diff options
Diffstat (limited to 'contrib/llvm/tools/clang/utils/TableGen/ClangAttrEmitter.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/utils/TableGen/ClangAttrEmitter.cpp | 3016 |
1 files changed, 3016 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/utils/TableGen/ClangAttrEmitter.cpp b/contrib/llvm/tools/clang/utils/TableGen/ClangAttrEmitter.cpp new file mode 100644 index 0000000..f70bff2 --- /dev/null +++ b/contrib/llvm/tools/clang/utils/TableGen/ClangAttrEmitter.cpp @@ -0,0 +1,3016 @@ +//===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// These tablegen backends emit Clang attribute processing code +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/TableGen/Error.h" +#include "llvm/TableGen/Record.h" +#include "llvm/TableGen/StringMatcher.h" +#include "llvm/TableGen/TableGenBackend.h" +#include <algorithm> +#include <cctype> +#include <memory> +#include <set> +#include <sstream> + +using namespace llvm; + +namespace { +class FlattenedSpelling { + std::string V, N, NS; + bool K; + +public: + FlattenedSpelling(const std::string &Variety, const std::string &Name, + const std::string &Namespace, bool KnownToGCC) : + V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {} + explicit FlattenedSpelling(const Record &Spelling) : + V(Spelling.getValueAsString("Variety")), + N(Spelling.getValueAsString("Name")) { + + assert(V != "GCC" && "Given a GCC spelling, which means this hasn't been" + "flattened!"); + if (V == "CXX11" || V == "Pragma") + NS = Spelling.getValueAsString("Namespace"); + bool Unset; + K = Spelling.getValueAsBitOrUnset("KnownToGCC", Unset); + } + + const std::string &variety() const { return V; } + const std::string &name() const { return N; } + const std::string &nameSpace() const { return NS; } + bool knownToGCC() const { return K; } +}; +} // end anonymous namespace + +static std::vector<FlattenedSpelling> +GetFlattenedSpellings(const Record &Attr) { + std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings"); + std::vector<FlattenedSpelling> Ret; + + for (const auto &Spelling : Spellings) { + if (Spelling->getValueAsString("Variety") == "GCC") { + // Gin up two new spelling objects to add into the list. + Ret.emplace_back("GNU", Spelling->getValueAsString("Name"), "", true); + Ret.emplace_back("CXX11", Spelling->getValueAsString("Name"), "gnu", + true); + } else + Ret.push_back(FlattenedSpelling(*Spelling)); + } + + return Ret; +} + +static std::string ReadPCHRecord(StringRef type) { + return StringSwitch<std::string>(type) + .EndsWith("Decl *", "GetLocalDeclAs<" + + std::string(type, 0, type.size()-1) + ">(F, Record[Idx++])") + .Case("TypeSourceInfo *", "GetTypeSourceInfo(F, Record, Idx)") + .Case("Expr *", "ReadExpr(F)") + .Case("IdentifierInfo *", "GetIdentifierInfo(F, Record, Idx)") + .Case("std::string", "ReadString(Record, Idx)") + .Default("Record[Idx++]"); +} + +// Assumes that the way to get the value is SA->getname() +static std::string WritePCHRecord(StringRef type, StringRef name) { + return StringSwitch<std::string>(type) + .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + + ", Record);\n") + .Case("TypeSourceInfo *", + "AddTypeSourceInfo(" + std::string(name) + ", Record);\n") + .Case("Expr *", "AddStmt(" + std::string(name) + ");\n") + .Case("IdentifierInfo *", + "AddIdentifierRef(" + std::string(name) + ", Record);\n") + .Case("std::string", "AddString(" + std::string(name) + ", Record);\n") + .Default("Record.push_back(" + std::string(name) + ");\n"); +} + +// Normalize attribute name by removing leading and trailing +// underscores. For example, __foo, foo__, __foo__ would +// become foo. +static StringRef NormalizeAttrName(StringRef AttrName) { + if (AttrName.startswith("__")) + AttrName = AttrName.substr(2, AttrName.size()); + + if (AttrName.endswith("__")) + AttrName = AttrName.substr(0, AttrName.size() - 2); + + return AttrName; +} + +// Normalize the name by removing any and all leading and trailing underscores. +// This is different from NormalizeAttrName in that it also handles names like +// _pascal and __pascal. +static StringRef NormalizeNameForSpellingComparison(StringRef Name) { + return Name.trim("_"); +} + +// Normalize attribute spelling only if the spelling has both leading +// and trailing underscores. For example, __ms_struct__ will be +// normalized to "ms_struct"; __cdecl will remain intact. +static StringRef NormalizeAttrSpelling(StringRef AttrSpelling) { + if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) { + AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4); + } + + return AttrSpelling; +} + +typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap; + +static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records, + ParsedAttrMap *Dupes = nullptr) { + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + std::set<std::string> Seen; + ParsedAttrMap R; + for (const auto *Attr : Attrs) { + if (Attr->getValueAsBit("SemaHandler")) { + std::string AN; + if (Attr->isSubClassOf("TargetSpecificAttr") && + !Attr->isValueUnset("ParseKind")) { + AN = Attr->getValueAsString("ParseKind"); + + // If this attribute has already been handled, it does not need to be + // handled again. + if (Seen.find(AN) != Seen.end()) { + if (Dupes) + Dupes->push_back(std::make_pair(AN, Attr)); + continue; + } + Seen.insert(AN); + } else + AN = NormalizeAttrName(Attr->getName()).str(); + + R.push_back(std::make_pair(AN, Attr)); + } + } + return R; +} + +namespace { + class Argument { + std::string lowerName, upperName; + StringRef attrName; + bool isOpt; + bool Fake; + + public: + Argument(const Record &Arg, StringRef Attr) + : lowerName(Arg.getValueAsString("Name")), upperName(lowerName), + attrName(Attr), isOpt(false), Fake(false) { + if (!lowerName.empty()) { + lowerName[0] = std::tolower(lowerName[0]); + upperName[0] = std::toupper(upperName[0]); + } + } + virtual ~Argument() = default; + + StringRef getLowerName() const { return lowerName; } + StringRef getUpperName() const { return upperName; } + StringRef getAttrName() const { return attrName; } + + bool isOptional() const { return isOpt; } + void setOptional(bool set) { isOpt = set; } + + bool isFake() const { return Fake; } + void setFake(bool fake) { Fake = fake; } + + // These functions print the argument contents formatted in different ways. + virtual void writeAccessors(raw_ostream &OS) const = 0; + virtual void writeAccessorDefinitions(raw_ostream &OS) const {} + virtual void writeASTVisitorTraversal(raw_ostream &OS) const {} + virtual void writeCloneArgs(raw_ostream &OS) const = 0; + virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0; + virtual void writeTemplateInstantiation(raw_ostream &OS) const {} + virtual void writeCtorBody(raw_ostream &OS) const {} + virtual void writeCtorInitializers(raw_ostream &OS) const = 0; + virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0; + virtual void writeCtorParameters(raw_ostream &OS) const = 0; + virtual void writeDeclarations(raw_ostream &OS) const = 0; + virtual void writePCHReadArgs(raw_ostream &OS) const = 0; + virtual void writePCHReadDecls(raw_ostream &OS) const = 0; + virtual void writePCHWrite(raw_ostream &OS) const = 0; + virtual void writeValue(raw_ostream &OS) const = 0; + virtual void writeDump(raw_ostream &OS) const = 0; + virtual void writeDumpChildren(raw_ostream &OS) const {} + virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; } + + virtual bool isEnumArg() const { return false; } + virtual bool isVariadicEnumArg() const { return false; } + virtual bool isVariadic() const { return false; } + + virtual void writeImplicitCtorArgs(raw_ostream &OS) const { + OS << getUpperName(); + } + }; + + class SimpleArgument : public Argument { + std::string type; + + public: + SimpleArgument(const Record &Arg, StringRef Attr, std::string T) + : Argument(Arg, Attr), type(T) + {} + + std::string getType() const { return type; } + + void writeAccessors(raw_ostream &OS) const override { + OS << " " << type << " get" << getUpperName() << "() const {\n"; + OS << " return " << getLowerName() << ";\n"; + OS << " }"; + } + void writeCloneArgs(raw_ostream &OS) const override { + OS << getLowerName(); + } + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "A->get" << getUpperName() << "()"; + } + void writeCtorInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "(" << getUpperName() << ")"; + } + void writeCtorDefaultInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "()"; + } + void writeCtorParameters(raw_ostream &OS) const override { + OS << type << " " << getUpperName(); + } + void writeDeclarations(raw_ostream &OS) const override { + OS << type << " " << getLowerName() << ";"; + } + void writePCHReadDecls(raw_ostream &OS) const override { + std::string read = ReadPCHRecord(type); + OS << " " << type << " " << getLowerName() << " = " << read << ";\n"; + } + void writePCHReadArgs(raw_ostream &OS) const override { + OS << getLowerName(); + } + void writePCHWrite(raw_ostream &OS) const override { + OS << " " << WritePCHRecord(type, "SA->get" + + std::string(getUpperName()) + "()"); + } + void writeValue(raw_ostream &OS) const override { + if (type == "FunctionDecl *") { + OS << "\" << get" << getUpperName() + << "()->getNameInfo().getAsString() << \""; + } else if (type == "IdentifierInfo *") { + OS << "\" << get" << getUpperName() << "()->getName() << \""; + } else if (type == "TypeSourceInfo *") { + OS << "\" << get" << getUpperName() << "().getAsString() << \""; + } else { + OS << "\" << get" << getUpperName() << "() << \""; + } + } + void writeDump(raw_ostream &OS) const override { + if (type == "FunctionDecl *") { + OS << " OS << \" \";\n"; + OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n"; + } else if (type == "IdentifierInfo *") { + if (isOptional()) + OS << " if (SA->get" << getUpperName() << "())\n "; + OS << " OS << \" \" << SA->get" << getUpperName() + << "()->getName();\n"; + } else if (type == "TypeSourceInfo *") { + OS << " OS << \" \" << SA->get" << getUpperName() + << "().getAsString();\n"; + } else if (type == "bool") { + OS << " if (SA->get" << getUpperName() << "()) OS << \" " + << getUpperName() << "\";\n"; + } else if (type == "int" || type == "unsigned") { + OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; + } else { + llvm_unreachable("Unknown SimpleArgument type!"); + } + } + }; + + class DefaultSimpleArgument : public SimpleArgument { + int64_t Default; + + public: + DefaultSimpleArgument(const Record &Arg, StringRef Attr, + std::string T, int64_t Default) + : SimpleArgument(Arg, Attr, T), Default(Default) {} + + void writeAccessors(raw_ostream &OS) const override { + SimpleArgument::writeAccessors(OS); + + OS << "\n\n static const " << getType() << " Default" << getUpperName() + << " = " << Default << ";"; + } + }; + + class StringArgument : public Argument { + public: + StringArgument(const Record &Arg, StringRef Attr) + : Argument(Arg, Attr) + {} + + void writeAccessors(raw_ostream &OS) const override { + OS << " llvm::StringRef get" << getUpperName() << "() const {\n"; + OS << " return llvm::StringRef(" << getLowerName() << ", " + << getLowerName() << "Length);\n"; + OS << " }\n"; + OS << " unsigned get" << getUpperName() << "Length() const {\n"; + OS << " return " << getLowerName() << "Length;\n"; + OS << " }\n"; + OS << " void set" << getUpperName() + << "(ASTContext &C, llvm::StringRef S) {\n"; + OS << " " << getLowerName() << "Length = S.size();\n"; + OS << " this->" << getLowerName() << " = new (C, 1) char [" + << getLowerName() << "Length];\n"; + OS << " if (!S.empty())\n"; + OS << " std::memcpy(this->" << getLowerName() << ", S.data(), " + << getLowerName() << "Length);\n"; + OS << " }"; + } + void writeCloneArgs(raw_ostream &OS) const override { + OS << "get" << getUpperName() << "()"; + } + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "A->get" << getUpperName() << "()"; + } + void writeCtorBody(raw_ostream &OS) const override { + OS << " if (!" << getUpperName() << ".empty())\n"; + OS << " std::memcpy(" << getLowerName() << ", " << getUpperName() + << ".data(), " << getLowerName() << "Length);"; + } + void writeCtorInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "Length(" << getUpperName() << ".size())," + << getLowerName() << "(new (Ctx, 1) char[" << getLowerName() + << "Length])"; + } + void writeCtorDefaultInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)"; + } + void writeCtorParameters(raw_ostream &OS) const override { + OS << "llvm::StringRef " << getUpperName(); + } + void writeDeclarations(raw_ostream &OS) const override { + OS << "unsigned " << getLowerName() << "Length;\n"; + OS << "char *" << getLowerName() << ";"; + } + void writePCHReadDecls(raw_ostream &OS) const override { + OS << " std::string " << getLowerName() + << "= ReadString(Record, Idx);\n"; + } + void writePCHReadArgs(raw_ostream &OS) const override { + OS << getLowerName(); + } + void writePCHWrite(raw_ostream &OS) const override { + OS << " AddString(SA->get" << getUpperName() << "(), Record);\n"; + } + void writeValue(raw_ostream &OS) const override { + OS << "\\\"\" << get" << getUpperName() << "() << \"\\\""; + } + void writeDump(raw_ostream &OS) const override { + OS << " OS << \" \\\"\" << SA->get" << getUpperName() + << "() << \"\\\"\";\n"; + } + }; + + class AlignedArgument : public Argument { + public: + AlignedArgument(const Record &Arg, StringRef Attr) + : Argument(Arg, Attr) + {} + + void writeAccessors(raw_ostream &OS) const override { + OS << " bool is" << getUpperName() << "Dependent() const;\n"; + + OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n"; + + OS << " bool is" << getUpperName() << "Expr() const {\n"; + OS << " return is" << getLowerName() << "Expr;\n"; + OS << " }\n"; + + OS << " Expr *get" << getUpperName() << "Expr() const {\n"; + OS << " assert(is" << getLowerName() << "Expr);\n"; + OS << " return " << getLowerName() << "Expr;\n"; + OS << " }\n"; + + OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n"; + OS << " assert(!is" << getLowerName() << "Expr);\n"; + OS << " return " << getLowerName() << "Type;\n"; + OS << " }"; + } + void writeAccessorDefinitions(raw_ostream &OS) const override { + OS << "bool " << getAttrName() << "Attr::is" << getUpperName() + << "Dependent() const {\n"; + OS << " if (is" << getLowerName() << "Expr)\n"; + OS << " return " << getLowerName() << "Expr && (" << getLowerName() + << "Expr->isValueDependent() || " << getLowerName() + << "Expr->isTypeDependent());\n"; + OS << " else\n"; + OS << " return " << getLowerName() + << "Type->getType()->isDependentType();\n"; + OS << "}\n"; + + // FIXME: Do not do the calculation here + // FIXME: Handle types correctly + // A null pointer means maximum alignment + OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName() + << "(ASTContext &Ctx) const {\n"; + OS << " assert(!is" << getUpperName() << "Dependent());\n"; + OS << " if (is" << getLowerName() << "Expr)\n"; + OS << " return " << getLowerName() << "Expr ? " << getLowerName() + << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()" + << " * Ctx.getCharWidth() : " + << "Ctx.getTargetDefaultAlignForAttributeAligned();\n"; + OS << " else\n"; + OS << " return 0; // FIXME\n"; + OS << "}\n"; + } + void writeCloneArgs(raw_ostream &OS) const override { + OS << "is" << getLowerName() << "Expr, is" << getLowerName() + << "Expr ? static_cast<void*>(" << getLowerName() + << "Expr) : " << getLowerName() + << "Type"; + } + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + // FIXME: move the definition in Sema::InstantiateAttrs to here. + // In the meantime, aligned attributes are cloned. + } + void writeCtorBody(raw_ostream &OS) const override { + OS << " if (is" << getLowerName() << "Expr)\n"; + OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>(" + << getUpperName() << ");\n"; + OS << " else\n"; + OS << " " << getLowerName() + << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName() + << ");"; + } + void writeCtorInitializers(raw_ostream &OS) const override { + OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)"; + } + void writeCtorDefaultInitializers(raw_ostream &OS) const override { + OS << "is" << getLowerName() << "Expr(false)"; + } + void writeCtorParameters(raw_ostream &OS) const override { + OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName(); + } + void writeImplicitCtorArgs(raw_ostream &OS) const override { + OS << "Is" << getUpperName() << "Expr, " << getUpperName(); + } + void writeDeclarations(raw_ostream &OS) const override { + OS << "bool is" << getLowerName() << "Expr;\n"; + OS << "union {\n"; + OS << "Expr *" << getLowerName() << "Expr;\n"; + OS << "TypeSourceInfo *" << getLowerName() << "Type;\n"; + OS << "};"; + } + void writePCHReadArgs(raw_ostream &OS) const override { + OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr"; + } + void writePCHReadDecls(raw_ostream &OS) const override { + OS << " bool is" << getLowerName() << "Expr = Record[Idx++];\n"; + OS << " void *" << getLowerName() << "Ptr;\n"; + OS << " if (is" << getLowerName() << "Expr)\n"; + OS << " " << getLowerName() << "Ptr = ReadExpr(F);\n"; + OS << " else\n"; + OS << " " << getLowerName() + << "Ptr = GetTypeSourceInfo(F, Record, Idx);\n"; + } + void writePCHWrite(raw_ostream &OS) const override { + OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n"; + OS << " if (SA->is" << getUpperName() << "Expr())\n"; + OS << " AddStmt(SA->get" << getUpperName() << "Expr());\n"; + OS << " else\n"; + OS << " AddTypeSourceInfo(SA->get" << getUpperName() + << "Type(), Record);\n"; + } + void writeValue(raw_ostream &OS) const override { + OS << "\";\n"; + // The aligned attribute argument expression is optional. + OS << " if (is" << getLowerName() << "Expr && " + << getLowerName() << "Expr)\n"; + OS << " " << getLowerName() << "Expr->printPretty(OS, nullptr, Policy);\n"; + OS << " OS << \""; + } + void writeDump(raw_ostream &OS) const override { + } + void writeDumpChildren(raw_ostream &OS) const override { + OS << " if (SA->is" << getUpperName() << "Expr())\n"; + OS << " dumpStmt(SA->get" << getUpperName() << "Expr());\n"; + OS << " else\n"; + OS << " dumpType(SA->get" << getUpperName() + << "Type()->getType());\n"; + } + void writeHasChildren(raw_ostream &OS) const override { + OS << "SA->is" << getUpperName() << "Expr()"; + } + }; + + class VariadicArgument : public Argument { + std::string Type, ArgName, ArgSizeName, RangeName; + + protected: + // Assumed to receive a parameter: raw_ostream OS. + virtual void writeValueImpl(raw_ostream &OS) const { + OS << " OS << Val;\n"; + } + + public: + VariadicArgument(const Record &Arg, StringRef Attr, std::string T) + : Argument(Arg, Attr), Type(T), ArgName(getLowerName().str() + "_"), + ArgSizeName(ArgName + "Size"), RangeName(getLowerName()) {} + + std::string getType() const { return Type; } + bool isVariadic() const override { return true; } + + void writeAccessors(raw_ostream &OS) const override { + std::string IteratorType = getLowerName().str() + "_iterator"; + std::string BeginFn = getLowerName().str() + "_begin()"; + std::string EndFn = getLowerName().str() + "_end()"; + + OS << " typedef " << Type << "* " << IteratorType << ";\n"; + OS << " " << IteratorType << " " << BeginFn << " const {" + << " return " << ArgName << "; }\n"; + OS << " " << IteratorType << " " << EndFn << " const {" + << " return " << ArgName << " + " << ArgSizeName << "; }\n"; + OS << " unsigned " << getLowerName() << "_size() const {" + << " return " << ArgSizeName << "; }\n"; + OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName + << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn + << "); }\n"; + } + void writeCloneArgs(raw_ostream &OS) const override { + OS << ArgName << ", " << ArgSizeName; + } + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + // This isn't elegant, but we have to go through public methods... + OS << "A->" << getLowerName() << "_begin(), " + << "A->" << getLowerName() << "_size()"; + } + void writeCtorBody(raw_ostream &OS) const override { + OS << " std::copy(" << getUpperName() << ", " << getUpperName() + << " + " << ArgSizeName << ", " << ArgName << ");"; + } + void writeCtorInitializers(raw_ostream &OS) const override { + OS << ArgSizeName << "(" << getUpperName() << "Size), " + << ArgName << "(new (Ctx, 16) " << getType() << "[" + << ArgSizeName << "])"; + } + void writeCtorDefaultInitializers(raw_ostream &OS) const override { + OS << ArgSizeName << "(0), " << ArgName << "(nullptr)"; + } + void writeCtorParameters(raw_ostream &OS) const override { + OS << getType() << " *" << getUpperName() << ", unsigned " + << getUpperName() << "Size"; + } + void writeImplicitCtorArgs(raw_ostream &OS) const override { + OS << getUpperName() << ", " << getUpperName() << "Size"; + } + void writeDeclarations(raw_ostream &OS) const override { + OS << " unsigned " << ArgSizeName << ";\n"; + OS << " " << getType() << " *" << ArgName << ";"; + } + void writePCHReadDecls(raw_ostream &OS) const override { + OS << " unsigned " << getLowerName() << "Size = Record[Idx++];\n"; + OS << " SmallVector<" << Type << ", 4> " << getLowerName() + << ";\n"; + OS << " " << getLowerName() << ".reserve(" << getLowerName() + << "Size);\n"; + OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n"; + + std::string read = ReadPCHRecord(Type); + OS << " " << getLowerName() << ".push_back(" << read << ");\n"; + } + void writePCHReadArgs(raw_ostream &OS) const override { + OS << getLowerName() << ".data(), " << getLowerName() << "Size"; + } + void writePCHWrite(raw_ostream &OS) const override { + OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; + OS << " for (auto &Val : SA->" << RangeName << "())\n"; + OS << " " << WritePCHRecord(Type, "Val"); + } + void writeValue(raw_ostream &OS) const override { + OS << "\";\n"; + OS << " bool isFirst = true;\n" + << " for (const auto &Val : " << RangeName << "()) {\n" + << " if (isFirst) isFirst = false;\n" + << " else OS << \", \";\n"; + writeValueImpl(OS); + OS << " }\n"; + OS << " OS << \""; + } + void writeDump(raw_ostream &OS) const override { + OS << " for (const auto &Val : SA->" << RangeName << "())\n"; + OS << " OS << \" \" << Val;\n"; + } + }; + + // Unique the enums, but maintain the original declaration ordering. + std::vector<std::string> + uniqueEnumsInOrder(const std::vector<std::string> &enums) { + std::vector<std::string> uniques; + std::set<std::string> unique_set(enums.begin(), enums.end()); + for (const auto &i : enums) { + auto set_i = unique_set.find(i); + if (set_i != unique_set.end()) { + uniques.push_back(i); + unique_set.erase(set_i); + } + } + return uniques; + } + + class EnumArgument : public Argument { + std::string type; + std::vector<std::string> values, enums, uniques; + public: + EnumArgument(const Record &Arg, StringRef Attr) + : Argument(Arg, Attr), type(Arg.getValueAsString("Type")), + values(Arg.getValueAsListOfStrings("Values")), + enums(Arg.getValueAsListOfStrings("Enums")), + uniques(uniqueEnumsInOrder(enums)) + { + // FIXME: Emit a proper error + assert(!uniques.empty()); + } + + bool isEnumArg() const override { return true; } + + void writeAccessors(raw_ostream &OS) const override { + OS << " " << type << " get" << getUpperName() << "() const {\n"; + OS << " return " << getLowerName() << ";\n"; + OS << " }"; + } + void writeCloneArgs(raw_ostream &OS) const override { + OS << getLowerName(); + } + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "A->get" << getUpperName() << "()"; + } + void writeCtorInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "(" << getUpperName() << ")"; + } + void writeCtorDefaultInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "(" << type << "(0))"; + } + void writeCtorParameters(raw_ostream &OS) const override { + OS << type << " " << getUpperName(); + } + void writeDeclarations(raw_ostream &OS) const override { + auto i = uniques.cbegin(), e = uniques.cend(); + // The last one needs to not have a comma. + --e; + + OS << "public:\n"; + OS << " enum " << type << " {\n"; + for (; i != e; ++i) + OS << " " << *i << ",\n"; + OS << " " << *e << "\n"; + OS << " };\n"; + OS << "private:\n"; + OS << " " << type << " " << getLowerName() << ";"; + } + void writePCHReadDecls(raw_ostream &OS) const override { + OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName() + << "(static_cast<" << getAttrName() << "Attr::" << type + << ">(Record[Idx++]));\n"; + } + void writePCHReadArgs(raw_ostream &OS) const override { + OS << getLowerName(); + } + void writePCHWrite(raw_ostream &OS) const override { + OS << "Record.push_back(SA->get" << getUpperName() << "());\n"; + } + void writeValue(raw_ostream &OS) const override { + // FIXME: this isn't 100% correct -- some enum arguments require printing + // as a string literal, while others require printing as an identifier. + // Tablegen currently does not distinguish between the two forms. + OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get" + << getUpperName() << "()) << \"\\\""; + } + void writeDump(raw_ostream &OS) const override { + OS << " switch(SA->get" << getUpperName() << "()) {\n"; + for (const auto &I : uniques) { + OS << " case " << getAttrName() << "Attr::" << I << ":\n"; + OS << " OS << \" " << I << "\";\n"; + OS << " break;\n"; + } + OS << " }\n"; + } + + void writeConversion(raw_ostream &OS) const { + OS << " static bool ConvertStrTo" << type << "(StringRef Val, "; + OS << type << " &Out) {\n"; + OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<"; + OS << type << ">>(Val)\n"; + for (size_t I = 0; I < enums.size(); ++I) { + OS << " .Case(\"" << values[I] << "\", "; + OS << getAttrName() << "Attr::" << enums[I] << ")\n"; + } + OS << " .Default(Optional<" << type << ">());\n"; + OS << " if (R) {\n"; + OS << " Out = *R;\n return true;\n }\n"; + OS << " return false;\n"; + OS << " }\n\n"; + + // Mapping from enumeration values back to enumeration strings isn't + // trivial because some enumeration values have multiple named + // enumerators, such as type_visibility(internal) and + // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden. + OS << " static const char *Convert" << type << "ToStr(" + << type << " Val) {\n" + << " switch(Val) {\n"; + std::set<std::string> Uniques; + for (size_t I = 0; I < enums.size(); ++I) { + if (Uniques.insert(enums[I]).second) + OS << " case " << getAttrName() << "Attr::" << enums[I] + << ": return \"" << values[I] << "\";\n"; + } + OS << " }\n" + << " llvm_unreachable(\"No enumerator with that value\");\n" + << " }\n"; + } + }; + + class VariadicEnumArgument: public VariadicArgument { + std::string type, QualifiedTypeName; + std::vector<std::string> values, enums, uniques; + + protected: + void writeValueImpl(raw_ostream &OS) const override { + // FIXME: this isn't 100% correct -- some enum arguments require printing + // as a string literal, while others require printing as an identifier. + // Tablegen currently does not distinguish between the two forms. + OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type + << "ToStr(Val)" << "<< \"\\\"\";\n"; + } + + public: + VariadicEnumArgument(const Record &Arg, StringRef Attr) + : VariadicArgument(Arg, Attr, Arg.getValueAsString("Type")), + type(Arg.getValueAsString("Type")), + values(Arg.getValueAsListOfStrings("Values")), + enums(Arg.getValueAsListOfStrings("Enums")), + uniques(uniqueEnumsInOrder(enums)) + { + QualifiedTypeName = getAttrName().str() + "Attr::" + type; + + // FIXME: Emit a proper error + assert(!uniques.empty()); + } + + bool isVariadicEnumArg() const override { return true; } + + void writeDeclarations(raw_ostream &OS) const override { + auto i = uniques.cbegin(), e = uniques.cend(); + // The last one needs to not have a comma. + --e; + + OS << "public:\n"; + OS << " enum " << type << " {\n"; + for (; i != e; ++i) + OS << " " << *i << ",\n"; + OS << " " << *e << "\n"; + OS << " };\n"; + OS << "private:\n"; + + VariadicArgument::writeDeclarations(OS); + } + void writeDump(raw_ostream &OS) const override { + OS << " for (" << getAttrName() << "Attr::" << getLowerName() + << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" + << getLowerName() << "_end(); I != E; ++I) {\n"; + OS << " switch(*I) {\n"; + for (const auto &UI : uniques) { + OS << " case " << getAttrName() << "Attr::" << UI << ":\n"; + OS << " OS << \" " << UI << "\";\n"; + OS << " break;\n"; + } + OS << " }\n"; + OS << " }\n"; + } + void writePCHReadDecls(raw_ostream &OS) const override { + OS << " unsigned " << getLowerName() << "Size = Record[Idx++];\n"; + OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName() + << ";\n"; + OS << " " << getLowerName() << ".reserve(" << getLowerName() + << "Size);\n"; + OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n"; + OS << " " << getLowerName() << ".push_back(" << "static_cast<" + << QualifiedTypeName << ">(Record[Idx++]));\n"; + } + void writePCHWrite(raw_ostream &OS) const override { + OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; + OS << " for (" << getAttrName() << "Attr::" << getLowerName() + << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->" + << getLowerName() << "_end(); i != e; ++i)\n"; + OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)"); + } + void writeConversion(raw_ostream &OS) const { + OS << " static bool ConvertStrTo" << type << "(StringRef Val, "; + OS << type << " &Out) {\n"; + OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<"; + OS << type << ">>(Val)\n"; + for (size_t I = 0; I < enums.size(); ++I) { + OS << " .Case(\"" << values[I] << "\", "; + OS << getAttrName() << "Attr::" << enums[I] << ")\n"; + } + OS << " .Default(Optional<" << type << ">());\n"; + OS << " if (R) {\n"; + OS << " Out = *R;\n return true;\n }\n"; + OS << " return false;\n"; + OS << " }\n\n"; + + OS << " static const char *Convert" << type << "ToStr(" + << type << " Val) {\n" + << " switch(Val) {\n"; + std::set<std::string> Uniques; + for (size_t I = 0; I < enums.size(); ++I) { + if (Uniques.insert(enums[I]).second) + OS << " case " << getAttrName() << "Attr::" << enums[I] + << ": return \"" << values[I] << "\";\n"; + } + OS << " }\n" + << " llvm_unreachable(\"No enumerator with that value\");\n" + << " }\n"; + } + }; + + class VersionArgument : public Argument { + public: + VersionArgument(const Record &Arg, StringRef Attr) + : Argument(Arg, Attr) + {} + + void writeAccessors(raw_ostream &OS) const override { + OS << " VersionTuple get" << getUpperName() << "() const {\n"; + OS << " return " << getLowerName() << ";\n"; + OS << " }\n"; + OS << " void set" << getUpperName() + << "(ASTContext &C, VersionTuple V) {\n"; + OS << " " << getLowerName() << " = V;\n"; + OS << " }"; + } + void writeCloneArgs(raw_ostream &OS) const override { + OS << "get" << getUpperName() << "()"; + } + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "A->get" << getUpperName() << "()"; + } + void writeCtorInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "(" << getUpperName() << ")"; + } + void writeCtorDefaultInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "()"; + } + void writeCtorParameters(raw_ostream &OS) const override { + OS << "VersionTuple " << getUpperName(); + } + void writeDeclarations(raw_ostream &OS) const override { + OS << "VersionTuple " << getLowerName() << ";\n"; + } + void writePCHReadDecls(raw_ostream &OS) const override { + OS << " VersionTuple " << getLowerName() + << "= ReadVersionTuple(Record, Idx);\n"; + } + void writePCHReadArgs(raw_ostream &OS) const override { + OS << getLowerName(); + } + void writePCHWrite(raw_ostream &OS) const override { + OS << " AddVersionTuple(SA->get" << getUpperName() << "(), Record);\n"; + } + void writeValue(raw_ostream &OS) const override { + OS << getLowerName() << "=\" << get" << getUpperName() << "() << \""; + } + void writeDump(raw_ostream &OS) const override { + OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; + } + }; + + class ExprArgument : public SimpleArgument { + public: + ExprArgument(const Record &Arg, StringRef Attr) + : SimpleArgument(Arg, Attr, "Expr *") + {} + + void writeASTVisitorTraversal(raw_ostream &OS) const override { + OS << " if (!" + << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n"; + OS << " return false;\n"; + } + + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "tempInst" << getUpperName(); + } + + void writeTemplateInstantiation(raw_ostream &OS) const override { + OS << " " << getType() << " tempInst" << getUpperName() << ";\n"; + OS << " {\n"; + OS << " EnterExpressionEvaluationContext " + << "Unevaluated(S, Sema::Unevaluated);\n"; + OS << " ExprResult " << "Result = S.SubstExpr(" + << "A->get" << getUpperName() << "(), TemplateArgs);\n"; + OS << " tempInst" << getUpperName() << " = " + << "Result.getAs<Expr>();\n"; + OS << " }\n"; + } + + void writeDump(raw_ostream &OS) const override {} + + void writeDumpChildren(raw_ostream &OS) const override { + OS << " dumpStmt(SA->get" << getUpperName() << "());\n"; + } + void writeHasChildren(raw_ostream &OS) const override { OS << "true"; } + }; + + class VariadicExprArgument : public VariadicArgument { + public: + VariadicExprArgument(const Record &Arg, StringRef Attr) + : VariadicArgument(Arg, Attr, "Expr *") + {} + + void writeASTVisitorTraversal(raw_ostream &OS) const override { + OS << " {\n"; + OS << " " << getType() << " *I = A->" << getLowerName() + << "_begin();\n"; + OS << " " << getType() << " *E = A->" << getLowerName() + << "_end();\n"; + OS << " for (; I != E; ++I) {\n"; + OS << " if (!getDerived().TraverseStmt(*I))\n"; + OS << " return false;\n"; + OS << " }\n"; + OS << " }\n"; + } + + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "tempInst" << getUpperName() << ", " + << "A->" << getLowerName() << "_size()"; + } + + void writeTemplateInstantiation(raw_ostream &OS) const override { + OS << " auto *tempInst" << getUpperName() + << " = new (C, 16) " << getType() + << "[A->" << getLowerName() << "_size()];\n"; + OS << " {\n"; + OS << " EnterExpressionEvaluationContext " + << "Unevaluated(S, Sema::Unevaluated);\n"; + OS << " " << getType() << " *TI = tempInst" << getUpperName() + << ";\n"; + OS << " " << getType() << " *I = A->" << getLowerName() + << "_begin();\n"; + OS << " " << getType() << " *E = A->" << getLowerName() + << "_end();\n"; + OS << " for (; I != E; ++I, ++TI) {\n"; + OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n"; + OS << " *TI = Result.getAs<Expr>();\n"; + OS << " }\n"; + OS << " }\n"; + } + + void writeDump(raw_ostream &OS) const override {} + + void writeDumpChildren(raw_ostream &OS) const override { + OS << " for (" << getAttrName() << "Attr::" << getLowerName() + << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" + << getLowerName() << "_end(); I != E; ++I)\n"; + OS << " dumpStmt(*I);\n"; + } + + void writeHasChildren(raw_ostream &OS) const override { + OS << "SA->" << getLowerName() << "_begin() != " + << "SA->" << getLowerName() << "_end()"; + } + }; + + class VariadicStringArgument : public VariadicArgument { + public: + VariadicStringArgument(const Record &Arg, StringRef Attr) + : VariadicArgument(Arg, Attr, "std::string") + {} + void writeValueImpl(raw_ostream &OS) const override { + OS << " OS << \"\\\"\" << Val << \"\\\"\";\n"; + } + }; + + class TypeArgument : public SimpleArgument { + public: + TypeArgument(const Record &Arg, StringRef Attr) + : SimpleArgument(Arg, Attr, "TypeSourceInfo *") + {} + + void writeAccessors(raw_ostream &OS) const override { + OS << " QualType get" << getUpperName() << "() const {\n"; + OS << " return " << getLowerName() << "->getType();\n"; + OS << " }"; + OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n"; + OS << " return " << getLowerName() << ";\n"; + OS << " }"; + } + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "A->get" << getUpperName() << "Loc()"; + } + void writePCHWrite(raw_ostream &OS) const override { + OS << " " << WritePCHRecord( + getType(), "SA->get" + std::string(getUpperName()) + "Loc()"); + } + }; +} // end anonymous namespace + +static std::unique_ptr<Argument> +createArgument(const Record &Arg, StringRef Attr, + const Record *Search = nullptr) { + if (!Search) + Search = &Arg; + + std::unique_ptr<Argument> Ptr; + llvm::StringRef ArgName = Search->getName(); + + if (ArgName == "AlignedArgument") + Ptr = llvm::make_unique<AlignedArgument>(Arg, Attr); + else if (ArgName == "EnumArgument") + Ptr = llvm::make_unique<EnumArgument>(Arg, Attr); + else if (ArgName == "ExprArgument") + Ptr = llvm::make_unique<ExprArgument>(Arg, Attr); + else if (ArgName == "FunctionArgument") + Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "FunctionDecl *"); + else if (ArgName == "IdentifierArgument") + Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *"); + else if (ArgName == "DefaultBoolArgument") + Ptr = llvm::make_unique<DefaultSimpleArgument>( + Arg, Attr, "bool", Arg.getValueAsBit("Default")); + else if (ArgName == "BoolArgument") + Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "bool"); + else if (ArgName == "DefaultIntArgument") + Ptr = llvm::make_unique<DefaultSimpleArgument>( + Arg, Attr, "int", Arg.getValueAsInt("Default")); + else if (ArgName == "IntArgument") + Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "int"); + else if (ArgName == "StringArgument") + Ptr = llvm::make_unique<StringArgument>(Arg, Attr); + else if (ArgName == "TypeArgument") + Ptr = llvm::make_unique<TypeArgument>(Arg, Attr); + else if (ArgName == "UnsignedArgument") + Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "unsigned"); + else if (ArgName == "VariadicUnsignedArgument") + Ptr = llvm::make_unique<VariadicArgument>(Arg, Attr, "unsigned"); + else if (ArgName == "VariadicStringArgument") + Ptr = llvm::make_unique<VariadicStringArgument>(Arg, Attr); + else if (ArgName == "VariadicEnumArgument") + Ptr = llvm::make_unique<VariadicEnumArgument>(Arg, Attr); + else if (ArgName == "VariadicExprArgument") + Ptr = llvm::make_unique<VariadicExprArgument>(Arg, Attr); + else if (ArgName == "VersionArgument") + Ptr = llvm::make_unique<VersionArgument>(Arg, Attr); + + if (!Ptr) { + // Search in reverse order so that the most-derived type is handled first. + ArrayRef<Record*> Bases = Search->getSuperClasses(); + for (const auto *Base : llvm::make_range(Bases.rbegin(), Bases.rend())) { + if ((Ptr = createArgument(Arg, Attr, Base))) + break; + } + } + + if (Ptr && Arg.getValueAsBit("Optional")) + Ptr->setOptional(true); + + if (Ptr && Arg.getValueAsBit("Fake")) + Ptr->setFake(true); + + return Ptr; +} + +static void writeAvailabilityValue(raw_ostream &OS) { + OS << "\" << getPlatform()->getName();\n" + << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n" + << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n" + << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n" + << " if (getUnavailable()) OS << \", unavailable\";\n" + << " OS << \""; +} + +static void writeGetSpellingFunction(Record &R, raw_ostream &OS) { + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); + + OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n"; + if (Spellings.empty()) { + OS << " return \"(No spelling)\";\n}\n\n"; + return; + } + + OS << " switch (SpellingListIndex) {\n" + " default:\n" + " llvm_unreachable(\"Unknown attribute spelling!\");\n" + " return \"(No spelling)\";\n"; + + for (unsigned I = 0; I < Spellings.size(); ++I) + OS << " case " << I << ":\n" + " return \"" << Spellings[I].name() << "\";\n"; + // End of the switch statement. + OS << " }\n"; + // End of the getSpelling function. + OS << "}\n\n"; +} + +static void +writePrettyPrintFunction(Record &R, + const std::vector<std::unique_ptr<Argument>> &Args, + raw_ostream &OS) { + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); + + OS << "void " << R.getName() << "Attr::printPretty(" + << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n"; + + if (Spellings.empty()) { + OS << "}\n\n"; + return; + } + + OS << + " switch (SpellingListIndex) {\n" + " default:\n" + " llvm_unreachable(\"Unknown attribute spelling!\");\n" + " break;\n"; + + for (unsigned I = 0; I < Spellings.size(); ++ I) { + llvm::SmallString<16> Prefix; + llvm::SmallString<8> Suffix; + // The actual spelling of the name and namespace (if applicable) + // of an attribute without considering prefix and suffix. + llvm::SmallString<64> Spelling; + std::string Name = Spellings[I].name(); + std::string Variety = Spellings[I].variety(); + + if (Variety == "GNU") { + Prefix = " __attribute__(("; + Suffix = "))"; + } else if (Variety == "CXX11") { + Prefix = " [["; + Suffix = "]]"; + std::string Namespace = Spellings[I].nameSpace(); + if (!Namespace.empty()) { + Spelling += Namespace; + Spelling += "::"; + } + } else if (Variety == "Declspec") { + Prefix = " __declspec("; + Suffix = ")"; + } else if (Variety == "Keyword") { + Prefix = " "; + Suffix = ""; + } else if (Variety == "Pragma") { + Prefix = "#pragma "; + Suffix = "\n"; + std::string Namespace = Spellings[I].nameSpace(); + if (!Namespace.empty()) { + Spelling += Namespace; + Spelling += " "; + } + } else { + llvm_unreachable("Unknown attribute syntax variety!"); + } + + Spelling += Name; + + OS << + " case " << I << " : {\n" + " OS << \"" << Prefix << Spelling; + + if (Variety == "Pragma") { + OS << " \";\n"; + OS << " printPrettyPragma(OS, Policy);\n"; + OS << " OS << \"\\n\";"; + OS << " break;\n"; + OS << " }\n"; + continue; + } + + // Fake arguments aren't part of the parsed form and should not be + // pretty-printed. + bool hasNonFakeArgs = false; + for (const auto &arg : Args) { + if (arg->isFake()) continue; + hasNonFakeArgs = true; + } + + // FIXME: always printing the parenthesis isn't the correct behavior for + // attributes which have optional arguments that were not provided. For + // instance: __attribute__((aligned)) will be pretty printed as + // __attribute__((aligned())). The logic should check whether there is only + // a single argument, and if it is optional, whether it has been provided. + if (hasNonFakeArgs) + OS << "("; + if (Spelling == "availability") { + writeAvailabilityValue(OS); + } else { + unsigned index = 0; + for (const auto &arg : Args) { + if (arg->isFake()) continue; + if (index++) OS << ", "; + arg->writeValue(OS); + } + } + + if (hasNonFakeArgs) + OS << ")"; + OS << Suffix + "\";\n"; + + OS << + " break;\n" + " }\n"; + } + + // End of the switch statement. + OS << "}\n"; + // End of the print function. + OS << "}\n\n"; +} + +/// \brief Return the index of a spelling in a spelling list. +static unsigned +getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList, + const FlattenedSpelling &Spelling) { + assert(!SpellingList.empty() && "Spelling list is empty!"); + + for (unsigned Index = 0; Index < SpellingList.size(); ++Index) { + const FlattenedSpelling &S = SpellingList[Index]; + if (S.variety() != Spelling.variety()) + continue; + if (S.nameSpace() != Spelling.nameSpace()) + continue; + if (S.name() != Spelling.name()) + continue; + + return Index; + } + + llvm_unreachable("Unknown spelling!"); +} + +static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) { + std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors"); + for (const auto *Accessor : Accessors) { + std::string Name = Accessor->getValueAsString("Name"); + std::vector<FlattenedSpelling> Spellings = + GetFlattenedSpellings(*Accessor); + std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R); + assert(!SpellingList.empty() && + "Attribute with empty spelling list can't have accessors!"); + + OS << " bool " << Name << "() const { return SpellingListIndex == "; + for (unsigned Index = 0; Index < Spellings.size(); ++Index) { + OS << getSpellingListIndex(SpellingList, Spellings[Index]); + if (Index != Spellings.size() -1) + OS << " ||\n SpellingListIndex == "; + else + OS << "; }\n"; + } + } +} + +static bool +SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) { + assert(!Spellings.empty() && "An empty list of spellings was provided"); + std::string FirstName = NormalizeNameForSpellingComparison( + Spellings.front().name()); + for (const auto &Spelling : + llvm::make_range(std::next(Spellings.begin()), Spellings.end())) { + std::string Name = NormalizeNameForSpellingComparison(Spelling.name()); + if (Name != FirstName) + return false; + } + return true; +} + +typedef std::map<unsigned, std::string> SemanticSpellingMap; +static std::string +CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings, + SemanticSpellingMap &Map) { + // The enumerants are automatically generated based on the variety, + // namespace (if present) and name for each attribute spelling. However, + // care is taken to avoid trampling on the reserved namespace due to + // underscores. + std::string Ret(" enum Spelling {\n"); + std::set<std::string> Uniques; + unsigned Idx = 0; + for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) { + const FlattenedSpelling &S = *I; + std::string Variety = S.variety(); + std::string Spelling = S.name(); + std::string Namespace = S.nameSpace(); + std::string EnumName = ""; + + EnumName += (Variety + "_"); + if (!Namespace.empty()) + EnumName += (NormalizeNameForSpellingComparison(Namespace).str() + + "_"); + EnumName += NormalizeNameForSpellingComparison(Spelling); + + // Even if the name is not unique, this spelling index corresponds to a + // particular enumerant name that we've calculated. + Map[Idx] = EnumName; + + // Since we have been stripping underscores to avoid trampling on the + // reserved namespace, we may have inadvertently created duplicate + // enumerant names. These duplicates are not considered part of the + // semantic spelling, and can be elided. + if (Uniques.find(EnumName) != Uniques.end()) + continue; + + Uniques.insert(EnumName); + if (I != Spellings.begin()) + Ret += ",\n"; + // Duplicate spellings are not considered part of the semantic spelling + // enumeration, but the spelling index and semantic spelling values are + // meant to be equivalent, so we must specify a concrete value for each + // enumerator. + Ret += " " + EnumName + " = " + llvm::utostr(Idx); + } + Ret += "\n };\n\n"; + return Ret; +} + +void WriteSemanticSpellingSwitch(const std::string &VarName, + const SemanticSpellingMap &Map, + raw_ostream &OS) { + OS << " switch (" << VarName << ") {\n default: " + << "llvm_unreachable(\"Unknown spelling list index\");\n"; + for (const auto &I : Map) + OS << " case " << I.first << ": return " << I.second << ";\n"; + OS << " }\n"; +} + +// Emits the LateParsed property for attributes. +static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) { + OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n"; + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); + + for (const auto *Attr : Attrs) { + bool LateParsed = Attr->getValueAsBit("LateParsed"); + + if (LateParsed) { + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); + + // FIXME: Handle non-GNU attributes + for (const auto &I : Spellings) { + if (I.variety() != "GNU") + continue; + OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n"; + } + } + } + OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n"; +} + +/// \brief Emits the first-argument-is-type property for attributes. +static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) { + OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n"; + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + + for (const auto *Attr : Attrs) { + // Determine whether the first argument is a type. + std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args"); + if (Args.empty()) + continue; + + if (Args[0]->getSuperClasses().back()->getName() != "TypeArgument") + continue; + + // All these spellings take a single type argument. + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); + std::set<std::string> Emitted; + for (const auto &S : Spellings) { + if (Emitted.insert(S.name()).second) + OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; + } + } + OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n"; +} + +/// \brief Emits the parse-arguments-in-unevaluated-context property for +/// attributes. +static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) { + OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n"; + ParsedAttrMap Attrs = getParsedAttrList(Records); + for (const auto &I : Attrs) { + const Record &Attr = *I.second; + + if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated")) + continue; + + // All these spellings take are parsed unevaluated. + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); + std::set<std::string> Emitted; + for (const auto &S : Spellings) { + if (Emitted.insert(S.name()).second) + OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; + } + } + OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n"; +} + +static bool isIdentifierArgument(Record *Arg) { + return !Arg->getSuperClasses().empty() && + llvm::StringSwitch<bool>(Arg->getSuperClasses().back()->getName()) + .Case("IdentifierArgument", true) + .Case("EnumArgument", true) + .Case("VariadicEnumArgument", true) + .Default(false); +} + +// Emits the first-argument-is-identifier property for attributes. +static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) { + OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n"; + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); + + for (const auto *Attr : Attrs) { + // Determine whether the first argument is an identifier. + std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args"); + if (Args.empty() || !isIdentifierArgument(Args[0])) + continue; + + // All these spellings take an identifier argument. + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); + std::set<std::string> Emitted; + for (const auto &S : Spellings) { + if (Emitted.insert(S.name()).second) + OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; + } + } + OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n"; +} + +namespace clang { + +// Emits the class definitions for attributes. +void EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute classes' definitions", OS); + + OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n"; + OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n"; + + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); + + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + + // FIXME: Currently, documentation is generated as-needed due to the fact + // that there is no way to allow a generated project "reach into" the docs + // directory (for instance, it may be an out-of-tree build). However, we want + // to ensure that every attribute has a Documentation field, and produce an + // error if it has been neglected. Otherwise, the on-demand generation which + // happens server-side will fail. This code is ensuring that functionality, + // even though this Emitter doesn't technically need the documentation. + // When attribute documentation can be generated as part of the build + // itself, this code can be removed. + (void)R.getValueAsListOfDefs("Documentation"); + + if (!R.getValueAsBit("ASTNode")) + continue; + + ArrayRef<Record *> Supers = R.getSuperClasses(); + assert(!Supers.empty() && "Forgot to specify a superclass for the attr"); + std::string SuperName; + for (const auto *Super : llvm::make_range(Supers.rbegin(), Supers.rend())) { + const Record &R = *Super; + if (R.getName() != "TargetSpecificAttr" && SuperName.empty()) + SuperName = R.getName(); + } + + OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n"; + + std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); + std::vector<std::unique_ptr<Argument>> Args; + Args.reserve(ArgRecords.size()); + + bool HasOptArg = false; + bool HasFakeArg = false; + for (const auto *ArgRecord : ArgRecords) { + Args.emplace_back(createArgument(*ArgRecord, R.getName())); + Args.back()->writeDeclarations(OS); + OS << "\n\n"; + + // For these purposes, fake takes priority over optional. + if (Args.back()->isFake()) { + HasFakeArg = true; + } else if (Args.back()->isOptional()) { + HasOptArg = true; + } + } + + OS << "\npublic:\n"; + + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); + + // If there are zero or one spellings, all spelling-related functionality + // can be elided. If all of the spellings share the same name, the spelling + // functionality can also be elided. + bool ElideSpelling = (Spellings.size() <= 1) || + SpellingNamesAreCommon(Spellings); + + // This maps spelling index values to semantic Spelling enumerants. + SemanticSpellingMap SemanticToSyntacticMap; + + if (!ElideSpelling) + OS << CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); + + // Emit CreateImplicit factory methods. + auto emitCreateImplicit = [&](bool emitFake) { + OS << " static " << R.getName() << "Attr *CreateImplicit("; + OS << "ASTContext &Ctx"; + if (!ElideSpelling) + OS << ", Spelling S"; + for (auto const &ai : Args) { + if (ai->isFake() && !emitFake) continue; + OS << ", "; + ai->writeCtorParameters(OS); + } + OS << ", SourceRange Loc = SourceRange()"; + OS << ") {\n"; + OS << " auto *A = new (Ctx) " << R.getName(); + OS << "Attr(Loc, Ctx, "; + for (auto const &ai : Args) { + if (ai->isFake() && !emitFake) continue; + ai->writeImplicitCtorArgs(OS); + OS << ", "; + } + OS << (ElideSpelling ? "0" : "S") << ");\n"; + OS << " A->setImplicit(true);\n"; + OS << " return A;\n }\n\n"; + }; + + // Emit a CreateImplicit that takes all the arguments. + emitCreateImplicit(true); + + // Emit a CreateImplicit that takes all the non-fake arguments. + if (HasFakeArg) { + emitCreateImplicit(false); + } + + // Emit constructors. + auto emitCtor = [&](bool emitOpt, bool emitFake) { + auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) { + if (arg->isFake()) return emitFake; + if (arg->isOptional()) return emitOpt; + return true; + }; + + OS << " " << R.getName() << "Attr(SourceRange R, ASTContext &Ctx\n"; + for (auto const &ai : Args) { + if (!shouldEmitArg(ai)) continue; + OS << " , "; + ai->writeCtorParameters(OS); + OS << "\n"; + } + + OS << " , "; + OS << "unsigned SI\n"; + + OS << " )\n"; + OS << " : " << SuperName << "(attr::" << R.getName() << ", R, SI, " + << R.getValueAsBit("LateParsed") << ", " + << R.getValueAsBit("DuplicatesAllowedWhileMerging") << ")\n"; + + for (auto const &ai : Args) { + OS << " , "; + if (!shouldEmitArg(ai)) { + ai->writeCtorDefaultInitializers(OS); + } else { + ai->writeCtorInitializers(OS); + } + OS << "\n"; + } + + OS << " {\n"; + + for (auto const &ai : Args) { + if (!shouldEmitArg(ai)) continue; + ai->writeCtorBody(OS); + OS << "\n"; + } + OS << " }\n\n"; + + }; + + // Emit a constructor that includes all the arguments. + // This is necessary for cloning. + emitCtor(true, true); + + // Emit a constructor that takes all the non-fake arguments. + if (HasFakeArg) { + emitCtor(true, false); + } + + // Emit a constructor that takes all the non-fake, non-optional arguments. + if (HasOptArg) { + emitCtor(false, false); + } + + OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n"; + OS << " void printPretty(raw_ostream &OS,\n" + << " const PrintingPolicy &Policy) const;\n"; + OS << " const char *getSpelling() const;\n"; + + if (!ElideSpelling) { + assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list"); + OS << " Spelling getSemanticSpelling() const {\n"; + WriteSemanticSpellingSwitch("SpellingListIndex", SemanticToSyntacticMap, + OS); + OS << " }\n"; + } + + writeAttrAccessorDefinition(R, OS); + + for (auto const &ai : Args) { + ai->writeAccessors(OS); + OS << "\n\n"; + + // Don't write conversion routines for fake arguments. + if (ai->isFake()) continue; + + if (ai->isEnumArg()) + static_cast<const EnumArgument *>(ai.get())->writeConversion(OS); + else if (ai->isVariadicEnumArg()) + static_cast<const VariadicEnumArgument *>(ai.get()) + ->writeConversion(OS); + } + + OS << R.getValueAsString("AdditionalMembers"); + OS << "\n\n"; + + OS << " static bool classof(const Attr *A) { return A->getKind() == " + << "attr::" << R.getName() << "; }\n"; + + OS << "};\n\n"; + } + + OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n"; +} + +// Emits the class method definitions for attributes. +void EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute classes' member function definitions", OS); + + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); + + for (auto *Attr : Attrs) { + Record &R = *Attr; + + if (!R.getValueAsBit("ASTNode")) + continue; + + std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); + std::vector<std::unique_ptr<Argument>> Args; + for (const auto *Arg : ArgRecords) + Args.emplace_back(createArgument(*Arg, R.getName())); + + for (auto const &ai : Args) + ai->writeAccessorDefinitions(OS); + + OS << R.getName() << "Attr *" << R.getName() + << "Attr::clone(ASTContext &C) const {\n"; + OS << " auto *A = new (C) " << R.getName() << "Attr(getLocation(), C"; + for (auto const &ai : Args) { + OS << ", "; + ai->writeCloneArgs(OS); + } + OS << ", getSpellingListIndex());\n"; + OS << " A->Inherited = Inherited;\n"; + OS << " A->IsPackExpansion = IsPackExpansion;\n"; + OS << " A->Implicit = Implicit;\n"; + OS << " return A;\n}\n\n"; + + writePrettyPrintFunction(R, Args, OS); + writeGetSpellingFunction(R, OS); + } + + // Instead of relying on virtual dispatch we just create a huge dispatch + // switch. This is both smaller and faster than virtual functions. + auto EmitFunc = [&](const char *Method) { + OS << " switch (getKind()) {\n"; + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + + OS << " case attr::" << R.getName() << ":\n"; + OS << " return cast<" << R.getName() << "Attr>(this)->" << Method + << ";\n"; + } + OS << " case attr::NUM_ATTRS:\n"; + OS << " break;\n"; + OS << " }\n"; + OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n"; + OS << "}\n\n"; + }; + + OS << "const char *Attr::getSpelling() const {\n"; + EmitFunc("getSpelling()"); + + OS << "Attr *Attr::clone(ASTContext &C) const {\n"; + EmitFunc("clone(C)"); + + OS << "void Attr::printPretty(raw_ostream &OS, " + "const PrintingPolicy &Policy) const {\n"; + EmitFunc("printPretty(OS, Policy)"); +} + +} // end namespace clang + +static void EmitAttrList(raw_ostream &OS, StringRef Class, + const std::vector<Record*> &AttrList) { + auto i = AttrList.cbegin(), e = AttrList.cend(); + + if (i != e) { + // Move the end iterator back to emit the last attribute. + for(--e; i != e; ++i) { + if (!(*i)->getValueAsBit("ASTNode")) + continue; + + OS << Class << "(" << (*i)->getName() << ")\n"; + } + + OS << "LAST_" << Class << "(" << (*i)->getName() << ")\n\n"; + } +} + +// Determines if an attribute has a Pragma spelling. +static bool AttrHasPragmaSpelling(const Record *R) { + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R); + return std::find_if(Spellings.begin(), Spellings.end(), + [](const FlattenedSpelling &S) { + return S.variety() == "Pragma"; + }) != Spellings.end(); +} + +namespace clang { +// Emits the enumeration list for attributes. +void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("List of all attributes that Clang recognizes", OS); + + OS << "#ifndef LAST_ATTR\n"; + OS << "#define LAST_ATTR(NAME) ATTR(NAME)\n"; + OS << "#endif\n\n"; + + OS << "#ifndef INHERITABLE_ATTR\n"; + OS << "#define INHERITABLE_ATTR(NAME) ATTR(NAME)\n"; + OS << "#endif\n\n"; + + OS << "#ifndef LAST_INHERITABLE_ATTR\n"; + OS << "#define LAST_INHERITABLE_ATTR(NAME) INHERITABLE_ATTR(NAME)\n"; + OS << "#endif\n\n"; + + OS << "#ifndef INHERITABLE_PARAM_ATTR\n"; + OS << "#define INHERITABLE_PARAM_ATTR(NAME) ATTR(NAME)\n"; + OS << "#endif\n\n"; + + OS << "#ifndef LAST_INHERITABLE_PARAM_ATTR\n"; + OS << "#define LAST_INHERITABLE_PARAM_ATTR(NAME)" + " INHERITABLE_PARAM_ATTR(NAME)\n"; + OS << "#endif\n\n"; + + OS << "#ifndef PRAGMA_SPELLING_ATTR\n"; + OS << "#define PRAGMA_SPELLING_ATTR(NAME)\n"; + OS << "#endif\n\n"; + + OS << "#ifndef LAST_PRAGMA_SPELLING_ATTR\n"; + OS << "#define LAST_PRAGMA_SPELLING_ATTR(NAME) PRAGMA_SPELLING_ATTR(NAME)\n"; + OS << "#endif\n\n"; + + Record *InhClass = Records.getClass("InheritableAttr"); + Record *InhParamClass = Records.getClass("InheritableParamAttr"); + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), + NonInhAttrs, InhAttrs, InhParamAttrs, PragmaAttrs; + for (auto *Attr : Attrs) { + if (!Attr->getValueAsBit("ASTNode")) + continue; + + if (AttrHasPragmaSpelling(Attr)) + PragmaAttrs.push_back(Attr); + + if (Attr->isSubClassOf(InhParamClass)) + InhParamAttrs.push_back(Attr); + else if (Attr->isSubClassOf(InhClass)) + InhAttrs.push_back(Attr); + else + NonInhAttrs.push_back(Attr); + } + + EmitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs); + EmitAttrList(OS, "INHERITABLE_PARAM_ATTR", InhParamAttrs); + EmitAttrList(OS, "INHERITABLE_ATTR", InhAttrs); + EmitAttrList(OS, "ATTR", NonInhAttrs); + + OS << "#undef LAST_ATTR\n"; + OS << "#undef INHERITABLE_ATTR\n"; + OS << "#undef LAST_INHERITABLE_ATTR\n"; + OS << "#undef LAST_INHERITABLE_PARAM_ATTR\n"; + OS << "#undef LAST_PRAGMA_ATTR\n"; + OS << "#undef PRAGMA_SPELLING_ATTR\n"; + OS << "#undef ATTR\n"; +} + +// Emits the code to read an attribute from a precompiled header. +void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute deserialization code", OS); + + Record *InhClass = Records.getClass("InheritableAttr"); + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), + ArgRecords; + std::vector<std::unique_ptr<Argument>> Args; + + OS << " switch (Kind) {\n"; + OS << " default:\n"; + OS << " llvm_unreachable(\"Unknown attribute!\");\n"; + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + + OS << " case attr::" << R.getName() << ": {\n"; + if (R.isSubClassOf(InhClass)) + OS << " bool isInherited = Record[Idx++];\n"; + OS << " bool isImplicit = Record[Idx++];\n"; + OS << " unsigned Spelling = Record[Idx++];\n"; + ArgRecords = R.getValueAsListOfDefs("Args"); + Args.clear(); + for (const auto *Arg : ArgRecords) { + Args.emplace_back(createArgument(*Arg, R.getName())); + Args.back()->writePCHReadDecls(OS); + } + OS << " New = new (Context) " << R.getName() << "Attr(Range, Context"; + for (auto const &ri : Args) { + OS << ", "; + ri->writePCHReadArgs(OS); + } + OS << ", Spelling);\n"; + if (R.isSubClassOf(InhClass)) + OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n"; + OS << " New->setImplicit(isImplicit);\n"; + OS << " break;\n"; + OS << " }\n"; + } + OS << " }\n"; +} + +// Emits the code to write an attribute to a precompiled header. +void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute serialization code", OS); + + Record *InhClass = Records.getClass("InheritableAttr"); + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; + + OS << " switch (A->getKind()) {\n"; + OS << " default:\n"; + OS << " llvm_unreachable(\"Unknown attribute kind!\");\n"; + OS << " break;\n"; + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + OS << " case attr::" << R.getName() << ": {\n"; + Args = R.getValueAsListOfDefs("Args"); + if (R.isSubClassOf(InhClass) || !Args.empty()) + OS << " const auto *SA = cast<" << R.getName() + << "Attr>(A);\n"; + if (R.isSubClassOf(InhClass)) + OS << " Record.push_back(SA->isInherited());\n"; + OS << " Record.push_back(A->isImplicit());\n"; + OS << " Record.push_back(A->getSpellingListIndex());\n"; + + for (const auto *Arg : Args) + createArgument(*Arg, R.getName())->writePCHWrite(OS); + OS << " break;\n"; + OS << " }\n"; + } + OS << " }\n"; +} + +// Generate a conditional expression to check if the current target satisfies +// the conditions for a TargetSpecificAttr record, and append the code for +// those checks to the Test string. If the FnName string pointer is non-null, +// append a unique suffix to distinguish this set of target checks from other +// TargetSpecificAttr records. +static void GenerateTargetSpecificAttrChecks(const Record *R, + std::vector<std::string> &Arches, + std::string &Test, + std::string *FnName) { + // It is assumed that there will be an llvm::Triple object + // named "T" and a TargetInfo object named "Target" within + // scope that can be used to determine whether the attribute exists in + // a given target. + Test += "("; + + for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) { + std::string Part = *I; + Test += "T.getArch() == llvm::Triple::" + Part; + if (I + 1 != E) + Test += " || "; + if (FnName) + *FnName += Part; + } + Test += ")"; + + // If the attribute is specific to particular OSes, check those. + if (!R->isValueUnset("OSes")) { + // We know that there was at least one arch test, so we need to and in the + // OS tests. + Test += " && ("; + std::vector<std::string> OSes = R->getValueAsListOfStrings("OSes"); + for (auto I = OSes.begin(), E = OSes.end(); I != E; ++I) { + std::string Part = *I; + + Test += "T.getOS() == llvm::Triple::" + Part; + if (I + 1 != E) + Test += " || "; + if (FnName) + *FnName += Part; + } + Test += ")"; + } + + // If one or more CXX ABIs are specified, check those as well. + if (!R->isValueUnset("CXXABIs")) { + Test += " && ("; + std::vector<std::string> CXXABIs = R->getValueAsListOfStrings("CXXABIs"); + for (auto I = CXXABIs.begin(), E = CXXABIs.end(); I != E; ++I) { + std::string Part = *I; + Test += "Target.getCXXABI().getKind() == TargetCXXABI::" + Part; + if (I + 1 != E) + Test += " || "; + if (FnName) + *FnName += Part; + } + Test += ")"; + } +} + +static void GenerateHasAttrSpellingStringSwitch( + const std::vector<Record *> &Attrs, raw_ostream &OS, + const std::string &Variety = "", const std::string &Scope = "") { + for (const auto *Attr : Attrs) { + // C++11-style attributes have specific version information associated with + // them. If the attribute has no scope, the version information must not + // have the default value (1), as that's incorrect. Instead, the unscoped + // attribute version information should be taken from the SD-6 standing + // document, which can be found at: + // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations + int Version = 1; + + if (Variety == "CXX11") { + std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings"); + for (const auto &Spelling : Spellings) { + if (Spelling->getValueAsString("Variety") == "CXX11") { + Version = static_cast<int>(Spelling->getValueAsInt("Version")); + if (Scope.empty() && Version == 1) + PrintError(Spelling->getLoc(), "C++ standard attributes must " + "have valid version information."); + break; + } + } + } + + std::string Test; + if (Attr->isSubClassOf("TargetSpecificAttr")) { + const Record *R = Attr->getValueAsDef("Target"); + std::vector<std::string> Arches = R->getValueAsListOfStrings("Arches"); + GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr); + + // If this is the C++11 variety, also add in the LangOpts test. + if (Variety == "CXX11") + Test += " && LangOpts.CPlusPlus11"; + } else if (Variety == "CXX11") + // C++11 mode should be checked against LangOpts, which is presumed to be + // present in the caller. + Test = "LangOpts.CPlusPlus11"; + + std::string TestStr = + !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1"; + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); + for (const auto &S : Spellings) + if (Variety.empty() || (Variety == S.variety() && + (Scope.empty() || Scope == S.nameSpace()))) + OS << " .Case(\"" << S.name() << "\", " << TestStr << ")\n"; + } + OS << " .Default(0);\n"; +} + +// Emits the list of spellings for attributes. +void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Code to implement the __has_attribute logic", OS); + + // Separate all of the attributes out into four group: generic, C++11, GNU, + // and declspecs. Then generate a big switch statement for each of them. + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + std::vector<Record *> Declspec, GNU, Pragma; + std::map<std::string, std::vector<Record *>> CXX; + + // Walk over the list of all attributes, and split them out based on the + // spelling variety. + for (auto *R : Attrs) { + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R); + for (const auto &SI : Spellings) { + std::string Variety = SI.variety(); + if (Variety == "GNU") + GNU.push_back(R); + else if (Variety == "Declspec") + Declspec.push_back(R); + else if (Variety == "CXX11") + CXX[SI.nameSpace()].push_back(R); + else if (Variety == "Pragma") + Pragma.push_back(R); + } + } + + OS << "const llvm::Triple &T = Target.getTriple();\n"; + OS << "switch (Syntax) {\n"; + OS << "case AttrSyntax::GNU:\n"; + OS << " return llvm::StringSwitch<int>(Name)\n"; + GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU"); + OS << "case AttrSyntax::Declspec:\n"; + OS << " return llvm::StringSwitch<int>(Name)\n"; + GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec"); + OS << "case AttrSyntax::Pragma:\n"; + OS << " return llvm::StringSwitch<int>(Name)\n"; + GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma"); + OS << "case AttrSyntax::CXX: {\n"; + // C++11-style attributes are further split out based on the Scope. + for (auto I = CXX.cbegin(), E = CXX.cend(); I != E; ++I) { + if (I != CXX.begin()) + OS << " else "; + if (I->first.empty()) + OS << "if (!Scope || Scope->getName() == \"\") {\n"; + else + OS << "if (Scope->getName() == \"" << I->first << "\") {\n"; + OS << " return llvm::StringSwitch<int>(Name)\n"; + GenerateHasAttrSpellingStringSwitch(I->second, OS, "CXX11", I->first); + OS << "}"; + } + OS << "\n}\n"; + OS << "}\n"; +} + +void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Code to translate different attribute spellings " + "into internal identifiers", OS); + + OS << + " switch (AttrKind) {\n" + " default:\n" + " llvm_unreachable(\"Unknown attribute kind!\");\n" + " break;\n"; + + ParsedAttrMap Attrs = getParsedAttrList(Records); + for (const auto &I : Attrs) { + const Record &R = *I.second; + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); + OS << " case AT_" << I.first << ": {\n"; + for (unsigned I = 0; I < Spellings.size(); ++ I) { + OS << " if (Name == \"" << Spellings[I].name() << "\" && " + << "SyntaxUsed == " + << StringSwitch<unsigned>(Spellings[I].variety()) + .Case("GNU", 0) + .Case("CXX11", 1) + .Case("Declspec", 2) + .Case("Keyword", 3) + .Case("Pragma", 4) + .Default(0) + << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n" + << " return " << I << ";\n"; + } + + OS << " break;\n"; + OS << " }\n"; + } + + OS << " }\n"; + OS << " return 0;\n"; +} + +// Emits code used by RecursiveASTVisitor to visit attributes +void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS); + + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); + + // Write method declarations for Traverse* methods. + // We emit this here because we only generate methods for attributes that + // are declared as ASTNodes. + OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n"; + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + OS << " bool Traverse" + << R.getName() << "Attr(" << R.getName() << "Attr *A);\n"; + OS << " bool Visit" + << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" + << " return true; \n" + << " }\n"; + } + OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n"; + + // Write individual Traverse* methods for each attribute class. + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + + OS << "template <typename Derived>\n" + << "bool VISITORCLASS<Derived>::Traverse" + << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" + << " if (!getDerived().VisitAttr(A))\n" + << " return false;\n" + << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n" + << " return false;\n"; + + std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); + for (const auto *Arg : ArgRecords) + createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS); + + OS << " return true;\n"; + OS << "}\n\n"; + } + + // Write generic Traverse routine + OS << "template <typename Derived>\n" + << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n" + << " if (!A)\n" + << " return true;\n" + << "\n" + << " switch (A->getKind()) {\n" + << " default:\n" + << " return true;\n"; + + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + + OS << " case attr::" << R.getName() << ":\n" + << " return getDerived().Traverse" << R.getName() << "Attr(" + << "cast<" << R.getName() << "Attr>(A));\n"; + } + OS << " }\n"; // end case + OS << "}\n"; // end function + OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n"; +} + +// Emits code to instantiate dependent attributes on templates. +void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Template instantiation code for attributes", OS); + + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); + + OS << "namespace clang {\n" + << "namespace sema {\n\n" + << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, " + << "Sema &S,\n" + << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n" + << " switch (At->getKind()) {\n" + << " default:\n" + << " break;\n"; + + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + + OS << " case attr::" << R.getName() << ": {\n"; + bool ShouldClone = R.getValueAsBit("Clone"); + + if (!ShouldClone) { + OS << " return nullptr;\n"; + OS << " }\n"; + continue; + } + + OS << " const auto *A = cast<" + << R.getName() << "Attr>(At);\n"; + bool TDependent = R.getValueAsBit("TemplateDependent"); + + if (!TDependent) { + OS << " return A->clone(C);\n"; + OS << " }\n"; + continue; + } + + std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); + std::vector<std::unique_ptr<Argument>> Args; + Args.reserve(ArgRecords.size()); + + for (const auto *ArgRecord : ArgRecords) + Args.emplace_back(createArgument(*ArgRecord, R.getName())); + + for (auto const &ai : Args) + ai->writeTemplateInstantiation(OS); + + OS << " return new (C) " << R.getName() << "Attr(A->getLocation(), C"; + for (auto const &ai : Args) { + OS << ", "; + ai->writeTemplateInstantiationArgs(OS); + } + OS << ", A->getSpellingListIndex());\n }\n"; + } + OS << " } // end switch\n" + << " llvm_unreachable(\"Unknown attribute!\");\n" + << " return nullptr;\n" + << "}\n\n" + << "} // end namespace sema\n" + << "} // end namespace clang\n"; +} + +// Emits the list of parsed attributes. +void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("List of all attributes that Clang recognizes", OS); + + OS << "#ifndef PARSED_ATTR\n"; + OS << "#define PARSED_ATTR(NAME) NAME\n"; + OS << "#endif\n\n"; + + ParsedAttrMap Names = getParsedAttrList(Records); + for (const auto &I : Names) { + OS << "PARSED_ATTR(" << I.first << ")\n"; + } +} + +static bool isArgVariadic(const Record &R, StringRef AttrName) { + return createArgument(R, AttrName)->isVariadic(); +} + +static void emitArgInfo(const Record &R, std::stringstream &OS) { + // This function will count the number of arguments specified for the + // attribute and emit the number of required arguments followed by the + // number of optional arguments. + std::vector<Record *> Args = R.getValueAsListOfDefs("Args"); + unsigned ArgCount = 0, OptCount = 0; + bool HasVariadic = false; + for (const auto *Arg : Args) { + Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount; + if (!HasVariadic && isArgVariadic(*Arg, R.getName())) + HasVariadic = true; + } + + // If there is a variadic argument, we will set the optional argument count + // to its largest value. Since it's currently a 4-bit number, we set it to 15. + OS << ArgCount << ", " << (HasVariadic ? 15 : OptCount); +} + +static void GenerateDefaultAppertainsTo(raw_ostream &OS) { + OS << "static bool defaultAppertainsTo(Sema &, const AttributeList &,"; + OS << "const Decl *) {\n"; + OS << " return true;\n"; + OS << "}\n\n"; +} + +static std::string CalculateDiagnostic(const Record &S) { + // If the SubjectList object has a custom diagnostic associated with it, + // return that directly. + std::string CustomDiag = S.getValueAsString("CustomDiag"); + if (!CustomDiag.empty()) + return CustomDiag; + + // Given the list of subjects, determine what diagnostic best fits. + enum { + Func = 1U << 0, + Var = 1U << 1, + ObjCMethod = 1U << 2, + Param = 1U << 3, + Class = 1U << 4, + GenericRecord = 1U << 5, + Type = 1U << 6, + ObjCIVar = 1U << 7, + ObjCProp = 1U << 8, + ObjCInterface = 1U << 9, + Block = 1U << 10, + Namespace = 1U << 11, + Field = 1U << 12, + CXXMethod = 1U << 13, + ObjCProtocol = 1U << 14, + Enum = 1U << 15 + }; + uint32_t SubMask = 0; + + std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects"); + for (const auto *Subject : Subjects) { + const Record &R = *Subject; + std::string Name; + + if (R.isSubClassOf("SubsetSubject")) { + PrintError(R.getLoc(), "SubsetSubjects should use a custom diagnostic"); + // As a fallback, look through the SubsetSubject to see what its base + // type is, and use that. This needs to be updated if SubsetSubjects + // are allowed within other SubsetSubjects. + Name = R.getValueAsDef("Base")->getName(); + } else + Name = R.getName(); + + uint32_t V = StringSwitch<uint32_t>(Name) + .Case("Function", Func) + .Case("Var", Var) + .Case("ObjCMethod", ObjCMethod) + .Case("ParmVar", Param) + .Case("TypedefName", Type) + .Case("ObjCIvar", ObjCIVar) + .Case("ObjCProperty", ObjCProp) + .Case("Record", GenericRecord) + .Case("ObjCInterface", ObjCInterface) + .Case("ObjCProtocol", ObjCProtocol) + .Case("Block", Block) + .Case("CXXRecord", Class) + .Case("Namespace", Namespace) + .Case("Field", Field) + .Case("CXXMethod", CXXMethod) + .Case("Enum", Enum) + .Default(0); + if (!V) { + // Something wasn't in our mapping, so be helpful and let the developer + // know about it. + PrintFatalError(R.getLoc(), "Unknown subject type: " + R.getName()); + return ""; + } + + SubMask |= V; + } + + switch (SubMask) { + // For the simple cases where there's only a single entry in the mask, we + // don't have to resort to bit fiddling. + case Func: return "ExpectedFunction"; + case Var: return "ExpectedVariable"; + case Param: return "ExpectedParameter"; + case Class: return "ExpectedClass"; + case Enum: return "ExpectedEnum"; + case CXXMethod: + // FIXME: Currently, this maps to ExpectedMethod based on existing code, + // but should map to something a bit more accurate at some point. + case ObjCMethod: return "ExpectedMethod"; + case Type: return "ExpectedType"; + case ObjCInterface: return "ExpectedObjectiveCInterface"; + case ObjCProtocol: return "ExpectedObjectiveCProtocol"; + + // "GenericRecord" means struct, union or class; check the language options + // and if not compiling for C++, strip off the class part. Note that this + // relies on the fact that the context for this declares "Sema &S". + case GenericRecord: + return "(S.getLangOpts().CPlusPlus ? ExpectedStructOrUnionOrClass : " + "ExpectedStructOrUnion)"; + case Func | ObjCMethod | Block: return "ExpectedFunctionMethodOrBlock"; + case Func | ObjCMethod | Class: return "ExpectedFunctionMethodOrClass"; + case Func | Param: + case Func | ObjCMethod | Param: return "ExpectedFunctionMethodOrParameter"; + case Func | ObjCMethod: return "ExpectedFunctionOrMethod"; + case Func | Var: return "ExpectedVariableOrFunction"; + + // If not compiling for C++, the class portion does not apply. + case Func | Var | Class: + return "(S.getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass : " + "ExpectedVariableOrFunction)"; + + case ObjCMethod | ObjCProp: return "ExpectedMethodOrProperty"; + case ObjCProtocol | ObjCInterface: + return "ExpectedObjectiveCInterfaceOrProtocol"; + case Field | Var: return "ExpectedFieldOrGlobalVar"; + } + + PrintFatalError(S.getLoc(), + "Could not deduce diagnostic argument for Attr subjects"); + + return ""; +} + +static std::string GetSubjectWithSuffix(const Record *R) { + std::string B = R->getName(); + if (B == "DeclBase") + return "Decl"; + return B + "Decl"; +} + +static std::string GenerateCustomAppertainsTo(const Record &Subject, + raw_ostream &OS) { + std::string FnName = "is" + Subject.getName(); + + // If this code has already been generated, simply return the previous + // instance of it. + static std::set<std::string> CustomSubjectSet; + auto I = CustomSubjectSet.find(FnName); + if (I != CustomSubjectSet.end()) + return *I; + + Record *Base = Subject.getValueAsDef("Base"); + + // Not currently support custom subjects within custom subjects. + if (Base->isSubClassOf("SubsetSubject")) { + PrintFatalError(Subject.getLoc(), + "SubsetSubjects within SubsetSubjects is not supported"); + return ""; + } + + OS << "static bool " << FnName << "(const Decl *D) {\n"; + OS << " if (const auto *S = dyn_cast<"; + OS << GetSubjectWithSuffix(Base); + OS << ">(D))\n"; + OS << " return " << Subject.getValueAsString("CheckCode") << ";\n"; + OS << " return false;\n"; + OS << "}\n\n"; + + CustomSubjectSet.insert(FnName); + return FnName; +} + +static std::string GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) { + // If the attribute does not contain a Subjects definition, then use the + // default appertainsTo logic. + if (Attr.isValueUnset("Subjects")) + return "defaultAppertainsTo"; + + const Record *SubjectObj = Attr.getValueAsDef("Subjects"); + std::vector<Record*> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); + + // If the list of subjects is empty, it is assumed that the attribute + // appertains to everything. + if (Subjects.empty()) + return "defaultAppertainsTo"; + + bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn"); + + // Otherwise, generate an appertainsTo check specific to this attribute which + // checks all of the given subjects against the Decl passed in. Return the + // name of that check to the caller. + std::string FnName = "check" + Attr.getName() + "AppertainsTo"; + std::stringstream SS; + SS << "static bool " << FnName << "(Sema &S, const AttributeList &Attr, "; + SS << "const Decl *D) {\n"; + SS << " if ("; + for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) { + // If the subject has custom code associated with it, generate a function + // for it. The function cannot be inlined into this check (yet) because it + // requires the subject to be of a specific type, and were that information + // inlined here, it would not support an attribute with multiple custom + // subjects. + if ((*I)->isSubClassOf("SubsetSubject")) { + SS << "!" << GenerateCustomAppertainsTo(**I, OS) << "(D)"; + } else { + SS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)"; + } + + if (I + 1 != E) + SS << " && "; + } + SS << ") {\n"; + SS << " S.Diag(Attr.getLoc(), diag::"; + SS << (Warn ? "warn_attribute_wrong_decl_type" : + "err_attribute_wrong_decl_type"); + SS << ")\n"; + SS << " << Attr.getName() << "; + SS << CalculateDiagnostic(*SubjectObj) << ";\n"; + SS << " return false;\n"; + SS << " }\n"; + SS << " return true;\n"; + SS << "}\n\n"; + + OS << SS.str(); + return FnName; +} + +static void GenerateDefaultLangOptRequirements(raw_ostream &OS) { + OS << "static bool defaultDiagnoseLangOpts(Sema &, "; + OS << "const AttributeList &) {\n"; + OS << " return true;\n"; + OS << "}\n\n"; +} + +static std::string GenerateLangOptRequirements(const Record &R, + raw_ostream &OS) { + // If the attribute has an empty or unset list of language requirements, + // return the default handler. + std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts"); + if (LangOpts.empty()) + return "defaultDiagnoseLangOpts"; + + // Generate the test condition, as well as a unique function name for the + // diagnostic test. The list of options should usually be short (one or two + // options), and the uniqueness isn't strictly necessary (it is just for + // codegen efficiency). + std::string FnName = "check", Test; + for (auto I = LangOpts.begin(), E = LangOpts.end(); I != E; ++I) { + std::string Part = (*I)->getValueAsString("Name"); + if ((*I)->getValueAsBit("Negated")) + Test += "!"; + Test += "S.LangOpts." + Part; + if (I + 1 != E) + Test += " || "; + FnName += Part; + } + FnName += "LangOpts"; + + // If this code has already been generated, simply return the previous + // instance of it. + static std::set<std::string> CustomLangOptsSet; + auto I = CustomLangOptsSet.find(FnName); + if (I != CustomLangOptsSet.end()) + return *I; + + OS << "static bool " << FnName << "(Sema &S, const AttributeList &Attr) {\n"; + OS << " if (" << Test << ")\n"; + OS << " return true;\n\n"; + OS << " S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) "; + OS << "<< Attr.getName();\n"; + OS << " return false;\n"; + OS << "}\n\n"; + + CustomLangOptsSet.insert(FnName); + return FnName; +} + +static void GenerateDefaultTargetRequirements(raw_ostream &OS) { + OS << "static bool defaultTargetRequirements(const TargetInfo &) {\n"; + OS << " return true;\n"; + OS << "}\n\n"; +} + +static std::string GenerateTargetRequirements(const Record &Attr, + const ParsedAttrMap &Dupes, + raw_ostream &OS) { + // If the attribute is not a target specific attribute, return the default + // target handler. + if (!Attr.isSubClassOf("TargetSpecificAttr")) + return "defaultTargetRequirements"; + + // Get the list of architectures to be tested for. + const Record *R = Attr.getValueAsDef("Target"); + std::vector<std::string> Arches = R->getValueAsListOfStrings("Arches"); + if (Arches.empty()) { + PrintError(Attr.getLoc(), "Empty list of target architectures for a " + "target-specific attr"); + return "defaultTargetRequirements"; + } + + // If there are other attributes which share the same parsed attribute kind, + // such as target-specific attributes with a shared spelling, collapse the + // duplicate architectures. This is required because a shared target-specific + // attribute has only one AttributeList::Kind enumeration value, but it + // applies to multiple target architectures. In order for the attribute to be + // considered valid, all of its architectures need to be included. + if (!Attr.isValueUnset("ParseKind")) { + std::string APK = Attr.getValueAsString("ParseKind"); + for (const auto &I : Dupes) { + if (I.first == APK) { + std::vector<std::string> DA = I.second->getValueAsDef("Target") + ->getValueAsListOfStrings("Arches"); + std::copy(DA.begin(), DA.end(), std::back_inserter(Arches)); + } + } + } + + std::string FnName = "isTarget"; + std::string Test; + GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName); + + // If this code has already been generated, simply return the previous + // instance of it. + static std::set<std::string> CustomTargetSet; + auto I = CustomTargetSet.find(FnName); + if (I != CustomTargetSet.end()) + return *I; + + OS << "static bool " << FnName << "(const TargetInfo &Target) {\n"; + OS << " const llvm::Triple &T = Target.getTriple();\n"; + OS << " return " << Test << ";\n"; + OS << "}\n\n"; + + CustomTargetSet.insert(FnName); + return FnName; +} + +static void GenerateDefaultSpellingIndexToSemanticSpelling(raw_ostream &OS) { + OS << "static unsigned defaultSpellingIndexToSemanticSpelling(" + << "const AttributeList &Attr) {\n"; + OS << " return UINT_MAX;\n"; + OS << "}\n\n"; +} + +static std::string GenerateSpellingIndexToSemanticSpelling(const Record &Attr, + raw_ostream &OS) { + // If the attribute does not have a semantic form, we can bail out early. + if (!Attr.getValueAsBit("ASTNode")) + return "defaultSpellingIndexToSemanticSpelling"; + + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); + + // If there are zero or one spellings, or all of the spellings share the same + // name, we can also bail out early. + if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings)) + return "defaultSpellingIndexToSemanticSpelling"; + + // Generate the enumeration we will use for the mapping. + SemanticSpellingMap SemanticToSyntacticMap; + std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); + std::string Name = Attr.getName() + "AttrSpellingMap"; + + OS << "static unsigned " << Name << "(const AttributeList &Attr) {\n"; + OS << Enum; + OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n"; + WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS); + OS << "}\n\n"; + + return Name; +} + +static bool IsKnownToGCC(const Record &Attr) { + // Look at the spellings for this subject; if there are any spellings which + // claim to be known to GCC, the attribute is known to GCC. + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); + for (const auto &I : Spellings) { + if (I.knownToGCC()) + return true; + } + return false; +} + +/// Emits the parsed attribute helpers +void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Parsed attribute helpers", OS); + + // Get the list of parsed attributes, and accept the optional list of + // duplicates due to the ParseKind. + ParsedAttrMap Dupes; + ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes); + + // Generate the default appertainsTo, target and language option diagnostic, + // and spelling list index mapping methods. + GenerateDefaultAppertainsTo(OS); + GenerateDefaultLangOptRequirements(OS); + GenerateDefaultTargetRequirements(OS); + GenerateDefaultSpellingIndexToSemanticSpelling(OS); + + // Generate the appertainsTo diagnostic methods and write their names into + // another mapping. At the same time, generate the AttrInfoMap object + // contents. Due to the reliance on generated code, use separate streams so + // that code will not be interleaved. + std::stringstream SS; + for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { + // TODO: If the attribute's kind appears in the list of duplicates, that is + // because it is a target-specific attribute that appears multiple times. + // It would be beneficial to test whether the duplicates are "similar + // enough" to each other to not cause problems. For instance, check that + // the spellings are identical, and custom parsing rules match, etc. + + // We need to generate struct instances based off ParsedAttrInfo from + // AttributeList.cpp. + SS << " { "; + emitArgInfo(*I->second, SS); + SS << ", " << I->second->getValueAsBit("HasCustomParsing"); + SS << ", " << I->second->isSubClassOf("TargetSpecificAttr"); + SS << ", " << I->second->isSubClassOf("TypeAttr"); + SS << ", " << IsKnownToGCC(*I->second); + SS << ", " << GenerateAppertainsTo(*I->second, OS); + SS << ", " << GenerateLangOptRequirements(*I->second, OS); + SS << ", " << GenerateTargetRequirements(*I->second, Dupes, OS); + SS << ", " << GenerateSpellingIndexToSemanticSpelling(*I->second, OS); + SS << " }"; + + if (I + 1 != E) + SS << ","; + + SS << " // AT_" << I->first << "\n"; + } + + OS << "static const ParsedAttrInfo AttrInfoMap[AttributeList::UnknownAttribute + 1] = {\n"; + OS << SS.str(); + OS << "};\n\n"; +} + +// Emits the kind list of parsed attributes +void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute name matcher", OS); + + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + std::vector<StringMatcher::StringPair> GNU, Declspec, CXX11, Keywords, Pragma; + std::set<std::string> Seen; + for (const auto *A : Attrs) { + const Record &Attr = *A; + + bool SemaHandler = Attr.getValueAsBit("SemaHandler"); + bool Ignored = Attr.getValueAsBit("Ignored"); + if (SemaHandler || Ignored) { + // Attribute spellings can be shared between target-specific attributes, + // and can be shared between syntaxes for the same attribute. For + // instance, an attribute can be spelled GNU<"interrupt"> for an ARM- + // specific attribute, or MSP430-specific attribute. Additionally, an + // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport"> + // for the same semantic attribute. Ultimately, we need to map each of + // these to a single AttributeList::Kind value, but the StringMatcher + // class cannot handle duplicate match strings. So we generate a list of + // string to match based on the syntax, and emit multiple string matchers + // depending on the syntax used. + std::string AttrName; + if (Attr.isSubClassOf("TargetSpecificAttr") && + !Attr.isValueUnset("ParseKind")) { + AttrName = Attr.getValueAsString("ParseKind"); + if (Seen.find(AttrName) != Seen.end()) + continue; + Seen.insert(AttrName); + } else + AttrName = NormalizeAttrName(StringRef(Attr.getName())).str(); + + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); + for (const auto &S : Spellings) { + std::string RawSpelling = S.name(); + std::vector<StringMatcher::StringPair> *Matches = nullptr; + std::string Spelling, Variety = S.variety(); + if (Variety == "CXX11") { + Matches = &CXX11; + Spelling += S.nameSpace(); + Spelling += "::"; + } else if (Variety == "GNU") + Matches = &GNU; + else if (Variety == "Declspec") + Matches = &Declspec; + else if (Variety == "Keyword") + Matches = &Keywords; + else if (Variety == "Pragma") + Matches = &Pragma; + + assert(Matches && "Unsupported spelling variety found"); + + Spelling += NormalizeAttrSpelling(RawSpelling); + if (SemaHandler) + Matches->push_back(StringMatcher::StringPair(Spelling, + "return AttributeList::AT_" + AttrName + ";")); + else + Matches->push_back(StringMatcher::StringPair(Spelling, + "return AttributeList::IgnoredAttribute;")); + } + } + } + + OS << "static AttributeList::Kind getAttrKind(StringRef Name, "; + OS << "AttributeList::Syntax Syntax) {\n"; + OS << " if (AttributeList::AS_GNU == Syntax) {\n"; + StringMatcher("Name", GNU, OS).Emit(); + OS << " } else if (AttributeList::AS_Declspec == Syntax) {\n"; + StringMatcher("Name", Declspec, OS).Emit(); + OS << " } else if (AttributeList::AS_CXX11 == Syntax) {\n"; + StringMatcher("Name", CXX11, OS).Emit(); + OS << " } else if (AttributeList::AS_Keyword == Syntax || "; + OS << "AttributeList::AS_ContextSensitiveKeyword == Syntax) {\n"; + StringMatcher("Name", Keywords, OS).Emit(); + OS << " } else if (AttributeList::AS_Pragma == Syntax) {\n"; + StringMatcher("Name", Pragma, OS).Emit(); + OS << " }\n"; + OS << " return AttributeList::UnknownAttribute;\n" + << "}\n"; +} + +// Emits the code to dump an attribute. +void EmitClangAttrDump(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute dumper", OS); + + OS << + " switch (A->getKind()) {\n" + " default:\n" + " llvm_unreachable(\"Unknown attribute kind!\");\n" + " break;\n"; + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + OS << " case attr::" << R.getName() << ": {\n"; + + // If the attribute has a semantically-meaningful name (which is determined + // by whether there is a Spelling enumeration for it), then write out the + // spelling used for the attribute. + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); + if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings)) + OS << " OS << \" \" << A->getSpelling();\n"; + + Args = R.getValueAsListOfDefs("Args"); + if (!Args.empty()) { + OS << " const auto *SA = cast<" << R.getName() + << "Attr>(A);\n"; + for (const auto *Arg : Args) + createArgument(*Arg, R.getName())->writeDump(OS); + + for (const auto *AI : Args) + createArgument(*AI, R.getName())->writeDumpChildren(OS); + } + OS << + " break;\n" + " }\n"; + } + OS << " }\n"; +} + +void EmitClangAttrParserStringSwitches(RecordKeeper &Records, + raw_ostream &OS) { + emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS); + emitClangAttrArgContextList(Records, OS); + emitClangAttrIdentifierArgList(Records, OS); + emitClangAttrTypeArgList(Records, OS); + emitClangAttrLateParsedList(Records, OS); +} + +class DocumentationData { +public: + const Record *Documentation; + const Record *Attribute; + + DocumentationData(const Record &Documentation, const Record &Attribute) + : Documentation(&Documentation), Attribute(&Attribute) {} +}; + +static void WriteCategoryHeader(const Record *DocCategory, + raw_ostream &OS) { + const std::string &Name = DocCategory->getValueAsString("Name"); + OS << Name << "\n" << std::string(Name.length(), '=') << "\n"; + + // If there is content, print that as well. + std::string ContentStr = DocCategory->getValueAsString("Content"); + // Trim leading and trailing newlines and spaces. + OS << StringRef(ContentStr).trim(); + + OS << "\n\n"; +} + +enum SpellingKind { + GNU = 1 << 0, + CXX11 = 1 << 1, + Declspec = 1 << 2, + Keyword = 1 << 3, + Pragma = 1 << 4 +}; + +static void WriteDocumentation(const DocumentationData &Doc, + raw_ostream &OS) { + // FIXME: there is no way to have a per-spelling category for the attribute + // documentation. This may not be a limiting factor since the spellings + // should generally be consistently applied across the category. + + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Doc.Attribute); + + // Determine the heading to be used for this attribute. + std::string Heading = Doc.Documentation->getValueAsString("Heading"); + bool CustomHeading = !Heading.empty(); + if (Heading.empty()) { + // If there's only one spelling, we can simply use that. + if (Spellings.size() == 1) + Heading = Spellings.begin()->name(); + else { + std::set<std::string> Uniques; + for (auto I = Spellings.begin(), E = Spellings.end(); + I != E && Uniques.size() <= 1; ++I) { + std::string Spelling = NormalizeNameForSpellingComparison(I->name()); + Uniques.insert(Spelling); + } + // If the semantic map has only one spelling, that is sufficient for our + // needs. + if (Uniques.size() == 1) + Heading = *Uniques.begin(); + } + } + + // If the heading is still empty, it is an error. + if (Heading.empty()) + PrintFatalError(Doc.Attribute->getLoc(), + "This attribute requires a heading to be specified"); + + // Gather a list of unique spellings; this is not the same as the semantic + // spelling for the attribute. Variations in underscores and other non- + // semantic characters are still acceptable. + std::vector<std::string> Names; + + unsigned SupportedSpellings = 0; + for (const auto &I : Spellings) { + SpellingKind Kind = StringSwitch<SpellingKind>(I.variety()) + .Case("GNU", GNU) + .Case("CXX11", CXX11) + .Case("Declspec", Declspec) + .Case("Keyword", Keyword) + .Case("Pragma", Pragma); + + // Mask in the supported spelling. + SupportedSpellings |= Kind; + + std::string Name; + if (Kind == CXX11 && !I.nameSpace().empty()) + Name = I.nameSpace() + "::"; + Name += I.name(); + + // If this name is the same as the heading, do not add it. + if (Name != Heading) + Names.push_back(Name); + } + + // Print out the heading for the attribute. If there are alternate spellings, + // then display those after the heading. + if (!CustomHeading && !Names.empty()) { + Heading += " ("; + for (auto I = Names.begin(), E = Names.end(); I != E; ++I) { + if (I != Names.begin()) + Heading += ", "; + Heading += *I; + } + Heading += ")"; + } + OS << Heading << "\n" << std::string(Heading.length(), '-') << "\n"; + + if (!SupportedSpellings) + PrintFatalError(Doc.Attribute->getLoc(), + "Attribute has no supported spellings; cannot be " + "documented"); + + // List what spelling syntaxes the attribute supports. + OS << ".. csv-table:: Supported Syntaxes\n"; + OS << " :header: \"GNU\", \"C++11\", \"__declspec\", \"Keyword\","; + OS << " \"Pragma\"\n\n"; + OS << " \""; + if (SupportedSpellings & GNU) OS << "X"; + OS << "\",\""; + if (SupportedSpellings & CXX11) OS << "X"; + OS << "\",\""; + if (SupportedSpellings & Declspec) OS << "X"; + OS << "\",\""; + if (SupportedSpellings & Keyword) OS << "X"; + OS << "\", \""; + if (SupportedSpellings & Pragma) OS << "X"; + OS << "\"\n\n"; + + // If the attribute is deprecated, print a message about it, and possibly + // provide a replacement attribute. + if (!Doc.Documentation->isValueUnset("Deprecated")) { + OS << "This attribute has been deprecated, and may be removed in a future " + << "version of Clang."; + const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated"); + std::string Replacement = Deprecated.getValueAsString("Replacement"); + if (!Replacement.empty()) + OS << " This attribute has been superseded by ``" + << Replacement << "``."; + OS << "\n\n"; + } + + std::string ContentStr = Doc.Documentation->getValueAsString("Content"); + // Trim leading and trailing newlines and spaces. + OS << StringRef(ContentStr).trim(); + + OS << "\n\n\n"; +} + +void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) { + // Get the documentation introduction paragraph. + const Record *Documentation = Records.getDef("GlobalDocumentation"); + if (!Documentation) { + PrintFatalError("The Documentation top-level definition is missing, " + "no documentation will be generated."); + return; + } + + OS << Documentation->getValueAsString("Intro") << "\n"; + + // Gather the Documentation lists from each of the attributes, based on the + // category provided. + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + std::map<const Record *, std::vector<DocumentationData>> SplitDocs; + for (const auto *A : Attrs) { + const Record &Attr = *A; + std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation"); + for (const auto *D : Docs) { + const Record &Doc = *D; + const Record *Category = Doc.getValueAsDef("Category"); + // If the category is "undocumented", then there cannot be any other + // documentation categories (otherwise, the attribute would become + // documented). + std::string Cat = Category->getValueAsString("Name"); + bool Undocumented = Cat == "Undocumented"; + if (Undocumented && Docs.size() > 1) + PrintFatalError(Doc.getLoc(), + "Attribute is \"Undocumented\", but has multiple " + "documentation categories"); + + if (!Undocumented) + SplitDocs[Category].push_back(DocumentationData(Doc, Attr)); + } + } + + // Having split the attributes out based on what documentation goes where, + // we can begin to generate sections of documentation. + for (const auto &I : SplitDocs) { + WriteCategoryHeader(I.first, OS); + + // Walk over each of the attributes in the category and write out their + // documentation. + for (const auto &Doc : I.second) + WriteDocumentation(Doc, OS); + } +} + +} // end namespace clang |