)) + return; + outs() << format(" % 6d ", Hint) << Name << "\n"; + } + outs() << "\n"; + } +} + +// Prints export tables. The export table is a table containing the list of +// exported symbol from the DLL. +static void printExportTable(const COFFObjectFile *Obj) { + outs() << "Export Table:\n"; + export_directory_iterator I = Obj->export_directory_begin(); + export_directory_iterator E = Obj->export_directory_end(); + if (I == E) + return; + StringRef DllName; + uint32_t OrdinalBase; + if (I->getDllName(DllName)) + return; + if (I->getOrdinalBase(OrdinalBase)) + return; + outs() << " DLL name: " << DllName << "\n"; + outs() << " Ordinal base: " << OrdinalBase << "\n"; + outs() << " Ordinal RVA Name\n"; + for (; I != E; I = ++I) { + uint32_t Ordinal; + if (I->getOrdinal(Ordinal)) + return; + uint32_t RVA; + if (I->getExportRVA(RVA)) + return; + outs() << format(" % 4d %# 8x", Ordinal, RVA); + + StringRef Name; + if (I->getSymbolName(Name)) + continue; + if (!Name.empty()) + outs() << " " << Name; + outs() << "\n"; + } +} + +// Given the COFF object file, this function returns the relocations for .pdata +// and the pointer to "runtime function" structs. +static bool getPDataSection(const COFFObjectFile *Obj, + std::vector<RelocationRef> &Rels, + const RuntimeFunction *&RFStart, int &NumRFs) { + for (const SectionRef &Section : Obj->sections()) { + StringRef Name; + if (error(Section.getName(Name))) + continue; + if (Name != ".pdata") + continue; + + const coff_section *Pdata = Obj->getCOFFSection(Section); + for (const RelocationRef &Reloc : Section.relocations()) + Rels.push_back(Reloc); + + // Sort relocations by address. + std::sort(Rels.begin(), Rels.end(), RelocAddressLess); + + ArrayRef<uint8_t> Contents; + if (error(Obj->getSectionContents(Pdata, Contents))) + continue; + if (Contents.empty()) + continue; + + RFStart = reinterpret_cast<const RuntimeFunction *>(Contents.data()); + NumRFs = Contents.size() / sizeof(RuntimeFunction); + return true; + } + return false; +} + +static void printWin64EHUnwindInfo(const Win64EH::UnwindInfo *UI) { + // The casts to int are required in order to output the value as number. + // Without the casts the value would be interpreted as char data (which + // results in garbage output). + outs() << " Version: " << static_cast<int>(UI->getVersion()) << "\n"; + outs() << " Flags: " << static_cast<int>(UI->getFlags()); + if (UI->getFlags()) { + if (UI->getFlags() & UNW_ExceptionHandler) + outs() << " UNW_ExceptionHandler"; + if (UI->getFlags() & UNW_TerminateHandler) + outs() << " UNW_TerminateHandler"; + if (UI->getFlags() & UNW_ChainInfo) + outs() << " UNW_ChainInfo"; + } + outs() << "\n"; + outs() << " Size of prolog: " << static_cast<int>(UI->PrologSize) << "\n"; + outs() << " Number of Codes: " << static_cast<int>(UI->NumCodes) << "\n"; + // Maybe this should move to output of UOP_SetFPReg? + if (UI->getFrameRegister()) { + outs() << " Frame register: " + << getUnwindRegisterName(UI->getFrameRegister()) << "\n"; + outs() << " Frame offset: " << 16 * UI->getFrameOffset() << "\n"; + } else { + outs() << " No frame pointer used\n"; + } + if (UI->getFlags() & (UNW_ExceptionHandler | UNW_TerminateHandler)) { + // FIXME: Output exception handler data + } else if (UI->getFlags() & UNW_ChainInfo) { + // FIXME: Output chained unwind info + } + + if (UI->NumCodes) + outs() << " Unwind Codes:\n"; + + printAllUnwindCodes(ArrayRef<UnwindCode>(&UI->UnwindCodes[0], UI->NumCodes)); + + outs() << "\n"; + outs().flush(); +} + +/// Prints out the given RuntimeFunction struct for x64, assuming that Obj is +/// pointing to an executable file. +static void printRuntimeFunction(const COFFObjectFile *Obj, + const RuntimeFunction &RF) { + if (!RF.StartAddress) + return; + outs() << "Function Table:\n" + << format(" Start Address: 0x%04x\n", + static_cast<uint32_t>(RF.StartAddress)) + << format(" End Address: 0x%04x\n", + static_cast<uint32_t>(RF.EndAddress)) + << format(" Unwind Info Address: 0x%04x\n", + static_cast<uint32_t>(RF.UnwindInfoOffset)); + uintptr_t addr; + if (Obj->getRvaPtr(RF.UnwindInfoOffset, addr)) + return; + printWin64EHUnwindInfo(reinterpret_cast<const Win64EH::UnwindInfo *>(addr)); +} + +/// Prints out the given RuntimeFunction struct for x64, assuming that Obj is +/// pointing to an object file. Unlike executable, fields in RuntimeFunction +/// struct are filled with zeros, but instead there are relocations pointing to +/// them so that the linker will fill targets' RVAs to the fields at link +/// time. This function interprets the relocations to find the data to be used +/// in the resulting executable. +static void printRuntimeFunctionRels(const COFFObjectFile *Obj, + const RuntimeFunction &RF, + uint64_t SectionOffset, + const std::vector<RelocationRef> &Rels) { + outs() << "Function Table:\n"; + outs() << " Start Address: "; + printCOFFSymbolAddress(outs(), Rels, + SectionOffset + + /*offsetof(RuntimeFunction, StartAddress)*/ 0, + RF.StartAddress); + outs() << "\n"; + + outs() << " End Address: "; + printCOFFSymbolAddress(outs(), Rels, + SectionOffset + + /*offsetof(RuntimeFunction, EndAddress)*/ 4, + RF.EndAddress); + outs() << "\n"; + + outs() << " Unwind Info Address: "; + printCOFFSymbolAddress(outs(), Rels, + SectionOffset + + /*offsetof(RuntimeFunction, UnwindInfoOffset)*/ 8, + RF.UnwindInfoOffset); + outs() << "\n"; + + ArrayRef<uint8_t> XContents; + uint64_t UnwindInfoOffset = 0; + if (error(getSectionContents( + Obj, Rels, SectionOffset + + /*offsetof(RuntimeFunction, UnwindInfoOffset)*/ 8, + XContents, UnwindInfoOffset))) + return; + if (XContents.empty()) + return; + + UnwindInfoOffset += RF.UnwindInfoOffset; + if (UnwindInfoOffset > XContents.size()) + return; + + auto *UI = reinterpret_cast<const Win64EH::UnwindInfo *>(XContents.data() + + UnwindInfoOffset); + printWin64EHUnwindInfo(UI); +} + +void llvm::printCOFFUnwindInfo(const COFFObjectFile *Obj) { + if (Obj->getMachine() != COFF::IMAGE_FILE_MACHINE_AMD64) { + errs() << "Unsupported image machine type " + "(currently only AMD64 is supported).\n"; + return; + } + + std::vector<RelocationRef> Rels; + const RuntimeFunction *RFStart; + int NumRFs; + if (!getPDataSection(Obj, Rels, RFStart, NumRFs)) + return; + ArrayRef<RuntimeFunction> RFs(RFStart, NumRFs); + + bool IsExecutable = Rels.empty(); + if (IsExecutable) { + for (const RuntimeFunction &RF : RFs) + printRuntimeFunction(Obj, RF); + return; + } + + for (const RuntimeFunction &RF : RFs) { + uint64_t SectionOffset = + std::distance(RFs.begin(), &RF) * sizeof(RuntimeFunction); + printRuntimeFunctionRels(Obj, RF, SectionOffset, Rels); + } +} + +void llvm::printCOFFFileHeader(const object::ObjectFile *Obj) { + const COFFObjectFile *file = dyn_cast<const COFFObjectFile>(Obj); + printLoadConfiguration(file); + printImportTables(file); + printExportTable(file); +} diff --git a/contrib/llvm/tools/llvm-objdump/ELFDump.cpp b/contrib/llvm/tools/llvm-objdump/ELFDump.cpp new file mode 100644 index 0000000..9c091a4 --- /dev/null +++ b/contrib/llvm/tools/llvm-objdump/ELFDump.cpp @@ -0,0 +1,94 @@ +//===-- ELFDump.cpp - ELF-specific dumper -----------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// \brief This file implements the ELF-specific dumper for llvm-objdump. +/// +//===----------------------------------------------------------------------===// + +#include "llvm-objdump.h" +#include "llvm/Object/ELFObjectFile.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; +using namespace llvm::object; + +template <class ELFT> void printProgramHeaders(const ELFFile<ELFT> *o) { + typedef ELFFile<ELFT> ELFO; + outs() << "Program Header:\n"; + for (typename ELFO::Elf_Phdr_Iter pi = o->begin_program_headers(), + pe = o->end_program_headers(); + pi != pe; ++pi) { + switch (pi->p_type) { + case ELF::PT_LOAD: + outs() << " LOAD "; + break; + case ELF::PT_GNU_STACK: + outs() << " STACK "; + break; + case ELF::PT_GNU_EH_FRAME: + outs() << "EH_FRAME "; + break; + case ELF::PT_INTERP: + outs() << " INTERP "; + break; + case ELF::PT_DYNAMIC: + outs() << " DYNAMIC "; + break; + case ELF::PT_PHDR: + outs() << " PHDR "; + break; + case ELF::PT_TLS: + outs() << " TLS "; + break; + default: + outs() << " UNKNOWN "; + } + + const char *Fmt = ELFT::Is64Bits ? "0x%016" PRIx64 " " : "0x%08" PRIx64 " "; + + outs() << "off " + << format(Fmt, (uint64_t)pi->p_offset) + << "vaddr " + << format(Fmt, (uint64_t)pi->p_vaddr) + << "paddr " + << format(Fmt, (uint64_t)pi->p_paddr) + << format("align 2**%u\n", countTrailingZeros<uint64_t>(pi->p_align)) + << " filesz " + << format(Fmt, (uint64_t)pi->p_filesz) + << "memsz " + << format(Fmt, (uint64_t)pi->p_memsz) + << "flags " + << ((pi->p_flags & ELF::PF_R) ? "r" : "-") + << ((pi->p_flags & ELF::PF_W) ? "w" : "-") + << ((pi->p_flags & ELF::PF_X) ? "x" : "-") + << "\n"; + } + outs() << "\n"; +} + +void llvm::printELFFileHeader(const object::ObjectFile *Obj) { + // Little-endian 32-bit + if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj)) + printProgramHeaders(ELFObj->getELFFile()); + + // Big-endian 32-bit + if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj)) + printProgramHeaders(ELFObj->getELFFile()); + + // Little-endian 64-bit + if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj)) + printProgramHeaders(ELFObj->getELFFile()); + + // Big-endian 64-bit + if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj)) + printProgramHeaders(ELFObj->getELFFile()); +} diff --git a/contrib/llvm/tools/llvm-objdump/MachODump.cpp b/contrib/llvm/tools/llvm-objdump/MachODump.cpp new file mode 100644 index 0000000..03fad5f --- /dev/null +++ b/contrib/llvm/tools/llvm-objdump/MachODump.cpp @@ -0,0 +1,4902 @@ +//===-- MachODump.cpp - Object file dumping utility for llvm --------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the MachO-specific dumper for llvm-objdump. +// +//===----------------------------------------------------------------------===// + +#include "llvm-objdump.h" +#include "llvm-c/Disassembler.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Config/config.h" +#include "llvm/DebugInfo/DIContext.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCDisassembler.h" +#include "llvm/MC/MCInst.h" +#include "llvm/MC/MCInstPrinter.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCInstrInfo.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/MC/MCSubtargetInfo.h" +#include "llvm/Object/MachO.h" +#include "llvm/Object/MachOUniversal.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Endian.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/Support/MachO.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/TargetRegistry.h" +#include "llvm/Support/TargetSelect.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cstring> +#include <system_error> + +#if HAVE_CXXABI_H +#include <cxxabi.h> +#endif + +using namespace llvm; +using namespace object; + +static cl::opt<bool> + UseDbg("g", + cl::desc("Print line information from debug info if available")); + +static cl::opt<std::string> DSYMFile("dsym", + cl::desc("Use .dSYM file for debug info")); + +static cl::opt<bool> FullLeadingAddr("full-leading-addr", + cl::desc("Print full leading address")); + +static cl::opt<bool> + PrintImmHex("print-imm-hex", + cl::desc("Use hex format for immediate values")); + +cl::opt<bool> + llvm::UniversalHeaders("universal-headers", + cl::desc("Print Mach-O universal headers")); + +static cl::list<std::string> + ArchFlags("arch", cl::desc("architecture(s) from a Mach-O file to dump"), + cl::ZeroOrMore); +bool ArchAll = false; + +static std::string ThumbTripleName; + +static const Target *GetTarget(const MachOObjectFile *MachOObj, + const char **McpuDefault, + const Target **ThumbTarget) { + // Figure out the target triple. + if (TripleName.empty()) { + llvm::Triple TT("unknown-unknown-unknown"); + llvm::Triple ThumbTriple = Triple(); + TT = MachOObj->getArch(McpuDefault, &ThumbTriple); + TripleName = TT.str(); + ThumbTripleName = ThumbTriple.str(); + } + + // Get the target specific parser. + std::string Error; + const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error); + if (TheTarget && ThumbTripleName.empty()) + return TheTarget; + + *ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error); + if (*ThumbTarget) + return TheTarget; + + errs() << "llvm-objdump: error: unable to get target for '"; + if (!TheTarget) + errs() << TripleName; + else + errs() << ThumbTripleName; + errs() << "', see --version and --triple.\n"; + return nullptr; +} + +struct SymbolSorter { + bool operator()(const SymbolRef &A, const SymbolRef &B) { + SymbolRef::Type AType, BType; + A.getType(AType); + B.getType(BType); + + uint64_t AAddr, BAddr; + if (AType != SymbolRef::ST_Function) + AAddr = 0; + else + A.getAddress(AAddr); + if (BType != SymbolRef::ST_Function) + BAddr = 0; + else + B.getAddress(BAddr); + return AAddr < BAddr; + } +}; + +// Types for the storted data in code table that is built before disassembly +// and the predicate function to sort them. +typedef std::pair<uint64_t, DiceRef> DiceTableEntry; +typedef std::vector<DiceTableEntry> DiceTable; +typedef DiceTable::iterator dice_table_iterator; + +// This is used to search for a data in code table entry for the PC being +// disassembled. The j parameter has the PC in j.first. A single data in code +// table entry can cover many bytes for each of its Kind's. So if the offset, +// aka the i.first value, of the data in code table entry plus its Length +// covers the PC being searched for this will return true. If not it will +// return false. +static bool compareDiceTableEntries(const DiceTableEntry &i, + const DiceTableEntry &j) { + uint16_t Length; + i.second.getLength(Length); + + return j.first >= i.first && j.first < i.first + Length; +} + +static uint64_t DumpDataInCode(const char *bytes, uint64_t Length, + unsigned short Kind) { + uint32_t Value, Size = 1; + + switch (Kind) { + default: + case MachO::DICE_KIND_DATA: + if (Length >= 4) { + if (!NoShowRawInsn) + DumpBytes(StringRef(bytes, 4)); + Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0]; + outs() << "\t.long " << Value; + Size = 4; + } else if (Length >= 2) { + if (!NoShowRawInsn) + DumpBytes(StringRef(bytes, 2)); + Value = bytes[1] << 8 | bytes[0]; + outs() << "\t.short " << Value; + Size = 2; + } else { + if (!NoShowRawInsn) + DumpBytes(StringRef(bytes, 2)); + Value = bytes[0]; + outs() << "\t.byte " << Value; + Size = 1; + } + if (Kind == MachO::DICE_KIND_DATA) + outs() << "\t@ KIND_DATA\n"; + else + outs() << "\t@ data in code kind = " << Kind << "\n"; + break; + case MachO::DICE_KIND_JUMP_TABLE8: + if (!NoShowRawInsn) + DumpBytes(StringRef(bytes, 1)); + Value = bytes[0]; + outs() << "\t.byte " << format("%3u", Value) << "\t@ KIND_JUMP_TABLE8\n"; + Size = 1; + break; + case MachO::DICE_KIND_JUMP_TABLE16: + if (!NoShowRawInsn) + DumpBytes(StringRef(bytes, 2)); + Value = bytes[1] << 8 | bytes[0]; + outs() << "\t.short " << format("%5u", Value & 0xffff) + << "\t@ KIND_JUMP_TABLE16\n"; + Size = 2; + break; + case MachO::DICE_KIND_JUMP_TABLE32: + case MachO::DICE_KIND_ABS_JUMP_TABLE32: + if (!NoShowRawInsn) + DumpBytes(StringRef(bytes, 4)); + Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0]; + outs() << "\t.long " << Value; + if (Kind == MachO::DICE_KIND_JUMP_TABLE32) + outs() << "\t@ KIND_JUMP_TABLE32\n"; + else + outs() << "\t@ KIND_ABS_JUMP_TABLE32\n"; + Size = 4; + break; + } + return Size; +} + +static void getSectionsAndSymbols(const MachO::mach_header Header, + MachOObjectFile *MachOObj, + std::vector<SectionRef> &Sections, + std::vector<SymbolRef> &Symbols, + SmallVectorImpl<uint64_t> &FoundFns, + uint64_t &BaseSegmentAddress) { + for (const SymbolRef &Symbol : MachOObj->symbols()) { + StringRef SymName; + Symbol.getName(SymName); + if (!SymName.startswith("ltmp")) + Symbols.push_back(Symbol); + } + + for (const SectionRef &Section : MachOObj->sections()) { + StringRef SectName; + Section.getName(SectName); + Sections.push_back(Section); + } + + MachOObjectFile::LoadCommandInfo Command = + MachOObj->getFirstLoadCommandInfo(); + bool BaseSegmentAddressSet = false; + for (unsigned i = 0;; ++i) { + if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) { + // We found a function starts segment, parse the addresses for later + // consumption. + MachO::linkedit_data_command LLC = + MachOObj->getLinkeditDataLoadCommand(Command); + + MachOObj->ReadULEB128s(LLC.dataoff, FoundFns); + } else if (Command.C.cmd == MachO::LC_SEGMENT) { + MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command); + StringRef SegName = SLC.segname; + if (!BaseSegmentAddressSet && SegName != "__PAGEZERO") { + BaseSegmentAddressSet = true; + BaseSegmentAddress = SLC.vmaddr; + } + } + + if (i == Header.ncmds - 1) + break; + else + Command = MachOObj->getNextLoadCommandInfo(Command); + } +} + +// checkMachOAndArchFlags() checks to see if the ObjectFile is a Mach-O file +// and if it is and there is a list of architecture flags is specified then +// check to make sure this Mach-O file is one of those architectures or all +// architectures were specified. If not then an error is generated and this +// routine returns false. Else it returns true. +static bool checkMachOAndArchFlags(ObjectFile *O, StringRef Filename) { + if (isa<MachOObjectFile>(O) && !ArchAll && ArchFlags.size() != 0) { + MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O); + bool ArchFound = false; + MachO::mach_header H; + MachO::mach_header_64 H_64; + Triple T; + if (MachO->is64Bit()) { + H_64 = MachO->MachOObjectFile::getHeader64(); + T = MachOObjectFile::getArch(H_64.cputype, H_64.cpusubtype); + } else { + H = MachO->MachOObjectFile::getHeader(); + T = MachOObjectFile::getArch(H.cputype, H.cpusubtype); + } + unsigned i; + for (i = 0; i < ArchFlags.size(); ++i) { + if (ArchFlags[i] == T.getArchName()) + ArchFound = true; + break; + } + if (!ArchFound) { + errs() << "llvm-objdump: file: " + Filename + " does not contain " + << "architecture: " + ArchFlags[i] + "\n"; + return false; + } + } + return true; +} + +static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF); + +// ProcessMachO() is passed a single opened Mach-O file, which may be an +// archive member and or in a slice of a universal file. It prints the +// the file name and header info and then processes it according to the +// command line options. +static void ProcessMachO(StringRef Filename, MachOObjectFile *MachOOF, + StringRef ArchiveMemberName = StringRef(), + StringRef ArchitectureName = StringRef()) { + // If we are doing some processing here on the Mach-O file print the header + // info. And don't print it otherwise like in the case of printing the + // UniversalHeaders. + if (Disassemble || PrivateHeaders || ExportsTrie || Rebase || Bind || + LazyBind || WeakBind) { + outs() << Filename; + if (!ArchiveMemberName.empty()) + outs() << '(' << ArchiveMemberName << ')'; + if (!ArchitectureName.empty()) + outs() << " (architecture " << ArchitectureName << ")"; + outs() << ":\n"; + } + + if (Disassemble) + DisassembleMachO(Filename, MachOOF); + // TODO: These should/could be printed in Darwin's otool(1) or nm(1) style + // for -macho. Or just used a new option that maps to the otool(1) + // option like -r, -l, etc. Or just the normal llvm-objdump option + // but now for this slice so that the -arch options can be used. + // if (Relocations) + // PrintRelocations(MachOOF); + // if (SectionHeaders) + // PrintSectionHeaders(MachOOF); + // if (SectionContents) + // PrintSectionContents(MachOOF); + // if (SymbolTable) + // PrintSymbolTable(MachOOF); + // if (UnwindInfo) + // PrintUnwindInfo(MachOOF); + if (PrivateHeaders) + printMachOFileHeader(MachOOF); + if (ExportsTrie) + printExportsTrie(MachOOF); + if (Rebase) + printRebaseTable(MachOOF); + if (Bind) + printBindTable(MachOOF); + if (LazyBind) + printLazyBindTable(MachOOF); + if (WeakBind) + printWeakBindTable(MachOOF); +} + +// printUnknownCPUType() helps print_fat_headers for unknown CPU's. +static void printUnknownCPUType(uint32_t cputype, uint32_t cpusubtype) { + outs() << " cputype (" << cputype << ")\n"; + outs() << " cpusubtype (" << cpusubtype << ")\n"; +} + +// printCPUType() helps print_fat_headers by printing the cputype and +// pusubtype (symbolically for the one's it knows about). +static void printCPUType(uint32_t cputype, uint32_t cpusubtype) { + switch (cputype) { + case MachO::CPU_TYPE_I386: + switch (cpusubtype) { + case MachO::CPU_SUBTYPE_I386_ALL: + outs() << " cputype CPU_TYPE_I386\n"; + outs() << " cpusubtype CPU_SUBTYPE_I386_ALL\n"; + break; + default: + printUnknownCPUType(cputype, cpusubtype); + break; + } + break; + case MachO::CPU_TYPE_X86_64: + switch (cpusubtype) { + case MachO::CPU_SUBTYPE_X86_64_ALL: + outs() << " cputype CPU_TYPE_X86_64\n"; + outs() << " cpusubtype CPU_SUBTYPE_X86_64_ALL\n"; + break; + case MachO::CPU_SUBTYPE_X86_64_H: + outs() << " cputype CPU_TYPE_X86_64\n"; + outs() << " cpusubtype CPU_SUBTYPE_X86_64_H\n"; + break; + default: + printUnknownCPUType(cputype, cpusubtype); + break; + } + break; + case MachO::CPU_TYPE_ARM: + switch (cpusubtype) { + case MachO::CPU_SUBTYPE_ARM_ALL: + outs() << " cputype CPU_TYPE_ARM\n"; + outs() << " cpusubtype CPU_SUBTYPE_ARM_ALL\n"; + break; + case MachO::CPU_SUBTYPE_ARM_V4T: + outs() << " cputype CPU_TYPE_ARM\n"; + outs() << " cpusubtype CPU_SUBTYPE_ARM_V4T\n"; + break; + case MachO::CPU_SUBTYPE_ARM_V5TEJ: + outs() << " cputype CPU_TYPE_ARM\n"; + outs() << " cpusubtype CPU_SUBTYPE_ARM_V5TEJ\n"; + break; + case MachO::CPU_SUBTYPE_ARM_XSCALE: + outs() << " cputype CPU_TYPE_ARM\n"; + outs() << " cpusubtype CPU_SUBTYPE_ARM_XSCALE\n"; + break; + case MachO::CPU_SUBTYPE_ARM_V6: + outs() << " cputype CPU_TYPE_ARM\n"; + outs() << " cpusubtype CPU_SUBTYPE_ARM_V6\n"; + break; + case MachO::CPU_SUBTYPE_ARM_V6M: + outs() << " cputype CPU_TYPE_ARM\n"; + outs() << " cpusubtype CPU_SUBTYPE_ARM_V6M\n"; + break; + case MachO::CPU_SUBTYPE_ARM_V7: + outs() << " cputype CPU_TYPE_ARM\n"; + outs() << " cpusubtype CPU_SUBTYPE_ARM_V7\n"; + break; + case MachO::CPU_SUBTYPE_ARM_V7EM: + outs() << " cputype CPU_TYPE_ARM\n"; + outs() << " cpusubtype CPU_SUBTYPE_ARM_V7EM\n"; + break; + case MachO::CPU_SUBTYPE_ARM_V7K: + outs() << " cputype CPU_TYPE_ARM\n"; + outs() << " cpusubtype CPU_SUBTYPE_ARM_V7K\n"; + break; + case MachO::CPU_SUBTYPE_ARM_V7M: + outs() << " cputype CPU_TYPE_ARM\n"; + outs() << " cpusubtype CPU_SUBTYPE_ARM_V7M\n"; + break; + case MachO::CPU_SUBTYPE_ARM_V7S: + outs() << " cputype CPU_TYPE_ARM\n"; + outs() << " cpusubtype CPU_SUBTYPE_ARM_V7S\n"; + break; + default: + printUnknownCPUType(cputype, cpusubtype); + break; + } + break; + case MachO::CPU_TYPE_ARM64: + switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { + case MachO::CPU_SUBTYPE_ARM64_ALL: + outs() << " cputype CPU_TYPE_ARM64\n"; + outs() << " cpusubtype CPU_SUBTYPE_ARM64_ALL\n"; + break; + default: + printUnknownCPUType(cputype, cpusubtype); + break; + } + break; + default: + printUnknownCPUType(cputype, cpusubtype); + break; + } +} + +static void printMachOUniversalHeaders(const object::MachOUniversalBinary *UB, + bool verbose) { + outs() << "Fat headers\n"; + if (verbose) + outs() << "fat_magic FAT_MAGIC\n"; + else + outs() << "fat_magic " << format("0x%" PRIx32, MachO::FAT_MAGIC) << "\n"; + + uint32_t nfat_arch = UB->getNumberOfObjects(); + StringRef Buf = UB->getData(); + uint64_t size = Buf.size(); + uint64_t big_size = sizeof(struct MachO::fat_header) + + nfat_arch * sizeof(struct MachO::fat_arch); + outs() << "nfat_arch " << UB->getNumberOfObjects(); + if (nfat_arch == 0) + outs() << " (malformed, contains zero architecture types)\n"; + else if (big_size > size) + outs() << " (malformed, architectures past end of file)\n"; + else + outs() << "\n"; + + for (uint32_t i = 0; i < nfat_arch; ++i) { + MachOUniversalBinary::ObjectForArch OFA(UB, i); + uint32_t cputype = OFA.getCPUType(); + uint32_t cpusubtype = OFA.getCPUSubType(); + outs() << "architecture "; + for (uint32_t j = 0; i != 0 && j <= i - 1; j++) { + MachOUniversalBinary::ObjectForArch other_OFA(UB, j); + uint32_t other_cputype = other_OFA.getCPUType(); + uint32_t other_cpusubtype = other_OFA.getCPUSubType(); + if (cputype != 0 && cpusubtype != 0 && cputype == other_cputype && + (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) == + (other_cpusubtype & ~MachO::CPU_SUBTYPE_MASK)) { + outs() << "(illegal duplicate architecture) "; + break; + } + } + if (verbose) { + outs() << OFA.getArchTypeName() << "\n"; + printCPUType(cputype, cpusubtype & ~MachO::CPU_SUBTYPE_MASK); + } else { + outs() << i << "\n"; + outs() << " cputype " << cputype << "\n"; + outs() << " cpusubtype " << (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) + << "\n"; + } + if (verbose && + (cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) + outs() << " capabilities CPU_SUBTYPE_LIB64\n"; + else + outs() << " capabilities " + << format("0x%" PRIx32, + (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24) << "\n"; + outs() << " offset " << OFA.getOffset(); + if (OFA.getOffset() > size) + outs() << " (past end of file)"; + if (OFA.getOffset() % (1 << OFA.getAlign()) != 0) + outs() << " (not aligned on it's alignment (2^" << OFA.getAlign() << ")"; + outs() << "\n"; + outs() << " size " << OFA.getSize(); + big_size = OFA.getOffset() + OFA.getSize(); + if (big_size > size) + outs() << " (past end of file)"; + outs() << "\n"; + outs() << " align 2^" << OFA.getAlign() << " (" << (1 << OFA.getAlign()) + << ")\n"; + } +} + +// ParseInputMachO() parses the named Mach-O file in Filename and handles the +// -arch flags selecting just those slices as specified by them and also parses +// archive files. Then for each individual Mach-O file ProcessMachO() is +// called to process the file based on the command line options. +void llvm::ParseInputMachO(StringRef Filename) { + // Check for -arch all and verifiy the -arch flags are valid. + for (unsigned i = 0; i < ArchFlags.size(); ++i) { + if (ArchFlags[i] == "all") { + ArchAll = true; + } else { + if (!MachOObjectFile::isValidArch(ArchFlags[i])) { + errs() << "llvm-objdump: Unknown architecture named '" + ArchFlags[i] + + "'for the -arch option\n"; + return; + } + } + } + + // Attempt to open the binary. + ErrorOr<OwningBinary<Binary>> BinaryOrErr = createBinary(Filename); + if (std::error_code EC = BinaryOrErr.getError()) { + errs() << "llvm-objdump: '" << Filename << "': " << EC.message() << ".\n"; + return; + } + Binary &Bin = *BinaryOrErr.get().getBinary(); + + if (Archive *A = dyn_cast<Archive>(&Bin)) { + outs() << "Archive : " << Filename << "\n"; + for (Archive::child_iterator I = A->child_begin(), E = A->child_end(); + I != E; ++I) { + ErrorOr<std::unique_ptr<Binary>> ChildOrErr = I->getAsBinary(); + if (ChildOrErr.getError()) + continue; + if (MachOObjectFile *O = dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) { + if (!checkMachOAndArchFlags(O, Filename)) + return; + ProcessMachO(Filename, O, O->getFileName()); + } + } + return; + } + if (UniversalHeaders) { + if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin)) + printMachOUniversalHeaders(UB, true); + } + if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin)) { + // If we have a list of architecture flags specified dump only those. + if (!ArchAll && ArchFlags.size() != 0) { + // Look for a slice in the universal binary that matches each ArchFlag. + bool ArchFound; + for (unsigned i = 0; i < ArchFlags.size(); ++i) { + ArchFound = false; + for (MachOUniversalBinary::object_iterator I = UB->begin_objects(), + E = UB->end_objects(); + I != E; ++I) { + if (ArchFlags[i] == I->getArchTypeName()) { + ArchFound = true; + ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = + I->getAsObjectFile(); + std::string ArchitectureName = ""; + if (ArchFlags.size() > 1) + ArchitectureName = I->getArchTypeName(); + if (ObjOrErr) { + ObjectFile &O = *ObjOrErr.get(); + if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O)) + ProcessMachO(Filename, MachOOF, "", ArchitectureName); + } else if (ErrorOr<std::unique_ptr<Archive>> AOrErr = + I->getAsArchive()) { + std::unique_ptr<Archive> &A = *AOrErr; + outs() << "Archive : " << Filename; + if (!ArchitectureName.empty()) + outs() << " (architecture " << ArchitectureName << ")"; + outs() << "\n"; + for (Archive::child_iterator AI = A->child_begin(), + AE = A->child_end(); + AI != AE; ++AI) { + ErrorOr<std::unique_ptr<Binary>> ChildOrErr = AI->getAsBinary(); + if (ChildOrErr.getError()) + continue; + if (MachOObjectFile *O = + dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) + ProcessMachO(Filename, O, O->getFileName(), ArchitectureName); + } + } + } + } + if (!ArchFound) { + errs() << "llvm-objdump: file: " + Filename + " does not contain " + << "architecture: " + ArchFlags[i] + "\n"; + return; + } + } + return; + } + // No architecture flags were specified so if this contains a slice that + // matches the host architecture dump only that. + if (!ArchAll) { + for (MachOUniversalBinary::object_iterator I = UB->begin_objects(), + E = UB->end_objects(); + I != E; ++I) { + if (MachOObjectFile::getHostArch().getArchName() == + I->getArchTypeName()) { + ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile(); + std::string ArchiveName; + ArchiveName.clear(); + if (ObjOrErr) { + ObjectFile &O = *ObjOrErr.get(); + if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O)) + ProcessMachO(Filename, MachOOF); + } else if (ErrorOr<std::unique_ptr<Archive>> AOrErr = + I->getAsArchive()) { + std::unique_ptr<Archive> &A = *AOrErr; + outs() << "Archive : " << Filename << "\n"; + for (Archive::child_iterator AI = A->child_begin(), + AE = A->child_end(); + AI != AE; ++AI) { + ErrorOr<std::unique_ptr<Binary>> ChildOrErr = AI->getAsBinary(); + if (ChildOrErr.getError()) + continue; + if (MachOObjectFile *O = + dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) + ProcessMachO(Filename, O, O->getFileName()); + } + } + return; + } + } + } + // Either all architectures have been specified or none have been specified + // and this does not contain the host architecture so dump all the slices. + bool moreThanOneArch = UB->getNumberOfObjects() > 1; + for (MachOUniversalBinary::object_iterator I = UB->begin_objects(), + E = UB->end_objects(); + I != E; ++I) { + ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile(); + std::string ArchitectureName = ""; + if (moreThanOneArch) + ArchitectureName = I->getArchTypeName(); + if (ObjOrErr) { + ObjectFile &Obj = *ObjOrErr.get(); + if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&Obj)) + ProcessMachO(Filename, MachOOF, "", ArchitectureName); + } else if (ErrorOr<std::unique_ptr<Archive>> AOrErr = I->getAsArchive()) { + std::unique_ptr<Archive> &A = *AOrErr; + outs() << "Archive : " << Filename; + if (!ArchitectureName.empty()) + outs() << " (architecture " << ArchitectureName << ")"; + outs() << "\n"; + for (Archive::child_iterator AI = A->child_begin(), AE = A->child_end(); + AI != AE; ++AI) { + ErrorOr<std::unique_ptr<Binary>> ChildOrErr = AI->getAsBinary(); + if (ChildOrErr.getError()) + continue; + if (MachOObjectFile *O = + dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) { + if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(O)) + ProcessMachO(Filename, MachOOF, MachOOF->getFileName(), + ArchitectureName); + } + } + } + } + return; + } + if (ObjectFile *O = dyn_cast<ObjectFile>(&Bin)) { + if (!checkMachOAndArchFlags(O, Filename)) + return; + if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*O)) { + ProcessMachO(Filename, MachOOF); + } else + errs() << "llvm-objdump: '" << Filename << "': " + << "Object is not a Mach-O file type.\n"; + } else + errs() << "llvm-objdump: '" << Filename << "': " + << "Unrecognized file type.\n"; +} + +typedef DenseMap<uint64_t, StringRef> SymbolAddressMap; +typedef std::pair<uint64_t, const char *> BindInfoEntry; +typedef std::vector<BindInfoEntry> BindTable; +typedef BindTable::iterator bind_table_iterator; + +// The block of info used by the Symbolizer call backs. +struct DisassembleInfo { + bool verbose; + MachOObjectFile *O; + SectionRef S; + SymbolAddressMap *AddrMap; + std::vector<SectionRef> *Sections; + const char *class_name; + const char *selector_name; + char *method; + char *demangled_name; + uint64_t adrp_addr; + uint32_t adrp_inst; + BindTable *bindtable; +}; + +// GuessSymbolName is passed the address of what might be a symbol and a +// pointer to the DisassembleInfo struct. It returns the name of a symbol +// with that address or nullptr if no symbol is found with that address. +static const char *GuessSymbolName(uint64_t value, + struct DisassembleInfo *info) { + const char *SymbolName = nullptr; + // A DenseMap can't lookup up some values. + if (value != 0xffffffffffffffffULL && value != 0xfffffffffffffffeULL) { + StringRef name = info->AddrMap->lookup(value); + if (!name.empty()) + SymbolName = name.data(); + } + return SymbolName; +} + +// SymbolizerGetOpInfo() is the operand information call back function. +// This is called to get the symbolic information for operand(s) of an +// instruction when it is being done. This routine does this from +// the relocation information, symbol table, etc. That block of information +// is a pointer to the struct DisassembleInfo that was passed when the +// disassembler context was created and passed to back to here when +// called back by the disassembler for instruction operands that could have +// relocation information. The address of the instruction containing operand is +// at the Pc parameter. The immediate value the operand has is passed in +// op_info->Value and is at Offset past the start of the instruction and has a +// byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the +// LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol +// names and addends of the symbolic expression to add for the operand. The +// value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic +// information is returned then this function returns 1 else it returns 0. +int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset, + uint64_t Size, int TagType, void *TagBuf) { + struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo; + struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf; + uint64_t value = op_info->Value; + + // Make sure all fields returned are zero if we don't set them. + memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1)); + op_info->Value = value; + + // If the TagType is not the value 1 which it code knows about or if no + // verbose symbolic information is wanted then just return 0, indicating no + // information is being returned. + if (TagType != 1 || info->verbose == false) + return 0; + + unsigned int Arch = info->O->getArch(); + if (Arch == Triple::x86) { + if (Size != 1 && Size != 2 && Size != 4 && Size != 0) + return 0; + // First search the section's relocation entries (if any) for an entry + // for this section offset. + uint32_t sect_addr = info->S.getAddress(); + uint32_t sect_offset = (Pc + Offset) - sect_addr; + bool reloc_found = false; + DataRefImpl Rel; + MachO::any_relocation_info RE; + bool isExtern = false; + SymbolRef Symbol; + bool r_scattered = false; + uint32_t r_value, pair_r_value, r_type; + for (const RelocationRef &Reloc : info->S.relocations()) { + uint64_t RelocOffset; + Reloc.getOffset(RelocOffset); + if (RelocOffset == sect_offset) { + Rel = Reloc.getRawDataRefImpl(); + RE = info->O->getRelocation(Rel); + r_type = info->O->getAnyRelocationType(RE); + r_scattered = info->O->isRelocationScattered(RE); + if (r_scattered) { + r_value = info->O->getScatteredRelocationValue(RE); + if (r_type == MachO::GENERIC_RELOC_SECTDIFF || + r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) { + DataRefImpl RelNext = Rel; + info->O->moveRelocationNext(RelNext); + MachO::any_relocation_info RENext; + RENext = info->O->getRelocation(RelNext); + if (info->O->isRelocationScattered(RENext)) + pair_r_value = info->O->getScatteredRelocationValue(RENext); + else + return 0; + } + } else { + isExtern = info->O->getPlainRelocationExternal(RE); + if (isExtern) { + symbol_iterator RelocSym = Reloc.getSymbol(); + Symbol = *RelocSym; + } + } + reloc_found = true; + break; + } + } + if (reloc_found && isExtern) { + StringRef SymName; + Symbol.getName(SymName); + const char *name = SymName.data(); + op_info->AddSymbol.Present = 1; + op_info->AddSymbol.Name = name; + // For i386 extern relocation entries the value in the instruction is + // the offset from the symbol, and value is already set in op_info->Value. + return 1; + } + if (reloc_found && (r_type == MachO::GENERIC_RELOC_SECTDIFF || + r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)) { + const char *add = GuessSymbolName(r_value, info); + const char *sub = GuessSymbolName(pair_r_value, info); + uint32_t offset = value - (r_value - pair_r_value); + op_info->AddSymbol.Present = 1; + if (add != nullptr) + op_info->AddSymbol.Name = add; + else + op_info->AddSymbol.Value = r_value; + op_info->SubtractSymbol.Present = 1; + if (sub != nullptr) + op_info->SubtractSymbol.Name = sub; + else + op_info->SubtractSymbol.Value = pair_r_value; + op_info->Value = offset; + return 1; + } + // TODO: + // Second search the external relocation entries of a fully linked image + // (if any) for an entry that matches this segment offset. + // uint32_t seg_offset = (Pc + Offset); + return 0; + } else if (Arch == Triple::x86_64) { + if (Size != 1 && Size != 2 && Size != 4 && Size != 0) + return 0; + // First search the section's relocation entries (if any) for an entry + // for this section offset. + uint64_t sect_addr = info->S.getAddress(); + uint64_t sect_offset = (Pc + Offset) - sect_addr; + bool reloc_found = false; + DataRefImpl Rel; + MachO::any_relocation_info RE; + bool isExtern = false; + SymbolRef Symbol; + for (const RelocationRef &Reloc : info->S.relocations()) { + uint64_t RelocOffset; + Reloc.getOffset(RelocOffset); + if (RelocOffset == sect_offset) { + Rel = Reloc.getRawDataRefImpl(); + RE = info->O->getRelocation(Rel); + // NOTE: Scattered relocations don't exist on x86_64. + isExtern = info->O->getPlainRelocationExternal(RE); + if (isExtern) { + symbol_iterator RelocSym = Reloc.getSymbol(); + Symbol = *RelocSym; + } + reloc_found = true; + break; + } + } + if (reloc_found && isExtern) { + // The Value passed in will be adjusted by the Pc if the instruction + // adds the Pc. But for x86_64 external relocation entries the Value + // is the offset from the external symbol. + if (info->O->getAnyRelocationPCRel(RE)) + op_info->Value -= Pc + Offset + Size; + StringRef SymName; + Symbol.getName(SymName); + const char *name = SymName.data(); + unsigned Type = info->O->getAnyRelocationType(RE); + if (Type == MachO::X86_64_RELOC_SUBTRACTOR) { + DataRefImpl RelNext = Rel; + info->O->moveRelocationNext(RelNext); + MachO::any_relocation_info RENext = info->O->getRelocation(RelNext); + unsigned TypeNext = info->O->getAnyRelocationType(RENext); + bool isExternNext = info->O->getPlainRelocationExternal(RENext); + unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext); + if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) { + op_info->SubtractSymbol.Present = 1; + op_info->SubtractSymbol.Name = name; + symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum); + Symbol = *RelocSymNext; + StringRef SymNameNext; + Symbol.getName(SymNameNext); + name = SymNameNext.data(); + } + } + // TODO: add the VariantKinds to op_info->VariantKind for relocation types + // like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT. + op_info->AddSymbol.Present = 1; + op_info->AddSymbol.Name = name; + return 1; + } + // TODO: + // Second search the external relocation entries of a fully linked image + // (if any) for an entry that matches this segment offset. + // uint64_t seg_offset = (Pc + Offset); + return 0; + } else if (Arch == Triple::arm) { + if (Offset != 0 || (Size != 4 && Size != 2)) + return 0; + // First search the section's relocation entries (if any) for an entry + // for this section offset. + uint32_t sect_addr = info->S.getAddress(); + uint32_t sect_offset = (Pc + Offset) - sect_addr; + bool reloc_found = false; + DataRefImpl Rel; + MachO::any_relocation_info RE; + bool isExtern = false; + SymbolRef Symbol; + bool r_scattered = false; + uint32_t r_value, pair_r_value, r_type, r_length, other_half; + for (const RelocationRef &Reloc : info->S.relocations()) { + uint64_t RelocOffset; + Reloc.getOffset(RelocOffset); + if (RelocOffset == sect_offset) { + Rel = Reloc.getRawDataRefImpl(); + RE = info->O->getRelocation(Rel); + r_length = info->O->getAnyRelocationLength(RE); + r_scattered = info->O->isRelocationScattered(RE); + if (r_scattered) { + r_value = info->O->getScatteredRelocationValue(RE); + r_type = info->O->getScatteredRelocationType(RE); + } else { + r_type = info->O->getAnyRelocationType(RE); + isExtern = info->O->getPlainRelocationExternal(RE); + if (isExtern) { + symbol_iterator RelocSym = Reloc.getSymbol(); + Symbol = *RelocSym; + } + } + if (r_type == MachO::ARM_RELOC_HALF || + r_type == MachO::ARM_RELOC_SECTDIFF || + r_type == MachO::ARM_RELOC_LOCAL_SECTDIFF || + r_type == MachO::ARM_RELOC_HALF_SECTDIFF) { + DataRefImpl RelNext = Rel; + info->O->moveRelocationNext(RelNext); + MachO::any_relocation_info RENext; + RENext = info->O->getRelocation(RelNext); + other_half = info->O->getAnyRelocationAddress(RENext) & 0xffff; + if (info->O->isRelocationScattered(RENext)) + pair_r_value = info->O->getScatteredRelocationValue(RENext); + } + reloc_found = true; + break; + } + } + if (reloc_found && isExtern) { + StringRef SymName; + Symbol.getName(SymName); + const char *name = SymName.data(); + op_info->AddSymbol.Present = 1; + op_info->AddSymbol.Name = name; + if (value != 0) { + switch (r_type) { + case MachO::ARM_RELOC_HALF: + if ((r_length & 0x1) == 1) { + op_info->Value = value << 16 | other_half; + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16; + } else { + op_info->Value = other_half << 16 | value; + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16; + } + break; + default: + break; + } + } else { + switch (r_type) { + case MachO::ARM_RELOC_HALF: + if ((r_length & 0x1) == 1) { + op_info->Value = value << 16 | other_half; + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16; + } else { + op_info->Value = other_half << 16 | value; + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16; + } + break; + default: + break; + } + } + return 1; + } + // If we have a branch that is not an external relocation entry then + // return 0 so the code in tryAddingSymbolicOperand() can use the + // SymbolLookUp call back with the branch target address to look up the + // symbol and possiblity add an annotation for a symbol stub. + if (reloc_found && isExtern == 0 && (r_type == MachO::ARM_RELOC_BR24 || + r_type == MachO::ARM_THUMB_RELOC_BR22)) + return 0; + + uint32_t offset = 0; + if (reloc_found) { + if (r_type == MachO::ARM_RELOC_HALF || + r_type == MachO::ARM_RELOC_HALF_SECTDIFF) { + if ((r_length & 0x1) == 1) + value = value << 16 | other_half; + else + value = other_half << 16 | value; + } + if (r_scattered && (r_type != MachO::ARM_RELOC_HALF && + r_type != MachO::ARM_RELOC_HALF_SECTDIFF)) { + offset = value - r_value; + value = r_value; + } + } + + if (reloc_found && r_type == MachO::ARM_RELOC_HALF_SECTDIFF) { + if ((r_length & 0x1) == 1) + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16; + else + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16; + const char *add = GuessSymbolName(r_value, info); + const char *sub = GuessSymbolName(pair_r_value, info); + int32_t offset = value - (r_value - pair_r_value); + op_info->AddSymbol.Present = 1; + if (add != nullptr) + op_info->AddSymbol.Name = add; + else + op_info->AddSymbol.Value = r_value; + op_info->SubtractSymbol.Present = 1; + if (sub != nullptr) + op_info->SubtractSymbol.Name = sub; + else + op_info->SubtractSymbol.Value = pair_r_value; + op_info->Value = offset; + return 1; + } + + if (reloc_found == false) + return 0; + + op_info->AddSymbol.Present = 1; + op_info->Value = offset; + if (reloc_found) { + if (r_type == MachO::ARM_RELOC_HALF) { + if ((r_length & 0x1) == 1) + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16; + else + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16; + } + } + const char *add = GuessSymbolName(value, info); + if (add != nullptr) { + op_info->AddSymbol.Name = add; + return 1; + } + op_info->AddSymbol.Value = value; + return 1; + } else if (Arch == Triple::aarch64) { + if (Offset != 0 || Size != 4) + return 0; + // First search the section's relocation entries (if any) for an entry + // for this section offset. + uint64_t sect_addr = info->S.getAddress(); + uint64_t sect_offset = (Pc + Offset) - sect_addr; + bool reloc_found = false; + DataRefImpl Rel; + MachO::any_relocation_info RE; + bool isExtern = false; + SymbolRef Symbol; + uint32_t r_type = 0; + for (const RelocationRef &Reloc : info->S.relocations()) { + uint64_t RelocOffset; + Reloc.getOffset(RelocOffset); + if (RelocOffset == sect_offset) { + Rel = Reloc.getRawDataRefImpl(); + RE = info->O->getRelocation(Rel); + r_type = info->O->getAnyRelocationType(RE); + if (r_type == MachO::ARM64_RELOC_ADDEND) { + DataRefImpl RelNext = Rel; + info->O->moveRelocationNext(RelNext); + MachO::any_relocation_info RENext = info->O->getRelocation(RelNext); + if (value == 0) { + value = info->O->getPlainRelocationSymbolNum(RENext); + op_info->Value = value; + } + } + // NOTE: Scattered relocations don't exist on arm64. + isExtern = info->O->getPlainRelocationExternal(RE); + if (isExtern) { + symbol_iterator RelocSym = Reloc.getSymbol(); + Symbol = *RelocSym; + } + reloc_found = true; + break; + } + } + if (reloc_found && isExtern) { + StringRef SymName; + Symbol.getName(SymName); + const char *name = SymName.data(); + op_info->AddSymbol.Present = 1; + op_info->AddSymbol.Name = name; + + switch (r_type) { + case MachO::ARM64_RELOC_PAGE21: + /* @page */ + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGE; + break; + case MachO::ARM64_RELOC_PAGEOFF12: + /* @pageoff */ + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGEOFF; + break; + case MachO::ARM64_RELOC_GOT_LOAD_PAGE21: + /* @gotpage */ + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGE; + break; + case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12: + /* @gotpageoff */ + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGEOFF; + break; + case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21: + /* @tvlppage is not implemented in llvm-mc */ + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVP; + break; + case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12: + /* @tvlppageoff is not implemented in llvm-mc */ + op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVOFF; + break; + default: + case MachO::ARM64_RELOC_BRANCH26: + op_info->VariantKind = LLVMDisassembler_VariantKind_None; + break; + } + return 1; + } + return 0; + } else { + return 0; + } +} + +// GuessCstringPointer is passed the address of what might be a pointer to a +// literal string in a cstring section. If that address is in a cstring section +// it returns a pointer to that string. Else it returns nullptr. +const char *GuessCstringPointer(uint64_t ReferenceValue, + struct DisassembleInfo *info) { + uint32_t LoadCommandCount = info->O->getHeader().ncmds; + MachOObjectFile::LoadCommandInfo Load = info->O->getFirstLoadCommandInfo(); + for (unsigned I = 0;; ++I) { + if (Load.C.cmd == MachO::LC_SEGMENT_64) { + MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load); + for (unsigned J = 0; J < Seg.nsects; ++J) { + MachO::section_64 Sec = info->O->getSection64(Load, J); + uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; + if (section_type == MachO::S_CSTRING_LITERALS && + ReferenceValue >= Sec.addr && + ReferenceValue < Sec.addr + Sec.size) { + uint64_t sect_offset = ReferenceValue - Sec.addr; + uint64_t object_offset = Sec.offset + sect_offset; + StringRef MachOContents = info->O->getData(); + uint64_t object_size = MachOContents.size(); + const char *object_addr = (const char *)MachOContents.data(); + if (object_offset < object_size) { + const char *name = object_addr + object_offset; + return name; + } else { + return nullptr; + } + } + } + } else if (Load.C.cmd == MachO::LC_SEGMENT) { + MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load); + for (unsigned J = 0; J < Seg.nsects; ++J) { + MachO::section Sec = info->O->getSection(Load, J); + uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; + if (section_type == MachO::S_CSTRING_LITERALS && + ReferenceValue >= Sec.addr && + ReferenceValue < Sec.addr + Sec.size) { + uint64_t sect_offset = ReferenceValue - Sec.addr; + uint64_t object_offset = Sec.offset + sect_offset; + StringRef MachOContents = info->O->getData(); + uint64_t object_size = MachOContents.size(); + const char *object_addr = (const char *)MachOContents.data(); + if (object_offset < object_size) { + const char *name = object_addr + object_offset; + return name; + } else { + return nullptr; + } + } + } + } + if (I == LoadCommandCount - 1) + break; + else + Load = info->O->getNextLoadCommandInfo(Load); + } + return nullptr; +} + +// GuessIndirectSymbol returns the name of the indirect symbol for the +// ReferenceValue passed in or nullptr. This is used when ReferenceValue maybe +// an address of a symbol stub or a lazy or non-lazy pointer to associate the +// symbol name being referenced by the stub or pointer. +static const char *GuessIndirectSymbol(uint64_t ReferenceValue, + struct DisassembleInfo *info) { + uint32_t LoadCommandCount = info->O->getHeader().ncmds; + MachOObjectFile::LoadCommandInfo Load = info->O->getFirstLoadCommandInfo(); + MachO::dysymtab_command Dysymtab = info->O->getDysymtabLoadCommand(); + MachO::symtab_command Symtab = info->O->getSymtabLoadCommand(); + for (unsigned I = 0;; ++I) { + if (Load.C.cmd == MachO::LC_SEGMENT_64) { + MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load); + for (unsigned J = 0; J < Seg.nsects; ++J) { + MachO::section_64 Sec = info->O->getSection64(Load, J); + uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; + if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS || + section_type == MachO::S_LAZY_SYMBOL_POINTERS || + section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS || + section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS || + section_type == MachO::S_SYMBOL_STUBS) && + ReferenceValue >= Sec.addr && + ReferenceValue < Sec.addr + Sec.size) { + uint32_t stride; + if (section_type == MachO::S_SYMBOL_STUBS) + stride = Sec.reserved2; + else + stride = 8; + if (stride == 0) + return nullptr; + uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride; + if (index < Dysymtab.nindirectsyms) { + uint32_t indirect_symbol = + info->O->getIndirectSymbolTableEntry(Dysymtab, index); + if (indirect_symbol < Symtab.nsyms) { + symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol); + SymbolRef Symbol = *Sym; + StringRef SymName; + Symbol.getName(SymName); + const char *name = SymName.data(); + return name; + } + } + } + } + } else if (Load.C.cmd == MachO::LC_SEGMENT) { + MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load); + for (unsigned J = 0; J < Seg.nsects; ++J) { + MachO::section Sec = info->O->getSection(Load, J); + uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; + if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS || + section_type == MachO::S_LAZY_SYMBOL_POINTERS || + section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS || + section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS || + section_type == MachO::S_SYMBOL_STUBS) && + ReferenceValue >= Sec.addr && + ReferenceValue < Sec.addr + Sec.size) { + uint32_t stride; + if (section_type == MachO::S_SYMBOL_STUBS) + stride = Sec.reserved2; + else + stride = 4; + if (stride == 0) + return nullptr; + uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride; + if (index < Dysymtab.nindirectsyms) { + uint32_t indirect_symbol = + info->O->getIndirectSymbolTableEntry(Dysymtab, index); + if (indirect_symbol < Symtab.nsyms) { + symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol); + SymbolRef Symbol = *Sym; + StringRef SymName; + Symbol.getName(SymName); + const char *name = SymName.data(); + return name; + } + } + } + } + } + if (I == LoadCommandCount - 1) + break; + else + Load = info->O->getNextLoadCommandInfo(Load); + } + return nullptr; +} + +// method_reference() is called passing it the ReferenceName that might be +// a reference it to an Objective-C method call. If so then it allocates and +// assembles a method call string with the values last seen and saved in +// the DisassembleInfo's class_name and selector_name fields. This is saved +// into the method field of the info and any previous string is free'ed. +// Then the class_name field in the info is set to nullptr. The method call +// string is set into ReferenceName and ReferenceType is set to +// LLVMDisassembler_ReferenceType_Out_Objc_Message. If this not a method call +// then both ReferenceType and ReferenceName are left unchanged. +static void method_reference(struct DisassembleInfo *info, + uint64_t *ReferenceType, + const char **ReferenceName) { + unsigned int Arch = info->O->getArch(); + if (*ReferenceName != nullptr) { + if (strcmp(*ReferenceName, "_objc_msgSend") == 0) { + if (info->selector_name != nullptr) { + if (info->method != nullptr) + free(info->method); + if (info->class_name != nullptr) { + info->method = (char *)malloc(5 + strlen(info->class_name) + + strlen(info->selector_name)); + if (info->method != nullptr) { + strcpy(info->method, "+["); + strcat(info->method, info->class_name); + strcat(info->method, " "); + strcat(info->method, info->selector_name); + strcat(info->method, "]"); + *ReferenceName = info->method; + *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message; + } + } else { + info->method = (char *)malloc(9 + strlen(info->selector_name)); + if (info->method != nullptr) { + if (Arch == Triple::x86_64) + strcpy(info->method, "-[%rdi "); + else if (Arch == Triple::aarch64) + strcpy(info->method, "-[x0 "); + else + strcpy(info->method, "-[r? "); + strcat(info->method, info->selector_name); + strcat(info->method, "]"); + *ReferenceName = info->method; + *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message; + } + } + info->class_name = nullptr; + } + } else if (strcmp(*ReferenceName, "_objc_msgSendSuper2") == 0) { + if (info->selector_name != nullptr) { + if (info->method != nullptr) + free(info->method); + info->method = (char *)malloc(17 + strlen(info->selector_name)); + if (info->method != nullptr) { + if (Arch == Triple::x86_64) + strcpy(info->method, "-[[%rdi super] "); + else if (Arch == Triple::aarch64) + strcpy(info->method, "-[[x0 super] "); + else + strcpy(info->method, "-[[r? super] "); + strcat(info->method, info->selector_name); + strcat(info->method, "]"); + *ReferenceName = info->method; + *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message; + } + info->class_name = nullptr; + } + } + } +} + +// GuessPointerPointer() is passed the address of what might be a pointer to +// a reference to an Objective-C class, selector, message ref or cfstring. +// If so the value of the pointer is returned and one of the booleans are set +// to true. If not zero is returned and all the booleans are set to false. +static uint64_t GuessPointerPointer(uint64_t ReferenceValue, + struct DisassembleInfo *info, + bool &classref, bool &selref, bool &msgref, + bool &cfstring) { + classref = false; + selref = false; + msgref = false; + cfstring = false; + uint32_t LoadCommandCount = info->O->getHeader().ncmds; + MachOObjectFile::LoadCommandInfo Load = info->O->getFirstLoadCommandInfo(); + for (unsigned I = 0;; ++I) { + if (Load.C.cmd == MachO::LC_SEGMENT_64) { + MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load); + for (unsigned J = 0; J < Seg.nsects; ++J) { + MachO::section_64 Sec = info->O->getSection64(Load, J); + if ((strncmp(Sec.sectname, "__objc_selrefs", 16) == 0 || + strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 || + strncmp(Sec.sectname, "__objc_superrefs", 16) == 0 || + strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 || + strncmp(Sec.sectname, "__cfstring", 16) == 0) && + ReferenceValue >= Sec.addr && + ReferenceValue < Sec.addr + Sec.size) { + uint64_t sect_offset = ReferenceValue - Sec.addr; + uint64_t object_offset = Sec.offset + sect_offset; + StringRef MachOContents = info->O->getData(); + uint64_t object_size = MachOContents.size(); + const char *object_addr = (const char *)MachOContents.data(); + if (object_offset < object_size) { + uint64_t pointer_value; + memcpy(&pointer_value, object_addr + object_offset, + sizeof(uint64_t)); + if (info->O->isLittleEndian() != sys::IsLittleEndianHost) + sys::swapByteOrder(pointer_value); + if (strncmp(Sec.sectname, "__objc_selrefs", 16) == 0) + selref = true; + else if (strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 || + strncmp(Sec.sectname, "__objc_superrefs", 16) == 0) + classref = true; + else if (strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 && + ReferenceValue + 8 < Sec.addr + Sec.size) { + msgref = true; + memcpy(&pointer_value, object_addr + object_offset + 8, + sizeof(uint64_t)); + if (info->O->isLittleEndian() != sys::IsLittleEndianHost) + sys::swapByteOrder(pointer_value); + } else if (strncmp(Sec.sectname, "__cfstring", 16) == 0) + cfstring = true; + return pointer_value; + } else { + return 0; + } + } + } + } + // TODO: Look for LC_SEGMENT for 32-bit Mach-O files. + if (I == LoadCommandCount - 1) + break; + else + Load = info->O->getNextLoadCommandInfo(Load); + } + return 0; +} + +// get_pointer_64 returns a pointer to the bytes in the object file at the +// Address from a section in the Mach-O file. And indirectly returns the +// offset into the section, number of bytes left in the section past the offset +// and which section is was being referenced. If the Address is not in a +// section nullptr is returned. +const char *get_pointer_64(uint64_t Address, uint32_t &offset, uint32_t &left, + SectionRef &S, DisassembleInfo *info) { + offset = 0; + left = 0; + S = SectionRef(); + for (unsigned SectIdx = 0; SectIdx != info->Sections->size(); SectIdx++) { + uint64_t SectAddress = ((*(info->Sections))[SectIdx]).getAddress(); + uint64_t SectSize = ((*(info->Sections))[SectIdx]).getSize(); + if (Address >= SectAddress && Address < SectAddress + SectSize) { + S = (*(info->Sections))[SectIdx]; + offset = Address - SectAddress; + left = SectSize - offset; + StringRef SectContents; + ((*(info->Sections))[SectIdx]).getContents(SectContents); + return SectContents.data() + offset; + } + } + return nullptr; +} + +// get_symbol_64() returns the name of a symbol (or nullptr) and the address of +// the symbol indirectly through n_value. Based on the relocation information +// for the specified section offset in the specified section reference. +const char *get_symbol_64(uint32_t sect_offset, SectionRef S, + DisassembleInfo *info, uint64_t &n_value) { + n_value = 0; + if (info->verbose == false) + return nullptr; + + // See if there is an external relocation entry at the sect_offset. + bool reloc_found = false; + DataRefImpl Rel; + MachO::any_relocation_info RE; + bool isExtern = false; + SymbolRef Symbol; + for (const RelocationRef &Reloc : S.relocations()) { + uint64_t RelocOffset; + Reloc.getOffset(RelocOffset); + if (RelocOffset == sect_offset) { + Rel = Reloc.getRawDataRefImpl(); + RE = info->O->getRelocation(Rel); + if (info->O->isRelocationScattered(RE)) + continue; + isExtern = info->O->getPlainRelocationExternal(RE); + if (isExtern) { + symbol_iterator RelocSym = Reloc.getSymbol(); + Symbol = *RelocSym; + } + reloc_found = true; + break; + } + } + // If there is an external relocation entry for a symbol in this section + // at this section_offset then use that symbol's value for the n_value + // and return its name. + const char *SymbolName = nullptr; + if (reloc_found && isExtern) { + Symbol.getAddress(n_value); + StringRef name; + Symbol.getName(name); + if (!name.empty()) { + SymbolName = name.data(); + return SymbolName; + } + } + + // TODO: For fully linked images, look through the external relocation + // entries off the dynamic symtab command. For these the r_offset is from the + // start of the first writeable segment in the Mach-O file. So the offset + // to this section from that segment is passed to this routine by the caller, + // as the database_offset. Which is the difference of the section's starting + // address and the first writable segment. + // + // NOTE: need add passing the database_offset to this routine. + + // TODO: We did not find an external relocation entry so look up the + // ReferenceValue as an address of a symbol and if found return that symbol's + // name. + // + // NOTE: need add passing the ReferenceValue to this routine. Then that code + // would simply be this: + // SymbolName = GuessSymbolName(ReferenceValue, info); + + return SymbolName; +} + +// These are structs in the Objective-C meta data and read to produce the +// comments for disassembly. While these are part of the ABI they are no +// public defintions. So the are here not in include/llvm/Support/MachO.h . + +// The cfstring object in a 64-bit Mach-O file. +struct cfstring64_t { + uint64_t isa; // class64_t * (64-bit pointer) + uint64_t flags; // flag bits + uint64_t characters; // char * (64-bit pointer) + uint64_t length; // number of non-NULL characters in above +}; + +// The class object in a 64-bit Mach-O file. +struct class64_t { + uint64_t isa; // class64_t * (64-bit pointer) + uint64_t superclass; // class64_t * (64-bit pointer) + uint64_t cache; // Cache (64-bit pointer) + uint64_t vtable; // IMP * (64-bit pointer) + uint64_t data; // class_ro64_t * (64-bit pointer) +}; + +struct class_ro64_t { + uint32_t flags; + uint32_t instanceStart; + uint32_t instanceSize; + uint32_t reserved; + uint64_t ivarLayout; // const uint8_t * (64-bit pointer) + uint64_t name; // const char * (64-bit pointer) + uint64_t baseMethods; // const method_list_t * (64-bit pointer) + uint64_t baseProtocols; // const protocol_list_t * (64-bit pointer) + uint64_t ivars; // const ivar_list_t * (64-bit pointer) + uint64_t weakIvarLayout; // const uint8_t * (64-bit pointer) + uint64_t baseProperties; // const struct objc_property_list (64-bit pointer) +}; + +inline void swapStruct(struct cfstring64_t &cfs) { + sys::swapByteOrder(cfs.isa); + sys::swapByteOrder(cfs.flags); + sys::swapByteOrder(cfs.characters); + sys::swapByteOrder(cfs.length); +} + +inline void swapStruct(struct class64_t &c) { + sys::swapByteOrder(c.isa); + sys::swapByteOrder(c.superclass); + sys::swapByteOrder(c.cache); + sys::swapByteOrder(c.vtable); + sys::swapByteOrder(c.data); +} + +inline void swapStruct(struct class_ro64_t &cro) { + sys::swapByteOrder(cro.flags); + sys::swapByteOrder(cro.instanceStart); + sys::swapByteOrder(cro.instanceSize); + sys::swapByteOrder(cro.reserved); + sys::swapByteOrder(cro.ivarLayout); + sys::swapByteOrder(cro.name); + sys::swapByteOrder(cro.baseMethods); + sys::swapByteOrder(cro.baseProtocols); + sys::swapByteOrder(cro.ivars); + sys::swapByteOrder(cro.weakIvarLayout); + sys::swapByteOrder(cro.baseProperties); +} + +static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue, + struct DisassembleInfo *info); + +// get_objc2_64bit_class_name() is used for disassembly and is passed a pointer +// to an Objective-C class and returns the class name. It is also passed the +// address of the pointer, so when the pointer is zero as it can be in an .o +// file, that is used to look for an external relocation entry with a symbol +// name. +const char *get_objc2_64bit_class_name(uint64_t pointer_value, + uint64_t ReferenceValue, + struct DisassembleInfo *info) { + const char *r; + uint32_t offset, left; + SectionRef S; + + // The pointer_value can be 0 in an object file and have a relocation + // entry for the class symbol at the ReferenceValue (the address of the + // pointer). + if (pointer_value == 0) { + r = get_pointer_64(ReferenceValue, offset, left, S, info); + if (r == nullptr || left < sizeof(uint64_t)) + return nullptr; + uint64_t n_value; + const char *symbol_name = get_symbol_64(offset, S, info, n_value); + if (symbol_name == nullptr) + return nullptr; + const char *class_name = strrchr(symbol_name, '$'); + if (class_name != nullptr && class_name[1] == '_' && class_name[2] != '\0') + return class_name + 2; + else + return nullptr; + } + + // The case were the pointer_value is non-zero and points to a class defined + // in this Mach-O file. + r = get_pointer_64(pointer_value, offset, left, S, info); + if (r == nullptr || left < sizeof(struct class64_t)) + return nullptr; + struct class64_t c; + memcpy(&c, r, sizeof(struct class64_t)); + if (info->O->isLittleEndian() != sys::IsLittleEndianHost) + swapStruct(c); + if (c.data == 0) + return nullptr; + r = get_pointer_64(c.data, offset, left, S, info); + if (r == nullptr || left < sizeof(struct class_ro64_t)) + return nullptr; + struct class_ro64_t cro; + memcpy(&cro, r, sizeof(struct class_ro64_t)); + if (info->O->isLittleEndian() != sys::IsLittleEndianHost) + swapStruct(cro); + if (cro.name == 0) + return nullptr; + const char *name = get_pointer_64(cro.name, offset, left, S, info); + return name; +} + +// get_objc2_64bit_cfstring_name is used for disassembly and is passed a +// pointer to a cfstring and returns its name or nullptr. +const char *get_objc2_64bit_cfstring_name(uint64_t ReferenceValue, + struct DisassembleInfo *info) { + const char *r, *name; + uint32_t offset, left; + SectionRef S; + struct cfstring64_t cfs; + uint64_t cfs_characters; + + r = get_pointer_64(ReferenceValue, offset, left, S, info); + if (r == nullptr || left < sizeof(struct cfstring64_t)) + return nullptr; + memcpy(&cfs, r, sizeof(struct cfstring64_t)); + if (info->O->isLittleEndian() != sys::IsLittleEndianHost) + swapStruct(cfs); + if (cfs.characters == 0) { + uint64_t n_value; + const char *symbol_name = get_symbol_64( + offset + offsetof(struct cfstring64_t, characters), S, info, n_value); + if (symbol_name == nullptr) + return nullptr; + cfs_characters = n_value; + } else + cfs_characters = cfs.characters; + name = get_pointer_64(cfs_characters, offset, left, S, info); + + return name; +} + +// get_objc2_64bit_selref() is used for disassembly and is passed a the address +// of a pointer to an Objective-C selector reference when the pointer value is +// zero as in a .o file and is likely to have a external relocation entry with +// who's symbol's n_value is the real pointer to the selector name. If that is +// the case the real pointer to the selector name is returned else 0 is +// returned +uint64_t get_objc2_64bit_selref(uint64_t ReferenceValue, + struct DisassembleInfo *info) { + uint32_t offset, left; + SectionRef S; + + const char *r = get_pointer_64(ReferenceValue, offset, left, S, info); + if (r == nullptr || left < sizeof(uint64_t)) + return 0; + uint64_t n_value; + const char *symbol_name = get_symbol_64(offset, S, info, n_value); + if (symbol_name == nullptr) + return 0; + return n_value; +} + +// GuessLiteralPointer returns a string which for the item in the Mach-O file +// for the address passed in as ReferenceValue for printing as a comment with +// the instruction and also returns the corresponding type of that item +// indirectly through ReferenceType. +// +// If ReferenceValue is an address of literal cstring then a pointer to the +// cstring is returned and ReferenceType is set to +// LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr . +// +// If ReferenceValue is an address of an Objective-C CFString, Selector ref or +// Class ref that name is returned and the ReferenceType is set accordingly. +// +// Lastly, literals which are Symbol address in a literal pool are looked for +// and if found the symbol name is returned and ReferenceType is set to +// LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr . +// +// If there is no item in the Mach-O file for the address passed in as +// ReferenceValue nullptr is returned and ReferenceType is unchanged. +const char *GuessLiteralPointer(uint64_t ReferenceValue, uint64_t ReferencePC, + uint64_t *ReferenceType, + struct DisassembleInfo *info) { + // First see if there is an external relocation entry at the ReferencePC. + uint64_t sect_addr = info->S.getAddress(); + uint64_t sect_offset = ReferencePC - sect_addr; + bool reloc_found = false; + DataRefImpl Rel; + MachO::any_relocation_info RE; + bool isExtern = false; + SymbolRef Symbol; + for (const RelocationRef &Reloc : info->S.relocations()) { + uint64_t RelocOffset; + Reloc.getOffset(RelocOffset); + if (RelocOffset == sect_offset) { + Rel = Reloc.getRawDataRefImpl(); + RE = info->O->getRelocation(Rel); + if (info->O->isRelocationScattered(RE)) + continue; + isExtern = info->O->getPlainRelocationExternal(RE); + if (isExtern) { + symbol_iterator RelocSym = Reloc.getSymbol(); + Symbol = *RelocSym; + } + reloc_found = true; + break; + } + } + // If there is an external relocation entry for a symbol in a section + // then used that symbol's value for the value of the reference. + if (reloc_found && isExtern) { + if (info->O->getAnyRelocationPCRel(RE)) { + unsigned Type = info->O->getAnyRelocationType(RE); + if (Type == MachO::X86_64_RELOC_SIGNED) { + Symbol.getAddress(ReferenceValue); + } + } + } + + // Look for literals such as Objective-C CFStrings refs, Selector refs, + // Message refs and Class refs. + bool classref, selref, msgref, cfstring; + uint64_t pointer_value = GuessPointerPointer(ReferenceValue, info, classref, + selref, msgref, cfstring); + if (classref == true && pointer_value == 0) { + // Note the ReferenceValue is a pointer into the __objc_classrefs section. + // And the pointer_value in that section is typically zero as it will be + // set by dyld as part of the "bind information". + const char *name = get_dyld_bind_info_symbolname(ReferenceValue, info); + if (name != nullptr) { + *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref; + const char *class_name = strrchr(name, '$'); + if (class_name != nullptr && class_name[1] == '_' && + class_name[2] != '\0') { + info->class_name = class_name + 2; + return name; + } + } + } + + if (classref == true) { + *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref; + const char *name = + get_objc2_64bit_class_name(pointer_value, ReferenceValue, info); + if (name != nullptr) + info->class_name = name; + else + name = "bad class ref"; + return name; + } + + if (cfstring == true) { + *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_CFString_Ref; + const char *name = get_objc2_64bit_cfstring_name(ReferenceValue, info); + return name; + } + + if (selref == true && pointer_value == 0) + pointer_value = get_objc2_64bit_selref(ReferenceValue, info); + + if (pointer_value != 0) + ReferenceValue = pointer_value; + + const char *name = GuessCstringPointer(ReferenceValue, info); + if (name) { + if (pointer_value != 0 && selref == true) { + *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Selector_Ref; + info->selector_name = name; + } else if (pointer_value != 0 && msgref == true) { + info->class_name = nullptr; + *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message_Ref; + info->selector_name = name; + } else + *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr; + return name; + } + + // Lastly look for an indirect symbol with this ReferenceValue which is in + // a literal pool. If found return that symbol name. + name = GuessIndirectSymbol(ReferenceValue, info); + if (name) { + *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr; + return name; + } + + return nullptr; +} + +// SymbolizerSymbolLookUp is the symbol lookup function passed when creating +// the Symbolizer. It looks up the ReferenceValue using the info passed via the +// pointer to the struct DisassembleInfo that was passed when MCSymbolizer +// is created and returns the symbol name that matches the ReferenceValue or +// nullptr if none. The ReferenceType is passed in for the IN type of +// reference the instruction is making from the values in defined in the header +// "llvm-c/Disassembler.h". On return the ReferenceType can set to a specific +// Out type and the ReferenceName will also be set which is added as a comment +// to the disassembled instruction. +// +#if HAVE_CXXABI_H +// If the symbol name is a C++ mangled name then the demangled name is +// returned through ReferenceName and ReferenceType is set to +// LLVMDisassembler_ReferenceType_DeMangled_Name . +#endif +// +// When this is called to get a symbol name for a branch target then the +// ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then +// SymbolValue will be looked for in the indirect symbol table to determine if +// it is an address for a symbol stub. If so then the symbol name for that +// stub is returned indirectly through ReferenceName and then ReferenceType is +// set to LLVMDisassembler_ReferenceType_Out_SymbolStub. +// +// When this is called with an value loaded via a PC relative load then +// ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the +// SymbolValue is checked to be an address of literal pointer, symbol pointer, +// or an Objective-C meta data reference. If so the output ReferenceType is +// set to correspond to that as well as setting the ReferenceName. +const char *SymbolizerSymbolLookUp(void *DisInfo, uint64_t ReferenceValue, + uint64_t *ReferenceType, + uint64_t ReferencePC, + const char **ReferenceName) { + struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo; + // If no verbose symbolic information is wanted then just return nullptr. + if (info->verbose == false) { + *ReferenceName = nullptr; + *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; + return nullptr; + } + + const char *SymbolName = GuessSymbolName(ReferenceValue, info); + + if (*ReferenceType == LLVMDisassembler_ReferenceType_In_Branch) { + *ReferenceName = GuessIndirectSymbol(ReferenceValue, info); + if (*ReferenceName != nullptr) { + method_reference(info, ReferenceType, ReferenceName); + if (*ReferenceType != LLVMDisassembler_ReferenceType_Out_Objc_Message) + *ReferenceType = LLVMDisassembler_ReferenceType_Out_SymbolStub; + } else +#if HAVE_CXXABI_H + if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) { + if (info->demangled_name != nullptr) + free(info->demangled_name); + int status; + info->demangled_name = + abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status); + if (info->demangled_name != nullptr) { + *ReferenceName = info->demangled_name; + *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name; + } else + *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; + } else +#endif + *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; + } else if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load) { + *ReferenceName = + GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info); + if (*ReferenceName) + method_reference(info, ReferenceType, ReferenceName); + else + *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; + // If this is arm64 and the reference is an adrp instruction save the + // instruction, passed in ReferenceValue and the address of the instruction + // for use later if we see and add immediate instruction. + } else if (info->O->getArch() == Triple::aarch64 && + *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) { + info->adrp_inst = ReferenceValue; + info->adrp_addr = ReferencePC; + SymbolName = nullptr; + *ReferenceName = nullptr; + *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; + // If this is arm64 and reference is an add immediate instruction and we + // have + // seen an adrp instruction just before it and the adrp's Xd register + // matches + // this add's Xn register reconstruct the value being referenced and look to + // see if it is a literal pointer. Note the add immediate instruction is + // passed in ReferenceValue. + } else if (info->O->getArch() == Triple::aarch64 && + *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri && + ReferencePC - 4 == info->adrp_addr && + (info->adrp_inst & 0x9f000000) == 0x90000000 && + (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) { + uint32_t addxri_inst; + uint64_t adrp_imm, addxri_imm; + + adrp_imm = + ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3); + if (info->adrp_inst & 0x0200000) + adrp_imm |= 0xfffffffffc000000LL; + + addxri_inst = ReferenceValue; + addxri_imm = (addxri_inst >> 10) & 0xfff; + if (((addxri_inst >> 22) & 0x3) == 1) + addxri_imm <<= 12; + + ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) + + (adrp_imm << 12) + addxri_imm; + + *ReferenceName = + GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info); + if (*ReferenceName == nullptr) + *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; + // If this is arm64 and the reference is a load register instruction and we + // have seen an adrp instruction just before it and the adrp's Xd register + // matches this add's Xn register reconstruct the value being referenced and + // look to see if it is a literal pointer. Note the load register + // instruction is passed in ReferenceValue. + } else if (info->O->getArch() == Triple::aarch64 && + *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXui && + ReferencePC - 4 == info->adrp_addr && + (info->adrp_inst & 0x9f000000) == 0x90000000 && + (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) { + uint32_t ldrxui_inst; + uint64_t adrp_imm, ldrxui_imm; + + adrp_imm = + ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3); + if (info->adrp_inst & 0x0200000) + adrp_imm |= 0xfffffffffc000000LL; + + ldrxui_inst = ReferenceValue; + ldrxui_imm = (ldrxui_inst >> 10) & 0xfff; + + ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) + + (adrp_imm << 12) + (ldrxui_imm << 3); + + *ReferenceName = + GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info); + if (*ReferenceName == nullptr) + *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; + } + // If this arm64 and is an load register (PC-relative) instruction the + // ReferenceValue is the PC plus the immediate value. + else if (info->O->getArch() == Triple::aarch64 && + (*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXl || + *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADR)) { + *ReferenceName = + GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info); + if (*ReferenceName == nullptr) + *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; + } +#if HAVE_CXXABI_H + else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) { + if (info->demangled_name != nullptr) + free(info->demangled_name); + int status; + info->demangled_name = + abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status); + if (info->demangled_name != nullptr) { + *ReferenceName = info->demangled_name; + *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name; + } + } +#endif + else { + *ReferenceName = nullptr; + *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; + } + + return SymbolName; +} + +/// \brief Emits the comments that are stored in the CommentStream. +/// Each comment in the CommentStream must end with a newline. +static void emitComments(raw_svector_ostream &CommentStream, + SmallString<128> &CommentsToEmit, + formatted_raw_ostream &FormattedOS, + const MCAsmInfo &MAI) { + // Flush the stream before taking its content. + CommentStream.flush(); + StringRef Comments = CommentsToEmit.str(); + // Get the default information for printing a comment. + const char *CommentBegin = MAI.getCommentString(); + unsigned CommentColumn = MAI.getCommentColumn(); + bool IsFirst = true; + while (!Comments.empty()) { + if (!IsFirst) + FormattedOS << '\n'; + // Emit a line of comments. + FormattedOS.PadToColumn(CommentColumn); + size_t Position = Comments.find('\n'); + FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position); + // Move after the newline character. + Comments = Comments.substr(Position + 1); + IsFirst = false; + } + FormattedOS.flush(); + + // Tell the comment stream that the vector changed underneath it. + CommentsToEmit.clear(); + CommentStream.resync(); +} + +static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF) { + const char *McpuDefault = nullptr; + const Target *ThumbTarget = nullptr; + const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget); + if (!TheTarget) { + // GetTarget prints out stuff. + return; + } + if (MCPU.empty() && McpuDefault) + MCPU = McpuDefault; + + std::unique_ptr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo()); + std::unique_ptr<const MCInstrInfo> ThumbInstrInfo; + if (ThumbTarget) + ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo()); + + // Package up features to be passed to target/subtarget + std::string FeaturesStr; + if (MAttrs.size()) { + SubtargetFeatures Features; + for (unsigned i = 0; i != MAttrs.size(); ++i) + Features.AddFeature(MAttrs[i]); + FeaturesStr = Features.getString(); + } + + // Set up disassembler. + std::unique_ptr<const MCRegisterInfo> MRI( + TheTarget->createMCRegInfo(TripleName)); + std::unique_ptr<const MCAsmInfo> AsmInfo( + TheTarget->createMCAsmInfo(*MRI, TripleName)); + std::unique_ptr<const MCSubtargetInfo> STI( + TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr)); + MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr); + std::unique_ptr<MCDisassembler> DisAsm( + TheTarget->createMCDisassembler(*STI, Ctx)); + std::unique_ptr<MCSymbolizer> Symbolizer; + struct DisassembleInfo SymbolizerInfo; + std::unique_ptr<MCRelocationInfo> RelInfo( + TheTarget->createMCRelocationInfo(TripleName, Ctx)); + if (RelInfo) { + Symbolizer.reset(TheTarget->createMCSymbolizer( + TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp, + &SymbolizerInfo, &Ctx, RelInfo.release())); + DisAsm->setSymbolizer(std::move(Symbolizer)); + } + int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); + std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( + AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI, *STI)); + // Set the display preference for hex vs. decimal immediates. + IP->setPrintImmHex(PrintImmHex); + // Comment stream and backing vector. + SmallString<128> CommentsToEmit; + raw_svector_ostream CommentStream(CommentsToEmit); + // FIXME: Setting the CommentStream in the InstPrinter is problematic in that + // if it is done then arm64 comments for string literals don't get printed + // and some constant get printed instead and not setting it causes intel + // (32-bit and 64-bit) comments printed with different spacing before the + // comment causing different diffs with the 'C' disassembler library API. + // IP->setCommentStream(CommentStream); + + if (!AsmInfo || !STI || !DisAsm || !IP) { + errs() << "error: couldn't initialize disassembler for target " + << TripleName << '\n'; + return; + } + + // Set up thumb disassembler. + std::unique_ptr<const MCRegisterInfo> ThumbMRI; + std::unique_ptr<const MCAsmInfo> ThumbAsmInfo; + std::unique_ptr<const MCSubtargetInfo> ThumbSTI; + std::unique_ptr<MCDisassembler> ThumbDisAsm; + std::unique_ptr<MCInstPrinter> ThumbIP; + std::unique_ptr<MCContext> ThumbCtx; + std::unique_ptr<MCSymbolizer> ThumbSymbolizer; + struct DisassembleInfo ThumbSymbolizerInfo; + std::unique_ptr<MCRelocationInfo> ThumbRelInfo; + if (ThumbTarget) { + ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName)); + ThumbAsmInfo.reset( + ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName)); + ThumbSTI.reset( + ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr)); + ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr)); + ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx)); + MCContext *PtrThumbCtx = ThumbCtx.get(); + ThumbRelInfo.reset( + ThumbTarget->createMCRelocationInfo(ThumbTripleName, *PtrThumbCtx)); + if (ThumbRelInfo) { + ThumbSymbolizer.reset(ThumbTarget->createMCSymbolizer( + ThumbTripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp, + &ThumbSymbolizerInfo, PtrThumbCtx, ThumbRelInfo.release())); + ThumbDisAsm->setSymbolizer(std::move(ThumbSymbolizer)); + } + int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect(); + ThumbIP.reset(ThumbTarget->createMCInstPrinter( + ThumbAsmPrinterVariant, *ThumbAsmInfo, *ThumbInstrInfo, *ThumbMRI, + *ThumbSTI)); + // Set the display preference for hex vs. decimal immediates. + ThumbIP->setPrintImmHex(PrintImmHex); + } + + if (ThumbTarget && (!ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) { + errs() << "error: couldn't initialize disassembler for target " + << ThumbTripleName << '\n'; + return; + } + + MachO::mach_header Header = MachOOF->getHeader(); + + // FIXME: Using the -cfg command line option, this code used to be able to + // annotate relocations with the referenced symbol's name, and if this was + // inside a __[cf]string section, the data it points to. This is now replaced + // by the upcoming MCSymbolizer, which needs the appropriate setup done above. + std::vector<SectionRef> Sections; + std::vector<SymbolRef> Symbols; + SmallVector<uint64_t, 8> FoundFns; + uint64_t BaseSegmentAddress; + + getSectionsAndSymbols(Header, MachOOF, Sections, Symbols, FoundFns, + BaseSegmentAddress); + + // Sort the symbols by address, just in case they didn't come in that way. + std::sort(Symbols.begin(), Symbols.end(), SymbolSorter()); + + // Build a data in code table that is sorted on by the address of each entry. + uint64_t BaseAddress = 0; + if (Header.filetype == MachO::MH_OBJECT) + BaseAddress = Sections[0].getAddress(); + else + BaseAddress = BaseSegmentAddress; + DiceTable Dices; + for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices(); + DI != DE; ++DI) { + uint32_t Offset; + DI->getOffset(Offset); + Dices.push_back(std::make_pair(BaseAddress + Offset, *DI)); + } + array_pod_sort(Dices.begin(), Dices.end()); + +#ifndef NDEBUG + raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); +#else + raw_ostream &DebugOut = nulls(); +#endif + + std::unique_ptr<DIContext> diContext; + ObjectFile *DbgObj = MachOOF; + // Try to find debug info and set up the DIContext for it. + if (UseDbg) { + // A separate DSym file path was specified, parse it as a macho file, + // get the sections and supply it to the section name parsing machinery. + if (!DSYMFile.empty()) { + ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = + MemoryBuffer::getFileOrSTDIN(DSYMFile); + if (std::error_code EC = BufOrErr.getError()) { + errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n'; + return; + } + DbgObj = + ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef()) + .get() + .release(); + } + + // Setup the DIContext + diContext.reset(DIContext::getDWARFContext(*DbgObj)); + } + + // TODO: For now this only disassembles the (__TEXT,__text) section (see the + // checks in the code below at the top of this loop). It should allow a + // darwin otool(1) like -s option to disassemble any named segment & section + // that is marked as containing instructions with the attributes + // S_ATTR_PURE_INSTRUCTIONS or S_ATTR_SOME_INSTRUCTIONS in the flags field of + // the section structure. + outs() << "(__TEXT,__text) section\n"; + + for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) { + + bool SectIsText = Sections[SectIdx].isText(); + if (SectIsText == false) + continue; + + StringRef SectName; + if (Sections[SectIdx].getName(SectName) || SectName != "__text") + continue; // Skip non-text sections + + DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl(); + + StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR); + if (SegmentName != "__TEXT") + continue; + + StringRef BytesStr; + Sections[SectIdx].getContents(BytesStr); + ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()), + BytesStr.size()); + uint64_t SectAddress = Sections[SectIdx].getAddress(); + + bool symbolTableWorked = false; + + // Parse relocations. + std::vector<std::pair<uint64_t, SymbolRef>> Relocs; + for (const RelocationRef &Reloc : Sections[SectIdx].relocations()) { + uint64_t RelocOffset; + Reloc.getOffset(RelocOffset); + uint64_t SectionAddress = Sections[SectIdx].getAddress(); + RelocOffset -= SectionAddress; + + symbol_iterator RelocSym = Reloc.getSymbol(); + + Relocs.push_back(std::make_pair(RelocOffset, *RelocSym)); + } + array_pod_sort(Relocs.begin(), Relocs.end()); + + // Create a map of symbol addresses to symbol names for use by + // the SymbolizerSymbolLookUp() routine. + SymbolAddressMap AddrMap; + for (const SymbolRef &Symbol : MachOOF->symbols()) { + SymbolRef::Type ST; + Symbol.getType(ST); + if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data || + ST == SymbolRef::ST_Other) { + uint64_t Address; + Symbol.getAddress(Address); + StringRef SymName; + Symbol.getName(SymName); + AddrMap[Address] = SymName; + } + } + // Set up the block of info used by the Symbolizer call backs. + SymbolizerInfo.verbose = true; + SymbolizerInfo.O = MachOOF; + SymbolizerInfo.S = Sections[SectIdx]; + SymbolizerInfo.AddrMap = &AddrMap; + SymbolizerInfo.Sections = &Sections; + SymbolizerInfo.class_name = nullptr; + SymbolizerInfo.selector_name = nullptr; + SymbolizerInfo.method = nullptr; + SymbolizerInfo.demangled_name = nullptr; + SymbolizerInfo.bindtable = nullptr; + SymbolizerInfo.adrp_addr = 0; + SymbolizerInfo.adrp_inst = 0; + // Same for the ThumbSymbolizer + ThumbSymbolizerInfo.verbose = true; + ThumbSymbolizerInfo.O = MachOOF; + ThumbSymbolizerInfo.S = Sections[SectIdx]; + ThumbSymbolizerInfo.AddrMap = &AddrMap; + ThumbSymbolizerInfo.Sections = &Sections; + ThumbSymbolizerInfo.class_name = nullptr; + ThumbSymbolizerInfo.selector_name = nullptr; + ThumbSymbolizerInfo.method = nullptr; + ThumbSymbolizerInfo.demangled_name = nullptr; + ThumbSymbolizerInfo.bindtable = nullptr; + ThumbSymbolizerInfo.adrp_addr = 0; + ThumbSymbolizerInfo.adrp_inst = 0; + + // Disassemble symbol by symbol. + for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) { + StringRef SymName; + Symbols[SymIdx].getName(SymName); + + SymbolRef::Type ST; + Symbols[SymIdx].getType(ST); + if (ST != SymbolRef::ST_Function) + continue; + + // Make sure the symbol is defined in this section. + bool containsSym = Sections[SectIdx].containsSymbol(Symbols[SymIdx]); + if (!containsSym) + continue; + + // Start at the address of the symbol relative to the section's address. + uint64_t Start = 0; + uint64_t SectionAddress = Sections[SectIdx].getAddress(); + Symbols[SymIdx].getAddress(Start); + Start -= SectionAddress; + + // Stop disassembling either at the beginning of the next symbol or at + // the end of the section. + bool containsNextSym = false; + uint64_t NextSym = 0; + uint64_t NextSymIdx = SymIdx + 1; + while (Symbols.size() > NextSymIdx) { + SymbolRef::Type NextSymType; + Symbols[NextSymIdx].getType(NextSymType); + if (NextSymType == SymbolRef::ST_Function) { + containsNextSym = + Sections[SectIdx].containsSymbol(Symbols[NextSymIdx]); + Symbols[NextSymIdx].getAddress(NextSym); + NextSym -= SectionAddress; + break; + } + ++NextSymIdx; + } + + uint64_t SectSize = Sections[SectIdx].getSize(); + uint64_t End = containsNextSym ? NextSym : SectSize; + uint64_t Size; + + symbolTableWorked = true; + + DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl(); + bool isThumb = + (MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb) && ThumbTarget; + + outs() << SymName << ":\n"; + DILineInfo lastLine; + for (uint64_t Index = Start; Index < End; Index += Size) { + MCInst Inst; + + uint64_t PC = SectAddress + Index; + if (FullLeadingAddr) { + if (MachOOF->is64Bit()) + outs() << format("%016" PRIx64, PC); + else + outs() << format("%08" PRIx64, PC); + } else { + outs() << format("%8" PRIx64 ":", PC); + } + if (!NoShowRawInsn) + outs() << "\t"; + + // Check the data in code table here to see if this is data not an + // instruction to be disassembled. + DiceTable Dice; + Dice.push_back(std::make_pair(PC, DiceRef())); + dice_table_iterator DTI = + std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(), + compareDiceTableEntries); + if (DTI != Dices.end()) { + uint16_t Length; + DTI->second.getLength(Length); + uint16_t Kind; + DTI->second.getKind(Kind); + Size = DumpDataInCode(reinterpret_cast<const char *>(Bytes.data()) + + Index, + Length, Kind); + if ((Kind == MachO::DICE_KIND_JUMP_TABLE8) && + (PC == (DTI->first + Length - 1)) && (Length & 1)) + Size++; + continue; + } + + SmallVector<char, 64> AnnotationsBytes; + raw_svector_ostream Annotations(AnnotationsBytes); + + bool gotInst; + if (isThumb) + gotInst = ThumbDisAsm->getInstruction(Inst, Size, Bytes.slice(Index), + PC, DebugOut, Annotations); + else + gotInst = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), PC, + DebugOut, Annotations); + if (gotInst) { + if (!NoShowRawInsn) { + DumpBytes(StringRef( + reinterpret_cast<const char *>(Bytes.data()) + Index, Size)); + } + formatted_raw_ostream FormattedOS(outs()); + Annotations.flush(); + StringRef AnnotationsStr = Annotations.str(); + if (isThumb) + ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr); + else + IP->printInst(&Inst, FormattedOS, AnnotationsStr); + emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo); + + // Print debug info. + if (diContext) { + DILineInfo dli = diContext->getLineInfoForAddress(PC); + // Print valid line info if it changed. + if (dli != lastLine && dli.Line != 0) + outs() << "\t## " << dli.FileName << ':' << dli.Line << ':' + << dli.Column; + lastLine = dli; + } + outs() << "\n"; + } else { + unsigned int Arch = MachOOF->getArch(); + if (Arch == Triple::x86_64 || Arch == Triple::x86) { + outs() << format("\t.byte 0x%02x #bad opcode\n", + *(Bytes.data() + Index) & 0xff); + Size = 1; // skip exactly one illegible byte and move on. + } else if (Arch == Triple::aarch64) { + uint32_t opcode = (*(Bytes.data() + Index) & 0xff) | + (*(Bytes.data() + Index + 1) & 0xff) << 8 | + (*(Bytes.data() + Index + 2) & 0xff) << 16 | + (*(Bytes.data() + Index + 3) & 0xff) << 24; + outs() << format("\t.long\t0x%08x\n", opcode); + Size = 4; + } else { + errs() << "llvm-objdump: warning: invalid instruction encoding\n"; + if (Size == 0) + Size = 1; // skip illegible bytes + } + } + } + } + if (!symbolTableWorked) { + // Reading the symbol table didn't work, disassemble the whole section. + uint64_t SectAddress = Sections[SectIdx].getAddress(); + uint64_t SectSize = Sections[SectIdx].getSize(); + uint64_t InstSize; + for (uint64_t Index = 0; Index < SectSize; Index += InstSize) { + MCInst Inst; + + uint64_t PC = SectAddress + Index; + if (DisAsm->getInstruction(Inst, InstSize, Bytes.slice(Index), PC, + DebugOut, nulls())) { + if (FullLeadingAddr) { + if (MachOOF->is64Bit()) + outs() << format("%016" PRIx64, PC); + else + outs() << format("%08" PRIx64, PC); + } else { + outs() << format("%8" PRIx64 ":", PC); + } + if (!NoShowRawInsn) { + outs() << "\t"; + DumpBytes( + StringRef(reinterpret_cast<const char *>(Bytes.data()) + Index, + InstSize)); + } + IP->printInst(&Inst, outs(), ""); + outs() << "\n"; + } else { + unsigned int Arch = MachOOF->getArch(); + if (Arch == Triple::x86_64 || Arch == Triple::x86) { + outs() << format("\t.byte 0x%02x #bad opcode\n", + *(Bytes.data() + Index) & 0xff); + InstSize = 1; // skip exactly one illegible byte and move on. + } else { + errs() << "llvm-objdump: warning: invalid instruction encoding\n"; + if (InstSize == 0) + InstSize = 1; // skip illegible bytes + } + } + } + } + // The TripleName's need to be reset if we are called again for a different + // archtecture. + TripleName = ""; + ThumbTripleName = ""; + + if (SymbolizerInfo.method != nullptr) + free(SymbolizerInfo.method); + if (SymbolizerInfo.demangled_name != nullptr) + free(SymbolizerInfo.demangled_name); + if (SymbolizerInfo.bindtable != nullptr) + delete SymbolizerInfo.bindtable; + if (ThumbSymbolizerInfo.method != nullptr) + free(ThumbSymbolizerInfo.method); + if (ThumbSymbolizerInfo.demangled_name != nullptr) + free(ThumbSymbolizerInfo.demangled_name); + if (ThumbSymbolizerInfo.bindtable != nullptr) + delete ThumbSymbolizerInfo.bindtable; + } +} + +//===----------------------------------------------------------------------===// +// __compact_unwind section dumping +//===----------------------------------------------------------------------===// + +namespace { + +template <typename T> static uint64_t readNext(const char *&Buf) { + using llvm::support::little; + using llvm::support::unaligned; + + uint64_t Val = support::endian::read<T, little, unaligned>(Buf); + Buf += sizeof(T); + return Val; +} + +struct CompactUnwindEntry { + uint32_t OffsetInSection; + + uint64_t FunctionAddr; + uint32_t Length; + uint32_t CompactEncoding; + uint64_t PersonalityAddr; + uint64_t LSDAAddr; + + RelocationRef FunctionReloc; + RelocationRef PersonalityReloc; + RelocationRef LSDAReloc; + + CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64) + : OffsetInSection(Offset) { + if (Is64) + read<uint64_t>(Contents.data() + Offset); + else + read<uint32_t>(Contents.data() + Offset); + } + +private: + template <typename UIntPtr> void read(const char *Buf) { + FunctionAddr = readNext<UIntPtr>(Buf); + Length = readNext<uint32_t>(Buf); + CompactEncoding = readNext<uint32_t>(Buf); + PersonalityAddr = readNext<UIntPtr>(Buf); + LSDAAddr = readNext<UIntPtr>(Buf); + } +}; +} + +/// Given a relocation from __compact_unwind, consisting of the RelocationRef +/// and data being relocated, determine the best base Name and Addend to use for +/// display purposes. +/// +/// 1. An Extern relocation will directly reference a symbol (and the data is +/// then already an addend), so use that. +/// 2. Otherwise the data is an offset in the object file's layout; try to find +// a symbol before it in the same section, and use the offset from there. +/// 3. Finally, if all that fails, fall back to an offset from the start of the +/// referenced section. +static void findUnwindRelocNameAddend(const MachOObjectFile *Obj, + std::map<uint64_t, SymbolRef> &Symbols, + const RelocationRef &Reloc, uint64_t Addr, + StringRef &Name, uint64_t &Addend) { + if (Reloc.getSymbol() != Obj->symbol_end()) { + Reloc.getSymbol()->getName(Name); + Addend = Addr; + return; + } + + auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl()); + SectionRef RelocSection = Obj->getRelocationSection(RE); + + uint64_t SectionAddr = RelocSection.getAddress(); + + auto Sym = Symbols.upper_bound(Addr); + if (Sym == Symbols.begin()) { + // The first symbol in the object is after this reference, the best we can + // do is section-relative notation. + RelocSection.getName(Name); + Addend = Addr - SectionAddr; + return; + } + + // Go back one so that SymbolAddress <= Addr. + --Sym; + + section_iterator SymSection = Obj->section_end(); + Sym->second.getSection(SymSection); + if (RelocSection == *SymSection) { + // There's a valid symbol in the same section before this reference. + Sym->second.getName(Name); + Addend = Addr - Sym->first; + return; + } + + // There is a symbol before this reference, but it's in a different + // section. Probably not helpful to mention it, so use the section name. + RelocSection.getName(Name); + Addend = Addr - SectionAddr; +} + +static void printUnwindRelocDest(const MachOObjectFile *Obj, + std::map<uint64_t, SymbolRef> &Symbols, + const RelocationRef &Reloc, uint64_t Addr) { + StringRef Name; + uint64_t Addend; + + if (!Reloc.getObjectFile()) + return; + + findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend); + + outs() << Name; + if (Addend) + outs() << " + " << format("0x%" PRIx64, Addend); +} + +static void +printMachOCompactUnwindSection(const MachOObjectFile *Obj, + std::map<uint64_t, SymbolRef> &Symbols, + const SectionRef &CompactUnwind) { + + assert(Obj->isLittleEndian() && + "There should not be a big-endian .o with __compact_unwind"); + + bool Is64 = Obj->is64Bit(); + uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t); + uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t); + + StringRef Contents; + CompactUnwind.getContents(Contents); + + SmallVector<CompactUnwindEntry, 4> CompactUnwinds; + + // First populate the initial raw offsets, encodings and so on from the entry. + for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) { + CompactUnwindEntry Entry(Contents.data(), Offset, Is64); + CompactUnwinds.push_back(Entry); + } + + // Next we need to look at the relocations to find out what objects are + // actually being referred to. + for (const RelocationRef &Reloc : CompactUnwind.relocations()) { + uint64_t RelocAddress; + Reloc.getOffset(RelocAddress); + + uint32_t EntryIdx = RelocAddress / EntrySize; + uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize; + CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx]; + + if (OffsetInEntry == 0) + Entry.FunctionReloc = Reloc; + else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t)) + Entry.PersonalityReloc = Reloc; + else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t)) + Entry.LSDAReloc = Reloc; + else + llvm_unreachable("Unexpected relocation in __compact_unwind section"); + } + + // Finally, we're ready to print the data we've gathered. + outs() << "Contents of __compact_unwind section:\n"; + for (auto &Entry : CompactUnwinds) { + outs() << " Entry at offset " + << format("0x%" PRIx32, Entry.OffsetInSection) << ":\n"; + + // 1. Start of the region this entry applies to. + outs() << " start: " << format("0x%" PRIx64, + Entry.FunctionAddr) << ' '; + printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr); + outs() << '\n'; + + // 2. Length of the region this entry applies to. + outs() << " length: " << format("0x%" PRIx32, Entry.Length) + << '\n'; + // 3. The 32-bit compact encoding. + outs() << " compact encoding: " + << format("0x%08" PRIx32, Entry.CompactEncoding) << '\n'; + + // 4. The personality function, if present. + if (Entry.PersonalityReloc.getObjectFile()) { + outs() << " personality function: " + << format("0x%" PRIx64, Entry.PersonalityAddr) << ' '; + printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc, + Entry.PersonalityAddr); + outs() << '\n'; + } + + // 5. This entry's language-specific data area. + if (Entry.LSDAReloc.getObjectFile()) { + outs() << " LSDA: " << format("0x%" PRIx64, + Entry.LSDAAddr) << ' '; + printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr); + outs() << '\n'; + } + } +} + +//===----------------------------------------------------------------------===// +// __unwind_info section dumping +//===----------------------------------------------------------------------===// + +static void printRegularSecondLevelUnwindPage(const char *PageStart) { + const char *Pos = PageStart; + uint32_t Kind = readNext<uint32_t>(Pos); + (void)Kind; + assert(Kind == 2 && "kind for a regular 2nd level index should be 2"); + + uint16_t EntriesStart = readNext<uint16_t>(Pos); + uint16_t NumEntries = readNext<uint16_t>(Pos); + + Pos = PageStart + EntriesStart; + for (unsigned i = 0; i < NumEntries; ++i) { + uint32_t FunctionOffset = readNext<uint32_t>(Pos); + uint32_t Encoding = readNext<uint32_t>(Pos); + + outs() << " [" << i << "]: " + << "function offset=" << format("0x%08" PRIx32, FunctionOffset) + << ", " + << "encoding=" << format("0x%08" PRIx32, Encoding) << '\n'; + } +} + +static void printCompressedSecondLevelUnwindPage( + const char *PageStart, uint32_t FunctionBase, + const SmallVectorImpl<uint32_t> &CommonEncodings) { + const char *Pos = PageStart; + uint32_t Kind = readNext<uint32_t>(Pos); + (void)Kind; + assert(Kind == 3 && "kind for a compressed 2nd level index should be 3"); + + uint16_t EntriesStart = readNext<uint16_t>(Pos); + uint16_t NumEntries = readNext<uint16_t>(Pos); + + uint16_t EncodingsStart = readNext<uint16_t>(Pos); + readNext<uint16_t>(Pos); + const auto *PageEncodings = reinterpret_cast<const support::ulittle32_t *>( + PageStart + EncodingsStart); + + Pos = PageStart + EntriesStart; + for (unsigned i = 0; i < NumEntries; ++i) { + uint32_t Entry = readNext<uint32_t>(Pos); + uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff); + uint32_t EncodingIdx = Entry >> 24; + + uint32_t Encoding; + if (EncodingIdx < CommonEncodings.size()) + Encoding = CommonEncodings[EncodingIdx]; + else + Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()]; + + outs() << " [" << i << "]: " + << "function offset=" << format("0x%08" PRIx32, FunctionOffset) + << ", " + << "encoding[" << EncodingIdx + << "]=" << format("0x%08" PRIx32, Encoding) << '\n'; + } +} + +static void printMachOUnwindInfoSection(const MachOObjectFile *Obj, + std::map<uint64_t, SymbolRef> &Symbols, + const SectionRef &UnwindInfo) { + + assert(Obj->isLittleEndian() && + "There should not be a big-endian .o with __unwind_info"); + + outs() << "Contents of __unwind_info section:\n"; + + StringRef Contents; + UnwindInfo.getContents(Contents); + const char *Pos = Contents.data(); + + //===---------------------------------- + // Section header + //===---------------------------------- + + uint32_t Version = readNext<uint32_t>(Pos); + outs() << " Version: " + << format("0x%" PRIx32, Version) << '\n'; + assert(Version == 1 && "only understand version 1"); + + uint32_t CommonEncodingsStart = readNext<uint32_t>(Pos); + outs() << " Common encodings array section offset: " + << format("0x%" PRIx32, CommonEncodingsStart) << '\n'; + uint32_t NumCommonEncodings = readNext<uint32_t>(Pos); + outs() << " Number of common encodings in array: " + << format("0x%" PRIx32, NumCommonEncodings) << '\n'; + + uint32_t PersonalitiesStart = readNext<uint32_t>(Pos); + outs() << " Personality function array section offset: " + << format("0x%" PRIx32, PersonalitiesStart) << '\n'; + uint32_t NumPersonalities = readNext<uint32_t>(Pos); + outs() << " Number of personality functions in array: " + << format("0x%" PRIx32, NumPersonalities) << '\n'; + + uint32_t IndicesStart = readNext<uint32_t>(Pos); + outs() << " Index array section offset: " + << format("0x%" PRIx32, IndicesStart) << '\n'; + uint32_t NumIndices = readNext<uint32_t>(Pos); + outs() << " Number of indices in array: " + << format("0x%" PRIx32, NumIndices) << '\n'; + + //===---------------------------------- + // A shared list of common encodings + //===---------------------------------- + + // These occupy indices in the range [0, N] whenever an encoding is referenced + // from a compressed 2nd level index table. In practice the linker only + // creates ~128 of these, so that indices are available to embed encodings in + // the 2nd level index. + + SmallVector<uint32_t, 64> CommonEncodings; + outs() << " Common encodings: (count = " << NumCommonEncodings << ")\n"; + Pos = Contents.data() + CommonEncodingsStart; + for (unsigned i = 0; i < NumCommonEncodings; ++i) { + uint32_t Encoding = readNext<uint32_t>(Pos); + CommonEncodings.push_back(Encoding); + + outs() << " encoding[" << i << "]: " << format("0x%08" PRIx32, Encoding) + << '\n'; + } + + //===---------------------------------- + // Personality functions used in this executable + //===---------------------------------- + + // There should be only a handful of these (one per source language, + // roughly). Particularly since they only get 2 bits in the compact encoding. + + outs() << " Personality functions: (count = " << NumPersonalities << ")\n"; + Pos = Contents.data() + PersonalitiesStart; + for (unsigned i = 0; i < NumPersonalities; ++i) { + uint32_t PersonalityFn = readNext<uint32_t>(Pos); + outs() << " personality[" << i + 1 + << "]: " << format("0x%08" PRIx32, PersonalityFn) << '\n'; + } + + //===---------------------------------- + // The level 1 index entries + //===---------------------------------- + + // These specify an approximate place to start searching for the more detailed + // information, sorted by PC. + + struct IndexEntry { + uint32_t FunctionOffset; + uint32_t SecondLevelPageStart; + uint32_t LSDAStart; + }; + + SmallVector<IndexEntry, 4> IndexEntries; + + outs() << " Top level indices: (count = " << NumIndices << ")\n"; + Pos = Contents.data() + IndicesStart; + for (unsigned i = 0; i < NumIndices; ++i) { + IndexEntry Entry; + + Entry.FunctionOffset = readNext<uint32_t>(Pos); + Entry.SecondLevelPageStart = readNext<uint32_t>(Pos); + Entry.LSDAStart = readNext<uint32_t>(Pos); + IndexEntries.push_back(Entry); + + outs() << " [" << i << "]: " + << "function offset=" << format("0x%08" PRIx32, Entry.FunctionOffset) + << ", " + << "2nd level page offset=" + << format("0x%08" PRIx32, Entry.SecondLevelPageStart) << ", " + << "LSDA offset=" << format("0x%08" PRIx32, Entry.LSDAStart) << '\n'; + } + + //===---------------------------------- + // Next come the LSDA tables + //===---------------------------------- + + // The LSDA layout is rather implicit: it's a contiguous array of entries from + // the first top-level index's LSDAOffset to the last (sentinel). + + outs() << " LSDA descriptors:\n"; + Pos = Contents.data() + IndexEntries[0].LSDAStart; + int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) / + (2 * sizeof(uint32_t)); + for (int i = 0; i < NumLSDAs; ++i) { + uint32_t FunctionOffset = readNext<uint32_t>(Pos); + uint32_t LSDAOffset = readNext<uint32_t>(Pos); + outs() << " [" << i << "]: " + << "function offset=" << format("0x%08" PRIx32, FunctionOffset) + << ", " + << "LSDA offset=" << format("0x%08" PRIx32, LSDAOffset) << '\n'; + } + + //===---------------------------------- + // Finally, the 2nd level indices + //===---------------------------------- + + // Generally these are 4K in size, and have 2 possible forms: + // + Regular stores up to 511 entries with disparate encodings + // + Compressed stores up to 1021 entries if few enough compact encoding + // values are used. + outs() << " Second level indices:\n"; + for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) { + // The final sentinel top-level index has no associated 2nd level page + if (IndexEntries[i].SecondLevelPageStart == 0) + break; + + outs() << " Second level index[" << i << "]: " + << "offset in section=" + << format("0x%08" PRIx32, IndexEntries[i].SecondLevelPageStart) + << ", " + << "base function offset=" + << format("0x%08" PRIx32, IndexEntries[i].FunctionOffset) << '\n'; + + Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart; + uint32_t Kind = *reinterpret_cast<const support::ulittle32_t *>(Pos); + if (Kind == 2) + printRegularSecondLevelUnwindPage(Pos); + else if (Kind == 3) + printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset, + CommonEncodings); + else + llvm_unreachable("Do not know how to print this kind of 2nd level page"); + } +} + +void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) { + std::map<uint64_t, SymbolRef> Symbols; + for (const SymbolRef &SymRef : Obj->symbols()) { + // Discard any undefined or absolute symbols. They're not going to take part + // in the convenience lookup for unwind info and just take up resources. + section_iterator Section = Obj->section_end(); + SymRef.getSection(Section); + if (Section == Obj->section_end()) + continue; + + uint64_t Addr; + SymRef.getAddress(Addr); + Symbols.insert(std::make_pair(Addr, SymRef)); + } + + for (const SectionRef &Section : Obj->sections()) { + StringRef SectName; + Section.getName(SectName); + if (SectName == "__compact_unwind") + printMachOCompactUnwindSection(Obj, Symbols, Section); + else if (SectName == "__unwind_info") + printMachOUnwindInfoSection(Obj, Symbols, Section); + else if (SectName == "__eh_frame") + outs() << "llvm-objdump: warning: unhandled __eh_frame section\n"; + } +} + +static void PrintMachHeader(uint32_t magic, uint32_t cputype, + uint32_t cpusubtype, uint32_t filetype, + uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags, + bool verbose) { + outs() << "Mach header\n"; + outs() << " magic cputype cpusubtype caps filetype ncmds " + "sizeofcmds flags\n"; + if (verbose) { + if (magic == MachO::MH_MAGIC) + outs() << " MH_MAGIC"; + else if (magic == MachO::MH_MAGIC_64) + outs() << "MH_MAGIC_64"; + else + outs() << format(" 0x%08" PRIx32, magic); + switch (cputype) { + case MachO::CPU_TYPE_I386: + outs() << " I386"; + switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { + case MachO::CPU_SUBTYPE_I386_ALL: + outs() << " ALL"; + break; + default: + outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); + break; + } + break; + case MachO::CPU_TYPE_X86_64: + outs() << " X86_64"; + switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { + case MachO::CPU_SUBTYPE_X86_64_ALL: + outs() << " ALL"; + break; + case MachO::CPU_SUBTYPE_X86_64_H: + outs() << " Haswell"; + break; + default: + outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); + break; + } + break; + case MachO::CPU_TYPE_ARM: + outs() << " ARM"; + switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { + case MachO::CPU_SUBTYPE_ARM_ALL: + outs() << " ALL"; + break; + case MachO::CPU_SUBTYPE_ARM_V4T: + outs() << " V4T"; + break; + case MachO::CPU_SUBTYPE_ARM_V5TEJ: + outs() << " V5TEJ"; + break; + case MachO::CPU_SUBTYPE_ARM_XSCALE: + outs() << " XSCALE"; + break; + case MachO::CPU_SUBTYPE_ARM_V6: + outs() << " V6"; + break; + case MachO::CPU_SUBTYPE_ARM_V6M: + outs() << " V6M"; + break; + case MachO::CPU_SUBTYPE_ARM_V7: + outs() << " V7"; + break; + case MachO::CPU_SUBTYPE_ARM_V7EM: + outs() << " V7EM"; + break; + case MachO::CPU_SUBTYPE_ARM_V7K: + outs() << " V7K"; + break; + case MachO::CPU_SUBTYPE_ARM_V7M: + outs() << " V7M"; + break; + case MachO::CPU_SUBTYPE_ARM_V7S: + outs() << " V7S"; + break; + default: + outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); + break; + } + break; + case MachO::CPU_TYPE_ARM64: + outs() << " ARM64"; + switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { + case MachO::CPU_SUBTYPE_ARM64_ALL: + outs() << " ALL"; + break; + default: + outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); + break; + } + break; + case MachO::CPU_TYPE_POWERPC: + outs() << " PPC"; + switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { + case MachO::CPU_SUBTYPE_POWERPC_ALL: + outs() << " ALL"; + break; + default: + outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); + break; + } + break; + case MachO::CPU_TYPE_POWERPC64: + outs() << " PPC64"; + switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { + case MachO::CPU_SUBTYPE_POWERPC_ALL: + outs() << " ALL"; + break; + default: + outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); + break; + } + break; + } + if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) { + outs() << " LIB64"; + } else { + outs() << format(" 0x%02" PRIx32, + (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24); + } + switch (filetype) { + case MachO::MH_OBJECT: + outs() << " OBJECT"; + break; + case MachO::MH_EXECUTE: + outs() << " EXECUTE"; + break; + case MachO::MH_FVMLIB: + outs() << " FVMLIB"; + break; + case MachO::MH_CORE: + outs() << " CORE"; + break; + case MachO::MH_PRELOAD: + outs() << " PRELOAD"; + break; + case MachO::MH_DYLIB: + outs() << " DYLIB"; + break; + case MachO::MH_DYLIB_STUB: + outs() << " DYLIB_STUB"; + break; + case MachO::MH_DYLINKER: + outs() << " DYLINKER"; + break; + case MachO::MH_BUNDLE: + outs() << " BUNDLE"; + break; + case MachO::MH_DSYM: + outs() << " DSYM"; + break; + case MachO::MH_KEXT_BUNDLE: + outs() << " KEXTBUNDLE"; + break; + default: + outs() << format(" %10u", filetype); + break; + } + outs() << format(" %5u", ncmds); + outs() << format(" %10u", sizeofcmds); + uint32_t f = flags; + if (f & MachO::MH_NOUNDEFS) { + outs() << " NOUNDEFS"; + f &= ~MachO::MH_NOUNDEFS; + } + if (f & MachO::MH_INCRLINK) { + outs() << " INCRLINK"; + f &= ~MachO::MH_INCRLINK; + } + if (f & MachO::MH_DYLDLINK) { + outs() << " DYLDLINK"; + f &= ~MachO::MH_DYLDLINK; + } + if (f & MachO::MH_BINDATLOAD) { + outs() << " BINDATLOAD"; + f &= ~MachO::MH_BINDATLOAD; + } + if (f & MachO::MH_PREBOUND) { + outs() << " PREBOUND"; + f &= ~MachO::MH_PREBOUND; + } + if (f & MachO::MH_SPLIT_SEGS) { + outs() << " SPLIT_SEGS"; + f &= ~MachO::MH_SPLIT_SEGS; + } + if (f & MachO::MH_LAZY_INIT) { + outs() << " LAZY_INIT"; + f &= ~MachO::MH_LAZY_INIT; + } + if (f & MachO::MH_TWOLEVEL) { + outs() << " TWOLEVEL"; + f &= ~MachO::MH_TWOLEVEL; + } + if (f & MachO::MH_FORCE_FLAT) { + outs() << " FORCE_FLAT"; + f &= ~MachO::MH_FORCE_FLAT; + } + if (f & MachO::MH_NOMULTIDEFS) { + outs() << " NOMULTIDEFS"; + f &= ~MachO::MH_NOMULTIDEFS; + } + if (f & MachO::MH_NOFIXPREBINDING) { + outs() << " NOFIXPREBINDING"; + f &= ~MachO::MH_NOFIXPREBINDING; + } + if (f & MachO::MH_PREBINDABLE) { + outs() << " PREBINDABLE"; + f &= ~MachO::MH_PREBINDABLE; + } + if (f & MachO::MH_ALLMODSBOUND) { + outs() << " ALLMODSBOUND"; + f &= ~MachO::MH_ALLMODSBOUND; + } + if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) { + outs() << " SUBSECTIONS_VIA_SYMBOLS"; + f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS; + } + if (f & MachO::MH_CANONICAL) { + outs() << " CANONICAL"; + f &= ~MachO::MH_CANONICAL; + } + if (f & MachO::MH_WEAK_DEFINES) { + outs() << " WEAK_DEFINES"; + f &= ~MachO::MH_WEAK_DEFINES; + } + if (f & MachO::MH_BINDS_TO_WEAK) { + outs() << " BINDS_TO_WEAK"; + f &= ~MachO::MH_BINDS_TO_WEAK; + } + if (f & MachO::MH_ALLOW_STACK_EXECUTION) { + outs() << " ALLOW_STACK_EXECUTION"; + f &= ~MachO::MH_ALLOW_STACK_EXECUTION; + } + if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) { + outs() << " DEAD_STRIPPABLE_DYLIB"; + f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB; + } + if (f & MachO::MH_PIE) { + outs() << " PIE"; + f &= ~MachO::MH_PIE; + } + if (f & MachO::MH_NO_REEXPORTED_DYLIBS) { + outs() << " NO_REEXPORTED_DYLIBS"; + f &= ~MachO::MH_NO_REEXPORTED_DYLIBS; + } + if (f & MachO::MH_HAS_TLV_DESCRIPTORS) { + outs() << " MH_HAS_TLV_DESCRIPTORS"; + f &= ~MachO::MH_HAS_TLV_DESCRIPTORS; + } + if (f & MachO::MH_NO_HEAP_EXECUTION) { + outs() << " MH_NO_HEAP_EXECUTION"; + f &= ~MachO::MH_NO_HEAP_EXECUTION; + } + if (f & MachO::MH_APP_EXTENSION_SAFE) { + outs() << " APP_EXTENSION_SAFE"; + f &= ~MachO::MH_APP_EXTENSION_SAFE; + } + if (f != 0 || flags == 0) + outs() << format(" 0x%08" PRIx32, f); + } else { + outs() << format(" 0x%08" PRIx32, magic); + outs() << format(" %7d", cputype); + outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); + outs() << format(" 0x%02" PRIx32, + (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24); + outs() << format(" %10u", filetype); + outs() << format(" %5u", ncmds); + outs() << format(" %10u", sizeofcmds); + outs() << format(" 0x%08" PRIx32, flags); + } + outs() << "\n"; +} + +static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize, + StringRef SegName, uint64_t vmaddr, + uint64_t vmsize, uint64_t fileoff, + uint64_t filesize, uint32_t maxprot, + uint32_t initprot, uint32_t nsects, + uint32_t flags, uint32_t object_size, + bool verbose) { + uint64_t expected_cmdsize; + if (cmd == MachO::LC_SEGMENT) { + outs() << " cmd LC_SEGMENT\n"; + expected_cmdsize = nsects; + expected_cmdsize *= sizeof(struct MachO::section); + expected_cmdsize += sizeof(struct MachO::segment_command); + } else { + outs() << " cmd LC_SEGMENT_64\n"; + expected_cmdsize = nsects; + expected_cmdsize *= sizeof(struct MachO::section_64); + expected_cmdsize += sizeof(struct MachO::segment_command_64); + } + outs() << " cmdsize " << cmdsize; + if (cmdsize != expected_cmdsize) + outs() << " Inconsistent size\n"; + else + outs() << "\n"; + outs() << " segname " << SegName << "\n"; + if (cmd == MachO::LC_SEGMENT_64) { + outs() << " vmaddr " << format("0x%016" PRIx64, vmaddr) << "\n"; + outs() << " vmsize " << format("0x%016" PRIx64, vmsize) << "\n"; + } else { + outs() << " vmaddr " << format("0x%08" PRIx64, vmaddr) << "\n"; + outs() << " vmsize " << format("0x%08" PRIx64, vmsize) << "\n"; + } + outs() << " fileoff " << fileoff; + if (fileoff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " filesize " << filesize; + if (fileoff + filesize > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + if (verbose) { + if ((maxprot & + ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE | + MachO::VM_PROT_EXECUTE)) != 0) + outs() << " maxprot ?" << format("0x%08" PRIx32, maxprot) << "\n"; + else { + if (maxprot & MachO::VM_PROT_READ) + outs() << " maxprot r"; + else + outs() << " maxprot -"; + if (maxprot & MachO::VM_PROT_WRITE) + outs() << "w"; + else + outs() << "-"; + if (maxprot & MachO::VM_PROT_EXECUTE) + outs() << "x\n"; + else + outs() << "-\n"; + } + if ((initprot & + ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE | + MachO::VM_PROT_EXECUTE)) != 0) + outs() << " initprot ?" << format("0x%08" PRIx32, initprot) << "\n"; + else { + if (initprot & MachO::VM_PROT_READ) + outs() << " initprot r"; + else + outs() << " initprot -"; + if (initprot & MachO::VM_PROT_WRITE) + outs() << "w"; + else + outs() << "-"; + if (initprot & MachO::VM_PROT_EXECUTE) + outs() << "x\n"; + else + outs() << "-\n"; + } + } else { + outs() << " maxprot " << format("0x%08" PRIx32, maxprot) << "\n"; + outs() << " initprot " << format("0x%08" PRIx32, initprot) << "\n"; + } + outs() << " nsects " << nsects << "\n"; + if (verbose) { + outs() << " flags"; + if (flags == 0) + outs() << " (none)\n"; + else { + if (flags & MachO::SG_HIGHVM) { + outs() << " HIGHVM"; + flags &= ~MachO::SG_HIGHVM; + } + if (flags & MachO::SG_FVMLIB) { + outs() << " FVMLIB"; + flags &= ~MachO::SG_FVMLIB; + } + if (flags & MachO::SG_NORELOC) { + outs() << " NORELOC"; + flags &= ~MachO::SG_NORELOC; + } + if (flags & MachO::SG_PROTECTED_VERSION_1) { + outs() << " PROTECTED_VERSION_1"; + flags &= ~MachO::SG_PROTECTED_VERSION_1; + } + if (flags) + outs() << format(" 0x%08" PRIx32, flags) << " (unknown flags)\n"; + else + outs() << "\n"; + } + } else { + outs() << " flags " << format("0x%" PRIx32, flags) << "\n"; + } +} + +static void PrintSection(const char *sectname, const char *segname, + uint64_t addr, uint64_t size, uint32_t offset, + uint32_t align, uint32_t reloff, uint32_t nreloc, + uint32_t flags, uint32_t reserved1, uint32_t reserved2, + uint32_t cmd, const char *sg_segname, + uint32_t filetype, uint32_t object_size, + bool verbose) { + outs() << "Section\n"; + outs() << " sectname " << format("%.16s\n", sectname); + outs() << " segname " << format("%.16s", segname); + if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0) + outs() << " (does not match segment)\n"; + else + outs() << "\n"; + if (cmd == MachO::LC_SEGMENT_64) { + outs() << " addr " << format("0x%016" PRIx64, addr) << "\n"; + outs() << " size " << format("0x%016" PRIx64, size); + } else { + outs() << " addr " << format("0x%08" PRIx64, addr) << "\n"; + outs() << " size " << format("0x%08" PRIx64, size); + } + if ((flags & MachO::S_ZEROFILL) != 0 && offset + size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " offset " << offset; + if (offset > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + uint32_t align_shifted = 1 << align; + outs() << " align 2^" << align << " (" << align_shifted << ")\n"; + outs() << " reloff " << reloff; + if (reloff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " nreloc " << nreloc; + if (reloff + nreloc * sizeof(struct MachO::relocation_info) > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + uint32_t section_type = flags & MachO::SECTION_TYPE; + if (verbose) { + outs() << " type"; + if (section_type == MachO::S_REGULAR) + outs() << " S_REGULAR\n"; + else if (section_type == MachO::S_ZEROFILL) + outs() << " S_ZEROFILL\n"; + else if (section_type == MachO::S_CSTRING_LITERALS) + outs() << " S_CSTRING_LITERALS\n"; + else if (section_type == MachO::S_4BYTE_LITERALS) + outs() << " S_4BYTE_LITERALS\n"; + else if (section_type == MachO::S_8BYTE_LITERALS) + outs() << " S_8BYTE_LITERALS\n"; + else if (section_type == MachO::S_16BYTE_LITERALS) + outs() << " S_16BYTE_LITERALS\n"; + else if (section_type == MachO::S_LITERAL_POINTERS) + outs() << " S_LITERAL_POINTERS\n"; + else if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS) + outs() << " S_NON_LAZY_SYMBOL_POINTERS\n"; + else if (section_type == MachO::S_LAZY_SYMBOL_POINTERS) + outs() << " S_LAZY_SYMBOL_POINTERS\n"; + else if (section_type == MachO::S_SYMBOL_STUBS) + outs() << " S_SYMBOL_STUBS\n"; + else if (section_type == MachO::S_MOD_INIT_FUNC_POINTERS) + outs() << " S_MOD_INIT_FUNC_POINTERS\n"; + else if (section_type == MachO::S_MOD_TERM_FUNC_POINTERS) + outs() << " S_MOD_TERM_FUNC_POINTERS\n"; + else if (section_type == MachO::S_COALESCED) + outs() << " S_COALESCED\n"; + else if (section_type == MachO::S_INTERPOSING) + outs() << " S_INTERPOSING\n"; + else if (section_type == MachO::S_DTRACE_DOF) + outs() << " S_DTRACE_DOF\n"; + else if (section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS) + outs() << " S_LAZY_DYLIB_SYMBOL_POINTERS\n"; + else if (section_type == MachO::S_THREAD_LOCAL_REGULAR) + outs() << " S_THREAD_LOCAL_REGULAR\n"; + else if (section_type == MachO::S_THREAD_LOCAL_ZEROFILL) + outs() << " S_THREAD_LOCAL_ZEROFILL\n"; + else if (section_type == MachO::S_THREAD_LOCAL_VARIABLES) + outs() << " S_THREAD_LOCAL_VARIABLES\n"; + else if (section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS) + outs() << " S_THREAD_LOCAL_VARIABLE_POINTERS\n"; + else if (section_type == MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS) + outs() << " S_THREAD_LOCAL_INIT_FUNCTION_POINTERS\n"; + else + outs() << format("0x%08" PRIx32, section_type) << "\n"; + outs() << "attributes"; + uint32_t section_attributes = flags & MachO::SECTION_ATTRIBUTES; + if (section_attributes & MachO::S_ATTR_PURE_INSTRUCTIONS) + outs() << " PURE_INSTRUCTIONS"; + if (section_attributes & MachO::S_ATTR_NO_TOC) + outs() << " NO_TOC"; + if (section_attributes & MachO::S_ATTR_STRIP_STATIC_SYMS) + outs() << " STRIP_STATIC_SYMS"; + if (section_attributes & MachO::S_ATTR_NO_DEAD_STRIP) + outs() << " NO_DEAD_STRIP"; + if (section_attributes & MachO::S_ATTR_LIVE_SUPPORT) + outs() << " LIVE_SUPPORT"; + if (section_attributes & MachO::S_ATTR_SELF_MODIFYING_CODE) + outs() << " SELF_MODIFYING_CODE"; + if (section_attributes & MachO::S_ATTR_DEBUG) + outs() << " DEBUG"; + if (section_attributes & MachO::S_ATTR_SOME_INSTRUCTIONS) + outs() << " SOME_INSTRUCTIONS"; + if (section_attributes & MachO::S_ATTR_EXT_RELOC) + outs() << " EXT_RELOC"; + if (section_attributes & MachO::S_ATTR_LOC_RELOC) + outs() << " LOC_RELOC"; + if (section_attributes == 0) + outs() << " (none)"; + outs() << "\n"; + } else + outs() << " flags " << format("0x%08" PRIx32, flags) << "\n"; + outs() << " reserved1 " << reserved1; + if (section_type == MachO::S_SYMBOL_STUBS || + section_type == MachO::S_LAZY_SYMBOL_POINTERS || + section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS || + section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS || + section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS) + outs() << " (index into indirect symbol table)\n"; + else + outs() << "\n"; + outs() << " reserved2 " << reserved2; + if (section_type == MachO::S_SYMBOL_STUBS) + outs() << " (size of stubs)\n"; + else + outs() << "\n"; +} + +static void PrintSymtabLoadCommand(MachO::symtab_command st, bool Is64Bit, + uint32_t object_size) { + outs() << " cmd LC_SYMTAB\n"; + outs() << " cmdsize " << st.cmdsize; + if (st.cmdsize != sizeof(struct MachO::symtab_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + outs() << " symoff " << st.symoff; + if (st.symoff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " nsyms " << st.nsyms; + uint64_t big_size; + if (Is64Bit) { + big_size = st.nsyms; + big_size *= sizeof(struct MachO::nlist_64); + big_size += st.symoff; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + } else { + big_size = st.nsyms; + big_size *= sizeof(struct MachO::nlist); + big_size += st.symoff; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + } + outs() << " stroff " << st.stroff; + if (st.stroff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " strsize " << st.strsize; + big_size = st.stroff; + big_size += st.strsize; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; +} + +static void PrintDysymtabLoadCommand(MachO::dysymtab_command dyst, + uint32_t nsyms, uint32_t object_size, + bool Is64Bit) { + outs() << " cmd LC_DYSYMTAB\n"; + outs() << " cmdsize " << dyst.cmdsize; + if (dyst.cmdsize != sizeof(struct MachO::dysymtab_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + outs() << " ilocalsym " << dyst.ilocalsym; + if (dyst.ilocalsym > nsyms) + outs() << " (greater than the number of symbols)\n"; + else + outs() << "\n"; + outs() << " nlocalsym " << dyst.nlocalsym; + uint64_t big_size; + big_size = dyst.ilocalsym; + big_size += dyst.nlocalsym; + if (big_size > nsyms) + outs() << " (past the end of the symbol table)\n"; + else + outs() << "\n"; + outs() << " iextdefsym " << dyst.iextdefsym; + if (dyst.iextdefsym > nsyms) + outs() << " (greater than the number of symbols)\n"; + else + outs() << "\n"; + outs() << " nextdefsym " << dyst.nextdefsym; + big_size = dyst.iextdefsym; + big_size += dyst.nextdefsym; + if (big_size > nsyms) + outs() << " (past the end of the symbol table)\n"; + else + outs() << "\n"; + outs() << " iundefsym " << dyst.iundefsym; + if (dyst.iundefsym > nsyms) + outs() << " (greater than the number of symbols)\n"; + else + outs() << "\n"; + outs() << " nundefsym " << dyst.nundefsym; + big_size = dyst.iundefsym; + big_size += dyst.nundefsym; + if (big_size > nsyms) + outs() << " (past the end of the symbol table)\n"; + else + outs() << "\n"; + outs() << " tocoff " << dyst.tocoff; + if (dyst.tocoff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " ntoc " << dyst.ntoc; + big_size = dyst.ntoc; + big_size *= sizeof(struct MachO::dylib_table_of_contents); + big_size += dyst.tocoff; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " modtaboff " << dyst.modtaboff; + if (dyst.modtaboff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " nmodtab " << dyst.nmodtab; + uint64_t modtabend; + if (Is64Bit) { + modtabend = dyst.nmodtab; + modtabend *= sizeof(struct MachO::dylib_module_64); + modtabend += dyst.modtaboff; + } else { + modtabend = dyst.nmodtab; + modtabend *= sizeof(struct MachO::dylib_module); + modtabend += dyst.modtaboff; + } + if (modtabend > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " extrefsymoff " << dyst.extrefsymoff; + if (dyst.extrefsymoff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " nextrefsyms " << dyst.nextrefsyms; + big_size = dyst.nextrefsyms; + big_size *= sizeof(struct MachO::dylib_reference); + big_size += dyst.extrefsymoff; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " indirectsymoff " << dyst.indirectsymoff; + if (dyst.indirectsymoff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " nindirectsyms " << dyst.nindirectsyms; + big_size = dyst.nindirectsyms; + big_size *= sizeof(uint32_t); + big_size += dyst.indirectsymoff; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " extreloff " << dyst.extreloff; + if (dyst.extreloff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " nextrel " << dyst.nextrel; + big_size = dyst.nextrel; + big_size *= sizeof(struct MachO::relocation_info); + big_size += dyst.extreloff; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " locreloff " << dyst.locreloff; + if (dyst.locreloff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " nlocrel " << dyst.nlocrel; + big_size = dyst.nlocrel; + big_size *= sizeof(struct MachO::relocation_info); + big_size += dyst.locreloff; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; +} + +static void PrintDyldInfoLoadCommand(MachO::dyld_info_command dc, + uint32_t object_size) { + if (dc.cmd == MachO::LC_DYLD_INFO) + outs() << " cmd LC_DYLD_INFO\n"; + else + outs() << " cmd LC_DYLD_INFO_ONLY\n"; + outs() << " cmdsize " << dc.cmdsize; + if (dc.cmdsize != sizeof(struct MachO::dyld_info_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + outs() << " rebase_off " << dc.rebase_off; + if (dc.rebase_off > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " rebase_size " << dc.rebase_size; + uint64_t big_size; + big_size = dc.rebase_off; + big_size += dc.rebase_size; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " bind_off " << dc.bind_off; + if (dc.bind_off > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " bind_size " << dc.bind_size; + big_size = dc.bind_off; + big_size += dc.bind_size; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " weak_bind_off " << dc.weak_bind_off; + if (dc.weak_bind_off > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " weak_bind_size " << dc.weak_bind_size; + big_size = dc.weak_bind_off; + big_size += dc.weak_bind_size; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " lazy_bind_off " << dc.lazy_bind_off; + if (dc.lazy_bind_off > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " lazy_bind_size " << dc.lazy_bind_size; + big_size = dc.lazy_bind_off; + big_size += dc.lazy_bind_size; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " export_off " << dc.export_off; + if (dc.export_off > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " export_size " << dc.export_size; + big_size = dc.export_off; + big_size += dc.export_size; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; +} + +static void PrintDyldLoadCommand(MachO::dylinker_command dyld, + const char *Ptr) { + if (dyld.cmd == MachO::LC_ID_DYLINKER) + outs() << " cmd LC_ID_DYLINKER\n"; + else if (dyld.cmd == MachO::LC_LOAD_DYLINKER) + outs() << " cmd LC_LOAD_DYLINKER\n"; + else if (dyld.cmd == MachO::LC_DYLD_ENVIRONMENT) + outs() << " cmd LC_DYLD_ENVIRONMENT\n"; + else + outs() << " cmd ?(" << dyld.cmd << ")\n"; + outs() << " cmdsize " << dyld.cmdsize; + if (dyld.cmdsize < sizeof(struct MachO::dylinker_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + if (dyld.name >= dyld.cmdsize) + outs() << " name ?(bad offset " << dyld.name << ")\n"; + else { + const char *P = (const char *)(Ptr) + dyld.name; + outs() << " name " << P << " (offset " << dyld.name << ")\n"; + } +} + +static void PrintUuidLoadCommand(MachO::uuid_command uuid) { + outs() << " cmd LC_UUID\n"; + outs() << " cmdsize " << uuid.cmdsize; + if (uuid.cmdsize != sizeof(struct MachO::uuid_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + outs() << " uuid "; + outs() << format("%02" PRIX32, uuid.uuid[0]); + outs() << format("%02" PRIX32, uuid.uuid[1]); + outs() << format("%02" PRIX32, uuid.uuid[2]); + outs() << format("%02" PRIX32, uuid.uuid[3]); + outs() << "-"; + outs() << format("%02" PRIX32, uuid.uuid[4]); + outs() << format("%02" PRIX32, uuid.uuid[5]); + outs() << "-"; + outs() << format("%02" PRIX32, uuid.uuid[6]); + outs() << format("%02" PRIX32, uuid.uuid[7]); + outs() << "-"; + outs() << format("%02" PRIX32, uuid.uuid[8]); + outs() << format("%02" PRIX32, uuid.uuid[9]); + outs() << "-"; + outs() << format("%02" PRIX32, uuid.uuid[10]); + outs() << format("%02" PRIX32, uuid.uuid[11]); + outs() << format("%02" PRIX32, uuid.uuid[12]); + outs() << format("%02" PRIX32, uuid.uuid[13]); + outs() << format("%02" PRIX32, uuid.uuid[14]); + outs() << format("%02" PRIX32, uuid.uuid[15]); + outs() << "\n"; +} + +static void PrintRpathLoadCommand(MachO::rpath_command rpath, const char *Ptr) { + outs() << " cmd LC_RPATH\n"; + outs() << " cmdsize " << rpath.cmdsize; + if (rpath.cmdsize < sizeof(struct MachO::rpath_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + if (rpath.path >= rpath.cmdsize) + outs() << " path ?(bad offset " << rpath.path << ")\n"; + else { + const char *P = (const char *)(Ptr) + rpath.path; + outs() << " path " << P << " (offset " << rpath.path << ")\n"; + } +} + +static void PrintVersionMinLoadCommand(MachO::version_min_command vd) { + if (vd.cmd == MachO::LC_VERSION_MIN_MACOSX) + outs() << " cmd LC_VERSION_MIN_MACOSX\n"; + else if (vd.cmd == MachO::LC_VERSION_MIN_IPHONEOS) + outs() << " cmd LC_VERSION_MIN_IPHONEOS\n"; + else + outs() << " cmd " << vd.cmd << " (?)\n"; + outs() << " cmdsize " << vd.cmdsize; + if (vd.cmdsize != sizeof(struct MachO::version_min_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + outs() << " version " << ((vd.version >> 16) & 0xffff) << "." + << ((vd.version >> 8) & 0xff); + if ((vd.version & 0xff) != 0) + outs() << "." << (vd.version & 0xff); + outs() << "\n"; + if (vd.sdk == 0) + outs() << " sdk n/a"; + else { + outs() << " sdk " << ((vd.sdk >> 16) & 0xffff) << "." + << ((vd.sdk >> 8) & 0xff); + } + if ((vd.sdk & 0xff) != 0) + outs() << "." << (vd.sdk & 0xff); + outs() << "\n"; +} + +static void PrintSourceVersionCommand(MachO::source_version_command sd) { + outs() << " cmd LC_SOURCE_VERSION\n"; + outs() << " cmdsize " << sd.cmdsize; + if (sd.cmdsize != sizeof(struct MachO::source_version_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + uint64_t a = (sd.version >> 40) & 0xffffff; + uint64_t b = (sd.version >> 30) & 0x3ff; + uint64_t c = (sd.version >> 20) & 0x3ff; + uint64_t d = (sd.version >> 10) & 0x3ff; + uint64_t e = sd.version & 0x3ff; + outs() << " version " << a << "." << b; + if (e != 0) + outs() << "." << c << "." << d << "." << e; + else if (d != 0) + outs() << "." << c << "." << d; + else if (c != 0) + outs() << "." << c; + outs() << "\n"; +} + +static void PrintEntryPointCommand(MachO::entry_point_command ep) { + outs() << " cmd LC_MAIN\n"; + outs() << " cmdsize " << ep.cmdsize; + if (ep.cmdsize != sizeof(struct MachO::entry_point_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + outs() << " entryoff " << ep.entryoff << "\n"; + outs() << " stacksize " << ep.stacksize << "\n"; +} + +static void PrintEncryptionInfoCommand(MachO::encryption_info_command ec, + uint32_t object_size) { + outs() << " cmd LC_ENCRYPTION_INFO\n"; + outs() << " cmdsize " << ec.cmdsize; + if (ec.cmdsize != sizeof(struct MachO::encryption_info_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + outs() << " cryptoff " << ec.cryptoff; + if (ec.cryptoff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " cryptsize " << ec.cryptsize; + if (ec.cryptsize > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " cryptid " << ec.cryptid << "\n"; +} + +static void PrintEncryptionInfoCommand64(MachO::encryption_info_command_64 ec, + uint32_t object_size) { + outs() << " cmd LC_ENCRYPTION_INFO_64\n"; + outs() << " cmdsize " << ec.cmdsize; + if (ec.cmdsize != sizeof(struct MachO::encryption_info_command_64)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + outs() << " cryptoff " << ec.cryptoff; + if (ec.cryptoff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " cryptsize " << ec.cryptsize; + if (ec.cryptsize > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " cryptid " << ec.cryptid << "\n"; + outs() << " pad " << ec.pad << "\n"; +} + +static void PrintLinkerOptionCommand(MachO::linker_option_command lo, + const char *Ptr) { + outs() << " cmd LC_LINKER_OPTION\n"; + outs() << " cmdsize " << lo.cmdsize; + if (lo.cmdsize < sizeof(struct MachO::linker_option_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + outs() << " count " << lo.count << "\n"; + const char *string = Ptr + sizeof(struct MachO::linker_option_command); + uint32_t left = lo.cmdsize - sizeof(struct MachO::linker_option_command); + uint32_t i = 0; + while (left > 0) { + while (*string == '\0' && left > 0) { + string++; + left--; + } + if (left > 0) { + i++; + outs() << " string #" << i << " " << format("%.*s\n", left, string); + uint32_t NullPos = StringRef(string, left).find('\0'); + uint32_t len = std::min(NullPos, left) + 1; + string += len; + left -= len; + } + } + if (lo.count != i) + outs() << " count " << lo.count << " does not match number of strings " + << i << "\n"; +} + +static void PrintSubFrameworkCommand(MachO::sub_framework_command sub, + const char *Ptr) { + outs() << " cmd LC_SUB_FRAMEWORK\n"; + outs() << " cmdsize " << sub.cmdsize; + if (sub.cmdsize < sizeof(struct MachO::sub_framework_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + if (sub.umbrella < sub.cmdsize) { + const char *P = Ptr + sub.umbrella; + outs() << " umbrella " << P << " (offset " << sub.umbrella << ")\n"; + } else { + outs() << " umbrella ?(bad offset " << sub.umbrella << ")\n"; + } +} + +static void PrintSubUmbrellaCommand(MachO::sub_umbrella_command sub, + const char *Ptr) { + outs() << " cmd LC_SUB_UMBRELLA\n"; + outs() << " cmdsize " << sub.cmdsize; + if (sub.cmdsize < sizeof(struct MachO::sub_umbrella_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + if (sub.sub_umbrella < sub.cmdsize) { + const char *P = Ptr + sub.sub_umbrella; + outs() << " sub_umbrella " << P << " (offset " << sub.sub_umbrella << ")\n"; + } else { + outs() << " sub_umbrella ?(bad offset " << sub.sub_umbrella << ")\n"; + } +} + +static void PrintSubLibraryCommand(MachO::sub_library_command sub, + const char *Ptr) { + outs() << " cmd LC_SUB_LIBRARY\n"; + outs() << " cmdsize " << sub.cmdsize; + if (sub.cmdsize < sizeof(struct MachO::sub_library_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + if (sub.sub_library < sub.cmdsize) { + const char *P = Ptr + sub.sub_library; + outs() << " sub_library " << P << " (offset " << sub.sub_library << ")\n"; + } else { + outs() << " sub_library ?(bad offset " << sub.sub_library << ")\n"; + } +} + +static void PrintSubClientCommand(MachO::sub_client_command sub, + const char *Ptr) { + outs() << " cmd LC_SUB_CLIENT\n"; + outs() << " cmdsize " << sub.cmdsize; + if (sub.cmdsize < sizeof(struct MachO::sub_client_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + if (sub.client < sub.cmdsize) { + const char *P = Ptr + sub.client; + outs() << " client " << P << " (offset " << sub.client << ")\n"; + } else { + outs() << " client ?(bad offset " << sub.client << ")\n"; + } +} + +static void PrintRoutinesCommand(MachO::routines_command r) { + outs() << " cmd LC_ROUTINES\n"; + outs() << " cmdsize " << r.cmdsize; + if (r.cmdsize != sizeof(struct MachO::routines_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + outs() << " init_address " << format("0x%08" PRIx32, r.init_address) << "\n"; + outs() << " init_module " << r.init_module << "\n"; + outs() << " reserved1 " << r.reserved1 << "\n"; + outs() << " reserved2 " << r.reserved2 << "\n"; + outs() << " reserved3 " << r.reserved3 << "\n"; + outs() << " reserved4 " << r.reserved4 << "\n"; + outs() << " reserved5 " << r.reserved5 << "\n"; + outs() << " reserved6 " << r.reserved6 << "\n"; +} + +static void PrintRoutinesCommand64(MachO::routines_command_64 r) { + outs() << " cmd LC_ROUTINES_64\n"; + outs() << " cmdsize " << r.cmdsize; + if (r.cmdsize != sizeof(struct MachO::routines_command_64)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + outs() << " init_address " << format("0x%016" PRIx64, r.init_address) << "\n"; + outs() << " init_module " << r.init_module << "\n"; + outs() << " reserved1 " << r.reserved1 << "\n"; + outs() << " reserved2 " << r.reserved2 << "\n"; + outs() << " reserved3 " << r.reserved3 << "\n"; + outs() << " reserved4 " << r.reserved4 << "\n"; + outs() << " reserved5 " << r.reserved5 << "\n"; + outs() << " reserved6 " << r.reserved6 << "\n"; +} + +static void Print_x86_thread_state64_t(MachO::x86_thread_state64_t &cpu64) { + outs() << " rax " << format("0x%016" PRIx64, cpu64.rax); + outs() << " rbx " << format("0x%016" PRIx64, cpu64.rbx); + outs() << " rcx " << format("0x%016" PRIx64, cpu64.rcx) << "\n"; + outs() << " rdx " << format("0x%016" PRIx64, cpu64.rdx); + outs() << " rdi " << format("0x%016" PRIx64, cpu64.rdi); + outs() << " rsi " << format("0x%016" PRIx64, cpu64.rsi) << "\n"; + outs() << " rbp " << format("0x%016" PRIx64, cpu64.rbp); + outs() << " rsp " << format("0x%016" PRIx64, cpu64.rsp); + outs() << " r8 " << format("0x%016" PRIx64, cpu64.r8) << "\n"; + outs() << " r9 " << format("0x%016" PRIx64, cpu64.r9); + outs() << " r10 " << format("0x%016" PRIx64, cpu64.r10); + outs() << " r11 " << format("0x%016" PRIx64, cpu64.r11) << "\n"; + outs() << " r12 " << format("0x%016" PRIx64, cpu64.r12); + outs() << " r13 " << format("0x%016" PRIx64, cpu64.r13); + outs() << " r14 " << format("0x%016" PRIx64, cpu64.r14) << "\n"; + outs() << " r15 " << format("0x%016" PRIx64, cpu64.r15); + outs() << " rip " << format("0x%016" PRIx64, cpu64.rip) << "\n"; + outs() << "rflags " << format("0x%016" PRIx64, cpu64.rflags); + outs() << " cs " << format("0x%016" PRIx64, cpu64.cs); + outs() << " fs " << format("0x%016" PRIx64, cpu64.fs) << "\n"; + outs() << " gs " << format("0x%016" PRIx64, cpu64.gs) << "\n"; +} + +static void Print_mmst_reg(MachO::mmst_reg_t &r) { + uint32_t f; + outs() << "\t mmst_reg "; + for (f = 0; f < 10; f++) + outs() << format("%02" PRIx32, (r.mmst_reg[f] & 0xff)) << " "; + outs() << "\n"; + outs() << "\t mmst_rsrv "; + for (f = 0; f < 6; f++) + outs() << format("%02" PRIx32, (r.mmst_rsrv[f] & 0xff)) << " "; + outs() << "\n"; +} + +static void Print_xmm_reg(MachO::xmm_reg_t &r) { + uint32_t f; + outs() << "\t xmm_reg "; + for (f = 0; f < 16; f++) + outs() << format("%02" PRIx32, (r.xmm_reg[f] & 0xff)) << " "; + outs() << "\n"; +} + +static void Print_x86_float_state_t(MachO::x86_float_state64_t &fpu) { + outs() << "\t fpu_reserved[0] " << fpu.fpu_reserved[0]; + outs() << " fpu_reserved[1] " << fpu.fpu_reserved[1] << "\n"; + outs() << "\t control: invalid " << fpu.fpu_fcw.invalid; + outs() << " denorm " << fpu.fpu_fcw.denorm; + outs() << " zdiv " << fpu.fpu_fcw.zdiv; + outs() << " ovrfl " << fpu.fpu_fcw.ovrfl; + outs() << " undfl " << fpu.fpu_fcw.undfl; + outs() << " precis " << fpu.fpu_fcw.precis << "\n"; + outs() << "\t\t pc "; + if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_24B) + outs() << "FP_PREC_24B "; + else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_53B) + outs() << "FP_PREC_53B "; + else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_64B) + outs() << "FP_PREC_64B "; + else + outs() << fpu.fpu_fcw.pc << " "; + outs() << "rc "; + if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_NEAR) + outs() << "FP_RND_NEAR "; + else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_DOWN) + outs() << "FP_RND_DOWN "; + else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_UP) + outs() << "FP_RND_UP "; + else if (fpu.fpu_fcw.rc == MachO::x86_FP_CHOP) + outs() << "FP_CHOP "; + outs() << "\n"; + outs() << "\t status: invalid " << fpu.fpu_fsw.invalid; + outs() << " denorm " << fpu.fpu_fsw.denorm; + outs() << " zdiv " << fpu.fpu_fsw.zdiv; + outs() << " ovrfl " << fpu.fpu_fsw.ovrfl; + outs() << " undfl " << fpu.fpu_fsw.undfl; + outs() << " precis " << fpu.fpu_fsw.precis; + outs() << " stkflt " << fpu.fpu_fsw.stkflt << "\n"; + outs() << "\t errsumm " << fpu.fpu_fsw.errsumm; + outs() << " c0 " << fpu.fpu_fsw.c0; + outs() << " c1 " << fpu.fpu_fsw.c1; + outs() << " c2 " << fpu.fpu_fsw.c2; + outs() << " tos " << fpu.fpu_fsw.tos; + outs() << " c3 " << fpu.fpu_fsw.c3; + outs() << " busy " << fpu.fpu_fsw.busy << "\n"; + outs() << "\t fpu_ftw " << format("0x%02" PRIx32, fpu.fpu_ftw); + outs() << " fpu_rsrv1 " << format("0x%02" PRIx32, fpu.fpu_rsrv1); + outs() << " fpu_fop " << format("0x%04" PRIx32, fpu.fpu_fop); + outs() << " fpu_ip " << format("0x%08" PRIx32, fpu.fpu_ip) << "\n"; + outs() << "\t fpu_cs " << format("0x%04" PRIx32, fpu.fpu_cs); + outs() << " fpu_rsrv2 " << format("0x%04" PRIx32, fpu.fpu_rsrv2); + outs() << " fpu_dp " << format("0x%08" PRIx32, fpu.fpu_dp); + outs() << " fpu_ds " << format("0x%04" PRIx32, fpu.fpu_ds) << "\n"; + outs() << "\t fpu_rsrv3 " << format("0x%04" PRIx32, fpu.fpu_rsrv3); + outs() << " fpu_mxcsr " << format("0x%08" PRIx32, fpu.fpu_mxcsr); + outs() << " fpu_mxcsrmask " << format("0x%08" PRIx32, fpu.fpu_mxcsrmask); + outs() << "\n"; + outs() << "\t fpu_stmm0:\n"; + Print_mmst_reg(fpu.fpu_stmm0); + outs() << "\t fpu_stmm1:\n"; + Print_mmst_reg(fpu.fpu_stmm1); + outs() << "\t fpu_stmm2:\n"; + Print_mmst_reg(fpu.fpu_stmm2); + outs() << "\t fpu_stmm3:\n"; + Print_mmst_reg(fpu.fpu_stmm3); + outs() << "\t fpu_stmm4:\n"; + Print_mmst_reg(fpu.fpu_stmm4); + outs() << "\t fpu_stmm5:\n"; + Print_mmst_reg(fpu.fpu_stmm5); + outs() << "\t fpu_stmm6:\n"; + Print_mmst_reg(fpu.fpu_stmm6); + outs() << "\t fpu_stmm7:\n"; + Print_mmst_reg(fpu.fpu_stmm7); + outs() << "\t fpu_xmm0:\n"; + Print_xmm_reg(fpu.fpu_xmm0); + outs() << "\t fpu_xmm1:\n"; + Print_xmm_reg(fpu.fpu_xmm1); + outs() << "\t fpu_xmm2:\n"; + Print_xmm_reg(fpu.fpu_xmm2); + outs() << "\t fpu_xmm3:\n"; + Print_xmm_reg(fpu.fpu_xmm3); + outs() << "\t fpu_xmm4:\n"; + Print_xmm_reg(fpu.fpu_xmm4); + outs() << "\t fpu_xmm5:\n"; + Print_xmm_reg(fpu.fpu_xmm5); + outs() << "\t fpu_xmm6:\n"; + Print_xmm_reg(fpu.fpu_xmm6); + outs() << "\t fpu_xmm7:\n"; + Print_xmm_reg(fpu.fpu_xmm7); + outs() << "\t fpu_xmm8:\n"; + Print_xmm_reg(fpu.fpu_xmm8); + outs() << "\t fpu_xmm9:\n"; + Print_xmm_reg(fpu.fpu_xmm9); + outs() << "\t fpu_xmm10:\n"; + Print_xmm_reg(fpu.fpu_xmm10); + outs() << "\t fpu_xmm11:\n"; + Print_xmm_reg(fpu.fpu_xmm11); + outs() << "\t fpu_xmm12:\n"; + Print_xmm_reg(fpu.fpu_xmm12); + outs() << "\t fpu_xmm13:\n"; + Print_xmm_reg(fpu.fpu_xmm13); + outs() << "\t fpu_xmm14:\n"; + Print_xmm_reg(fpu.fpu_xmm14); + outs() << "\t fpu_xmm15:\n"; + Print_xmm_reg(fpu.fpu_xmm15); + outs() << "\t fpu_rsrv4:\n"; + for (uint32_t f = 0; f < 6; f++) { + outs() << "\t "; + for (uint32_t g = 0; g < 16; g++) + outs() << format("%02" PRIx32, fpu.fpu_rsrv4[f * g]) << " "; + outs() << "\n"; + } + outs() << "\t fpu_reserved1 " << format("0x%08" PRIx32, fpu.fpu_reserved1); + outs() << "\n"; +} + +static void Print_x86_exception_state_t(MachO::x86_exception_state64_t &exc64) { + outs() << "\t trapno " << format("0x%08" PRIx32, exc64.trapno); + outs() << " err " << format("0x%08" PRIx32, exc64.err); + outs() << " faultvaddr " << format("0x%016" PRIx64, exc64.faultvaddr) << "\n"; +} + +static void PrintThreadCommand(MachO::thread_command t, const char *Ptr, + bool isLittleEndian, uint32_t cputype) { + if (t.cmd == MachO::LC_THREAD) + outs() << " cmd LC_THREAD\n"; + else if (t.cmd == MachO::LC_UNIXTHREAD) + outs() << " cmd LC_UNIXTHREAD\n"; + else + outs() << " cmd " << t.cmd << " (unknown)\n"; + outs() << " cmdsize " << t.cmdsize; + if (t.cmdsize < sizeof(struct MachO::thread_command) + 2 * sizeof(uint32_t)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + + const char *begin = Ptr + sizeof(struct MachO::thread_command); + const char *end = Ptr + t.cmdsize; + uint32_t flavor, count, left; + if (cputype == MachO::CPU_TYPE_X86_64) { + while (begin < end) { + if (end - begin > (ptrdiff_t)sizeof(uint32_t)) { + memcpy((char *)&flavor, begin, sizeof(uint32_t)); + begin += sizeof(uint32_t); + } else { + flavor = 0; + begin = end; + } + if (isLittleEndian != sys::IsLittleEndianHost) + sys::swapByteOrder(flavor); + if (end - begin > (ptrdiff_t)sizeof(uint32_t)) { + memcpy((char *)&count, begin, sizeof(uint32_t)); + begin += sizeof(uint32_t); + } else { + count = 0; + begin = end; + } + if (isLittleEndian != sys::IsLittleEndianHost) + sys::swapByteOrder(count); + if (flavor == MachO::x86_THREAD_STATE64) { + outs() << " flavor x86_THREAD_STATE64\n"; + if (count == MachO::x86_THREAD_STATE64_COUNT) + outs() << " count x86_THREAD_STATE64_COUNT\n"; + else + outs() << " count " << count + << " (not x86_THREAD_STATE64_COUNT)\n"; + MachO::x86_thread_state64_t cpu64; + left = end - begin; + if (left >= sizeof(MachO::x86_thread_state64_t)) { + memcpy(&cpu64, begin, sizeof(MachO::x86_thread_state64_t)); + begin += sizeof(MachO::x86_thread_state64_t); + } else { + memset(&cpu64, '\0', sizeof(MachO::x86_thread_state64_t)); + memcpy(&cpu64, begin, left); + begin += left; + } + if (isLittleEndian != sys::IsLittleEndianHost) + swapStruct(cpu64); + Print_x86_thread_state64_t(cpu64); + } else if (flavor == MachO::x86_THREAD_STATE) { + outs() << " flavor x86_THREAD_STATE\n"; + if (count == MachO::x86_THREAD_STATE_COUNT) + outs() << " count x86_THREAD_STATE_COUNT\n"; + else + outs() << " count " << count + << " (not x86_THREAD_STATE_COUNT)\n"; + struct MachO::x86_thread_state_t ts; + left = end - begin; + if (left >= sizeof(MachO::x86_thread_state_t)) { + memcpy(&ts, begin, sizeof(MachO::x86_thread_state_t)); + begin += sizeof(MachO::x86_thread_state_t); + } else { + memset(&ts, '\0', sizeof(MachO::x86_thread_state_t)); + memcpy(&ts, begin, left); + begin += left; + } + if (isLittleEndian != sys::IsLittleEndianHost) + swapStruct(ts); + if (ts.tsh.flavor == MachO::x86_THREAD_STATE64) { + outs() << "\t tsh.flavor x86_THREAD_STATE64 "; + if (ts.tsh.count == MachO::x86_THREAD_STATE64_COUNT) + outs() << "tsh.count x86_THREAD_STATE64_COUNT\n"; + else + outs() << "tsh.count " << ts.tsh.count + << " (not x86_THREAD_STATE64_COUNT\n"; + Print_x86_thread_state64_t(ts.uts.ts64); + } else { + outs() << "\t tsh.flavor " << ts.tsh.flavor << " tsh.count " + << ts.tsh.count << "\n"; + } + } else if (flavor == MachO::x86_FLOAT_STATE) { + outs() << " flavor x86_FLOAT_STATE\n"; + if (count == MachO::x86_FLOAT_STATE_COUNT) + outs() << " count x86_FLOAT_STATE_COUNT\n"; + else + outs() << " count " << count << " (not x86_FLOAT_STATE_COUNT)\n"; + struct MachO::x86_float_state_t fs; + left = end - begin; + if (left >= sizeof(MachO::x86_float_state_t)) { + memcpy(&fs, begin, sizeof(MachO::x86_float_state_t)); + begin += sizeof(MachO::x86_float_state_t); + } else { + memset(&fs, '\0', sizeof(MachO::x86_float_state_t)); + memcpy(&fs, begin, left); + begin += left; + } + if (isLittleEndian != sys::IsLittleEndianHost) + swapStruct(fs); + if (fs.fsh.flavor == MachO::x86_FLOAT_STATE64) { + outs() << "\t fsh.flavor x86_FLOAT_STATE64 "; + if (fs.fsh.count == MachO::x86_FLOAT_STATE64_COUNT) + outs() << "fsh.count x86_FLOAT_STATE64_COUNT\n"; + else + outs() << "fsh.count " << fs.fsh.count + << " (not x86_FLOAT_STATE64_COUNT\n"; + Print_x86_float_state_t(fs.ufs.fs64); + } else { + outs() << "\t fsh.flavor " << fs.fsh.flavor << " fsh.count " + << fs.fsh.count << "\n"; + } + } else if (flavor == MachO::x86_EXCEPTION_STATE) { + outs() << " flavor x86_EXCEPTION_STATE\n"; + if (count == MachO::x86_EXCEPTION_STATE_COUNT) + outs() << " count x86_EXCEPTION_STATE_COUNT\n"; + else + outs() << " count " << count + << " (not x86_EXCEPTION_STATE_COUNT)\n"; + struct MachO::x86_exception_state_t es; + left = end - begin; + if (left >= sizeof(MachO::x86_exception_state_t)) { + memcpy(&es, begin, sizeof(MachO::x86_exception_state_t)); + begin += sizeof(MachO::x86_exception_state_t); + } else { + memset(&es, '\0', sizeof(MachO::x86_exception_state_t)); + memcpy(&es, begin, left); + begin += left; + } + if (isLittleEndian != sys::IsLittleEndianHost) + swapStruct(es); + if (es.esh.flavor == MachO::x86_EXCEPTION_STATE64) { + outs() << "\t esh.flavor x86_EXCEPTION_STATE64\n"; + if (es.esh.count == MachO::x86_EXCEPTION_STATE64_COUNT) + outs() << "\t esh.count x86_EXCEPTION_STATE64_COUNT\n"; + else + outs() << "\t esh.count " << es.esh.count + << " (not x86_EXCEPTION_STATE64_COUNT\n"; + Print_x86_exception_state_t(es.ues.es64); + } else { + outs() << "\t esh.flavor " << es.esh.flavor << " esh.count " + << es.esh.count << "\n"; + } + } else { + outs() << " flavor " << flavor << " (unknown)\n"; + outs() << " count " << count << "\n"; + outs() << " state (unknown)\n"; + begin += count * sizeof(uint32_t); + } + } + } else { + while (begin < end) { + if (end - begin > (ptrdiff_t)sizeof(uint32_t)) { + memcpy((char *)&flavor, begin, sizeof(uint32_t)); + begin += sizeof(uint32_t); + } else { + flavor = 0; + begin = end; + } + if (isLittleEndian != sys::IsLittleEndianHost) + sys::swapByteOrder(flavor); + if (end - begin > (ptrdiff_t)sizeof(uint32_t)) { + memcpy((char *)&count, begin, sizeof(uint32_t)); + begin += sizeof(uint32_t); + } else { + count = 0; + begin = end; + } + if (isLittleEndian != sys::IsLittleEndianHost) + sys::swapByteOrder(count); + outs() << " flavor " << flavor << "\n"; + outs() << " count " << count << "\n"; + outs() << " state (Unknown cputype/cpusubtype)\n"; + begin += count * sizeof(uint32_t); + } + } +} + +static void PrintDylibCommand(MachO::dylib_command dl, const char *Ptr) { + if (dl.cmd == MachO::LC_ID_DYLIB) + outs() << " cmd LC_ID_DYLIB\n"; + else if (dl.cmd == MachO::LC_LOAD_DYLIB) + outs() << " cmd LC_LOAD_DYLIB\n"; + else if (dl.cmd == MachO::LC_LOAD_WEAK_DYLIB) + outs() << " cmd LC_LOAD_WEAK_DYLIB\n"; + else if (dl.cmd == MachO::LC_REEXPORT_DYLIB) + outs() << " cmd LC_REEXPORT_DYLIB\n"; + else if (dl.cmd == MachO::LC_LAZY_LOAD_DYLIB) + outs() << " cmd LC_LAZY_LOAD_DYLIB\n"; + else if (dl.cmd == MachO::LC_LOAD_UPWARD_DYLIB) + outs() << " cmd LC_LOAD_UPWARD_DYLIB\n"; + else + outs() << " cmd " << dl.cmd << " (unknown)\n"; + outs() << " cmdsize " << dl.cmdsize; + if (dl.cmdsize < sizeof(struct MachO::dylib_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + if (dl.dylib.name < dl.cmdsize) { + const char *P = (const char *)(Ptr) + dl.dylib.name; + outs() << " name " << P << " (offset " << dl.dylib.name << ")\n"; + } else { + outs() << " name ?(bad offset " << dl.dylib.name << ")\n"; + } + outs() << " time stamp " << dl.dylib.timestamp << " "; + time_t t = dl.dylib.timestamp; + outs() << ctime(&t); + outs() << " current version "; + if (dl.dylib.current_version == 0xffffffff) + outs() << "n/a\n"; + else + outs() << ((dl.dylib.current_version >> 16) & 0xffff) << "." + << ((dl.dylib.current_version >> 8) & 0xff) << "." + << (dl.dylib.current_version & 0xff) << "\n"; + outs() << "compatibility version "; + if (dl.dylib.compatibility_version == 0xffffffff) + outs() << "n/a\n"; + else + outs() << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "." + << ((dl.dylib.compatibility_version >> 8) & 0xff) << "." + << (dl.dylib.compatibility_version & 0xff) << "\n"; +} + +static void PrintLinkEditDataCommand(MachO::linkedit_data_command ld, + uint32_t object_size) { + if (ld.cmd == MachO::LC_CODE_SIGNATURE) + outs() << " cmd LC_FUNCTION_STARTS\n"; + else if (ld.cmd == MachO::LC_SEGMENT_SPLIT_INFO) + outs() << " cmd LC_SEGMENT_SPLIT_INFO\n"; + else if (ld.cmd == MachO::LC_FUNCTION_STARTS) + outs() << " cmd LC_FUNCTION_STARTS\n"; + else if (ld.cmd == MachO::LC_DATA_IN_CODE) + outs() << " cmd LC_DATA_IN_CODE\n"; + else if (ld.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS) + outs() << " cmd LC_DYLIB_CODE_SIGN_DRS\n"; + else if (ld.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) + outs() << " cmd LC_LINKER_OPTIMIZATION_HINT\n"; + else + outs() << " cmd " << ld.cmd << " (?)\n"; + outs() << " cmdsize " << ld.cmdsize; + if (ld.cmdsize != sizeof(struct MachO::linkedit_data_command)) + outs() << " Incorrect size\n"; + else + outs() << "\n"; + outs() << " dataoff " << ld.dataoff; + if (ld.dataoff > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; + outs() << " datasize " << ld.datasize; + uint64_t big_size = ld.dataoff; + big_size += ld.datasize; + if (big_size > object_size) + outs() << " (past end of file)\n"; + else + outs() << "\n"; +} + +static void PrintLoadCommands(const MachOObjectFile *Obj, uint32_t ncmds, + uint32_t filetype, uint32_t cputype, + bool verbose) { + if (ncmds == 0) + return; + StringRef Buf = Obj->getData(); + MachOObjectFile::LoadCommandInfo Command = Obj->getFirstLoadCommandInfo(); + for (unsigned i = 0;; ++i) { + outs() << "Load command " << i << "\n"; + if (Command.C.cmd == MachO::LC_SEGMENT) { + MachO::segment_command SLC = Obj->getSegmentLoadCommand(Command); + const char *sg_segname = SLC.segname; + PrintSegmentCommand(SLC.cmd, SLC.cmdsize, SLC.segname, SLC.vmaddr, + SLC.vmsize, SLC.fileoff, SLC.filesize, SLC.maxprot, + SLC.initprot, SLC.nsects, SLC.flags, Buf.size(), + verbose); + for (unsigned j = 0; j < SLC.nsects; j++) { + MachO::section S = Obj->getSection(Command, j); + PrintSection(S.sectname, S.segname, S.addr, S.size, S.offset, S.align, + S.reloff, S.nreloc, S.flags, S.reserved1, S.reserved2, + SLC.cmd, sg_segname, filetype, Buf.size(), verbose); + } + } else if (Command.C.cmd == MachO::LC_SEGMENT_64) { + MachO::segment_command_64 SLC_64 = Obj->getSegment64LoadCommand(Command); + const char *sg_segname = SLC_64.segname; + PrintSegmentCommand(SLC_64.cmd, SLC_64.cmdsize, SLC_64.segname, + SLC_64.vmaddr, SLC_64.vmsize, SLC_64.fileoff, + SLC_64.filesize, SLC_64.maxprot, SLC_64.initprot, + SLC_64.nsects, SLC_64.flags, Buf.size(), verbose); + for (unsigned j = 0; j < SLC_64.nsects; j++) { + MachO::section_64 S_64 = Obj->getSection64(Command, j); + PrintSection(S_64.sectname, S_64.segname, S_64.addr, S_64.size, + S_64.offset, S_64.align, S_64.reloff, S_64.nreloc, + S_64.flags, S_64.reserved1, S_64.reserved2, SLC_64.cmd, + sg_segname, filetype, Buf.size(), verbose); + } + } else if (Command.C.cmd == MachO::LC_SYMTAB) { + MachO::symtab_command Symtab = Obj->getSymtabLoadCommand(); + PrintSymtabLoadCommand(Symtab, Obj->is64Bit(), Buf.size()); + } else if (Command.C.cmd == MachO::LC_DYSYMTAB) { + MachO::dysymtab_command Dysymtab = Obj->getDysymtabLoadCommand(); + MachO::symtab_command Symtab = Obj->getSymtabLoadCommand(); + PrintDysymtabLoadCommand(Dysymtab, Symtab.nsyms, Buf.size(), + Obj->is64Bit()); + } else if (Command.C.cmd == MachO::LC_DYLD_INFO || + Command.C.cmd == MachO::LC_DYLD_INFO_ONLY) { + MachO::dyld_info_command DyldInfo = Obj->getDyldInfoLoadCommand(Command); + PrintDyldInfoLoadCommand(DyldInfo, Buf.size()); + } else if (Command.C.cmd == MachO::LC_LOAD_DYLINKER || + Command.C.cmd == MachO::LC_ID_DYLINKER || + Command.C.cmd == MachO::LC_DYLD_ENVIRONMENT) { + MachO::dylinker_command Dyld = Obj->getDylinkerCommand(Command); + PrintDyldLoadCommand(Dyld, Command.Ptr); + } else if (Command.C.cmd == MachO::LC_UUID) { + MachO::uuid_command Uuid = Obj->getUuidCommand(Command); + PrintUuidLoadCommand(Uuid); + } else if (Command.C.cmd == MachO::LC_RPATH) { + MachO::rpath_command Rpath = Obj->getRpathCommand(Command); + PrintRpathLoadCommand(Rpath, Command.Ptr); + } else if (Command.C.cmd == MachO::LC_VERSION_MIN_MACOSX || + Command.C.cmd == MachO::LC_VERSION_MIN_IPHONEOS) { + MachO::version_min_command Vd = Obj->getVersionMinLoadCommand(Command); + PrintVersionMinLoadCommand(Vd); + } else if (Command.C.cmd == MachO::LC_SOURCE_VERSION) { + MachO::source_version_command Sd = Obj->getSourceVersionCommand(Command); + PrintSourceVersionCommand(Sd); + } else if (Command.C.cmd == MachO::LC_MAIN) { + MachO::entry_point_command Ep = Obj->getEntryPointCommand(Command); + PrintEntryPointCommand(Ep); + } else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO) { + MachO::encryption_info_command Ei = + Obj->getEncryptionInfoCommand(Command); + PrintEncryptionInfoCommand(Ei, Buf.size()); + } else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO_64) { + MachO::encryption_info_command_64 Ei = + Obj->getEncryptionInfoCommand64(Command); + PrintEncryptionInfoCommand64(Ei, Buf.size()); + } else if (Command.C.cmd == MachO::LC_LINKER_OPTION) { + MachO::linker_option_command Lo = + Obj->getLinkerOptionLoadCommand(Command); + PrintLinkerOptionCommand(Lo, Command.Ptr); + } else if (Command.C.cmd == MachO::LC_SUB_FRAMEWORK) { + MachO::sub_framework_command Sf = Obj->getSubFrameworkCommand(Command); + PrintSubFrameworkCommand(Sf, Command.Ptr); + } else if (Command.C.cmd == MachO::LC_SUB_UMBRELLA) { + MachO::sub_umbrella_command Sf = Obj->getSubUmbrellaCommand(Command); + PrintSubUmbrellaCommand(Sf, Command.Ptr); + } else if (Command.C.cmd == MachO::LC_SUB_LIBRARY) { + MachO::sub_library_command Sl = Obj->getSubLibraryCommand(Command); + PrintSubLibraryCommand(Sl, Command.Ptr); + } else if (Command.C.cmd == MachO::LC_SUB_CLIENT) { + MachO::sub_client_command Sc = Obj->getSubClientCommand(Command); + PrintSubClientCommand(Sc, Command.Ptr); + } else if (Command.C.cmd == MachO::LC_ROUTINES) { + MachO::routines_command Rc = Obj->getRoutinesCommand(Command); + PrintRoutinesCommand(Rc); + } else if (Command.C.cmd == MachO::LC_ROUTINES_64) { + MachO::routines_command_64 Rc = Obj->getRoutinesCommand64(Command); + PrintRoutinesCommand64(Rc); + } else if (Command.C.cmd == MachO::LC_THREAD || + Command.C.cmd == MachO::LC_UNIXTHREAD) { + MachO::thread_command Tc = Obj->getThreadCommand(Command); + PrintThreadCommand(Tc, Command.Ptr, Obj->isLittleEndian(), cputype); + } else if (Command.C.cmd == MachO::LC_LOAD_DYLIB || + Command.C.cmd == MachO::LC_ID_DYLIB || + Command.C.cmd == MachO::LC_LOAD_WEAK_DYLIB || + Command.C.cmd == MachO::LC_REEXPORT_DYLIB || + Command.C.cmd == MachO::LC_LAZY_LOAD_DYLIB || + Command.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB) { + MachO::dylib_command Dl = Obj->getDylibIDLoadCommand(Command); + PrintDylibCommand(Dl, Command.Ptr); + } else if (Command.C.cmd == MachO::LC_CODE_SIGNATURE || + Command.C.cmd == MachO::LC_SEGMENT_SPLIT_INFO || + Command.C.cmd == MachO::LC_FUNCTION_STARTS || + Command.C.cmd == MachO::LC_DATA_IN_CODE || + Command.C.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS || + Command.C.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) { + MachO::linkedit_data_command Ld = + Obj->getLinkeditDataLoadCommand(Command); + PrintLinkEditDataCommand(Ld, Buf.size()); + } else { + outs() << " cmd ?(" << format("0x%08" PRIx32, Command.C.cmd) + << ")\n"; + outs() << " cmdsize " << Command.C.cmdsize << "\n"; + // TODO: get and print the raw bytes of the load command. + } + // TODO: print all the other kinds of load commands. + if (i == ncmds - 1) + break; + else + Command = Obj->getNextLoadCommandInfo(Command); + } +} + +static void getAndPrintMachHeader(const MachOObjectFile *Obj, uint32_t &ncmds, + uint32_t &filetype, uint32_t &cputype, + bool verbose) { + if (Obj->is64Bit()) { + MachO::mach_header_64 H_64; + H_64 = Obj->getHeader64(); + PrintMachHeader(H_64.magic, H_64.cputype, H_64.cpusubtype, H_64.filetype, + H_64.ncmds, H_64.sizeofcmds, H_64.flags, verbose); + ncmds = H_64.ncmds; + filetype = H_64.filetype; + cputype = H_64.cputype; + } else { + MachO::mach_header H; + H = Obj->getHeader(); + PrintMachHeader(H.magic, H.cputype, H.cpusubtype, H.filetype, H.ncmds, + H.sizeofcmds, H.flags, verbose); + ncmds = H.ncmds; + filetype = H.filetype; + cputype = H.cputype; + } +} + +void llvm::printMachOFileHeader(const object::ObjectFile *Obj) { + const MachOObjectFile *file = dyn_cast<const MachOObjectFile>(Obj); + uint32_t ncmds = 0; + uint32_t filetype = 0; + uint32_t cputype = 0; + getAndPrintMachHeader(file, ncmds, filetype, cputype, true); + PrintLoadCommands(file, ncmds, filetype, cputype, true); +} + +//===----------------------------------------------------------------------===// +// export trie dumping +//===----------------------------------------------------------------------===// + +void llvm::printMachOExportsTrie(const object::MachOObjectFile *Obj) { + for (const llvm::object::ExportEntry &Entry : Obj->exports()) { + uint64_t Flags = Entry.flags(); + bool ReExport = (Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT); + bool WeakDef = (Flags & MachO::EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION); + bool ThreadLocal = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) == + MachO::EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL); + bool Abs = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) == + MachO::EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE); + bool Resolver = (Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER); + if (ReExport) + outs() << "[re-export] "; + else + outs() << format("0x%08llX ", + Entry.address()); // FIXME:add in base address + outs() << Entry.name(); + if (WeakDef || ThreadLocal || Resolver || Abs) { + bool NeedsComma = false; + outs() << " ["; + if (WeakDef) { + outs() << "weak_def"; + NeedsComma = true; + } + if (ThreadLocal) { + if (NeedsComma) + outs() << ", "; + outs() << "per-thread"; + NeedsComma = true; + } + if (Abs) { + if (NeedsComma) + outs() << ", "; + outs() << "absolute"; + NeedsComma = true; + } + if (Resolver) { + if (NeedsComma) + outs() << ", "; + outs() << format("resolver=0x%08llX", Entry.other()); + NeedsComma = true; + } + outs() << "]"; + } + if (ReExport) { + StringRef DylibName = "unknown"; + int Ordinal = Entry.other() - 1; + Obj->getLibraryShortNameByIndex(Ordinal, DylibName); + if (Entry.otherName().empty()) + outs() << " (from " << DylibName << ")"; + else + outs() << " (" << Entry.otherName() << " from " << DylibName << ")"; + } + outs() << "\n"; + } +} + +//===----------------------------------------------------------------------===// +// rebase table dumping +//===----------------------------------------------------------------------===// + +namespace { +class SegInfo { +public: + SegInfo(const object::MachOObjectFile *Obj); + + StringRef segmentName(uint32_t SegIndex); + StringRef sectionName(uint32_t SegIndex, uint64_t SegOffset); + uint64_t address(uint32_t SegIndex, uint64_t SegOffset); + +private: + struct SectionInfo { + uint64_t Address; + uint64_t Size; + StringRef SectionName; + StringRef SegmentName; + uint64_t OffsetInSegment; + uint64_t SegmentStartAddress; + uint32_t SegmentIndex; + }; + const SectionInfo &findSection(uint32_t SegIndex, uint64_t SegOffset); + SmallVector<SectionInfo, 32> Sections; +}; +} + +SegInfo::SegInfo(const object::MachOObjectFile *Obj) { + // Build table of sections so segIndex/offset pairs can be translated. + uint32_t CurSegIndex = Obj->hasPageZeroSegment() ? 1 : 0; + StringRef CurSegName; + uint64_t CurSegAddress; + for (const SectionRef &Section : Obj->sections()) { + SectionInfo Info; + if (error(Section.getName(Info.SectionName))) + return; + Info.Address = Section.getAddress(); + Info.Size = Section.getSize(); + Info.SegmentName = + Obj->getSectionFinalSegmentName(Section.getRawDataRefImpl()); + if (!Info.SegmentName.equals(CurSegName)) { + ++CurSegIndex; + CurSegName = Info.SegmentName; + CurSegAddress = Info.Address; + } + Info.SegmentIndex = CurSegIndex - 1; + Info.OffsetInSegment = Info.Address - CurSegAddress; + Info.SegmentStartAddress = CurSegAddress; + Sections.push_back(Info); + } +} + +StringRef SegInfo::segmentName(uint32_t SegIndex) { + for (const SectionInfo &SI : Sections) { + if (SI.SegmentIndex == SegIndex) + return SI.SegmentName; + } + llvm_unreachable("invalid segIndex"); +} + +const SegInfo::SectionInfo &SegInfo::findSection(uint32_t SegIndex, + uint64_t OffsetInSeg) { + for (const SectionInfo &SI : Sections) { + if (SI.SegmentIndex != SegIndex) + continue; + if (SI.OffsetInSegment > OffsetInSeg) + continue; + if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size)) + continue; + return SI; + } + llvm_unreachable("segIndex and offset not in any section"); +} + +StringRef SegInfo::sectionName(uint32_t SegIndex, uint64_t OffsetInSeg) { + return findSection(SegIndex, OffsetInSeg).SectionName; +} + +uint64_t SegInfo::address(uint32_t SegIndex, uint64_t OffsetInSeg) { + const SectionInfo &SI = findSection(SegIndex, OffsetInSeg); + return SI.SegmentStartAddress + OffsetInSeg; +} + +void llvm::printMachORebaseTable(const object::MachOObjectFile *Obj) { + // Build table of sections so names can used in final output. + SegInfo sectionTable(Obj); + + outs() << "segment section address type\n"; + for (const llvm::object::MachORebaseEntry &Entry : Obj->rebaseTable()) { + uint32_t SegIndex = Entry.segmentIndex(); + uint64_t OffsetInSeg = Entry.segmentOffset(); + StringRef SegmentName = sectionTable.segmentName(SegIndex); + StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg); + uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); + + // Table lines look like: __DATA __nl_symbol_ptr 0x0000F00C pointer + outs() << format("%-8s %-18s 0x%08" PRIX64 " %s\n", + SegmentName.str().c_str(), SectionName.str().c_str(), + Address, Entry.typeName().str().c_str()); + } +} + +static StringRef ordinalName(const object::MachOObjectFile *Obj, int Ordinal) { + StringRef DylibName; + switch (Ordinal) { + case MachO::BIND_SPECIAL_DYLIB_SELF: + return "this-image"; + case MachO::BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE: + return "main-executable"; + case MachO::BIND_SPECIAL_DYLIB_FLAT_LOOKUP: + return "flat-namespace"; + default: + if (Ordinal > 0) { + std::error_code EC = + Obj->getLibraryShortNameByIndex(Ordinal - 1, DylibName); + if (EC) + return "<<bad library ordinal>>"; + return DylibName; + } + } + return "<<unknown special ordinal>>"; +} + +//===----------------------------------------------------------------------===// +// bind table dumping +//===----------------------------------------------------------------------===// + +void llvm::printMachOBindTable(const object::MachOObjectFile *Obj) { + // Build table of sections so names can used in final output. + SegInfo sectionTable(Obj); + + outs() << "segment section address type " + "addend dylib symbol\n"; + for (const llvm::object::MachOBindEntry &Entry : Obj->bindTable()) { + uint32_t SegIndex = Entry.segmentIndex(); + uint64_t OffsetInSeg = Entry.segmentOffset(); + StringRef SegmentName = sectionTable.segmentName(SegIndex); + StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg); + uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); + + // Table lines look like: + // __DATA __got 0x00012010 pointer 0 libSystem ___stack_chk_guard + StringRef Attr; + if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_WEAK_IMPORT) + Attr = " (weak_import)"; + outs() << left_justify(SegmentName, 8) << " " + << left_justify(SectionName, 18) << " " + << format_hex(Address, 10, true) << " " + << left_justify(Entry.typeName(), 8) << " " + << format_decimal(Entry.addend(), 8) << " " + << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " " + << Entry.symbolName() << Attr << "\n"; + } +} + +//===----------------------------------------------------------------------===// +// lazy bind table dumping +//===----------------------------------------------------------------------===// + +void llvm::printMachOLazyBindTable(const object::MachOObjectFile *Obj) { + // Build table of sections so names can used in final output. + SegInfo sectionTable(Obj); + + outs() << "segment section address " + "dylib symbol\n"; + for (const llvm::object::MachOBindEntry &Entry : Obj->lazyBindTable()) { + uint32_t SegIndex = Entry.segmentIndex(); + uint64_t OffsetInSeg = Entry.segmentOffset(); + StringRef SegmentName = sectionTable.segmentName(SegIndex); + StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg); + uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); + + // Table lines look like: + // __DATA __got 0x00012010 libSystem ___stack_chk_guard + outs() << left_justify(SegmentName, 8) << " " + << left_justify(SectionName, 18) << " " + << format_hex(Address, 10, true) << " " + << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " " + << Entry.symbolName() << "\n"; + } +} + +//===----------------------------------------------------------------------===// +// weak bind table dumping +//===----------------------------------------------------------------------===// + +void llvm::printMachOWeakBindTable(const object::MachOObjectFile *Obj) { + // Build table of sections so names can used in final output. + SegInfo sectionTable(Obj); + + outs() << "segment section address " + "type addend symbol\n"; + for (const llvm::object::MachOBindEntry &Entry : Obj->weakBindTable()) { + // Strong symbols don't have a location to update. + if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) { + outs() << " strong " + << Entry.symbolName() << "\n"; + continue; + } + uint32_t SegIndex = Entry.segmentIndex(); + uint64_t OffsetInSeg = Entry.segmentOffset(); + StringRef SegmentName = sectionTable.segmentName(SegIndex); + StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg); + uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); + + // Table lines look like: + // __DATA __data 0x00001000 pointer 0 _foo + outs() << left_justify(SegmentName, 8) << " " + << left_justify(SectionName, 18) << " " + << format_hex(Address, 10, true) << " " + << left_justify(Entry.typeName(), 8) << " " + << format_decimal(Entry.addend(), 8) << " " << Entry.symbolName() + << "\n"; + } +} + +// get_dyld_bind_info_symbolname() is used for disassembly and passed an +// address, ReferenceValue, in the Mach-O file and looks in the dyld bind +// information for that address. If the address is found its binding symbol +// name is returned. If not nullptr is returned. +static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue, + struct DisassembleInfo *info) { + if (info->bindtable == nullptr) { + info->bindtable = new (BindTable); + SegInfo sectionTable(info->O); + for (const llvm::object::MachOBindEntry &Entry : info->O->bindTable()) { + uint32_t SegIndex = Entry.segmentIndex(); + uint64_t OffsetInSeg = Entry.segmentOffset(); + uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); + const char *SymbolName = nullptr; + StringRef name = Entry.symbolName(); + if (!name.empty()) + SymbolName = name.data(); + info->bindtable->push_back(std::make_pair(Address, SymbolName)); + } + } + for (bind_table_iterator BI = info->bindtable->begin(), + BE = info->bindtable->end(); + BI != BE; ++BI) { + uint64_t Address = BI->first; + if (ReferenceValue == Address) { + const char *SymbolName = BI->second; + return SymbolName; + } + } + return nullptr; +} diff --git a/contrib/llvm/tools/llvm-objdump/llvm-objdump.cpp b/contrib/llvm/tools/llvm-objdump/llvm-objdump.cpp new file mode 100644 index 0000000..aff6272 --- /dev/null +++ b/contrib/llvm/tools/llvm-objdump/llvm-objdump.cpp @@ -0,0 +1,904 @@ +//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This program is a utility that works like binutils "objdump", that is, it +// dumps out a plethora of information about an object file depending on the +// flags. +// +// The flags and output of this program should be near identical to those of +// binutils objdump. +// +//===----------------------------------------------------------------------===// + +#include "llvm-objdump.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/Triple.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCDisassembler.h" +#include "llvm/MC/MCInst.h" +#include "llvm/MC/MCInstPrinter.h" +#include "llvm/MC/MCInstrAnalysis.h" +#include "llvm/MC/MCInstrInfo.h" +#include "llvm/MC/MCObjectFileInfo.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/MC/MCRelocationInfo.h" +#include "llvm/MC/MCSubtargetInfo.h" +#include "llvm/Object/Archive.h" +#include "llvm/Object/COFF.h" +#include "llvm/Object/MachO.h" +#include "llvm/Object/ObjectFile.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FileSystem.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/Support/Host.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/PrettyStackTrace.h" +#include "llvm/Support/Signals.h" +#include "llvm/Support/SourceMgr.h" +#include "llvm/Support/TargetRegistry.h" +#include "llvm/Support/TargetSelect.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cctype> +#include <cstring> +#include <system_error> + +using namespace llvm; +using namespace object; + +static cl::list<std::string> +InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore); + +cl::opt<bool> +llvm::Disassemble("disassemble", + cl::desc("Display assembler mnemonics for the machine instructions")); +static cl::alias +Disassembled("d", cl::desc("Alias for --disassemble"), + cl::aliasopt(Disassemble)); + +static cl::opt<bool> +Relocations("r", cl::desc("Display the relocation entries in the file")); + +static cl::opt<bool> +SectionContents("s", cl::desc("Display the content of each section")); + +static cl::opt<bool> +SymbolTable("t", cl::desc("Display the symbol table")); + +cl::opt<bool> +llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols")); + +cl::opt<bool> +llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info")); + +cl::opt<bool> +llvm::Bind("bind", cl::desc("Display mach-o binding info")); + +cl::opt<bool> +llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info")); + +cl::opt<bool> +llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info")); + +static cl::opt<bool> +MachOOpt("macho", cl::desc("Use MachO specific object file parser")); +static cl::alias +MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt)); + +cl::opt<std::string> +llvm::TripleName("triple", cl::desc("Target triple to disassemble for, " + "see -version for available targets")); + +cl::opt<std::string> +llvm::MCPU("mcpu", + cl::desc("Target a specific cpu type (-mcpu=help for details)"), + cl::value_desc("cpu-name"), + cl::init("")); + +cl::opt<std::string> +llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, " + "see -version for available targets")); + +static cl::opt<bool> +SectionHeaders("section-headers", cl::desc("Display summaries of the headers " + "for each section.")); +static cl::alias +SectionHeadersShort("headers", cl::desc("Alias for --section-headers"), + cl::aliasopt(SectionHeaders)); +static cl::alias +SectionHeadersShorter("h", cl::desc("Alias for --section-headers"), + cl::aliasopt(SectionHeaders)); + +cl::list<std::string> +llvm::MAttrs("mattr", + cl::CommaSeparated, + cl::desc("Target specific attributes"), + cl::value_desc("a1,+a2,-a3,...")); + +cl::opt<bool> +llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling " + "instructions, do not print " + "the instruction bytes.")); + +static cl::opt<bool> +UnwindInfo("unwind-info", cl::desc("Display unwind information")); + +static cl::alias +UnwindInfoShort("u", cl::desc("Alias for --unwind-info"), + cl::aliasopt(UnwindInfo)); + +cl::opt<bool> +llvm::PrivateHeaders("private-headers", + cl::desc("Display format specific file headers")); + +static cl::alias +PrivateHeadersShort("p", cl::desc("Alias for --private-headers"), + cl::aliasopt(PrivateHeaders)); + +static StringRef ToolName; +static int ReturnValue = EXIT_SUCCESS; + +bool llvm::error(std::error_code EC) { + if (!EC) + return false; + + outs() << ToolName << ": error reading file: " << EC.message() << ".\n"; + outs().flush(); + ReturnValue = EXIT_FAILURE; + return true; +} + +static const Target *getTarget(const ObjectFile *Obj = nullptr) { + // Figure out the target triple. + llvm::Triple TheTriple("unknown-unknown-unknown"); + if (TripleName.empty()) { + if (Obj) { + TheTriple.setArch(Triple::ArchType(Obj->getArch())); + // TheTriple defaults to ELF, and COFF doesn't have an environment: + // the best we can do here is indicate that it is mach-o. + if (Obj->isMachO()) + TheTriple.setObjectFormat(Triple::MachO); + + if (Obj->isCOFF()) { + const auto COFFObj = dyn_cast<COFFObjectFile>(Obj); + if (COFFObj->getArch() == Triple::thumb) + TheTriple.setTriple("thumbv7-windows"); + } + } + } else + TheTriple.setTriple(Triple::normalize(TripleName)); + + // Get the target specific parser. + std::string Error; + const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, + Error); + if (!TheTarget) { + errs() << ToolName << ": " << Error; + return nullptr; + } + + // Update the triple name and return the found target. + TripleName = TheTriple.getTriple(); + return TheTarget; +} + +void llvm::DumpBytes(StringRef bytes) { + static const char hex_rep[] = "0123456789abcdef"; + // FIXME: The real way to do this is to figure out the longest instruction + // and align to that size before printing. I'll fix this when I get + // around to outputting relocations. + // 15 is the longest x86 instruction + // 3 is for the hex rep of a byte + a space. + // 1 is for the null terminator. + enum { OutputSize = (15 * 3) + 1 }; + char output[OutputSize]; + + assert(bytes.size() <= 15 + && "DumpBytes only supports instructions of up to 15 bytes"); + memset(output, ' ', sizeof(output)); + unsigned index = 0; + for (StringRef::iterator i = bytes.begin(), + e = bytes.end(); i != e; ++i) { + output[index] = hex_rep[(*i & 0xF0) >> 4]; + output[index + 1] = hex_rep[*i & 0xF]; + index += 3; + } + + output[sizeof(output) - 1] = 0; + outs() << output; +} + +bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) { + uint64_t a_addr, b_addr; + if (error(a.getOffset(a_addr))) return false; + if (error(b.getOffset(b_addr))) return false; + return a_addr < b_addr; +} + +static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) { + const Target *TheTarget = getTarget(Obj); + // getTarget() will have already issued a diagnostic if necessary, so + // just bail here if it failed. + if (!TheTarget) + return; + + // Package up features to be passed to target/subtarget + std::string FeaturesStr; + if (MAttrs.size()) { + SubtargetFeatures Features; + for (unsigned i = 0; i != MAttrs.size(); ++i) + Features.AddFeature(MAttrs[i]); + FeaturesStr = Features.getString(); + } + + std::unique_ptr<const MCRegisterInfo> MRI( + TheTarget->createMCRegInfo(TripleName)); + if (!MRI) { + errs() << "error: no register info for target " << TripleName << "\n"; + return; + } + + // Set up disassembler. + std::unique_ptr<const MCAsmInfo> AsmInfo( + TheTarget->createMCAsmInfo(*MRI, TripleName)); + if (!AsmInfo) { + errs() << "error: no assembly info for target " << TripleName << "\n"; + return; + } + + std::unique_ptr<const MCSubtargetInfo> STI( + TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr)); + if (!STI) { + errs() << "error: no subtarget info for target " << TripleName << "\n"; + return; + } + + std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); + if (!MII) { + errs() << "error: no instruction info for target " << TripleName << "\n"; + return; + } + + std::unique_ptr<const MCObjectFileInfo> MOFI(new MCObjectFileInfo); + MCContext Ctx(AsmInfo.get(), MRI.get(), MOFI.get()); + + std::unique_ptr<MCDisassembler> DisAsm( + TheTarget->createMCDisassembler(*STI, Ctx)); + + if (!DisAsm) { + errs() << "error: no disassembler for target " << TripleName << "\n"; + return; + } + + std::unique_ptr<const MCInstrAnalysis> MIA( + TheTarget->createMCInstrAnalysis(MII.get())); + + int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); + std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( + AsmPrinterVariant, *AsmInfo, *MII, *MRI, *STI)); + if (!IP) { + errs() << "error: no instruction printer for target " << TripleName + << '\n'; + return; + } + + StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ": " : + "\t\t\t%08" PRIx64 ": "; + + // Create a mapping, RelocSecs = SectionRelocMap[S], where sections + // in RelocSecs contain the relocations for section S. + std::error_code EC; + std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap; + for (const SectionRef &Section : Obj->sections()) { + section_iterator Sec2 = Section.getRelocatedSection(); + if (Sec2 != Obj->section_end()) + SectionRelocMap[*Sec2].push_back(Section); + } + + for (const SectionRef &Section : Obj->sections()) { + if (!Section.isText() || Section.isVirtual()) + continue; + + uint64_t SectionAddr = Section.getAddress(); + uint64_t SectSize = Section.getSize(); + if (!SectSize) + continue; + + // Make a list of all the symbols in this section. + std::vector<std::pair<uint64_t, StringRef>> Symbols; + for (const SymbolRef &Symbol : Obj->symbols()) { + if (Section.containsSymbol(Symbol)) { + uint64_t Address; + if (error(Symbol.getAddress(Address))) + break; + if (Address == UnknownAddressOrSize) + continue; + Address -= SectionAddr; + if (Address >= SectSize) + continue; + + StringRef Name; + if (error(Symbol.getName(Name))) + break; + Symbols.push_back(std::make_pair(Address, Name)); + } + } + + // Sort the symbols by address, just in case they didn't come in that way. + array_pod_sort(Symbols.begin(), Symbols.end()); + + // Make a list of all the relocations for this section. + std::vector<RelocationRef> Rels; + if (InlineRelocs) { + for (const SectionRef &RelocSec : SectionRelocMap[Section]) { + for (const RelocationRef &Reloc : RelocSec.relocations()) { + Rels.push_back(Reloc); + } + } + } + + // Sort relocations by address. + std::sort(Rels.begin(), Rels.end(), RelocAddressLess); + + StringRef SegmentName = ""; + if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) { + DataRefImpl DR = Section.getRawDataRefImpl(); + SegmentName = MachO->getSectionFinalSegmentName(DR); + } + StringRef name; + if (error(Section.getName(name))) + break; + outs() << "Disassembly of section "; + if (!SegmentName.empty()) + outs() << SegmentName << ","; + outs() << name << ':'; + + // If the section has no symbols just insert a dummy one and disassemble + // the whole section. + if (Symbols.empty()) + Symbols.push_back(std::make_pair(0, name)); + + + SmallString<40> Comments; + raw_svector_ostream CommentStream(Comments); + + StringRef BytesStr; + if (error(Section.getContents(BytesStr))) + break; + ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()), + BytesStr.size()); + + uint64_t Size; + uint64_t Index; + + std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin(); + std::vector<RelocationRef>::const_iterator rel_end = Rels.end(); + // Disassemble symbol by symbol. + for (unsigned si = 0, se = Symbols.size(); si != se; ++si) { + + uint64_t Start = Symbols[si].first; + // The end is either the section end or the beginning of the next symbol. + uint64_t End = (si == se - 1) ? SectSize : Symbols[si + 1].first; + // If this symbol has the same address as the next symbol, then skip it. + if (Start == End) + continue; + + outs() << '\n' << Symbols[si].second << ":\n"; + +#ifndef NDEBUG + raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); +#else + raw_ostream &DebugOut = nulls(); +#endif + + for (Index = Start; Index < End; Index += Size) { + MCInst Inst; + + if (DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), + SectionAddr + Index, DebugOut, + CommentStream)) { + outs() << format("%8" PRIx64 ":", SectionAddr + Index); + if (!NoShowRawInsn) { + outs() << "\t"; + DumpBytes(StringRef( + reinterpret_cast<const char *>(Bytes.data()) + Index, Size)); + } + IP->printInst(&Inst, outs(), ""); + outs() << CommentStream.str(); + Comments.clear(); + outs() << "\n"; + } else { + errs() << ToolName << ": warning: invalid instruction encoding\n"; + if (Size == 0) + Size = 1; // skip illegible bytes + } + + // Print relocation for instruction. + while (rel_cur != rel_end) { + bool hidden = false; + uint64_t addr; + SmallString<16> name; + SmallString<32> val; + + // If this relocation is hidden, skip it. + if (error(rel_cur->getHidden(hidden))) goto skip_print_rel; + if (hidden) goto skip_print_rel; + + if (error(rel_cur->getOffset(addr))) goto skip_print_rel; + // Stop when rel_cur's address is past the current instruction. + if (addr >= Index + Size) break; + if (error(rel_cur->getTypeName(name))) goto skip_print_rel; + if (error(rel_cur->getValueString(val))) goto skip_print_rel; + + outs() << format(Fmt.data(), SectionAddr + addr) << name + << "\t" << val << "\n"; + + skip_print_rel: + ++rel_cur; + } + } + } + } +} + +static void PrintRelocations(const ObjectFile *Obj) { + StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : + "%08" PRIx64; + // Regular objdump doesn't print relocations in non-relocatable object + // files. + if (!Obj->isRelocatableObject()) + return; + + for (const SectionRef &Section : Obj->sections()) { + if (Section.relocation_begin() == Section.relocation_end()) + continue; + StringRef secname; + if (error(Section.getName(secname))) + continue; + outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n"; + for (const RelocationRef &Reloc : Section.relocations()) { + bool hidden; + uint64_t address; + SmallString<32> relocname; + SmallString<32> valuestr; + if (error(Reloc.getHidden(hidden))) + continue; + if (hidden) + continue; + if (error(Reloc.getTypeName(relocname))) + continue; + if (error(Reloc.getOffset(address))) + continue; + if (error(Reloc.getValueString(valuestr))) + continue; + outs() << format(Fmt.data(), address) << " " << relocname << " " + << valuestr << "\n"; + } + outs() << "\n"; + } +} + +static void PrintSectionHeaders(const ObjectFile *Obj) { + outs() << "Sections:\n" + "Idx Name Size Address Type\n"; + unsigned i = 0; + for (const SectionRef &Section : Obj->sections()) { + StringRef Name; + if (error(Section.getName(Name))) + return; + uint64_t Address = Section.getAddress(); + uint64_t Size = Section.getSize(); + bool Text = Section.isText(); + bool Data = Section.isData(); + bool BSS = Section.isBSS(); + std::string Type = (std::string(Text ? "TEXT " : "") + + (Data ? "DATA " : "") + (BSS ? "BSS" : "")); + outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i, + Name.str().c_str(), Size, Address, Type.c_str()); + ++i; + } +} + +static void PrintSectionContents(const ObjectFile *Obj) { + std::error_code EC; + for (const SectionRef &Section : Obj->sections()) { + StringRef Name; + StringRef Contents; + if (error(Section.getName(Name))) + continue; + uint64_t BaseAddr = Section.getAddress(); + uint64_t Size = Section.getSize(); + if (!Size) + continue; + + outs() << "Contents of section " << Name << ":\n"; + if (Section.isBSS()) { + outs() << format("<skipping contents of bss section at [%04" PRIx64 + ", %04" PRIx64 ")>\n", + BaseAddr, BaseAddr + Size); + continue; + } + + if (error(Section.getContents(Contents))) + continue; + + // Dump out the content as hex and printable ascii characters. + for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) { + outs() << format(" %04" PRIx64 " ", BaseAddr + addr); + // Dump line of hex. + for (std::size_t i = 0; i < 16; ++i) { + if (i != 0 && i % 4 == 0) + outs() << ' '; + if (addr + i < end) + outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true) + << hexdigit(Contents[addr + i] & 0xF, true); + else + outs() << " "; + } + // Print ascii. + outs() << " "; + for (std::size_t i = 0; i < 16 && addr + i < end; ++i) { + if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF)) + outs() << Contents[addr + i]; + else + outs() << "."; + } + outs() << "\n"; + } + } +} + +static void PrintCOFFSymbolTable(const COFFObjectFile *coff) { + for (unsigned SI = 0, SE = coff->getNumberOfSymbols(); SI != SE; ++SI) { + ErrorOr<COFFSymbolRef> Symbol = coff->getSymbol(SI); + StringRef Name; + if (error(Symbol.getError())) + return; + + if (error(coff->getSymbolName(*Symbol, Name))) + return; + + outs() << "[" << format("%2d", SI) << "]" + << "(sec " << format("%2d", int(Symbol->getSectionNumber())) << ")" + << "(fl 0x00)" // Flag bits, which COFF doesn't have. + << "(ty " << format("%3x", unsigned(Symbol->getType())) << ")" + << "(scl " << format("%3x", unsigned(Symbol->getStorageClass())) << ") " + << "(nx " << unsigned(Symbol->getNumberOfAuxSymbols()) << ") " + << "0x" << format("%08x", unsigned(Symbol->getValue())) << " " + << Name << "\n"; + + for (unsigned AI = 0, AE = Symbol->getNumberOfAuxSymbols(); AI < AE; ++AI, ++SI) { + if (Symbol->isSectionDefinition()) { + const coff_aux_section_definition *asd; + if (error(coff->getAuxSymbol<coff_aux_section_definition>(SI + 1, asd))) + return; + + int32_t AuxNumber = asd->getNumber(Symbol->isBigObj()); + + outs() << "AUX " + << format("scnlen 0x%x nreloc %d nlnno %d checksum 0x%x " + , unsigned(asd->Length) + , unsigned(asd->NumberOfRelocations) + , unsigned(asd->NumberOfLinenumbers) + , unsigned(asd->CheckSum)) + << format("assoc %d comdat %d\n" + , unsigned(AuxNumber) + , unsigned(asd->Selection)); + } else if (Symbol->isFileRecord()) { + const char *FileName; + if (error(coff->getAuxSymbol<char>(SI + 1, FileName))) + return; + + StringRef Name(FileName, Symbol->getNumberOfAuxSymbols() * + coff->getSymbolTableEntrySize()); + outs() << "AUX " << Name.rtrim(StringRef("\0", 1)) << '\n'; + + SI = SI + Symbol->getNumberOfAuxSymbols(); + break; + } else { + outs() << "AUX Unknown\n"; + } + } + } +} + +static void PrintSymbolTable(const ObjectFile *o) { + outs() << "SYMBOL TABLE:\n"; + + if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) { + PrintCOFFSymbolTable(coff); + return; + } + for (const SymbolRef &Symbol : o->symbols()) { + StringRef Name; + uint64_t Address; + SymbolRef::Type Type; + uint64_t Size; + uint32_t Flags = Symbol.getFlags(); + section_iterator Section = o->section_end(); + if (error(Symbol.getName(Name))) + continue; + if (error(Symbol.getAddress(Address))) + continue; + if (error(Symbol.getType(Type))) + continue; + if (error(Symbol.getSize(Size))) + continue; + if (error(Symbol.getSection(Section))) + continue; + + bool Global = Flags & SymbolRef::SF_Global; + bool Weak = Flags & SymbolRef::SF_Weak; + bool Absolute = Flags & SymbolRef::SF_Absolute; + + if (Address == UnknownAddressOrSize) + Address = 0; + if (Size == UnknownAddressOrSize) + Size = 0; + char GlobLoc = ' '; + if (Type != SymbolRef::ST_Unknown) + GlobLoc = Global ? 'g' : 'l'; + char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) + ? 'd' : ' '; + char FileFunc = ' '; + if (Type == SymbolRef::ST_File) + FileFunc = 'f'; + else if (Type == SymbolRef::ST_Function) + FileFunc = 'F'; + + const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 : + "%08" PRIx64; + + outs() << format(Fmt, Address) << " " + << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' + << (Weak ? 'w' : ' ') // Weak? + << ' ' // Constructor. Not supported yet. + << ' ' // Warning. Not supported yet. + << ' ' // Indirect reference to another symbol. + << Debug // Debugging (d) or dynamic (D) symbol. + << FileFunc // Name of function (F), file (f) or object (O). + << ' '; + if (Absolute) { + outs() << "*ABS*"; + } else if (Section == o->section_end()) { + outs() << "*UND*"; + } else { + if (const MachOObjectFile *MachO = + dyn_cast<const MachOObjectFile>(o)) { + DataRefImpl DR = Section->getRawDataRefImpl(); + StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); + outs() << SegmentName << ","; + } + StringRef SectionName; + if (error(Section->getName(SectionName))) + SectionName = ""; + outs() << SectionName; + } + outs() << '\t' + << format("%08" PRIx64 " ", Size) + << Name + << '\n'; + } +} + +static void PrintUnwindInfo(const ObjectFile *o) { + outs() << "Unwind info:\n\n"; + + if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) { + printCOFFUnwindInfo(coff); + } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) + printMachOUnwindInfo(MachO); + else { + // TODO: Extract DWARF dump tool to objdump. + errs() << "This operation is only currently supported " + "for COFF and MachO object files.\n"; + return; + } +} + +void llvm::printExportsTrie(const ObjectFile *o) { + outs() << "Exports trie:\n"; + if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) + printMachOExportsTrie(MachO); + else { + errs() << "This operation is only currently supported " + "for Mach-O executable files.\n"; + return; + } +} + +void llvm::printRebaseTable(const ObjectFile *o) { + outs() << "Rebase table:\n"; + if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) + printMachORebaseTable(MachO); + else { + errs() << "This operation is only currently supported " + "for Mach-O executable files.\n"; + return; + } +} + +void llvm::printBindTable(const ObjectFile *o) { + outs() << "Bind table:\n"; + if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) + printMachOBindTable(MachO); + else { + errs() << "This operation is only currently supported " + "for Mach-O executable files.\n"; + return; + } +} + +void llvm::printLazyBindTable(const ObjectFile *o) { + outs() << "Lazy bind table:\n"; + if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) + printMachOLazyBindTable(MachO); + else { + errs() << "This operation is only currently supported " + "for Mach-O executable files.\n"; + return; + } +} + +void llvm::printWeakBindTable(const ObjectFile *o) { + outs() << "Weak bind table:\n"; + if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) + printMachOWeakBindTable(MachO); + else { + errs() << "This operation is only currently supported " + "for Mach-O executable files.\n"; + return; + } +} + +static void printPrivateFileHeader(const ObjectFile *o) { + if (o->isELF()) { + printELFFileHeader(o); + } else if (o->isCOFF()) { + printCOFFFileHeader(o); + } else if (o->isMachO()) { + printMachOFileHeader(o); + } +} + +static void DumpObject(const ObjectFile *o) { + outs() << '\n'; + outs() << o->getFileName() + << ":\tfile format " << o->getFileFormatName() << "\n\n"; + + if (Disassemble) + DisassembleObject(o, Relocations); + if (Relocations && !Disassemble) + PrintRelocations(o); + if (SectionHeaders) + PrintSectionHeaders(o); + if (SectionContents) + PrintSectionContents(o); + if (SymbolTable) + PrintSymbolTable(o); + if (UnwindInfo) + PrintUnwindInfo(o); + if (PrivateHeaders) + printPrivateFileHeader(o); + if (ExportsTrie) + printExportsTrie(o); + if (Rebase) + printRebaseTable(o); + if (Bind) + printBindTable(o); + if (LazyBind) + printLazyBindTable(o); + if (WeakBind) + printWeakBindTable(o); +} + +/// @brief Dump each object file in \a a; +static void DumpArchive(const Archive *a) { + for (Archive::child_iterator i = a->child_begin(), e = a->child_end(); i != e; + ++i) { + ErrorOr<std::unique_ptr<Binary>> ChildOrErr = i->getAsBinary(); + if (std::error_code EC = ChildOrErr.getError()) { + // Ignore non-object files. + if (EC != object_error::invalid_file_type) + errs() << ToolName << ": '" << a->getFileName() << "': " << EC.message() + << ".\n"; + continue; + } + if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get())) + DumpObject(o); + else + errs() << ToolName << ": '" << a->getFileName() << "': " + << "Unrecognized file type.\n"; + } +} + +/// @brief Open file and figure out how to dump it. +static void DumpInput(StringRef file) { + // If file isn't stdin, check that it exists. + if (file != "-" && !sys::fs::exists(file)) { + errs() << ToolName << ": '" << file << "': " << "No such file\n"; + return; + } + + // If we are using the Mach-O specific object file parser, then let it parse + // the file and process the command line options. So the -arch flags can + // be used to select specific slices, etc. + if (MachOOpt) { + ParseInputMachO(file); + return; + } + + // Attempt to open the binary. + ErrorOr<OwningBinary<Binary>> BinaryOrErr = createBinary(file); + if (std::error_code EC = BinaryOrErr.getError()) { + errs() << ToolName << ": '" << file << "': " << EC.message() << ".\n"; + return; + } + Binary &Binary = *BinaryOrErr.get().getBinary(); + + if (Archive *a = dyn_cast<Archive>(&Binary)) + DumpArchive(a); + else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary)) + DumpObject(o); + else + errs() << ToolName << ": '" << file << "': " << "Unrecognized file type.\n"; +} + +int main(int argc, char **argv) { + // Print a stack trace if we signal out. + sys::PrintStackTraceOnErrorSignal(); + PrettyStackTraceProgram X(argc, argv); + llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. + + // Initialize targets and assembly printers/parsers. + llvm::InitializeAllTargetInfos(); + llvm::InitializeAllTargetMCs(); + llvm::InitializeAllAsmParsers(); + llvm::InitializeAllDisassemblers(); + + // Register the target printer for --version. + cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); + + cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n"); + TripleName = Triple::normalize(TripleName); + + ToolName = argv[0]; + + // Defaults to a.out if no filenames specified. + if (InputFilenames.size() == 0) + InputFilenames.push_back("a.out"); + + if (!Disassemble + && !Relocations + && !SectionHeaders + && !SectionContents + && !SymbolTable + && !UnwindInfo + && !PrivateHeaders + && !ExportsTrie + && !Rebase + && !Bind + && !LazyBind + && !WeakBind + && !(UniversalHeaders && MachOOpt)) { + cl::PrintHelpMessage(); + return 2; + } + + std::for_each(InputFilenames.begin(), InputFilenames.end(), + DumpInput); + + return ReturnValue; +} diff --git a/contrib/llvm/tools/llvm-objdump/llvm-objdump.h b/contrib/llvm/tools/llvm-objdump/llvm-objdump.h new file mode 100644 index 0000000..f829dd1 --- /dev/null +++ b/contrib/llvm/tools/llvm-objdump/llvm-objdump.h @@ -0,0 +1,62 @@ +//===-- llvm-objdump.h ----------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_TOOLS_LLVM_OBJDUMP_LLVM_OBJDUMP_H +#define LLVM_TOOLS_LLVM_OBJDUMP_LLVM_OBJDUMP_H + +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/DataTypes.h" + +namespace llvm { +namespace object { + class COFFObjectFile; + class MachOObjectFile; + class ObjectFile; + class RelocationRef; +} + +extern cl::opt<std::string> TripleName; +extern cl::opt<std::string> ArchName; +extern cl::opt<std::string> MCPU; +extern cl::list<std::string> MAttrs; +extern cl::opt<bool> Disassemble; +extern cl::opt<bool> NoShowRawInsn; +extern cl::opt<bool> PrivateHeaders; +extern cl::opt<bool> ExportsTrie; +extern cl::opt<bool> Rebase; +extern cl::opt<bool> Bind; +extern cl::opt<bool> LazyBind; +extern cl::opt<bool> WeakBind; +extern cl::opt<bool> UniversalHeaders; + +// Various helper functions. +bool error(std::error_code ec); +bool RelocAddressLess(object::RelocationRef a, object::RelocationRef b); +void DumpBytes(StringRef bytes); +void ParseInputMachO(StringRef Filename); +void printCOFFUnwindInfo(const object::COFFObjectFile* o); +void printMachOUnwindInfo(const object::MachOObjectFile* o); +void printMachOExportsTrie(const object::MachOObjectFile* o); +void printMachORebaseTable(const object::MachOObjectFile* o); +void printMachOBindTable(const object::MachOObjectFile* o); +void printMachOLazyBindTable(const object::MachOObjectFile* o); +void printMachOWeakBindTable(const object::MachOObjectFile* o); +void printELFFileHeader(const object::ObjectFile *o); +void printCOFFFileHeader(const object::ObjectFile *o); +void printMachOFileHeader(const object::ObjectFile *o); +void printExportsTrie(const object::ObjectFile *o); +void printRebaseTable(const object::ObjectFile *o); +void printBindTable(const object::ObjectFile *o); +void printLazyBindTable(const object::ObjectFile *o); +void printWeakBindTable(const object::ObjectFile *o); + +} // end namespace llvm + +#endif |