summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/utils/TableGen/NeonEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/utils/TableGen/NeonEmitter.cpp')
-rw-r--r--contrib/llvm/tools/clang/utils/TableGen/NeonEmitter.cpp2403
1 files changed, 2403 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/utils/TableGen/NeonEmitter.cpp b/contrib/llvm/tools/clang/utils/TableGen/NeonEmitter.cpp
new file mode 100644
index 0000000..6e7bc90
--- /dev/null
+++ b/contrib/llvm/tools/clang/utils/TableGen/NeonEmitter.cpp
@@ -0,0 +1,2403 @@
+//===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This tablegen backend is responsible for emitting arm_neon.h, which includes
+// a declaration and definition of each function specified by the ARM NEON
+// compiler interface. See ARM document DUI0348B.
+//
+// Each NEON instruction is implemented in terms of 1 or more functions which
+// are suffixed with the element type of the input vectors. Functions may be
+// implemented in terms of generic vector operations such as +, *, -, etc. or
+// by calling a __builtin_-prefixed function which will be handled by clang's
+// CodeGen library.
+//
+// Additional validation code can be generated by this file when runHeader() is
+// called, rather than the normal run() entry point.
+//
+// See also the documentation in include/clang/Basic/arm_neon.td.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/TableGen/Error.h"
+#include "llvm/TableGen/Record.h"
+#include "llvm/TableGen/SetTheory.h"
+#include "llvm/TableGen/TableGenBackend.h"
+#include <algorithm>
+#include <deque>
+#include <map>
+#include <sstream>
+#include <string>
+#include <vector>
+using namespace llvm;
+
+namespace {
+
+// While globals are generally bad, this one allows us to perform assertions
+// liberally and somehow still trace them back to the def they indirectly
+// came from.
+static Record *CurrentRecord = nullptr;
+static void assert_with_loc(bool Assertion, const std::string &Str) {
+ if (!Assertion) {
+ if (CurrentRecord)
+ PrintFatalError(CurrentRecord->getLoc(), Str);
+ else
+ PrintFatalError(Str);
+ }
+}
+
+enum ClassKind {
+ ClassNone,
+ ClassI, // generic integer instruction, e.g., "i8" suffix
+ ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
+ ClassW, // width-specific instruction, e.g., "8" suffix
+ ClassB, // bitcast arguments with enum argument to specify type
+ ClassL, // Logical instructions which are op instructions
+ // but we need to not emit any suffix for in our
+ // tests.
+ ClassNoTest // Instructions which we do not test since they are
+ // not TRUE instructions.
+};
+
+/// NeonTypeFlags - Flags to identify the types for overloaded Neon
+/// builtins. These must be kept in sync with the flags in
+/// include/clang/Basic/TargetBuiltins.h.
+namespace NeonTypeFlags {
+enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
+
+enum EltType {
+ Int8,
+ Int16,
+ Int32,
+ Int64,
+ Poly8,
+ Poly16,
+ Poly64,
+ Poly128,
+ Float16,
+ Float32,
+ Float64
+};
+}
+
+class Intrinsic;
+class NeonEmitter;
+class Type;
+class Variable;
+
+//===----------------------------------------------------------------------===//
+// TypeSpec
+//===----------------------------------------------------------------------===//
+
+/// A TypeSpec is just a simple wrapper around a string, but gets its own type
+/// for strong typing purposes.
+///
+/// A TypeSpec can be used to create a type.
+class TypeSpec : public std::string {
+public:
+ static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
+ std::vector<TypeSpec> Ret;
+ TypeSpec Acc;
+ for (char I : Str.str()) {
+ if (islower(I)) {
+ Acc.push_back(I);
+ Ret.push_back(TypeSpec(Acc));
+ Acc.clear();
+ } else {
+ Acc.push_back(I);
+ }
+ }
+ return Ret;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Type
+//===----------------------------------------------------------------------===//
+
+/// A Type. Not much more to say here.
+class Type {
+private:
+ TypeSpec TS;
+
+ bool Float, Signed, Immediate, Void, Poly, Constant, Pointer;
+ // ScalarForMangling and NoManglingQ are really not suited to live here as
+ // they are not related to the type. But they live in the TypeSpec (not the
+ // prototype), so this is really the only place to store them.
+ bool ScalarForMangling, NoManglingQ;
+ unsigned Bitwidth, ElementBitwidth, NumVectors;
+
+public:
+ Type()
+ : Float(false), Signed(false), Immediate(false), Void(true), Poly(false),
+ Constant(false), Pointer(false), ScalarForMangling(false),
+ NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
+
+ Type(TypeSpec TS, char CharMod)
+ : TS(TS), Float(false), Signed(false), Immediate(false), Void(false),
+ Poly(false), Constant(false), Pointer(false), ScalarForMangling(false),
+ NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
+ applyModifier(CharMod);
+ }
+
+ /// Returns a type representing "void".
+ static Type getVoid() { return Type(); }
+
+ bool operator==(const Type &Other) const { return str() == Other.str(); }
+ bool operator!=(const Type &Other) const { return !operator==(Other); }
+
+ //
+ // Query functions
+ //
+ bool isScalarForMangling() const { return ScalarForMangling; }
+ bool noManglingQ() const { return NoManglingQ; }
+
+ bool isPointer() const { return Pointer; }
+ bool isFloating() const { return Float; }
+ bool isInteger() const { return !Float && !Poly; }
+ bool isSigned() const { return Signed; }
+ bool isImmediate() const { return Immediate; }
+ bool isScalar() const { return NumVectors == 0; }
+ bool isVector() const { return NumVectors > 0; }
+ bool isFloat() const { return Float && ElementBitwidth == 32; }
+ bool isDouble() const { return Float && ElementBitwidth == 64; }
+ bool isHalf() const { return Float && ElementBitwidth == 16; }
+ bool isPoly() const { return Poly; }
+ bool isChar() const { return ElementBitwidth == 8; }
+ bool isShort() const { return !Float && ElementBitwidth == 16; }
+ bool isInt() const { return !Float && ElementBitwidth == 32; }
+ bool isLong() const { return !Float && ElementBitwidth == 64; }
+ bool isVoid() const { return Void; }
+ unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
+ unsigned getSizeInBits() const { return Bitwidth; }
+ unsigned getElementSizeInBits() const { return ElementBitwidth; }
+ unsigned getNumVectors() const { return NumVectors; }
+
+ //
+ // Mutator functions
+ //
+ void makeUnsigned() { Signed = false; }
+ void makeSigned() { Signed = true; }
+ void makeInteger(unsigned ElemWidth, bool Sign) {
+ Float = false;
+ Poly = false;
+ Signed = Sign;
+ Immediate = false;
+ ElementBitwidth = ElemWidth;
+ }
+ void makeImmediate(unsigned ElemWidth) {
+ Float = false;
+ Poly = false;
+ Signed = true;
+ Immediate = true;
+ ElementBitwidth = ElemWidth;
+ }
+ void makeScalar() {
+ Bitwidth = ElementBitwidth;
+ NumVectors = 0;
+ }
+ void makeOneVector() {
+ assert(isVector());
+ NumVectors = 1;
+ }
+ void doubleLanes() {
+ assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
+ Bitwidth = 128;
+ }
+ void halveLanes() {
+ assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
+ Bitwidth = 64;
+ }
+
+ /// Return the C string representation of a type, which is the typename
+ /// defined in stdint.h or arm_neon.h.
+ std::string str() const;
+
+ /// Return the string representation of a type, which is an encoded
+ /// string for passing to the BUILTIN() macro in Builtins.def.
+ std::string builtin_str() const;
+
+ /// Return the value in NeonTypeFlags for this type.
+ unsigned getNeonEnum() const;
+
+ /// Parse a type from a stdint.h or arm_neon.h typedef name,
+ /// for example uint32x2_t or int64_t.
+ static Type fromTypedefName(StringRef Name);
+
+private:
+ /// Creates the type based on the typespec string in TS.
+ /// Sets "Quad" to true if the "Q" or "H" modifiers were
+ /// seen. This is needed by applyModifier as some modifiers
+ /// only take effect if the type size was changed by "Q" or "H".
+ void applyTypespec(bool &Quad);
+ /// Applies a prototype modifier to the type.
+ void applyModifier(char Mod);
+};
+
+//===----------------------------------------------------------------------===//
+// Variable
+//===----------------------------------------------------------------------===//
+
+/// A variable is a simple class that just has a type and a name.
+class Variable {
+ Type T;
+ std::string N;
+
+public:
+ Variable() : T(Type::getVoid()), N("") {}
+ Variable(Type T, std::string N) : T(T), N(N) {}
+
+ Type getType() const { return T; }
+ std::string getName() const { return "__" + N; }
+};
+
+//===----------------------------------------------------------------------===//
+// Intrinsic
+//===----------------------------------------------------------------------===//
+
+/// The main grunt class. This represents an instantiation of an intrinsic with
+/// a particular typespec and prototype.
+class Intrinsic {
+ friend class DagEmitter;
+
+ /// The Record this intrinsic was created from.
+ Record *R;
+ /// The unmangled name and prototype.
+ std::string Name, Proto;
+ /// The input and output typespecs. InTS == OutTS except when
+ /// CartesianProductOfTypes is 1 - this is the case for vreinterpret.
+ TypeSpec OutTS, InTS;
+ /// The base class kind. Most intrinsics use ClassS, which has full type
+ /// info for integers (s32/u32). Some use ClassI, which doesn't care about
+ /// signedness (i32), while some (ClassB) have no type at all, only a width
+ /// (32).
+ ClassKind CK;
+ /// The list of DAGs for the body. May be empty, in which case we should
+ /// emit a builtin call.
+ ListInit *Body;
+ /// The architectural #ifdef guard.
+ std::string Guard;
+ /// Set if the Unvailable bit is 1. This means we don't generate a body,
+ /// just an "unavailable" attribute on a declaration.
+ bool IsUnavailable;
+ /// Is this intrinsic safe for big-endian? or does it need its arguments
+ /// reversing?
+ bool BigEndianSafe;
+
+ /// The types of return value [0] and parameters [1..].
+ std::vector<Type> Types;
+ /// The local variables defined.
+ std::map<std::string, Variable> Variables;
+ /// NeededEarly - set if any other intrinsic depends on this intrinsic.
+ bool NeededEarly;
+ /// UseMacro - set if we should implement using a macro or unset for a
+ /// function.
+ bool UseMacro;
+ /// The set of intrinsics that this intrinsic uses/requires.
+ std::set<Intrinsic *> Dependencies;
+ /// The "base type", which is Type('d', OutTS). InBaseType is only
+ /// different if CartesianProductOfTypes = 1 (for vreinterpret).
+ Type BaseType, InBaseType;
+ /// The return variable.
+ Variable RetVar;
+ /// A postfix to apply to every variable. Defaults to "".
+ std::string VariablePostfix;
+
+ NeonEmitter &Emitter;
+ std::stringstream OS;
+
+public:
+ Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
+ TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
+ StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
+ : R(R), Name(Name.str()), Proto(Proto.str()), OutTS(OutTS), InTS(InTS),
+ CK(CK), Body(Body), Guard(Guard.str()), IsUnavailable(IsUnavailable),
+ BigEndianSafe(BigEndianSafe), NeededEarly(false), UseMacro(false),
+ BaseType(OutTS, 'd'), InBaseType(InTS, 'd'), Emitter(Emitter) {
+ // If this builtin takes an immediate argument, we need to #define it rather
+ // than use a standard declaration, so that SemaChecking can range check
+ // the immediate passed by the user.
+ if (Proto.find('i') != std::string::npos)
+ UseMacro = true;
+
+ // Pointer arguments need to use macros to avoid hiding aligned attributes
+ // from the pointer type.
+ if (Proto.find('p') != std::string::npos ||
+ Proto.find('c') != std::string::npos)
+ UseMacro = true;
+
+ // It is not permitted to pass or return an __fp16 by value, so intrinsics
+ // taking a scalar float16_t must be implemented as macros.
+ if (OutTS.find('h') != std::string::npos &&
+ Proto.find('s') != std::string::npos)
+ UseMacro = true;
+
+ // Modify the TypeSpec per-argument to get a concrete Type, and create
+ // known variables for each.
+ // Types[0] is the return value.
+ Types.emplace_back(OutTS, Proto[0]);
+ for (unsigned I = 1; I < Proto.size(); ++I)
+ Types.emplace_back(InTS, Proto[I]);
+ }
+
+ /// Get the Record that this intrinsic is based off.
+ Record *getRecord() const { return R; }
+ /// Get the set of Intrinsics that this intrinsic calls.
+ /// this is the set of immediate dependencies, NOT the
+ /// transitive closure.
+ const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
+ /// Get the architectural guard string (#ifdef).
+ std::string getGuard() const { return Guard; }
+ /// Get the non-mangled name.
+ std::string getName() const { return Name; }
+
+ /// Return true if the intrinsic takes an immediate operand.
+ bool hasImmediate() const {
+ return Proto.find('i') != std::string::npos;
+ }
+ /// Return the parameter index of the immediate operand.
+ unsigned getImmediateIdx() const {
+ assert(hasImmediate());
+ unsigned Idx = Proto.find('i');
+ assert(Idx > 0 && "Can't return an immediate!");
+ return Idx - 1;
+ }
+
+ /// Return true if the intrinsic takes an splat operand.
+ bool hasSplat() const { return Proto.find('a') != std::string::npos; }
+ /// Return the parameter index of the splat operand.
+ unsigned getSplatIdx() const {
+ assert(hasSplat());
+ unsigned Idx = Proto.find('a');
+ assert(Idx > 0 && "Can't return a splat!");
+ return Idx - 1;
+ }
+
+ unsigned getNumParams() const { return Proto.size() - 1; }
+ Type getReturnType() const { return Types[0]; }
+ Type getParamType(unsigned I) const { return Types[I + 1]; }
+ Type getBaseType() const { return BaseType; }
+ /// Return the raw prototype string.
+ std::string getProto() const { return Proto; }
+
+ /// Return true if the prototype has a scalar argument.
+ /// This does not return true for the "splat" code ('a').
+ bool protoHasScalar() const;
+
+ /// Return the index that parameter PIndex will sit at
+ /// in a generated function call. This is often just PIndex,
+ /// but may not be as things such as multiple-vector operands
+ /// and sret parameters need to be taken into accont.
+ unsigned getGeneratedParamIdx(unsigned PIndex) {
+ unsigned Idx = 0;
+ if (getReturnType().getNumVectors() > 1)
+ // Multiple vectors are passed as sret.
+ ++Idx;
+
+ for (unsigned I = 0; I < PIndex; ++I)
+ Idx += std::max(1U, getParamType(I).getNumVectors());
+
+ return Idx;
+ }
+
+ bool hasBody() const { return Body && Body->getValues().size() > 0; }
+
+ void setNeededEarly() { NeededEarly = true; }
+
+ bool operator<(const Intrinsic &Other) const {
+ // Sort lexicographically on a two-tuple (Guard, Name)
+ if (Guard != Other.Guard)
+ return Guard < Other.Guard;
+ return Name < Other.Name;
+ }
+
+ ClassKind getClassKind(bool UseClassBIfScalar = false) {
+ if (UseClassBIfScalar && !protoHasScalar())
+ return ClassB;
+ return CK;
+ }
+
+ /// Return the name, mangled with type information.
+ /// If ForceClassS is true, use ClassS (u32/s32) instead
+ /// of the intrinsic's own type class.
+ std::string getMangledName(bool ForceClassS = false) const;
+ /// Return the type code for a builtin function call.
+ std::string getInstTypeCode(Type T, ClassKind CK) const;
+ /// Return the type string for a BUILTIN() macro in Builtins.def.
+ std::string getBuiltinTypeStr();
+
+ /// Generate the intrinsic, returning code.
+ std::string generate();
+ /// Perform type checking and populate the dependency graph, but
+ /// don't generate code yet.
+ void indexBody();
+
+private:
+ std::string mangleName(std::string Name, ClassKind CK) const;
+
+ void initVariables();
+ std::string replaceParamsIn(std::string S);
+
+ void emitBodyAsBuiltinCall();
+
+ void generateImpl(bool ReverseArguments,
+ StringRef NamePrefix, StringRef CallPrefix);
+ void emitReturn();
+ void emitBody(StringRef CallPrefix);
+ void emitShadowedArgs();
+ void emitArgumentReversal();
+ void emitReturnReversal();
+ void emitReverseVariable(Variable &Dest, Variable &Src);
+ void emitNewLine();
+ void emitClosingBrace();
+ void emitOpeningBrace();
+ void emitPrototype(StringRef NamePrefix);
+
+ class DagEmitter {
+ Intrinsic &Intr;
+ StringRef CallPrefix;
+
+ public:
+ DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
+ Intr(Intr), CallPrefix(CallPrefix) {
+ }
+ std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
+ std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
+ std::pair<Type, std::string> emitDagSplat(DagInit *DI);
+ std::pair<Type, std::string> emitDagDup(DagInit *DI);
+ std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
+ std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
+ std::pair<Type, std::string> emitDagCall(DagInit *DI);
+ std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
+ std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
+ std::pair<Type, std::string> emitDagOp(DagInit *DI);
+ std::pair<Type, std::string> emitDag(DagInit *DI);
+ };
+
+};
+
+//===----------------------------------------------------------------------===//
+// NeonEmitter
+//===----------------------------------------------------------------------===//
+
+class NeonEmitter {
+ RecordKeeper &Records;
+ DenseMap<Record *, ClassKind> ClassMap;
+ std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
+ unsigned UniqueNumber;
+
+ void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
+ void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
+ void genOverloadTypeCheckCode(raw_ostream &OS,
+ SmallVectorImpl<Intrinsic *> &Defs);
+ void genIntrinsicRangeCheckCode(raw_ostream &OS,
+ SmallVectorImpl<Intrinsic *> &Defs);
+
+public:
+ /// Called by Intrinsic - this attempts to get an intrinsic that takes
+ /// the given types as arguments.
+ Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types);
+
+ /// Called by Intrinsic - returns a globally-unique number.
+ unsigned getUniqueNumber() { return UniqueNumber++; }
+
+ NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
+ Record *SI = R.getClass("SInst");
+ Record *II = R.getClass("IInst");
+ Record *WI = R.getClass("WInst");
+ Record *SOpI = R.getClass("SOpInst");
+ Record *IOpI = R.getClass("IOpInst");
+ Record *WOpI = R.getClass("WOpInst");
+ Record *LOpI = R.getClass("LOpInst");
+ Record *NoTestOpI = R.getClass("NoTestOpInst");
+
+ ClassMap[SI] = ClassS;
+ ClassMap[II] = ClassI;
+ ClassMap[WI] = ClassW;
+ ClassMap[SOpI] = ClassS;
+ ClassMap[IOpI] = ClassI;
+ ClassMap[WOpI] = ClassW;
+ ClassMap[LOpI] = ClassL;
+ ClassMap[NoTestOpI] = ClassNoTest;
+ }
+
+ // run - Emit arm_neon.h.inc
+ void run(raw_ostream &o);
+
+ // runHeader - Emit all the __builtin prototypes used in arm_neon.h
+ void runHeader(raw_ostream &o);
+
+ // runTests - Emit tests for all the Neon intrinsics.
+ void runTests(raw_ostream &o);
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Type implementation
+//===----------------------------------------------------------------------===//
+
+std::string Type::str() const {
+ if (Void)
+ return "void";
+ std::string S;
+
+ if (!Signed && isInteger())
+ S += "u";
+
+ if (Poly)
+ S += "poly";
+ else if (Float)
+ S += "float";
+ else
+ S += "int";
+
+ S += utostr(ElementBitwidth);
+ if (isVector())
+ S += "x" + utostr(getNumElements());
+ if (NumVectors > 1)
+ S += "x" + utostr(NumVectors);
+ S += "_t";
+
+ if (Constant)
+ S += " const";
+ if (Pointer)
+ S += " *";
+
+ return S;
+}
+
+std::string Type::builtin_str() const {
+ std::string S;
+ if (isVoid())
+ return "v";
+
+ if (Pointer)
+ // All pointers are void pointers.
+ S += "v";
+ else if (isInteger())
+ switch (ElementBitwidth) {
+ case 8: S += "c"; break;
+ case 16: S += "s"; break;
+ case 32: S += "i"; break;
+ case 64: S += "Wi"; break;
+ case 128: S += "LLLi"; break;
+ default: llvm_unreachable("Unhandled case!");
+ }
+ else
+ switch (ElementBitwidth) {
+ case 16: S += "h"; break;
+ case 32: S += "f"; break;
+ case 64: S += "d"; break;
+ default: llvm_unreachable("Unhandled case!");
+ }
+
+ if (isChar() && !Pointer)
+ // Make chars explicitly signed.
+ S = "S" + S;
+ else if (isInteger() && !Pointer && !Signed)
+ S = "U" + S;
+
+ // Constant indices are "int", but have the "constant expression" modifier.
+ if (isImmediate()) {
+ assert(isInteger() && isSigned());
+ S = "I" + S;
+ }
+
+ if (isScalar()) {
+ if (Constant) S += "C";
+ if (Pointer) S += "*";
+ return S;
+ }
+
+ std::string Ret;
+ for (unsigned I = 0; I < NumVectors; ++I)
+ Ret += "V" + utostr(getNumElements()) + S;
+
+ return Ret;
+}
+
+unsigned Type::getNeonEnum() const {
+ unsigned Addend;
+ switch (ElementBitwidth) {
+ case 8: Addend = 0; break;
+ case 16: Addend = 1; break;
+ case 32: Addend = 2; break;
+ case 64: Addend = 3; break;
+ case 128: Addend = 4; break;
+ default: llvm_unreachable("Unhandled element bitwidth!");
+ }
+
+ unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
+ if (Poly) {
+ // Adjustment needed because Poly32 doesn't exist.
+ if (Addend >= 2)
+ --Addend;
+ Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
+ }
+ if (Float) {
+ assert(Addend != 0 && "Float8 doesn't exist!");
+ Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
+ }
+
+ if (Bitwidth == 128)
+ Base |= (unsigned)NeonTypeFlags::QuadFlag;
+ if (isInteger() && !Signed)
+ Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
+
+ return Base;
+}
+
+Type Type::fromTypedefName(StringRef Name) {
+ Type T;
+ T.Void = false;
+ T.Float = false;
+ T.Poly = false;
+
+ if (Name.front() == 'u') {
+ T.Signed = false;
+ Name = Name.drop_front();
+ } else {
+ T.Signed = true;
+ }
+
+ if (Name.startswith("float")) {
+ T.Float = true;
+ Name = Name.drop_front(5);
+ } else if (Name.startswith("poly")) {
+ T.Poly = true;
+ Name = Name.drop_front(4);
+ } else {
+ assert(Name.startswith("int"));
+ Name = Name.drop_front(3);
+ }
+
+ unsigned I = 0;
+ for (I = 0; I < Name.size(); ++I) {
+ if (!isdigit(Name[I]))
+ break;
+ }
+ Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
+ Name = Name.drop_front(I);
+
+ T.Bitwidth = T.ElementBitwidth;
+ T.NumVectors = 1;
+
+ if (Name.front() == 'x') {
+ Name = Name.drop_front();
+ unsigned I = 0;
+ for (I = 0; I < Name.size(); ++I) {
+ if (!isdigit(Name[I]))
+ break;
+ }
+ unsigned NumLanes;
+ Name.substr(0, I).getAsInteger(10, NumLanes);
+ Name = Name.drop_front(I);
+ T.Bitwidth = T.ElementBitwidth * NumLanes;
+ } else {
+ // Was scalar.
+ T.NumVectors = 0;
+ }
+ if (Name.front() == 'x') {
+ Name = Name.drop_front();
+ unsigned I = 0;
+ for (I = 0; I < Name.size(); ++I) {
+ if (!isdigit(Name[I]))
+ break;
+ }
+ Name.substr(0, I).getAsInteger(10, T.NumVectors);
+ Name = Name.drop_front(I);
+ }
+
+ assert(Name.startswith("_t") && "Malformed typedef!");
+ return T;
+}
+
+void Type::applyTypespec(bool &Quad) {
+ std::string S = TS;
+ ScalarForMangling = false;
+ Void = false;
+ Poly = Float = false;
+ ElementBitwidth = ~0U;
+ Signed = true;
+ NumVectors = 1;
+
+ for (char I : S) {
+ switch (I) {
+ case 'S':
+ ScalarForMangling = true;
+ break;
+ case 'H':
+ NoManglingQ = true;
+ Quad = true;
+ break;
+ case 'Q':
+ Quad = true;
+ break;
+ case 'P':
+ Poly = true;
+ break;
+ case 'U':
+ Signed = false;
+ break;
+ case 'c':
+ ElementBitwidth = 8;
+ break;
+ case 'h':
+ Float = true;
+ // Fall through
+ case 's':
+ ElementBitwidth = 16;
+ break;
+ case 'f':
+ Float = true;
+ // Fall through
+ case 'i':
+ ElementBitwidth = 32;
+ break;
+ case 'd':
+ Float = true;
+ // Fall through
+ case 'l':
+ ElementBitwidth = 64;
+ break;
+ case 'k':
+ ElementBitwidth = 128;
+ // Poly doesn't have a 128x1 type.
+ if (Poly)
+ NumVectors = 0;
+ break;
+ default:
+ llvm_unreachable("Unhandled type code!");
+ }
+ }
+ assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
+
+ Bitwidth = Quad ? 128 : 64;
+}
+
+void Type::applyModifier(char Mod) {
+ bool AppliedQuad = false;
+ applyTypespec(AppliedQuad);
+
+ switch (Mod) {
+ case 'v':
+ Void = true;
+ break;
+ case 't':
+ if (Poly) {
+ Poly = false;
+ Signed = false;
+ }
+ break;
+ case 'b':
+ Signed = false;
+ Float = false;
+ Poly = false;
+ NumVectors = 0;
+ Bitwidth = ElementBitwidth;
+ break;
+ case '$':
+ Signed = true;
+ Float = false;
+ Poly = false;
+ NumVectors = 0;
+ Bitwidth = ElementBitwidth;
+ break;
+ case 'u':
+ Signed = false;
+ Poly = false;
+ Float = false;
+ break;
+ case 'x':
+ Signed = true;
+ assert(!Poly && "'u' can't be used with poly types!");
+ Float = false;
+ break;
+ case 'o':
+ Bitwidth = ElementBitwidth = 64;
+ NumVectors = 0;
+ Float = true;
+ break;
+ case 'y':
+ Bitwidth = ElementBitwidth = 32;
+ NumVectors = 0;
+ Float = true;
+ break;
+ case 'f':
+ Float = true;
+ ElementBitwidth = 32;
+ break;
+ case 'F':
+ Float = true;
+ ElementBitwidth = 64;
+ break;
+ case 'g':
+ if (AppliedQuad)
+ Bitwidth /= 2;
+ break;
+ case 'j':
+ if (!AppliedQuad)
+ Bitwidth *= 2;
+ break;
+ case 'w':
+ ElementBitwidth *= 2;
+ Bitwidth *= 2;
+ break;
+ case 'n':
+ ElementBitwidth *= 2;
+ break;
+ case 'i':
+ Float = false;
+ Poly = false;
+ ElementBitwidth = Bitwidth = 32;
+ NumVectors = 0;
+ Signed = true;
+ Immediate = true;
+ break;
+ case 'l':
+ Float = false;
+ Poly = false;
+ ElementBitwidth = Bitwidth = 64;
+ NumVectors = 0;
+ Signed = false;
+ Immediate = true;
+ break;
+ case 'z':
+ ElementBitwidth /= 2;
+ Bitwidth = ElementBitwidth;
+ NumVectors = 0;
+ break;
+ case 'r':
+ ElementBitwidth *= 2;
+ Bitwidth = ElementBitwidth;
+ NumVectors = 0;
+ break;
+ case 's':
+ case 'a':
+ Bitwidth = ElementBitwidth;
+ NumVectors = 0;
+ break;
+ case 'k':
+ Bitwidth *= 2;
+ break;
+ case 'c':
+ Constant = true;
+ // Fall through
+ case 'p':
+ Pointer = true;
+ Bitwidth = ElementBitwidth;
+ NumVectors = 0;
+ break;
+ case 'h':
+ ElementBitwidth /= 2;
+ break;
+ case 'q':
+ ElementBitwidth /= 2;
+ Bitwidth *= 2;
+ break;
+ case 'e':
+ ElementBitwidth /= 2;
+ Signed = false;
+ break;
+ case 'm':
+ ElementBitwidth /= 2;
+ Bitwidth /= 2;
+ break;
+ case 'd':
+ break;
+ case '2':
+ NumVectors = 2;
+ break;
+ case '3':
+ NumVectors = 3;
+ break;
+ case '4':
+ NumVectors = 4;
+ break;
+ case 'B':
+ NumVectors = 2;
+ if (!AppliedQuad)
+ Bitwidth *= 2;
+ break;
+ case 'C':
+ NumVectors = 3;
+ if (!AppliedQuad)
+ Bitwidth *= 2;
+ break;
+ case 'D':
+ NumVectors = 4;
+ if (!AppliedQuad)
+ Bitwidth *= 2;
+ break;
+ default:
+ llvm_unreachable("Unhandled character!");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Intrinsic implementation
+//===----------------------------------------------------------------------===//
+
+std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
+ char typeCode = '\0';
+ bool printNumber = true;
+
+ if (CK == ClassB)
+ return "";
+
+ if (T.isPoly())
+ typeCode = 'p';
+ else if (T.isInteger())
+ typeCode = T.isSigned() ? 's' : 'u';
+ else
+ typeCode = 'f';
+
+ if (CK == ClassI) {
+ switch (typeCode) {
+ default:
+ break;
+ case 's':
+ case 'u':
+ case 'p':
+ typeCode = 'i';
+ break;
+ }
+ }
+ if (CK == ClassB) {
+ typeCode = '\0';
+ }
+
+ std::string S;
+ if (typeCode != '\0')
+ S.push_back(typeCode);
+ if (printNumber)
+ S += utostr(T.getElementSizeInBits());
+
+ return S;
+}
+
+static bool isFloatingPointProtoModifier(char Mod) {
+ return Mod == 'F' || Mod == 'f';
+}
+
+std::string Intrinsic::getBuiltinTypeStr() {
+ ClassKind LocalCK = getClassKind(true);
+ std::string S;
+
+ Type RetT = getReturnType();
+ if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
+ !RetT.isFloating())
+ RetT.makeInteger(RetT.getElementSizeInBits(), false);
+
+ // Since the return value must be one type, return a vector type of the
+ // appropriate width which we will bitcast. An exception is made for
+ // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
+ // fashion, storing them to a pointer arg.
+ if (RetT.getNumVectors() > 1) {
+ S += "vv*"; // void result with void* first argument
+ } else {
+ if (RetT.isPoly())
+ RetT.makeInteger(RetT.getElementSizeInBits(), false);
+ if (!RetT.isScalar() && !RetT.isSigned())
+ RetT.makeSigned();
+
+ bool ForcedVectorFloatingType = isFloatingPointProtoModifier(Proto[0]);
+ if (LocalCK == ClassB && !RetT.isScalar() && !ForcedVectorFloatingType)
+ // Cast to vector of 8-bit elements.
+ RetT.makeInteger(8, true);
+
+ S += RetT.builtin_str();
+ }
+
+ for (unsigned I = 0; I < getNumParams(); ++I) {
+ Type T = getParamType(I);
+ if (T.isPoly())
+ T.makeInteger(T.getElementSizeInBits(), false);
+
+ bool ForcedFloatingType = isFloatingPointProtoModifier(Proto[I + 1]);
+ if (LocalCK == ClassB && !T.isScalar() && !ForcedFloatingType)
+ T.makeInteger(8, true);
+ // Halves always get converted to 8-bit elements.
+ if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
+ T.makeInteger(8, true);
+
+ if (LocalCK == ClassI)
+ T.makeSigned();
+
+ if (hasImmediate() && getImmediateIdx() == I)
+ T.makeImmediate(32);
+
+ S += T.builtin_str();
+ }
+
+ // Extra constant integer to hold type class enum for this function, e.g. s8
+ if (LocalCK == ClassB)
+ S += "i";
+
+ return S;
+}
+
+std::string Intrinsic::getMangledName(bool ForceClassS) const {
+ // Check if the prototype has a scalar operand with the type of the vector
+ // elements. If not, bitcasting the args will take care of arg checking.
+ // The actual signedness etc. will be taken care of with special enums.
+ ClassKind LocalCK = CK;
+ if (!protoHasScalar())
+ LocalCK = ClassB;
+
+ return mangleName(Name, ForceClassS ? ClassS : LocalCK);
+}
+
+std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
+ std::string typeCode = getInstTypeCode(BaseType, LocalCK);
+ std::string S = Name;
+
+ if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
+ Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32")
+ return Name;
+
+ if (typeCode.size() > 0) {
+ // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
+ if (Name.size() >= 3 && isdigit(Name.back()) &&
+ Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
+ S.insert(S.length() - 3, "_" + typeCode);
+ else
+ S += "_" + typeCode;
+ }
+
+ if (BaseType != InBaseType) {
+ // A reinterpret - out the input base type at the end.
+ S += "_" + getInstTypeCode(InBaseType, LocalCK);
+ }
+
+ if (LocalCK == ClassB)
+ S += "_v";
+
+ // Insert a 'q' before the first '_' character so that it ends up before
+ // _lane or _n on vector-scalar operations.
+ if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
+ size_t Pos = S.find('_');
+ S.insert(Pos, "q");
+ }
+
+ char Suffix = '\0';
+ if (BaseType.isScalarForMangling()) {
+ switch (BaseType.getElementSizeInBits()) {
+ case 8: Suffix = 'b'; break;
+ case 16: Suffix = 'h'; break;
+ case 32: Suffix = 's'; break;
+ case 64: Suffix = 'd'; break;
+ default: llvm_unreachable("Bad suffix!");
+ }
+ }
+ if (Suffix != '\0') {
+ size_t Pos = S.find('_');
+ S.insert(Pos, &Suffix, 1);
+ }
+
+ return S;
+}
+
+std::string Intrinsic::replaceParamsIn(std::string S) {
+ while (S.find('$') != std::string::npos) {
+ size_t Pos = S.find('$');
+ size_t End = Pos + 1;
+ while (isalpha(S[End]))
+ ++End;
+
+ std::string VarName = S.substr(Pos + 1, End - Pos - 1);
+ assert_with_loc(Variables.find(VarName) != Variables.end(),
+ "Variable not defined!");
+ S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
+ }
+
+ return S;
+}
+
+void Intrinsic::initVariables() {
+ Variables.clear();
+
+ // Modify the TypeSpec per-argument to get a concrete Type, and create
+ // known variables for each.
+ for (unsigned I = 1; I < Proto.size(); ++I) {
+ char NameC = '0' + (I - 1);
+ std::string Name = "p";
+ Name.push_back(NameC);
+
+ Variables[Name] = Variable(Types[I], Name + VariablePostfix);
+ }
+ RetVar = Variable(Types[0], "ret" + VariablePostfix);
+}
+
+void Intrinsic::emitPrototype(StringRef NamePrefix) {
+ if (UseMacro)
+ OS << "#define ";
+ else
+ OS << "__ai " << Types[0].str() << " ";
+
+ OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
+
+ for (unsigned I = 0; I < getNumParams(); ++I) {
+ if (I != 0)
+ OS << ", ";
+
+ char NameC = '0' + I;
+ std::string Name = "p";
+ Name.push_back(NameC);
+ assert(Variables.find(Name) != Variables.end());
+ Variable &V = Variables[Name];
+
+ if (!UseMacro)
+ OS << V.getType().str() << " ";
+ OS << V.getName();
+ }
+
+ OS << ")";
+}
+
+void Intrinsic::emitOpeningBrace() {
+ if (UseMacro)
+ OS << " __extension__ ({";
+ else
+ OS << " {";
+ emitNewLine();
+}
+
+void Intrinsic::emitClosingBrace() {
+ if (UseMacro)
+ OS << "})";
+ else
+ OS << "}";
+}
+
+void Intrinsic::emitNewLine() {
+ if (UseMacro)
+ OS << " \\\n";
+ else
+ OS << "\n";
+}
+
+void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
+ if (Dest.getType().getNumVectors() > 1) {
+ emitNewLine();
+
+ for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
+ OS << " " << Dest.getName() << ".val[" << utostr(K) << "] = "
+ << "__builtin_shufflevector("
+ << Src.getName() << ".val[" << utostr(K) << "], "
+ << Src.getName() << ".val[" << utostr(K) << "]";
+ for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
+ OS << ", " << utostr(J);
+ OS << ");";
+ emitNewLine();
+ }
+ } else {
+ OS << " " << Dest.getName()
+ << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
+ for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
+ OS << ", " << utostr(J);
+ OS << ");";
+ emitNewLine();
+ }
+}
+
+void Intrinsic::emitArgumentReversal() {
+ if (BigEndianSafe)
+ return;
+
+ // Reverse all vector arguments.
+ for (unsigned I = 0; I < getNumParams(); ++I) {
+ std::string Name = "p" + utostr(I);
+ std::string NewName = "rev" + utostr(I);
+
+ Variable &V = Variables[Name];
+ Variable NewV(V.getType(), NewName + VariablePostfix);
+
+ if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
+ continue;
+
+ OS << " " << NewV.getType().str() << " " << NewV.getName() << ";";
+ emitReverseVariable(NewV, V);
+ V = NewV;
+ }
+}
+
+void Intrinsic::emitReturnReversal() {
+ if (BigEndianSafe)
+ return;
+ if (!getReturnType().isVector() || getReturnType().isVoid() ||
+ getReturnType().getNumElements() == 1)
+ return;
+ emitReverseVariable(RetVar, RetVar);
+}
+
+
+void Intrinsic::emitShadowedArgs() {
+ // Macro arguments are not type-checked like inline function arguments,
+ // so assign them to local temporaries to get the right type checking.
+ if (!UseMacro)
+ return;
+
+ for (unsigned I = 0; I < getNumParams(); ++I) {
+ // Do not create a temporary for an immediate argument.
+ // That would defeat the whole point of using a macro!
+ if (hasImmediate() && Proto[I+1] == 'i')
+ continue;
+ // Do not create a temporary for pointer arguments. The input
+ // pointer may have an alignment hint.
+ if (getParamType(I).isPointer())
+ continue;
+
+ std::string Name = "p" + utostr(I);
+
+ assert(Variables.find(Name) != Variables.end());
+ Variable &V = Variables[Name];
+
+ std::string NewName = "s" + utostr(I);
+ Variable V2(V.getType(), NewName + VariablePostfix);
+
+ OS << " " << V2.getType().str() << " " << V2.getName() << " = "
+ << V.getName() << ";";
+ emitNewLine();
+
+ V = V2;
+ }
+}
+
+// We don't check 'a' in this function, because for builtin function the
+// argument matching to 'a' uses a vector type splatted from a scalar type.
+bool Intrinsic::protoHasScalar() const {
+ return (Proto.find('s') != std::string::npos ||
+ Proto.find('z') != std::string::npos ||
+ Proto.find('r') != std::string::npos ||
+ Proto.find('b') != std::string::npos ||
+ Proto.find('$') != std::string::npos ||
+ Proto.find('y') != std::string::npos ||
+ Proto.find('o') != std::string::npos);
+}
+
+void Intrinsic::emitBodyAsBuiltinCall() {
+ std::string S;
+
+ // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
+ // sret-like argument.
+ bool SRet = getReturnType().getNumVectors() >= 2;
+
+ StringRef N = Name;
+ if (hasSplat()) {
+ // Call the non-splat builtin: chop off the "_n" suffix from the name.
+ assert(N.endswith("_n"));
+ N = N.drop_back(2);
+ }
+
+ ClassKind LocalCK = CK;
+ if (!protoHasScalar())
+ LocalCK = ClassB;
+
+ if (!getReturnType().isVoid() && !SRet)
+ S += "(" + RetVar.getType().str() + ") ";
+
+ S += "__builtin_neon_" + mangleName(N, LocalCK) + "(";
+
+ if (SRet)
+ S += "&" + RetVar.getName() + ", ";
+
+ for (unsigned I = 0; I < getNumParams(); ++I) {
+ Variable &V = Variables["p" + utostr(I)];
+ Type T = V.getType();
+
+ // Handle multiple-vector values specially, emitting each subvector as an
+ // argument to the builtin.
+ if (T.getNumVectors() > 1) {
+ // Check if an explicit cast is needed.
+ std::string Cast;
+ if (T.isChar() || T.isPoly() || !T.isSigned()) {
+ Type T2 = T;
+ T2.makeOneVector();
+ T2.makeInteger(8, /*Signed=*/true);
+ Cast = "(" + T2.str() + ")";
+ }
+
+ for (unsigned J = 0; J < T.getNumVectors(); ++J)
+ S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
+ continue;
+ }
+
+ std::string Arg;
+ Type CastToType = T;
+ if (hasSplat() && I == getSplatIdx()) {
+ Arg = "(" + BaseType.str() + ") {";
+ for (unsigned J = 0; J < BaseType.getNumElements(); ++J) {
+ if (J != 0)
+ Arg += ", ";
+ Arg += V.getName();
+ }
+ Arg += "}";
+
+ CastToType = BaseType;
+ } else {
+ Arg = V.getName();
+ }
+
+ // Check if an explicit cast is needed.
+ if (CastToType.isVector()) {
+ CastToType.makeInteger(8, true);
+ Arg = "(" + CastToType.str() + ")" + Arg;
+ }
+
+ S += Arg + ", ";
+ }
+
+ // Extra constant integer to hold type class enum for this function, e.g. s8
+ if (getClassKind(true) == ClassB) {
+ Type ThisTy = getReturnType();
+ if (Proto[0] == 'v' || isFloatingPointProtoModifier(Proto[0]))
+ ThisTy = getParamType(0);
+ if (ThisTy.isPointer())
+ ThisTy = getParamType(1);
+
+ S += utostr(ThisTy.getNeonEnum());
+ } else {
+ // Remove extraneous ", ".
+ S.pop_back();
+ S.pop_back();
+ }
+ S += ");";
+
+ std::string RetExpr;
+ if (!SRet && !RetVar.getType().isVoid())
+ RetExpr = RetVar.getName() + " = ";
+
+ OS << " " << RetExpr << S;
+ emitNewLine();
+}
+
+void Intrinsic::emitBody(StringRef CallPrefix) {
+ std::vector<std::string> Lines;
+
+ assert(RetVar.getType() == Types[0]);
+ // Create a return variable, if we're not void.
+ if (!RetVar.getType().isVoid()) {
+ OS << " " << RetVar.getType().str() << " " << RetVar.getName() << ";";
+ emitNewLine();
+ }
+
+ if (!Body || Body->getValues().size() == 0) {
+ // Nothing specific to output - must output a builtin.
+ emitBodyAsBuiltinCall();
+ return;
+ }
+
+ // We have a list of "things to output". The last should be returned.
+ for (auto *I : Body->getValues()) {
+ if (StringInit *SI = dyn_cast<StringInit>(I)) {
+ Lines.push_back(replaceParamsIn(SI->getAsString()));
+ } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
+ DagEmitter DE(*this, CallPrefix);
+ Lines.push_back(DE.emitDag(DI).second + ";");
+ }
+ }
+
+ assert(!Lines.empty() && "Empty def?");
+ if (!RetVar.getType().isVoid())
+ Lines.back().insert(0, RetVar.getName() + " = ");
+
+ for (auto &L : Lines) {
+ OS << " " << L;
+ emitNewLine();
+ }
+}
+
+void Intrinsic::emitReturn() {
+ if (RetVar.getType().isVoid())
+ return;
+ if (UseMacro)
+ OS << " " << RetVar.getName() << ";";
+ else
+ OS << " return " << RetVar.getName() << ";";
+ emitNewLine();
+}
+
+std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
+ // At this point we should only be seeing a def.
+ DefInit *DefI = cast<DefInit>(DI->getOperator());
+ std::string Op = DefI->getAsString();
+
+ if (Op == "cast" || Op == "bitcast")
+ return emitDagCast(DI, Op == "bitcast");
+ if (Op == "shuffle")
+ return emitDagShuffle(DI);
+ if (Op == "dup")
+ return emitDagDup(DI);
+ if (Op == "splat")
+ return emitDagSplat(DI);
+ if (Op == "save_temp")
+ return emitDagSaveTemp(DI);
+ if (Op == "op")
+ return emitDagOp(DI);
+ if (Op == "call")
+ return emitDagCall(DI);
+ if (Op == "name_replace")
+ return emitDagNameReplace(DI);
+ if (Op == "literal")
+ return emitDagLiteral(DI);
+ assert_with_loc(false, "Unknown operation!");
+ return std::make_pair(Type::getVoid(), "");
+}
+
+std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
+ std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
+ if (DI->getNumArgs() == 2) {
+ // Unary op.
+ std::pair<Type, std::string> R =
+ emitDagArg(DI->getArg(1), DI->getArgName(1));
+ return std::make_pair(R.first, Op + R.second);
+ } else {
+ assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
+ std::pair<Type, std::string> R1 =
+ emitDagArg(DI->getArg(1), DI->getArgName(1));
+ std::pair<Type, std::string> R2 =
+ emitDagArg(DI->getArg(2), DI->getArgName(2));
+ assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
+ return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
+ }
+}
+
+std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) {
+ std::vector<Type> Types;
+ std::vector<std::string> Values;
+ for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
+ std::pair<Type, std::string> R =
+ emitDagArg(DI->getArg(I + 1), DI->getArgName(I + 1));
+ Types.push_back(R.first);
+ Values.push_back(R.second);
+ }
+
+ // Look up the called intrinsic.
+ std::string N;
+ if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
+ N = SI->getAsUnquotedString();
+ else
+ N = emitDagArg(DI->getArg(0), "").second;
+ Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types);
+
+ // Make sure the callee is known as an early def.
+ Callee.setNeededEarly();
+ Intr.Dependencies.insert(&Callee);
+
+ // Now create the call itself.
+ std::string S = CallPrefix.str() + Callee.getMangledName(true) + "(";
+ for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
+ if (I != 0)
+ S += ", ";
+ S += Values[I];
+ }
+ S += ")";
+
+ return std::make_pair(Callee.getReturnType(), S);
+}
+
+std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
+ bool IsBitCast){
+ // (cast MOD* VAL) -> cast VAL to type given by MOD.
+ std::pair<Type, std::string> R = emitDagArg(
+ DI->getArg(DI->getNumArgs() - 1), DI->getArgName(DI->getNumArgs() - 1));
+ Type castToType = R.first;
+ for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
+
+ // MOD can take several forms:
+ // 1. $X - take the type of parameter / variable X.
+ // 2. The value "R" - take the type of the return type.
+ // 3. a type string
+ // 4. The value "U" or "S" to switch the signedness.
+ // 5. The value "H" or "D" to half or double the bitwidth.
+ // 6. The value "8" to convert to 8-bit (signed) integer lanes.
+ if (DI->getArgName(ArgIdx).size()) {
+ assert_with_loc(Intr.Variables.find(DI->getArgName(ArgIdx)) !=
+ Intr.Variables.end(),
+ "Variable not found");
+ castToType = Intr.Variables[DI->getArgName(ArgIdx)].getType();
+ } else {
+ StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
+ assert_with_loc(SI, "Expected string type or $Name for cast type");
+
+ if (SI->getAsUnquotedString() == "R") {
+ castToType = Intr.getReturnType();
+ } else if (SI->getAsUnquotedString() == "U") {
+ castToType.makeUnsigned();
+ } else if (SI->getAsUnquotedString() == "S") {
+ castToType.makeSigned();
+ } else if (SI->getAsUnquotedString() == "H") {
+ castToType.halveLanes();
+ } else if (SI->getAsUnquotedString() == "D") {
+ castToType.doubleLanes();
+ } else if (SI->getAsUnquotedString() == "8") {
+ castToType.makeInteger(8, true);
+ } else {
+ castToType = Type::fromTypedefName(SI->getAsUnquotedString());
+ assert_with_loc(!castToType.isVoid(), "Unknown typedef");
+ }
+ }
+ }
+
+ std::string S;
+ if (IsBitCast) {
+ // Emit a reinterpret cast. The second operand must be an lvalue, so create
+ // a temporary.
+ std::string N = "reint";
+ unsigned I = 0;
+ while (Intr.Variables.find(N) != Intr.Variables.end())
+ N = "reint" + utostr(++I);
+ Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
+
+ Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
+ << R.second << ";";
+ Intr.emitNewLine();
+
+ S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
+ } else {
+ // Emit a normal (static) cast.
+ S = "(" + castToType.str() + ")(" + R.second + ")";
+ }
+
+ return std::make_pair(castToType, S);
+}
+
+std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
+ // See the documentation in arm_neon.td for a description of these operators.
+ class LowHalf : public SetTheory::Operator {
+ public:
+ void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
+ ArrayRef<SMLoc> Loc) override {
+ SetTheory::RecSet Elts2;
+ ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
+ Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
+ }
+ };
+ class HighHalf : public SetTheory::Operator {
+ public:
+ void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
+ ArrayRef<SMLoc> Loc) override {
+ SetTheory::RecSet Elts2;
+ ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
+ Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
+ }
+ };
+ class Rev : public SetTheory::Operator {
+ unsigned ElementSize;
+
+ public:
+ Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
+ void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
+ ArrayRef<SMLoc> Loc) override {
+ SetTheory::RecSet Elts2;
+ ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
+
+ int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
+ VectorSize /= ElementSize;
+
+ std::vector<Record *> Revved;
+ for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
+ for (int LI = VectorSize - 1; LI >= 0; --LI) {
+ Revved.push_back(Elts2[VI + LI]);
+ }
+ }
+
+ Elts.insert(Revved.begin(), Revved.end());
+ }
+ };
+ class MaskExpander : public SetTheory::Expander {
+ unsigned N;
+
+ public:
+ MaskExpander(unsigned N) : N(N) {}
+ void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
+ unsigned Addend = 0;
+ if (R->getName() == "mask0")
+ Addend = 0;
+ else if (R->getName() == "mask1")
+ Addend = N;
+ else
+ return;
+ for (unsigned I = 0; I < N; ++I)
+ Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
+ }
+ };
+
+ // (shuffle arg1, arg2, sequence)
+ std::pair<Type, std::string> Arg1 =
+ emitDagArg(DI->getArg(0), DI->getArgName(0));
+ std::pair<Type, std::string> Arg2 =
+ emitDagArg(DI->getArg(1), DI->getArgName(1));
+ assert_with_loc(Arg1.first == Arg2.first,
+ "Different types in arguments to shuffle!");
+
+ SetTheory ST;
+ SetTheory::RecSet Elts;
+ ST.addOperator("lowhalf", llvm::make_unique<LowHalf>());
+ ST.addOperator("highhalf", llvm::make_unique<HighHalf>());
+ ST.addOperator("rev",
+ llvm::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
+ ST.addExpander("MaskExpand",
+ llvm::make_unique<MaskExpander>(Arg1.first.getNumElements()));
+ ST.evaluate(DI->getArg(2), Elts, None);
+
+ std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
+ for (auto &E : Elts) {
+ StringRef Name = E->getName();
+ assert_with_loc(Name.startswith("sv"),
+ "Incorrect element kind in shuffle mask!");
+ S += ", " + Name.drop_front(2).str();
+ }
+ S += ")";
+
+ // Recalculate the return type - the shuffle may have halved or doubled it.
+ Type T(Arg1.first);
+ if (Elts.size() > T.getNumElements()) {
+ assert_with_loc(
+ Elts.size() == T.getNumElements() * 2,
+ "Can only double or half the number of elements in a shuffle!");
+ T.doubleLanes();
+ } else if (Elts.size() < T.getNumElements()) {
+ assert_with_loc(
+ Elts.size() == T.getNumElements() / 2,
+ "Can only double or half the number of elements in a shuffle!");
+ T.halveLanes();
+ }
+
+ return std::make_pair(T, S);
+}
+
+std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
+ assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
+ std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
+ assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
+
+ Type T = Intr.getBaseType();
+ assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
+ std::string S = "(" + T.str() + ") {";
+ for (unsigned I = 0; I < T.getNumElements(); ++I) {
+ if (I != 0)
+ S += ", ";
+ S += A.second;
+ }
+ S += "}";
+
+ return std::make_pair(T, S);
+}
+
+std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
+ assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
+ std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
+ std::pair<Type, std::string> B = emitDagArg(DI->getArg(1), DI->getArgName(1));
+
+ assert_with_loc(B.first.isScalar(),
+ "splat() requires a scalar int as the second argument");
+
+ std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
+ for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
+ S += ", " + B.second;
+ }
+ S += ")";
+
+ return std::make_pair(Intr.getBaseType(), S);
+}
+
+std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
+ assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
+ std::pair<Type, std::string> A = emitDagArg(DI->getArg(1), DI->getArgName(1));
+
+ assert_with_loc(!A.first.isVoid(),
+ "Argument to save_temp() must have non-void type!");
+
+ std::string N = DI->getArgName(0);
+ assert_with_loc(N.size(), "save_temp() expects a name as the first argument");
+
+ assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
+ "Variable already defined!");
+ Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
+
+ std::string S =
+ A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
+
+ return std::make_pair(Type::getVoid(), S);
+}
+
+std::pair<Type, std::string>
+Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
+ std::string S = Intr.Name;
+
+ assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
+ std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
+ std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
+
+ size_t Idx = S.find(ToReplace);
+
+ assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
+ S.replace(Idx, ToReplace.size(), ReplaceWith);
+
+ return std::make_pair(Type::getVoid(), S);
+}
+
+std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
+ std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
+ std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
+ return std::make_pair(Type::fromTypedefName(Ty), Value);
+}
+
+std::pair<Type, std::string>
+Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
+ if (ArgName.size()) {
+ assert_with_loc(!Arg->isComplete(),
+ "Arguments must either be DAGs or names, not both!");
+ assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
+ "Variable not defined!");
+ Variable &V = Intr.Variables[ArgName];
+ return std::make_pair(V.getType(), V.getName());
+ }
+
+ assert(Arg && "Neither ArgName nor Arg?!");
+ DagInit *DI = dyn_cast<DagInit>(Arg);
+ assert_with_loc(DI, "Arguments must either be DAGs or names!");
+
+ return emitDag(DI);
+}
+
+std::string Intrinsic::generate() {
+ // Little endian intrinsics are simple and don't require any argument
+ // swapping.
+ OS << "#ifdef __LITTLE_ENDIAN__\n";
+
+ generateImpl(false, "", "");
+
+ OS << "#else\n";
+
+ // Big endian intrinsics are more complex. The user intended these
+ // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
+ // but we load as-if (V)LD1. So we should swap all arguments and
+ // swap the return value too.
+ //
+ // If we call sub-intrinsics, we should call a version that does
+ // not re-swap the arguments!
+ generateImpl(true, "", "__noswap_");
+
+ // If we're needed early, create a non-swapping variant for
+ // big-endian.
+ if (NeededEarly) {
+ generateImpl(false, "__noswap_", "__noswap_");
+ }
+ OS << "#endif\n\n";
+
+ return OS.str();
+}
+
+void Intrinsic::generateImpl(bool ReverseArguments,
+ StringRef NamePrefix, StringRef CallPrefix) {
+ CurrentRecord = R;
+
+ // If we call a macro, our local variables may be corrupted due to
+ // lack of proper lexical scoping. So, add a globally unique postfix
+ // to every variable.
+ //
+ // indexBody() should have set up the Dependencies set by now.
+ for (auto *I : Dependencies)
+ if (I->UseMacro) {
+ VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
+ break;
+ }
+
+ initVariables();
+
+ emitPrototype(NamePrefix);
+
+ if (IsUnavailable) {
+ OS << " __attribute__((unavailable));";
+ } else {
+ emitOpeningBrace();
+ emitShadowedArgs();
+ if (ReverseArguments)
+ emitArgumentReversal();
+ emitBody(CallPrefix);
+ if (ReverseArguments)
+ emitReturnReversal();
+ emitReturn();
+ emitClosingBrace();
+ }
+ OS << "\n";
+
+ CurrentRecord = nullptr;
+}
+
+void Intrinsic::indexBody() {
+ CurrentRecord = R;
+
+ initVariables();
+ emitBody("");
+ OS.str("");
+
+ CurrentRecord = nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// NeonEmitter implementation
+//===----------------------------------------------------------------------===//
+
+Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) {
+ // First, look up the name in the intrinsic map.
+ assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
+ ("Intrinsic '" + Name + "' not found!").str());
+ auto &V = IntrinsicMap.find(Name.str())->second;
+ std::vector<Intrinsic *> GoodVec;
+
+ // Create a string to print if we end up failing.
+ std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
+ for (unsigned I = 0; I < Types.size(); ++I) {
+ if (I != 0)
+ ErrMsg += ", ";
+ ErrMsg += Types[I].str();
+ }
+ ErrMsg += ")'\n";
+ ErrMsg += "Available overloads:\n";
+
+ // Now, look through each intrinsic implementation and see if the types are
+ // compatible.
+ for (auto &I : V) {
+ ErrMsg += " - " + I.getReturnType().str() + " " + I.getMangledName();
+ ErrMsg += "(";
+ for (unsigned A = 0; A < I.getNumParams(); ++A) {
+ if (A != 0)
+ ErrMsg += ", ";
+ ErrMsg += I.getParamType(A).str();
+ }
+ ErrMsg += ")\n";
+
+ if (I.getNumParams() != Types.size())
+ continue;
+
+ bool Good = true;
+ for (unsigned Arg = 0; Arg < Types.size(); ++Arg) {
+ if (I.getParamType(Arg) != Types[Arg]) {
+ Good = false;
+ break;
+ }
+ }
+ if (Good)
+ GoodVec.push_back(&I);
+ }
+
+ assert_with_loc(GoodVec.size() > 0,
+ "No compatible intrinsic found - " + ErrMsg);
+ assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
+
+ return *GoodVec.front();
+}
+
+void NeonEmitter::createIntrinsic(Record *R,
+ SmallVectorImpl<Intrinsic *> &Out) {
+ std::string Name = R->getValueAsString("Name");
+ std::string Proto = R->getValueAsString("Prototype");
+ std::string Types = R->getValueAsString("Types");
+ Record *OperationRec = R->getValueAsDef("Operation");
+ bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes");
+ bool BigEndianSafe = R->getValueAsBit("BigEndianSafe");
+ std::string Guard = R->getValueAsString("ArchGuard");
+ bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
+
+ // Set the global current record. This allows assert_with_loc to produce
+ // decent location information even when highly nested.
+ CurrentRecord = R;
+
+ ListInit *Body = OperationRec->getValueAsListInit("Ops");
+
+ std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
+
+ ClassKind CK = ClassNone;
+ if (R->getSuperClasses().size() >= 2)
+ CK = ClassMap[R->getSuperClasses()[1]];
+
+ std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
+ for (auto TS : TypeSpecs) {
+ if (CartesianProductOfTypes) {
+ Type DefaultT(TS, 'd');
+ for (auto SrcTS : TypeSpecs) {
+ Type DefaultSrcT(SrcTS, 'd');
+ if (TS == SrcTS ||
+ DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
+ continue;
+ NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
+ }
+ } else {
+ NewTypeSpecs.push_back(std::make_pair(TS, TS));
+ }
+ }
+
+ std::sort(NewTypeSpecs.begin(), NewTypeSpecs.end());
+ NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
+ NewTypeSpecs.end());
+ auto &Entry = IntrinsicMap[Name];
+
+ for (auto &I : NewTypeSpecs) {
+ Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
+ Guard, IsUnavailable, BigEndianSafe);
+ Out.push_back(&Entry.back());
+ }
+
+ CurrentRecord = nullptr;
+}
+
+/// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def
+/// declaration of builtins, checking for unique builtin declarations.
+void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
+ SmallVectorImpl<Intrinsic *> &Defs) {
+ OS << "#ifdef GET_NEON_BUILTINS\n";
+
+ // We only want to emit a builtin once, and we want to emit them in
+ // alphabetical order, so use a std::set.
+ std::set<std::string> Builtins;
+
+ for (auto *Def : Defs) {
+ if (Def->hasBody())
+ continue;
+ // Functions with 'a' (the splat code) in the type prototype should not get
+ // their own builtin as they use the non-splat variant.
+ if (Def->hasSplat())
+ continue;
+
+ std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
+
+ S += Def->getBuiltinTypeStr();
+ S += "\", \"n\")";
+
+ Builtins.insert(S);
+ }
+
+ for (auto &S : Builtins)
+ OS << S << "\n";
+ OS << "#endif\n\n";
+}
+
+/// Generate the ARM and AArch64 overloaded type checking code for
+/// SemaChecking.cpp, checking for unique builtin declarations.
+void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
+ SmallVectorImpl<Intrinsic *> &Defs) {
+ OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
+
+ // We record each overload check line before emitting because subsequent Inst
+ // definitions may extend the number of permitted types (i.e. augment the
+ // Mask). Use std::map to avoid sorting the table by hash number.
+ struct OverloadInfo {
+ uint64_t Mask;
+ int PtrArgNum;
+ bool HasConstPtr;
+ OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
+ };
+ std::map<std::string, OverloadInfo> OverloadMap;
+
+ for (auto *Def : Defs) {
+ // If the def has a body (that is, it has Operation DAGs), it won't call
+ // __builtin_neon_* so we don't need to generate a definition for it.
+ if (Def->hasBody())
+ continue;
+ // Functions with 'a' (the splat code) in the type prototype should not get
+ // their own builtin as they use the non-splat variant.
+ if (Def->hasSplat())
+ continue;
+ // Functions which have a scalar argument cannot be overloaded, no need to
+ // check them if we are emitting the type checking code.
+ if (Def->protoHasScalar())
+ continue;
+
+ uint64_t Mask = 0ULL;
+ Type Ty = Def->getReturnType();
+ if (Def->getProto()[0] == 'v' ||
+ isFloatingPointProtoModifier(Def->getProto()[0]))
+ Ty = Def->getParamType(0);
+ if (Ty.isPointer())
+ Ty = Def->getParamType(1);
+
+ Mask |= 1ULL << Ty.getNeonEnum();
+
+ // Check if the function has a pointer or const pointer argument.
+ std::string Proto = Def->getProto();
+ int PtrArgNum = -1;
+ bool HasConstPtr = false;
+ for (unsigned I = 0; I < Def->getNumParams(); ++I) {
+ char ArgType = Proto[I + 1];
+ if (ArgType == 'c') {
+ HasConstPtr = true;
+ PtrArgNum = I;
+ break;
+ }
+ if (ArgType == 'p') {
+ PtrArgNum = I;
+ break;
+ }
+ }
+ // For sret builtins, adjust the pointer argument index.
+ if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
+ PtrArgNum += 1;
+
+ std::string Name = Def->getName();
+ // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
+ // and vst1_lane intrinsics. Using a pointer to the vector element
+ // type with one of those operations causes codegen to select an aligned
+ // load/store instruction. If you want an unaligned operation,
+ // the pointer argument needs to have less alignment than element type,
+ // so just accept any pointer type.
+ if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
+ PtrArgNum = -1;
+ HasConstPtr = false;
+ }
+
+ if (Mask) {
+ std::string Name = Def->getMangledName();
+ OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
+ OverloadInfo &OI = OverloadMap[Name];
+ OI.Mask |= Mask;
+ OI.PtrArgNum |= PtrArgNum;
+ OI.HasConstPtr = HasConstPtr;
+ }
+ }
+
+ for (auto &I : OverloadMap) {
+ OverloadInfo &OI = I.second;
+
+ OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
+ OS << "mask = 0x" << utohexstr(OI.Mask) << "ULL";
+ if (OI.PtrArgNum >= 0)
+ OS << "; PtrArgNum = " << OI.PtrArgNum;
+ if (OI.HasConstPtr)
+ OS << "; HasConstPtr = true";
+ OS << "; break;\n";
+ }
+ OS << "#endif\n\n";
+}
+
+void
+NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
+ SmallVectorImpl<Intrinsic *> &Defs) {
+ OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
+
+ std::set<std::string> Emitted;
+
+ for (auto *Def : Defs) {
+ if (Def->hasBody())
+ continue;
+ // Functions with 'a' (the splat code) in the type prototype should not get
+ // their own builtin as they use the non-splat variant.
+ if (Def->hasSplat())
+ continue;
+ // Functions which do not have an immediate do not need to have range
+ // checking code emitted.
+ if (!Def->hasImmediate())
+ continue;
+ if (Emitted.find(Def->getMangledName()) != Emitted.end())
+ continue;
+
+ std::string LowerBound, UpperBound;
+
+ Record *R = Def->getRecord();
+ if (R->getValueAsBit("isVCVT_N")) {
+ // VCVT between floating- and fixed-point values takes an immediate
+ // in the range [1, 32) for f32 or [1, 64) for f64.
+ LowerBound = "1";
+ if (Def->getBaseType().getElementSizeInBits() == 32)
+ UpperBound = "31";
+ else
+ UpperBound = "63";
+ } else if (R->getValueAsBit("isScalarShift")) {
+ // Right shifts have an 'r' in the name, left shifts do not. Convert
+ // instructions have the same bounds and right shifts.
+ if (Def->getName().find('r') != std::string::npos ||
+ Def->getName().find("cvt") != std::string::npos)
+ LowerBound = "1";
+
+ UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
+ } else if (R->getValueAsBit("isShift")) {
+ // Builtins which are overloaded by type will need to have their upper
+ // bound computed at Sema time based on the type constant.
+
+ // Right shifts have an 'r' in the name, left shifts do not.
+ if (Def->getName().find('r') != std::string::npos)
+ LowerBound = "1";
+ UpperBound = "RFT(TV, true)";
+ } else if (Def->getClassKind(true) == ClassB) {
+ // ClassB intrinsics have a type (and hence lane number) that is only
+ // known at runtime.
+ if (R->getValueAsBit("isLaneQ"))
+ UpperBound = "RFT(TV, false, true)";
+ else
+ UpperBound = "RFT(TV, false, false)";
+ } else {
+ // The immediate generally refers to a lane in the preceding argument.
+ assert(Def->getImmediateIdx() > 0);
+ Type T = Def->getParamType(Def->getImmediateIdx() - 1);
+ UpperBound = utostr(T.getNumElements() - 1);
+ }
+
+ // Calculate the index of the immediate that should be range checked.
+ unsigned Idx = Def->getNumParams();
+ if (Def->hasImmediate())
+ Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
+
+ OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
+ << "i = " << Idx << ";";
+ if (LowerBound.size())
+ OS << " l = " << LowerBound << ";";
+ if (UpperBound.size())
+ OS << " u = " << UpperBound << ";";
+ OS << " break;\n";
+
+ Emitted.insert(Def->getMangledName());
+ }
+
+ OS << "#endif\n\n";
+}
+
+/// runHeader - Emit a file with sections defining:
+/// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
+/// 2. the SemaChecking code for the type overload checking.
+/// 3. the SemaChecking code for validation of intrinsic immediate arguments.
+void NeonEmitter::runHeader(raw_ostream &OS) {
+ std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
+
+ SmallVector<Intrinsic *, 128> Defs;
+ for (auto *R : RV)
+ createIntrinsic(R, Defs);
+
+ // Generate shared BuiltinsXXX.def
+ genBuiltinsDef(OS, Defs);
+
+ // Generate ARM overloaded type checking code for SemaChecking.cpp
+ genOverloadTypeCheckCode(OS, Defs);
+
+ // Generate ARM range checking code for shift/lane immediates.
+ genIntrinsicRangeCheckCode(OS, Defs);
+}
+
+/// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h
+/// is comprised of type definitions and function declarations.
+void NeonEmitter::run(raw_ostream &OS) {
+ OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
+ "------------------------------"
+ "---===\n"
+ " *\n"
+ " * Permission is hereby granted, free of charge, to any person "
+ "obtaining "
+ "a copy\n"
+ " * of this software and associated documentation files (the "
+ "\"Software\"),"
+ " to deal\n"
+ " * in the Software without restriction, including without limitation "
+ "the "
+ "rights\n"
+ " * to use, copy, modify, merge, publish, distribute, sublicense, "
+ "and/or sell\n"
+ " * copies of the Software, and to permit persons to whom the Software "
+ "is\n"
+ " * furnished to do so, subject to the following conditions:\n"
+ " *\n"
+ " * The above copyright notice and this permission notice shall be "
+ "included in\n"
+ " * all copies or substantial portions of the Software.\n"
+ " *\n"
+ " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
+ "EXPRESS OR\n"
+ " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
+ "MERCHANTABILITY,\n"
+ " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
+ "SHALL THE\n"
+ " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
+ "OTHER\n"
+ " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
+ "ARISING FROM,\n"
+ " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
+ "DEALINGS IN\n"
+ " * THE SOFTWARE.\n"
+ " *\n"
+ " *===-----------------------------------------------------------------"
+ "---"
+ "---===\n"
+ " */\n\n";
+
+ OS << "#ifndef __ARM_NEON_H\n";
+ OS << "#define __ARM_NEON_H\n\n";
+
+ OS << "#if !defined(__ARM_NEON)\n";
+ OS << "#error \"NEON support not enabled\"\n";
+ OS << "#endif\n\n";
+
+ OS << "#include <stdint.h>\n\n";
+
+ // Emit NEON-specific scalar typedefs.
+ OS << "typedef float float32_t;\n";
+ OS << "typedef __fp16 float16_t;\n";
+
+ OS << "#ifdef __aarch64__\n";
+ OS << "typedef double float64_t;\n";
+ OS << "#endif\n\n";
+
+ // For now, signedness of polynomial types depends on target
+ OS << "#ifdef __aarch64__\n";
+ OS << "typedef uint8_t poly8_t;\n";
+ OS << "typedef uint16_t poly16_t;\n";
+ OS << "typedef uint64_t poly64_t;\n";
+ OS << "typedef __uint128_t poly128_t;\n";
+ OS << "#else\n";
+ OS << "typedef int8_t poly8_t;\n";
+ OS << "typedef int16_t poly16_t;\n";
+ OS << "#endif\n";
+
+ // Emit Neon vector typedefs.
+ std::string TypedefTypes(
+ "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl");
+ std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
+
+ // Emit vector typedefs.
+ bool InIfdef = false;
+ for (auto &TS : TDTypeVec) {
+ bool IsA64 = false;
+ Type T(TS, 'd');
+ if (T.isDouble() || (T.isPoly() && T.isLong()))
+ IsA64 = true;
+
+ if (InIfdef && !IsA64) {
+ OS << "#endif\n";
+ InIfdef = false;
+ }
+ if (!InIfdef && IsA64) {
+ OS << "#ifdef __aarch64__\n";
+ InIfdef = true;
+ }
+
+ if (T.isPoly())
+ OS << "typedef __attribute__((neon_polyvector_type(";
+ else
+ OS << "typedef __attribute__((neon_vector_type(";
+
+ Type T2 = T;
+ T2.makeScalar();
+ OS << utostr(T.getNumElements()) << "))) ";
+ OS << T2.str();
+ OS << " " << T.str() << ";\n";
+ }
+ if (InIfdef)
+ OS << "#endif\n";
+ OS << "\n";
+
+ // Emit struct typedefs.
+ InIfdef = false;
+ for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
+ for (auto &TS : TDTypeVec) {
+ bool IsA64 = false;
+ Type T(TS, 'd');
+ if (T.isDouble() || (T.isPoly() && T.isLong()))
+ IsA64 = true;
+
+ if (InIfdef && !IsA64) {
+ OS << "#endif\n";
+ InIfdef = false;
+ }
+ if (!InIfdef && IsA64) {
+ OS << "#ifdef __aarch64__\n";
+ InIfdef = true;
+ }
+
+ char M = '2' + (NumMembers - 2);
+ Type VT(TS, M);
+ OS << "typedef struct " << VT.str() << " {\n";
+ OS << " " << T.str() << " val";
+ OS << "[" << utostr(NumMembers) << "]";
+ OS << ";\n} ";
+ OS << VT.str() << ";\n";
+ OS << "\n";
+ }
+ }
+ if (InIfdef)
+ OS << "#endif\n";
+ OS << "\n";
+
+ OS << "#define __ai static inline __attribute__((__always_inline__, "
+ "__nodebug__))\n\n";
+
+ SmallVector<Intrinsic *, 128> Defs;
+ std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
+ for (auto *R : RV)
+ createIntrinsic(R, Defs);
+
+ for (auto *I : Defs)
+ I->indexBody();
+
+ std::stable_sort(
+ Defs.begin(), Defs.end(),
+ [](const Intrinsic *A, const Intrinsic *B) { return *A < *B; });
+
+ // Only emit a def when its requirements have been met.
+ // FIXME: This loop could be made faster, but it's fast enough for now.
+ bool MadeProgress = true;
+ std::string InGuard = "";
+ while (!Defs.empty() && MadeProgress) {
+ MadeProgress = false;
+
+ for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
+ I != Defs.end(); /*No step*/) {
+ bool DependenciesSatisfied = true;
+ for (auto *II : (*I)->getDependencies()) {
+ if (std::find(Defs.begin(), Defs.end(), II) != Defs.end())
+ DependenciesSatisfied = false;
+ }
+ if (!DependenciesSatisfied) {
+ // Try the next one.
+ ++I;
+ continue;
+ }
+
+ // Emit #endif/#if pair if needed.
+ if ((*I)->getGuard() != InGuard) {
+ if (!InGuard.empty())
+ OS << "#endif\n";
+ InGuard = (*I)->getGuard();
+ if (!InGuard.empty())
+ OS << "#if " << InGuard << "\n";
+ }
+
+ // Actually generate the intrinsic code.
+ OS << (*I)->generate();
+
+ MadeProgress = true;
+ I = Defs.erase(I);
+ }
+ }
+ assert(Defs.empty() && "Some requirements were not satisfied!");
+ if (!InGuard.empty())
+ OS << "#endif\n";
+
+ OS << "\n";
+ OS << "#undef __ai\n\n";
+ OS << "#endif /* __ARM_NEON_H */\n";
+}
+
+namespace clang {
+void EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
+ NeonEmitter(Records).run(OS);
+}
+void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
+ NeonEmitter(Records).runHeader(OS);
+}
+void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
+ llvm_unreachable("Neon test generation no longer implemented!");
+}
+} // End namespace clang
OpenPOWER on IntegriCloud