summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/utils/TableGen/ClangAttrEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/utils/TableGen/ClangAttrEmitter.cpp')
-rw-r--r--contrib/llvm/tools/clang/utils/TableGen/ClangAttrEmitter.cpp3016
1 files changed, 3016 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/utils/TableGen/ClangAttrEmitter.cpp b/contrib/llvm/tools/clang/utils/TableGen/ClangAttrEmitter.cpp
new file mode 100644
index 0000000..f70bff2
--- /dev/null
+++ b/contrib/llvm/tools/clang/utils/TableGen/ClangAttrEmitter.cpp
@@ -0,0 +1,3016 @@
+//===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These tablegen backends emit Clang attribute processing code
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/TableGen/Error.h"
+#include "llvm/TableGen/Record.h"
+#include "llvm/TableGen/StringMatcher.h"
+#include "llvm/TableGen/TableGenBackend.h"
+#include <algorithm>
+#include <cctype>
+#include <memory>
+#include <set>
+#include <sstream>
+
+using namespace llvm;
+
+namespace {
+class FlattenedSpelling {
+ std::string V, N, NS;
+ bool K;
+
+public:
+ FlattenedSpelling(const std::string &Variety, const std::string &Name,
+ const std::string &Namespace, bool KnownToGCC) :
+ V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {}
+ explicit FlattenedSpelling(const Record &Spelling) :
+ V(Spelling.getValueAsString("Variety")),
+ N(Spelling.getValueAsString("Name")) {
+
+ assert(V != "GCC" && "Given a GCC spelling, which means this hasn't been"
+ "flattened!");
+ if (V == "CXX11" || V == "Pragma")
+ NS = Spelling.getValueAsString("Namespace");
+ bool Unset;
+ K = Spelling.getValueAsBitOrUnset("KnownToGCC", Unset);
+ }
+
+ const std::string &variety() const { return V; }
+ const std::string &name() const { return N; }
+ const std::string &nameSpace() const { return NS; }
+ bool knownToGCC() const { return K; }
+};
+} // end anonymous namespace
+
+static std::vector<FlattenedSpelling>
+GetFlattenedSpellings(const Record &Attr) {
+ std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings");
+ std::vector<FlattenedSpelling> Ret;
+
+ for (const auto &Spelling : Spellings) {
+ if (Spelling->getValueAsString("Variety") == "GCC") {
+ // Gin up two new spelling objects to add into the list.
+ Ret.emplace_back("GNU", Spelling->getValueAsString("Name"), "", true);
+ Ret.emplace_back("CXX11", Spelling->getValueAsString("Name"), "gnu",
+ true);
+ } else
+ Ret.push_back(FlattenedSpelling(*Spelling));
+ }
+
+ return Ret;
+}
+
+static std::string ReadPCHRecord(StringRef type) {
+ return StringSwitch<std::string>(type)
+ .EndsWith("Decl *", "GetLocalDeclAs<"
+ + std::string(type, 0, type.size()-1) + ">(F, Record[Idx++])")
+ .Case("TypeSourceInfo *", "GetTypeSourceInfo(F, Record, Idx)")
+ .Case("Expr *", "ReadExpr(F)")
+ .Case("IdentifierInfo *", "GetIdentifierInfo(F, Record, Idx)")
+ .Case("std::string", "ReadString(Record, Idx)")
+ .Default("Record[Idx++]");
+}
+
+// Assumes that the way to get the value is SA->getname()
+static std::string WritePCHRecord(StringRef type, StringRef name) {
+ return StringSwitch<std::string>(type)
+ .EndsWith("Decl *", "AddDeclRef(" + std::string(name) +
+ ", Record);\n")
+ .Case("TypeSourceInfo *",
+ "AddTypeSourceInfo(" + std::string(name) + ", Record);\n")
+ .Case("Expr *", "AddStmt(" + std::string(name) + ");\n")
+ .Case("IdentifierInfo *",
+ "AddIdentifierRef(" + std::string(name) + ", Record);\n")
+ .Case("std::string", "AddString(" + std::string(name) + ", Record);\n")
+ .Default("Record.push_back(" + std::string(name) + ");\n");
+}
+
+// Normalize attribute name by removing leading and trailing
+// underscores. For example, __foo, foo__, __foo__ would
+// become foo.
+static StringRef NormalizeAttrName(StringRef AttrName) {
+ if (AttrName.startswith("__"))
+ AttrName = AttrName.substr(2, AttrName.size());
+
+ if (AttrName.endswith("__"))
+ AttrName = AttrName.substr(0, AttrName.size() - 2);
+
+ return AttrName;
+}
+
+// Normalize the name by removing any and all leading and trailing underscores.
+// This is different from NormalizeAttrName in that it also handles names like
+// _pascal and __pascal.
+static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
+ return Name.trim("_");
+}
+
+// Normalize attribute spelling only if the spelling has both leading
+// and trailing underscores. For example, __ms_struct__ will be
+// normalized to "ms_struct"; __cdecl will remain intact.
+static StringRef NormalizeAttrSpelling(StringRef AttrSpelling) {
+ if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) {
+ AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
+ }
+
+ return AttrSpelling;
+}
+
+typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
+
+static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
+ ParsedAttrMap *Dupes = nullptr) {
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+ std::set<std::string> Seen;
+ ParsedAttrMap R;
+ for (const auto *Attr : Attrs) {
+ if (Attr->getValueAsBit("SemaHandler")) {
+ std::string AN;
+ if (Attr->isSubClassOf("TargetSpecificAttr") &&
+ !Attr->isValueUnset("ParseKind")) {
+ AN = Attr->getValueAsString("ParseKind");
+
+ // If this attribute has already been handled, it does not need to be
+ // handled again.
+ if (Seen.find(AN) != Seen.end()) {
+ if (Dupes)
+ Dupes->push_back(std::make_pair(AN, Attr));
+ continue;
+ }
+ Seen.insert(AN);
+ } else
+ AN = NormalizeAttrName(Attr->getName()).str();
+
+ R.push_back(std::make_pair(AN, Attr));
+ }
+ }
+ return R;
+}
+
+namespace {
+ class Argument {
+ std::string lowerName, upperName;
+ StringRef attrName;
+ bool isOpt;
+ bool Fake;
+
+ public:
+ Argument(const Record &Arg, StringRef Attr)
+ : lowerName(Arg.getValueAsString("Name")), upperName(lowerName),
+ attrName(Attr), isOpt(false), Fake(false) {
+ if (!lowerName.empty()) {
+ lowerName[0] = std::tolower(lowerName[0]);
+ upperName[0] = std::toupper(upperName[0]);
+ }
+ }
+ virtual ~Argument() = default;
+
+ StringRef getLowerName() const { return lowerName; }
+ StringRef getUpperName() const { return upperName; }
+ StringRef getAttrName() const { return attrName; }
+
+ bool isOptional() const { return isOpt; }
+ void setOptional(bool set) { isOpt = set; }
+
+ bool isFake() const { return Fake; }
+ void setFake(bool fake) { Fake = fake; }
+
+ // These functions print the argument contents formatted in different ways.
+ virtual void writeAccessors(raw_ostream &OS) const = 0;
+ virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
+ virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
+ virtual void writeCloneArgs(raw_ostream &OS) const = 0;
+ virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
+ virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
+ virtual void writeCtorBody(raw_ostream &OS) const {}
+ virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
+ virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
+ virtual void writeCtorParameters(raw_ostream &OS) const = 0;
+ virtual void writeDeclarations(raw_ostream &OS) const = 0;
+ virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
+ virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
+ virtual void writePCHWrite(raw_ostream &OS) const = 0;
+ virtual void writeValue(raw_ostream &OS) const = 0;
+ virtual void writeDump(raw_ostream &OS) const = 0;
+ virtual void writeDumpChildren(raw_ostream &OS) const {}
+ virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
+
+ virtual bool isEnumArg() const { return false; }
+ virtual bool isVariadicEnumArg() const { return false; }
+ virtual bool isVariadic() const { return false; }
+
+ virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
+ OS << getUpperName();
+ }
+ };
+
+ class SimpleArgument : public Argument {
+ std::string type;
+
+ public:
+ SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
+ : Argument(Arg, Attr), type(T)
+ {}
+
+ std::string getType() const { return type; }
+
+ void writeAccessors(raw_ostream &OS) const override {
+ OS << " " << type << " get" << getUpperName() << "() const {\n";
+ OS << " return " << getLowerName() << ";\n";
+ OS << " }";
+ }
+ void writeCloneArgs(raw_ostream &OS) const override {
+ OS << getLowerName();
+ }
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "A->get" << getUpperName() << "()";
+ }
+ void writeCtorInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "(" << getUpperName() << ")";
+ }
+ void writeCtorDefaultInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "()";
+ }
+ void writeCtorParameters(raw_ostream &OS) const override {
+ OS << type << " " << getUpperName();
+ }
+ void writeDeclarations(raw_ostream &OS) const override {
+ OS << type << " " << getLowerName() << ";";
+ }
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ std::string read = ReadPCHRecord(type);
+ OS << " " << type << " " << getLowerName() << " = " << read << ";\n";
+ }
+ void writePCHReadArgs(raw_ostream &OS) const override {
+ OS << getLowerName();
+ }
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " " << WritePCHRecord(type, "SA->get" +
+ std::string(getUpperName()) + "()");
+ }
+ void writeValue(raw_ostream &OS) const override {
+ if (type == "FunctionDecl *") {
+ OS << "\" << get" << getUpperName()
+ << "()->getNameInfo().getAsString() << \"";
+ } else if (type == "IdentifierInfo *") {
+ OS << "\" << get" << getUpperName() << "()->getName() << \"";
+ } else if (type == "TypeSourceInfo *") {
+ OS << "\" << get" << getUpperName() << "().getAsString() << \"";
+ } else {
+ OS << "\" << get" << getUpperName() << "() << \"";
+ }
+ }
+ void writeDump(raw_ostream &OS) const override {
+ if (type == "FunctionDecl *") {
+ OS << " OS << \" \";\n";
+ OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
+ } else if (type == "IdentifierInfo *") {
+ if (isOptional())
+ OS << " if (SA->get" << getUpperName() << "())\n ";
+ OS << " OS << \" \" << SA->get" << getUpperName()
+ << "()->getName();\n";
+ } else if (type == "TypeSourceInfo *") {
+ OS << " OS << \" \" << SA->get" << getUpperName()
+ << "().getAsString();\n";
+ } else if (type == "bool") {
+ OS << " if (SA->get" << getUpperName() << "()) OS << \" "
+ << getUpperName() << "\";\n";
+ } else if (type == "int" || type == "unsigned") {
+ OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
+ } else {
+ llvm_unreachable("Unknown SimpleArgument type!");
+ }
+ }
+ };
+
+ class DefaultSimpleArgument : public SimpleArgument {
+ int64_t Default;
+
+ public:
+ DefaultSimpleArgument(const Record &Arg, StringRef Attr,
+ std::string T, int64_t Default)
+ : SimpleArgument(Arg, Attr, T), Default(Default) {}
+
+ void writeAccessors(raw_ostream &OS) const override {
+ SimpleArgument::writeAccessors(OS);
+
+ OS << "\n\n static const " << getType() << " Default" << getUpperName()
+ << " = " << Default << ";";
+ }
+ };
+
+ class StringArgument : public Argument {
+ public:
+ StringArgument(const Record &Arg, StringRef Attr)
+ : Argument(Arg, Attr)
+ {}
+
+ void writeAccessors(raw_ostream &OS) const override {
+ OS << " llvm::StringRef get" << getUpperName() << "() const {\n";
+ OS << " return llvm::StringRef(" << getLowerName() << ", "
+ << getLowerName() << "Length);\n";
+ OS << " }\n";
+ OS << " unsigned get" << getUpperName() << "Length() const {\n";
+ OS << " return " << getLowerName() << "Length;\n";
+ OS << " }\n";
+ OS << " void set" << getUpperName()
+ << "(ASTContext &C, llvm::StringRef S) {\n";
+ OS << " " << getLowerName() << "Length = S.size();\n";
+ OS << " this->" << getLowerName() << " = new (C, 1) char ["
+ << getLowerName() << "Length];\n";
+ OS << " if (!S.empty())\n";
+ OS << " std::memcpy(this->" << getLowerName() << ", S.data(), "
+ << getLowerName() << "Length);\n";
+ OS << " }";
+ }
+ void writeCloneArgs(raw_ostream &OS) const override {
+ OS << "get" << getUpperName() << "()";
+ }
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "A->get" << getUpperName() << "()";
+ }
+ void writeCtorBody(raw_ostream &OS) const override {
+ OS << " if (!" << getUpperName() << ".empty())\n";
+ OS << " std::memcpy(" << getLowerName() << ", " << getUpperName()
+ << ".data(), " << getLowerName() << "Length);";
+ }
+ void writeCtorInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
+ << getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
+ << "Length])";
+ }
+ void writeCtorDefaultInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
+ }
+ void writeCtorParameters(raw_ostream &OS) const override {
+ OS << "llvm::StringRef " << getUpperName();
+ }
+ void writeDeclarations(raw_ostream &OS) const override {
+ OS << "unsigned " << getLowerName() << "Length;\n";
+ OS << "char *" << getLowerName() << ";";
+ }
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ OS << " std::string " << getLowerName()
+ << "= ReadString(Record, Idx);\n";
+ }
+ void writePCHReadArgs(raw_ostream &OS) const override {
+ OS << getLowerName();
+ }
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " AddString(SA->get" << getUpperName() << "(), Record);\n";
+ }
+ void writeValue(raw_ostream &OS) const override {
+ OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
+ }
+ void writeDump(raw_ostream &OS) const override {
+ OS << " OS << \" \\\"\" << SA->get" << getUpperName()
+ << "() << \"\\\"\";\n";
+ }
+ };
+
+ class AlignedArgument : public Argument {
+ public:
+ AlignedArgument(const Record &Arg, StringRef Attr)
+ : Argument(Arg, Attr)
+ {}
+
+ void writeAccessors(raw_ostream &OS) const override {
+ OS << " bool is" << getUpperName() << "Dependent() const;\n";
+
+ OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
+
+ OS << " bool is" << getUpperName() << "Expr() const {\n";
+ OS << " return is" << getLowerName() << "Expr;\n";
+ OS << " }\n";
+
+ OS << " Expr *get" << getUpperName() << "Expr() const {\n";
+ OS << " assert(is" << getLowerName() << "Expr);\n";
+ OS << " return " << getLowerName() << "Expr;\n";
+ OS << " }\n";
+
+ OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
+ OS << " assert(!is" << getLowerName() << "Expr);\n";
+ OS << " return " << getLowerName() << "Type;\n";
+ OS << " }";
+ }
+ void writeAccessorDefinitions(raw_ostream &OS) const override {
+ OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
+ << "Dependent() const {\n";
+ OS << " if (is" << getLowerName() << "Expr)\n";
+ OS << " return " << getLowerName() << "Expr && (" << getLowerName()
+ << "Expr->isValueDependent() || " << getLowerName()
+ << "Expr->isTypeDependent());\n";
+ OS << " else\n";
+ OS << " return " << getLowerName()
+ << "Type->getType()->isDependentType();\n";
+ OS << "}\n";
+
+ // FIXME: Do not do the calculation here
+ // FIXME: Handle types correctly
+ // A null pointer means maximum alignment
+ OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName()
+ << "(ASTContext &Ctx) const {\n";
+ OS << " assert(!is" << getUpperName() << "Dependent());\n";
+ OS << " if (is" << getLowerName() << "Expr)\n";
+ OS << " return " << getLowerName() << "Expr ? " << getLowerName()
+ << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()"
+ << " * Ctx.getCharWidth() : "
+ << "Ctx.getTargetDefaultAlignForAttributeAligned();\n";
+ OS << " else\n";
+ OS << " return 0; // FIXME\n";
+ OS << "}\n";
+ }
+ void writeCloneArgs(raw_ostream &OS) const override {
+ OS << "is" << getLowerName() << "Expr, is" << getLowerName()
+ << "Expr ? static_cast<void*>(" << getLowerName()
+ << "Expr) : " << getLowerName()
+ << "Type";
+ }
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ // FIXME: move the definition in Sema::InstantiateAttrs to here.
+ // In the meantime, aligned attributes are cloned.
+ }
+ void writeCtorBody(raw_ostream &OS) const override {
+ OS << " if (is" << getLowerName() << "Expr)\n";
+ OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
+ << getUpperName() << ");\n";
+ OS << " else\n";
+ OS << " " << getLowerName()
+ << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
+ << ");";
+ }
+ void writeCtorInitializers(raw_ostream &OS) const override {
+ OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
+ }
+ void writeCtorDefaultInitializers(raw_ostream &OS) const override {
+ OS << "is" << getLowerName() << "Expr(false)";
+ }
+ void writeCtorParameters(raw_ostream &OS) const override {
+ OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
+ }
+ void writeImplicitCtorArgs(raw_ostream &OS) const override {
+ OS << "Is" << getUpperName() << "Expr, " << getUpperName();
+ }
+ void writeDeclarations(raw_ostream &OS) const override {
+ OS << "bool is" << getLowerName() << "Expr;\n";
+ OS << "union {\n";
+ OS << "Expr *" << getLowerName() << "Expr;\n";
+ OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
+ OS << "};";
+ }
+ void writePCHReadArgs(raw_ostream &OS) const override {
+ OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
+ }
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ OS << " bool is" << getLowerName() << "Expr = Record[Idx++];\n";
+ OS << " void *" << getLowerName() << "Ptr;\n";
+ OS << " if (is" << getLowerName() << "Expr)\n";
+ OS << " " << getLowerName() << "Ptr = ReadExpr(F);\n";
+ OS << " else\n";
+ OS << " " << getLowerName()
+ << "Ptr = GetTypeSourceInfo(F, Record, Idx);\n";
+ }
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n";
+ OS << " if (SA->is" << getUpperName() << "Expr())\n";
+ OS << " AddStmt(SA->get" << getUpperName() << "Expr());\n";
+ OS << " else\n";
+ OS << " AddTypeSourceInfo(SA->get" << getUpperName()
+ << "Type(), Record);\n";
+ }
+ void writeValue(raw_ostream &OS) const override {
+ OS << "\";\n";
+ // The aligned attribute argument expression is optional.
+ OS << " if (is" << getLowerName() << "Expr && "
+ << getLowerName() << "Expr)\n";
+ OS << " " << getLowerName() << "Expr->printPretty(OS, nullptr, Policy);\n";
+ OS << " OS << \"";
+ }
+ void writeDump(raw_ostream &OS) const override {
+ }
+ void writeDumpChildren(raw_ostream &OS) const override {
+ OS << " if (SA->is" << getUpperName() << "Expr())\n";
+ OS << " dumpStmt(SA->get" << getUpperName() << "Expr());\n";
+ OS << " else\n";
+ OS << " dumpType(SA->get" << getUpperName()
+ << "Type()->getType());\n";
+ }
+ void writeHasChildren(raw_ostream &OS) const override {
+ OS << "SA->is" << getUpperName() << "Expr()";
+ }
+ };
+
+ class VariadicArgument : public Argument {
+ std::string Type, ArgName, ArgSizeName, RangeName;
+
+ protected:
+ // Assumed to receive a parameter: raw_ostream OS.
+ virtual void writeValueImpl(raw_ostream &OS) const {
+ OS << " OS << Val;\n";
+ }
+
+ public:
+ VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
+ : Argument(Arg, Attr), Type(T), ArgName(getLowerName().str() + "_"),
+ ArgSizeName(ArgName + "Size"), RangeName(getLowerName()) {}
+
+ std::string getType() const { return Type; }
+ bool isVariadic() const override { return true; }
+
+ void writeAccessors(raw_ostream &OS) const override {
+ std::string IteratorType = getLowerName().str() + "_iterator";
+ std::string BeginFn = getLowerName().str() + "_begin()";
+ std::string EndFn = getLowerName().str() + "_end()";
+
+ OS << " typedef " << Type << "* " << IteratorType << ";\n";
+ OS << " " << IteratorType << " " << BeginFn << " const {"
+ << " return " << ArgName << "; }\n";
+ OS << " " << IteratorType << " " << EndFn << " const {"
+ << " return " << ArgName << " + " << ArgSizeName << "; }\n";
+ OS << " unsigned " << getLowerName() << "_size() const {"
+ << " return " << ArgSizeName << "; }\n";
+ OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName
+ << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
+ << "); }\n";
+ }
+ void writeCloneArgs(raw_ostream &OS) const override {
+ OS << ArgName << ", " << ArgSizeName;
+ }
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ // This isn't elegant, but we have to go through public methods...
+ OS << "A->" << getLowerName() << "_begin(), "
+ << "A->" << getLowerName() << "_size()";
+ }
+ void writeCtorBody(raw_ostream &OS) const override {
+ OS << " std::copy(" << getUpperName() << ", " << getUpperName()
+ << " + " << ArgSizeName << ", " << ArgName << ");";
+ }
+ void writeCtorInitializers(raw_ostream &OS) const override {
+ OS << ArgSizeName << "(" << getUpperName() << "Size), "
+ << ArgName << "(new (Ctx, 16) " << getType() << "["
+ << ArgSizeName << "])";
+ }
+ void writeCtorDefaultInitializers(raw_ostream &OS) const override {
+ OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
+ }
+ void writeCtorParameters(raw_ostream &OS) const override {
+ OS << getType() << " *" << getUpperName() << ", unsigned "
+ << getUpperName() << "Size";
+ }
+ void writeImplicitCtorArgs(raw_ostream &OS) const override {
+ OS << getUpperName() << ", " << getUpperName() << "Size";
+ }
+ void writeDeclarations(raw_ostream &OS) const override {
+ OS << " unsigned " << ArgSizeName << ";\n";
+ OS << " " << getType() << " *" << ArgName << ";";
+ }
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ OS << " unsigned " << getLowerName() << "Size = Record[Idx++];\n";
+ OS << " SmallVector<" << Type << ", 4> " << getLowerName()
+ << ";\n";
+ OS << " " << getLowerName() << ".reserve(" << getLowerName()
+ << "Size);\n";
+ OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
+
+ std::string read = ReadPCHRecord(Type);
+ OS << " " << getLowerName() << ".push_back(" << read << ");\n";
+ }
+ void writePCHReadArgs(raw_ostream &OS) const override {
+ OS << getLowerName() << ".data(), " << getLowerName() << "Size";
+ }
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
+ OS << " for (auto &Val : SA->" << RangeName << "())\n";
+ OS << " " << WritePCHRecord(Type, "Val");
+ }
+ void writeValue(raw_ostream &OS) const override {
+ OS << "\";\n";
+ OS << " bool isFirst = true;\n"
+ << " for (const auto &Val : " << RangeName << "()) {\n"
+ << " if (isFirst) isFirst = false;\n"
+ << " else OS << \", \";\n";
+ writeValueImpl(OS);
+ OS << " }\n";
+ OS << " OS << \"";
+ }
+ void writeDump(raw_ostream &OS) const override {
+ OS << " for (const auto &Val : SA->" << RangeName << "())\n";
+ OS << " OS << \" \" << Val;\n";
+ }
+ };
+
+ // Unique the enums, but maintain the original declaration ordering.
+ std::vector<std::string>
+ uniqueEnumsInOrder(const std::vector<std::string> &enums) {
+ std::vector<std::string> uniques;
+ std::set<std::string> unique_set(enums.begin(), enums.end());
+ for (const auto &i : enums) {
+ auto set_i = unique_set.find(i);
+ if (set_i != unique_set.end()) {
+ uniques.push_back(i);
+ unique_set.erase(set_i);
+ }
+ }
+ return uniques;
+ }
+
+ class EnumArgument : public Argument {
+ std::string type;
+ std::vector<std::string> values, enums, uniques;
+ public:
+ EnumArgument(const Record &Arg, StringRef Attr)
+ : Argument(Arg, Attr), type(Arg.getValueAsString("Type")),
+ values(Arg.getValueAsListOfStrings("Values")),
+ enums(Arg.getValueAsListOfStrings("Enums")),
+ uniques(uniqueEnumsInOrder(enums))
+ {
+ // FIXME: Emit a proper error
+ assert(!uniques.empty());
+ }
+
+ bool isEnumArg() const override { return true; }
+
+ void writeAccessors(raw_ostream &OS) const override {
+ OS << " " << type << " get" << getUpperName() << "() const {\n";
+ OS << " return " << getLowerName() << ";\n";
+ OS << " }";
+ }
+ void writeCloneArgs(raw_ostream &OS) const override {
+ OS << getLowerName();
+ }
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "A->get" << getUpperName() << "()";
+ }
+ void writeCtorInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "(" << getUpperName() << ")";
+ }
+ void writeCtorDefaultInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "(" << type << "(0))";
+ }
+ void writeCtorParameters(raw_ostream &OS) const override {
+ OS << type << " " << getUpperName();
+ }
+ void writeDeclarations(raw_ostream &OS) const override {
+ auto i = uniques.cbegin(), e = uniques.cend();
+ // The last one needs to not have a comma.
+ --e;
+
+ OS << "public:\n";
+ OS << " enum " << type << " {\n";
+ for (; i != e; ++i)
+ OS << " " << *i << ",\n";
+ OS << " " << *e << "\n";
+ OS << " };\n";
+ OS << "private:\n";
+ OS << " " << type << " " << getLowerName() << ";";
+ }
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName()
+ << "(static_cast<" << getAttrName() << "Attr::" << type
+ << ">(Record[Idx++]));\n";
+ }
+ void writePCHReadArgs(raw_ostream &OS) const override {
+ OS << getLowerName();
+ }
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << "Record.push_back(SA->get" << getUpperName() << "());\n";
+ }
+ void writeValue(raw_ostream &OS) const override {
+ // FIXME: this isn't 100% correct -- some enum arguments require printing
+ // as a string literal, while others require printing as an identifier.
+ // Tablegen currently does not distinguish between the two forms.
+ OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get"
+ << getUpperName() << "()) << \"\\\"";
+ }
+ void writeDump(raw_ostream &OS) const override {
+ OS << " switch(SA->get" << getUpperName() << "()) {\n";
+ for (const auto &I : uniques) {
+ OS << " case " << getAttrName() << "Attr::" << I << ":\n";
+ OS << " OS << \" " << I << "\";\n";
+ OS << " break;\n";
+ }
+ OS << " }\n";
+ }
+
+ void writeConversion(raw_ostream &OS) const {
+ OS << " static bool ConvertStrTo" << type << "(StringRef Val, ";
+ OS << type << " &Out) {\n";
+ OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<";
+ OS << type << ">>(Val)\n";
+ for (size_t I = 0; I < enums.size(); ++I) {
+ OS << " .Case(\"" << values[I] << "\", ";
+ OS << getAttrName() << "Attr::" << enums[I] << ")\n";
+ }
+ OS << " .Default(Optional<" << type << ">());\n";
+ OS << " if (R) {\n";
+ OS << " Out = *R;\n return true;\n }\n";
+ OS << " return false;\n";
+ OS << " }\n\n";
+
+ // Mapping from enumeration values back to enumeration strings isn't
+ // trivial because some enumeration values have multiple named
+ // enumerators, such as type_visibility(internal) and
+ // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
+ OS << " static const char *Convert" << type << "ToStr("
+ << type << " Val) {\n"
+ << " switch(Val) {\n";
+ std::set<std::string> Uniques;
+ for (size_t I = 0; I < enums.size(); ++I) {
+ if (Uniques.insert(enums[I]).second)
+ OS << " case " << getAttrName() << "Attr::" << enums[I]
+ << ": return \"" << values[I] << "\";\n";
+ }
+ OS << " }\n"
+ << " llvm_unreachable(\"No enumerator with that value\");\n"
+ << " }\n";
+ }
+ };
+
+ class VariadicEnumArgument: public VariadicArgument {
+ std::string type, QualifiedTypeName;
+ std::vector<std::string> values, enums, uniques;
+
+ protected:
+ void writeValueImpl(raw_ostream &OS) const override {
+ // FIXME: this isn't 100% correct -- some enum arguments require printing
+ // as a string literal, while others require printing as an identifier.
+ // Tablegen currently does not distinguish between the two forms.
+ OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type
+ << "ToStr(Val)" << "<< \"\\\"\";\n";
+ }
+
+ public:
+ VariadicEnumArgument(const Record &Arg, StringRef Attr)
+ : VariadicArgument(Arg, Attr, Arg.getValueAsString("Type")),
+ type(Arg.getValueAsString("Type")),
+ values(Arg.getValueAsListOfStrings("Values")),
+ enums(Arg.getValueAsListOfStrings("Enums")),
+ uniques(uniqueEnumsInOrder(enums))
+ {
+ QualifiedTypeName = getAttrName().str() + "Attr::" + type;
+
+ // FIXME: Emit a proper error
+ assert(!uniques.empty());
+ }
+
+ bool isVariadicEnumArg() const override { return true; }
+
+ void writeDeclarations(raw_ostream &OS) const override {
+ auto i = uniques.cbegin(), e = uniques.cend();
+ // The last one needs to not have a comma.
+ --e;
+
+ OS << "public:\n";
+ OS << " enum " << type << " {\n";
+ for (; i != e; ++i)
+ OS << " " << *i << ",\n";
+ OS << " " << *e << "\n";
+ OS << " };\n";
+ OS << "private:\n";
+
+ VariadicArgument::writeDeclarations(OS);
+ }
+ void writeDump(raw_ostream &OS) const override {
+ OS << " for (" << getAttrName() << "Attr::" << getLowerName()
+ << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
+ << getLowerName() << "_end(); I != E; ++I) {\n";
+ OS << " switch(*I) {\n";
+ for (const auto &UI : uniques) {
+ OS << " case " << getAttrName() << "Attr::" << UI << ":\n";
+ OS << " OS << \" " << UI << "\";\n";
+ OS << " break;\n";
+ }
+ OS << " }\n";
+ OS << " }\n";
+ }
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ OS << " unsigned " << getLowerName() << "Size = Record[Idx++];\n";
+ OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName()
+ << ";\n";
+ OS << " " << getLowerName() << ".reserve(" << getLowerName()
+ << "Size);\n";
+ OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
+ OS << " " << getLowerName() << ".push_back(" << "static_cast<"
+ << QualifiedTypeName << ">(Record[Idx++]));\n";
+ }
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
+ OS << " for (" << getAttrName() << "Attr::" << getLowerName()
+ << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
+ << getLowerName() << "_end(); i != e; ++i)\n";
+ OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)");
+ }
+ void writeConversion(raw_ostream &OS) const {
+ OS << " static bool ConvertStrTo" << type << "(StringRef Val, ";
+ OS << type << " &Out) {\n";
+ OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<";
+ OS << type << ">>(Val)\n";
+ for (size_t I = 0; I < enums.size(); ++I) {
+ OS << " .Case(\"" << values[I] << "\", ";
+ OS << getAttrName() << "Attr::" << enums[I] << ")\n";
+ }
+ OS << " .Default(Optional<" << type << ">());\n";
+ OS << " if (R) {\n";
+ OS << " Out = *R;\n return true;\n }\n";
+ OS << " return false;\n";
+ OS << " }\n\n";
+
+ OS << " static const char *Convert" << type << "ToStr("
+ << type << " Val) {\n"
+ << " switch(Val) {\n";
+ std::set<std::string> Uniques;
+ for (size_t I = 0; I < enums.size(); ++I) {
+ if (Uniques.insert(enums[I]).second)
+ OS << " case " << getAttrName() << "Attr::" << enums[I]
+ << ": return \"" << values[I] << "\";\n";
+ }
+ OS << " }\n"
+ << " llvm_unreachable(\"No enumerator with that value\");\n"
+ << " }\n";
+ }
+ };
+
+ class VersionArgument : public Argument {
+ public:
+ VersionArgument(const Record &Arg, StringRef Attr)
+ : Argument(Arg, Attr)
+ {}
+
+ void writeAccessors(raw_ostream &OS) const override {
+ OS << " VersionTuple get" << getUpperName() << "() const {\n";
+ OS << " return " << getLowerName() << ";\n";
+ OS << " }\n";
+ OS << " void set" << getUpperName()
+ << "(ASTContext &C, VersionTuple V) {\n";
+ OS << " " << getLowerName() << " = V;\n";
+ OS << " }";
+ }
+ void writeCloneArgs(raw_ostream &OS) const override {
+ OS << "get" << getUpperName() << "()";
+ }
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "A->get" << getUpperName() << "()";
+ }
+ void writeCtorInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "(" << getUpperName() << ")";
+ }
+ void writeCtorDefaultInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "()";
+ }
+ void writeCtorParameters(raw_ostream &OS) const override {
+ OS << "VersionTuple " << getUpperName();
+ }
+ void writeDeclarations(raw_ostream &OS) const override {
+ OS << "VersionTuple " << getLowerName() << ";\n";
+ }
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ OS << " VersionTuple " << getLowerName()
+ << "= ReadVersionTuple(Record, Idx);\n";
+ }
+ void writePCHReadArgs(raw_ostream &OS) const override {
+ OS << getLowerName();
+ }
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " AddVersionTuple(SA->get" << getUpperName() << "(), Record);\n";
+ }
+ void writeValue(raw_ostream &OS) const override {
+ OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
+ }
+ void writeDump(raw_ostream &OS) const override {
+ OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
+ }
+ };
+
+ class ExprArgument : public SimpleArgument {
+ public:
+ ExprArgument(const Record &Arg, StringRef Attr)
+ : SimpleArgument(Arg, Attr, "Expr *")
+ {}
+
+ void writeASTVisitorTraversal(raw_ostream &OS) const override {
+ OS << " if (!"
+ << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
+ OS << " return false;\n";
+ }
+
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "tempInst" << getUpperName();
+ }
+
+ void writeTemplateInstantiation(raw_ostream &OS) const override {
+ OS << " " << getType() << " tempInst" << getUpperName() << ";\n";
+ OS << " {\n";
+ OS << " EnterExpressionEvaluationContext "
+ << "Unevaluated(S, Sema::Unevaluated);\n";
+ OS << " ExprResult " << "Result = S.SubstExpr("
+ << "A->get" << getUpperName() << "(), TemplateArgs);\n";
+ OS << " tempInst" << getUpperName() << " = "
+ << "Result.getAs<Expr>();\n";
+ OS << " }\n";
+ }
+
+ void writeDump(raw_ostream &OS) const override {}
+
+ void writeDumpChildren(raw_ostream &OS) const override {
+ OS << " dumpStmt(SA->get" << getUpperName() << "());\n";
+ }
+ void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
+ };
+
+ class VariadicExprArgument : public VariadicArgument {
+ public:
+ VariadicExprArgument(const Record &Arg, StringRef Attr)
+ : VariadicArgument(Arg, Attr, "Expr *")
+ {}
+
+ void writeASTVisitorTraversal(raw_ostream &OS) const override {
+ OS << " {\n";
+ OS << " " << getType() << " *I = A->" << getLowerName()
+ << "_begin();\n";
+ OS << " " << getType() << " *E = A->" << getLowerName()
+ << "_end();\n";
+ OS << " for (; I != E; ++I) {\n";
+ OS << " if (!getDerived().TraverseStmt(*I))\n";
+ OS << " return false;\n";
+ OS << " }\n";
+ OS << " }\n";
+ }
+
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "tempInst" << getUpperName() << ", "
+ << "A->" << getLowerName() << "_size()";
+ }
+
+ void writeTemplateInstantiation(raw_ostream &OS) const override {
+ OS << " auto *tempInst" << getUpperName()
+ << " = new (C, 16) " << getType()
+ << "[A->" << getLowerName() << "_size()];\n";
+ OS << " {\n";
+ OS << " EnterExpressionEvaluationContext "
+ << "Unevaluated(S, Sema::Unevaluated);\n";
+ OS << " " << getType() << " *TI = tempInst" << getUpperName()
+ << ";\n";
+ OS << " " << getType() << " *I = A->" << getLowerName()
+ << "_begin();\n";
+ OS << " " << getType() << " *E = A->" << getLowerName()
+ << "_end();\n";
+ OS << " for (; I != E; ++I, ++TI) {\n";
+ OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
+ OS << " *TI = Result.getAs<Expr>();\n";
+ OS << " }\n";
+ OS << " }\n";
+ }
+
+ void writeDump(raw_ostream &OS) const override {}
+
+ void writeDumpChildren(raw_ostream &OS) const override {
+ OS << " for (" << getAttrName() << "Attr::" << getLowerName()
+ << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
+ << getLowerName() << "_end(); I != E; ++I)\n";
+ OS << " dumpStmt(*I);\n";
+ }
+
+ void writeHasChildren(raw_ostream &OS) const override {
+ OS << "SA->" << getLowerName() << "_begin() != "
+ << "SA->" << getLowerName() << "_end()";
+ }
+ };
+
+ class VariadicStringArgument : public VariadicArgument {
+ public:
+ VariadicStringArgument(const Record &Arg, StringRef Attr)
+ : VariadicArgument(Arg, Attr, "std::string")
+ {}
+ void writeValueImpl(raw_ostream &OS) const override {
+ OS << " OS << \"\\\"\" << Val << \"\\\"\";\n";
+ }
+ };
+
+ class TypeArgument : public SimpleArgument {
+ public:
+ TypeArgument(const Record &Arg, StringRef Attr)
+ : SimpleArgument(Arg, Attr, "TypeSourceInfo *")
+ {}
+
+ void writeAccessors(raw_ostream &OS) const override {
+ OS << " QualType get" << getUpperName() << "() const {\n";
+ OS << " return " << getLowerName() << "->getType();\n";
+ OS << " }";
+ OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n";
+ OS << " return " << getLowerName() << ";\n";
+ OS << " }";
+ }
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "A->get" << getUpperName() << "Loc()";
+ }
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " " << WritePCHRecord(
+ getType(), "SA->get" + std::string(getUpperName()) + "Loc()");
+ }
+ };
+} // end anonymous namespace
+
+static std::unique_ptr<Argument>
+createArgument(const Record &Arg, StringRef Attr,
+ const Record *Search = nullptr) {
+ if (!Search)
+ Search = &Arg;
+
+ std::unique_ptr<Argument> Ptr;
+ llvm::StringRef ArgName = Search->getName();
+
+ if (ArgName == "AlignedArgument")
+ Ptr = llvm::make_unique<AlignedArgument>(Arg, Attr);
+ else if (ArgName == "EnumArgument")
+ Ptr = llvm::make_unique<EnumArgument>(Arg, Attr);
+ else if (ArgName == "ExprArgument")
+ Ptr = llvm::make_unique<ExprArgument>(Arg, Attr);
+ else if (ArgName == "FunctionArgument")
+ Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "FunctionDecl *");
+ else if (ArgName == "IdentifierArgument")
+ Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
+ else if (ArgName == "DefaultBoolArgument")
+ Ptr = llvm::make_unique<DefaultSimpleArgument>(
+ Arg, Attr, "bool", Arg.getValueAsBit("Default"));
+ else if (ArgName == "BoolArgument")
+ Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "bool");
+ else if (ArgName == "DefaultIntArgument")
+ Ptr = llvm::make_unique<DefaultSimpleArgument>(
+ Arg, Attr, "int", Arg.getValueAsInt("Default"));
+ else if (ArgName == "IntArgument")
+ Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "int");
+ else if (ArgName == "StringArgument")
+ Ptr = llvm::make_unique<StringArgument>(Arg, Attr);
+ else if (ArgName == "TypeArgument")
+ Ptr = llvm::make_unique<TypeArgument>(Arg, Attr);
+ else if (ArgName == "UnsignedArgument")
+ Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
+ else if (ArgName == "VariadicUnsignedArgument")
+ Ptr = llvm::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
+ else if (ArgName == "VariadicStringArgument")
+ Ptr = llvm::make_unique<VariadicStringArgument>(Arg, Attr);
+ else if (ArgName == "VariadicEnumArgument")
+ Ptr = llvm::make_unique<VariadicEnumArgument>(Arg, Attr);
+ else if (ArgName == "VariadicExprArgument")
+ Ptr = llvm::make_unique<VariadicExprArgument>(Arg, Attr);
+ else if (ArgName == "VersionArgument")
+ Ptr = llvm::make_unique<VersionArgument>(Arg, Attr);
+
+ if (!Ptr) {
+ // Search in reverse order so that the most-derived type is handled first.
+ ArrayRef<Record*> Bases = Search->getSuperClasses();
+ for (const auto *Base : llvm::make_range(Bases.rbegin(), Bases.rend())) {
+ if ((Ptr = createArgument(Arg, Attr, Base)))
+ break;
+ }
+ }
+
+ if (Ptr && Arg.getValueAsBit("Optional"))
+ Ptr->setOptional(true);
+
+ if (Ptr && Arg.getValueAsBit("Fake"))
+ Ptr->setFake(true);
+
+ return Ptr;
+}
+
+static void writeAvailabilityValue(raw_ostream &OS) {
+ OS << "\" << getPlatform()->getName();\n"
+ << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
+ << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
+ << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
+ << " if (getUnavailable()) OS << \", unavailable\";\n"
+ << " OS << \"";
+}
+
+static void writeGetSpellingFunction(Record &R, raw_ostream &OS) {
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
+
+ OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
+ if (Spellings.empty()) {
+ OS << " return \"(No spelling)\";\n}\n\n";
+ return;
+ }
+
+ OS << " switch (SpellingListIndex) {\n"
+ " default:\n"
+ " llvm_unreachable(\"Unknown attribute spelling!\");\n"
+ " return \"(No spelling)\";\n";
+
+ for (unsigned I = 0; I < Spellings.size(); ++I)
+ OS << " case " << I << ":\n"
+ " return \"" << Spellings[I].name() << "\";\n";
+ // End of the switch statement.
+ OS << " }\n";
+ // End of the getSpelling function.
+ OS << "}\n\n";
+}
+
+static void
+writePrettyPrintFunction(Record &R,
+ const std::vector<std::unique_ptr<Argument>> &Args,
+ raw_ostream &OS) {
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
+
+ OS << "void " << R.getName() << "Attr::printPretty("
+ << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
+
+ if (Spellings.empty()) {
+ OS << "}\n\n";
+ return;
+ }
+
+ OS <<
+ " switch (SpellingListIndex) {\n"
+ " default:\n"
+ " llvm_unreachable(\"Unknown attribute spelling!\");\n"
+ " break;\n";
+
+ for (unsigned I = 0; I < Spellings.size(); ++ I) {
+ llvm::SmallString<16> Prefix;
+ llvm::SmallString<8> Suffix;
+ // The actual spelling of the name and namespace (if applicable)
+ // of an attribute without considering prefix and suffix.
+ llvm::SmallString<64> Spelling;
+ std::string Name = Spellings[I].name();
+ std::string Variety = Spellings[I].variety();
+
+ if (Variety == "GNU") {
+ Prefix = " __attribute__((";
+ Suffix = "))";
+ } else if (Variety == "CXX11") {
+ Prefix = " [[";
+ Suffix = "]]";
+ std::string Namespace = Spellings[I].nameSpace();
+ if (!Namespace.empty()) {
+ Spelling += Namespace;
+ Spelling += "::";
+ }
+ } else if (Variety == "Declspec") {
+ Prefix = " __declspec(";
+ Suffix = ")";
+ } else if (Variety == "Keyword") {
+ Prefix = " ";
+ Suffix = "";
+ } else if (Variety == "Pragma") {
+ Prefix = "#pragma ";
+ Suffix = "\n";
+ std::string Namespace = Spellings[I].nameSpace();
+ if (!Namespace.empty()) {
+ Spelling += Namespace;
+ Spelling += " ";
+ }
+ } else {
+ llvm_unreachable("Unknown attribute syntax variety!");
+ }
+
+ Spelling += Name;
+
+ OS <<
+ " case " << I << " : {\n"
+ " OS << \"" << Prefix << Spelling;
+
+ if (Variety == "Pragma") {
+ OS << " \";\n";
+ OS << " printPrettyPragma(OS, Policy);\n";
+ OS << " OS << \"\\n\";";
+ OS << " break;\n";
+ OS << " }\n";
+ continue;
+ }
+
+ // Fake arguments aren't part of the parsed form and should not be
+ // pretty-printed.
+ bool hasNonFakeArgs = false;
+ for (const auto &arg : Args) {
+ if (arg->isFake()) continue;
+ hasNonFakeArgs = true;
+ }
+
+ // FIXME: always printing the parenthesis isn't the correct behavior for
+ // attributes which have optional arguments that were not provided. For
+ // instance: __attribute__((aligned)) will be pretty printed as
+ // __attribute__((aligned())). The logic should check whether there is only
+ // a single argument, and if it is optional, whether it has been provided.
+ if (hasNonFakeArgs)
+ OS << "(";
+ if (Spelling == "availability") {
+ writeAvailabilityValue(OS);
+ } else {
+ unsigned index = 0;
+ for (const auto &arg : Args) {
+ if (arg->isFake()) continue;
+ if (index++) OS << ", ";
+ arg->writeValue(OS);
+ }
+ }
+
+ if (hasNonFakeArgs)
+ OS << ")";
+ OS << Suffix + "\";\n";
+
+ OS <<
+ " break;\n"
+ " }\n";
+ }
+
+ // End of the switch statement.
+ OS << "}\n";
+ // End of the print function.
+ OS << "}\n\n";
+}
+
+/// \brief Return the index of a spelling in a spelling list.
+static unsigned
+getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList,
+ const FlattenedSpelling &Spelling) {
+ assert(!SpellingList.empty() && "Spelling list is empty!");
+
+ for (unsigned Index = 0; Index < SpellingList.size(); ++Index) {
+ const FlattenedSpelling &S = SpellingList[Index];
+ if (S.variety() != Spelling.variety())
+ continue;
+ if (S.nameSpace() != Spelling.nameSpace())
+ continue;
+ if (S.name() != Spelling.name())
+ continue;
+
+ return Index;
+ }
+
+ llvm_unreachable("Unknown spelling!");
+}
+
+static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
+ std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors");
+ for (const auto *Accessor : Accessors) {
+ std::string Name = Accessor->getValueAsString("Name");
+ std::vector<FlattenedSpelling> Spellings =
+ GetFlattenedSpellings(*Accessor);
+ std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
+ assert(!SpellingList.empty() &&
+ "Attribute with empty spelling list can't have accessors!");
+
+ OS << " bool " << Name << "() const { return SpellingListIndex == ";
+ for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
+ OS << getSpellingListIndex(SpellingList, Spellings[Index]);
+ if (Index != Spellings.size() -1)
+ OS << " ||\n SpellingListIndex == ";
+ else
+ OS << "; }\n";
+ }
+ }
+}
+
+static bool
+SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
+ assert(!Spellings.empty() && "An empty list of spellings was provided");
+ std::string FirstName = NormalizeNameForSpellingComparison(
+ Spellings.front().name());
+ for (const auto &Spelling :
+ llvm::make_range(std::next(Spellings.begin()), Spellings.end())) {
+ std::string Name = NormalizeNameForSpellingComparison(Spelling.name());
+ if (Name != FirstName)
+ return false;
+ }
+ return true;
+}
+
+typedef std::map<unsigned, std::string> SemanticSpellingMap;
+static std::string
+CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
+ SemanticSpellingMap &Map) {
+ // The enumerants are automatically generated based on the variety,
+ // namespace (if present) and name for each attribute spelling. However,
+ // care is taken to avoid trampling on the reserved namespace due to
+ // underscores.
+ std::string Ret(" enum Spelling {\n");
+ std::set<std::string> Uniques;
+ unsigned Idx = 0;
+ for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
+ const FlattenedSpelling &S = *I;
+ std::string Variety = S.variety();
+ std::string Spelling = S.name();
+ std::string Namespace = S.nameSpace();
+ std::string EnumName = "";
+
+ EnumName += (Variety + "_");
+ if (!Namespace.empty())
+ EnumName += (NormalizeNameForSpellingComparison(Namespace).str() +
+ "_");
+ EnumName += NormalizeNameForSpellingComparison(Spelling);
+
+ // Even if the name is not unique, this spelling index corresponds to a
+ // particular enumerant name that we've calculated.
+ Map[Idx] = EnumName;
+
+ // Since we have been stripping underscores to avoid trampling on the
+ // reserved namespace, we may have inadvertently created duplicate
+ // enumerant names. These duplicates are not considered part of the
+ // semantic spelling, and can be elided.
+ if (Uniques.find(EnumName) != Uniques.end())
+ continue;
+
+ Uniques.insert(EnumName);
+ if (I != Spellings.begin())
+ Ret += ",\n";
+ // Duplicate spellings are not considered part of the semantic spelling
+ // enumeration, but the spelling index and semantic spelling values are
+ // meant to be equivalent, so we must specify a concrete value for each
+ // enumerator.
+ Ret += " " + EnumName + " = " + llvm::utostr(Idx);
+ }
+ Ret += "\n };\n\n";
+ return Ret;
+}
+
+void WriteSemanticSpellingSwitch(const std::string &VarName,
+ const SemanticSpellingMap &Map,
+ raw_ostream &OS) {
+ OS << " switch (" << VarName << ") {\n default: "
+ << "llvm_unreachable(\"Unknown spelling list index\");\n";
+ for (const auto &I : Map)
+ OS << " case " << I.first << ": return " << I.second << ";\n";
+ OS << " }\n";
+}
+
+// Emits the LateParsed property for attributes.
+static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) {
+ OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ for (const auto *Attr : Attrs) {
+ bool LateParsed = Attr->getValueAsBit("LateParsed");
+
+ if (LateParsed) {
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
+
+ // FIXME: Handle non-GNU attributes
+ for (const auto &I : Spellings) {
+ if (I.variety() != "GNU")
+ continue;
+ OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n";
+ }
+ }
+ }
+ OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
+}
+
+/// \brief Emits the first-argument-is-type property for attributes.
+static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) {
+ OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ for (const auto *Attr : Attrs) {
+ // Determine whether the first argument is a type.
+ std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
+ if (Args.empty())
+ continue;
+
+ if (Args[0]->getSuperClasses().back()->getName() != "TypeArgument")
+ continue;
+
+ // All these spellings take a single type argument.
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
+ std::set<std::string> Emitted;
+ for (const auto &S : Spellings) {
+ if (Emitted.insert(S.name()).second)
+ OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
+ }
+ }
+ OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
+}
+
+/// \brief Emits the parse-arguments-in-unevaluated-context property for
+/// attributes.
+static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) {
+ OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
+ ParsedAttrMap Attrs = getParsedAttrList(Records);
+ for (const auto &I : Attrs) {
+ const Record &Attr = *I.second;
+
+ if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
+ continue;
+
+ // All these spellings take are parsed unevaluated.
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
+ std::set<std::string> Emitted;
+ for (const auto &S : Spellings) {
+ if (Emitted.insert(S.name()).second)
+ OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
+ }
+ }
+ OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
+}
+
+static bool isIdentifierArgument(Record *Arg) {
+ return !Arg->getSuperClasses().empty() &&
+ llvm::StringSwitch<bool>(Arg->getSuperClasses().back()->getName())
+ .Case("IdentifierArgument", true)
+ .Case("EnumArgument", true)
+ .Case("VariadicEnumArgument", true)
+ .Default(false);
+}
+
+// Emits the first-argument-is-identifier property for attributes.
+static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) {
+ OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ for (const auto *Attr : Attrs) {
+ // Determine whether the first argument is an identifier.
+ std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
+ if (Args.empty() || !isIdentifierArgument(Args[0]))
+ continue;
+
+ // All these spellings take an identifier argument.
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
+ std::set<std::string> Emitted;
+ for (const auto &S : Spellings) {
+ if (Emitted.insert(S.name()).second)
+ OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
+ }
+ }
+ OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
+}
+
+namespace clang {
+
+// Emits the class definitions for attributes.
+void EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute classes' definitions", OS);
+
+ OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
+ OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
+
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+
+ // FIXME: Currently, documentation is generated as-needed due to the fact
+ // that there is no way to allow a generated project "reach into" the docs
+ // directory (for instance, it may be an out-of-tree build). However, we want
+ // to ensure that every attribute has a Documentation field, and produce an
+ // error if it has been neglected. Otherwise, the on-demand generation which
+ // happens server-side will fail. This code is ensuring that functionality,
+ // even though this Emitter doesn't technically need the documentation.
+ // When attribute documentation can be generated as part of the build
+ // itself, this code can be removed.
+ (void)R.getValueAsListOfDefs("Documentation");
+
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ ArrayRef<Record *> Supers = R.getSuperClasses();
+ assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
+ std::string SuperName;
+ for (const auto *Super : llvm::make_range(Supers.rbegin(), Supers.rend())) {
+ const Record &R = *Super;
+ if (R.getName() != "TargetSpecificAttr" && SuperName.empty())
+ SuperName = R.getName();
+ }
+
+ OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n";
+
+ std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
+ std::vector<std::unique_ptr<Argument>> Args;
+ Args.reserve(ArgRecords.size());
+
+ bool HasOptArg = false;
+ bool HasFakeArg = false;
+ for (const auto *ArgRecord : ArgRecords) {
+ Args.emplace_back(createArgument(*ArgRecord, R.getName()));
+ Args.back()->writeDeclarations(OS);
+ OS << "\n\n";
+
+ // For these purposes, fake takes priority over optional.
+ if (Args.back()->isFake()) {
+ HasFakeArg = true;
+ } else if (Args.back()->isOptional()) {
+ HasOptArg = true;
+ }
+ }
+
+ OS << "\npublic:\n";
+
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
+
+ // If there are zero or one spellings, all spelling-related functionality
+ // can be elided. If all of the spellings share the same name, the spelling
+ // functionality can also be elided.
+ bool ElideSpelling = (Spellings.size() <= 1) ||
+ SpellingNamesAreCommon(Spellings);
+
+ // This maps spelling index values to semantic Spelling enumerants.
+ SemanticSpellingMap SemanticToSyntacticMap;
+
+ if (!ElideSpelling)
+ OS << CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
+
+ // Emit CreateImplicit factory methods.
+ auto emitCreateImplicit = [&](bool emitFake) {
+ OS << " static " << R.getName() << "Attr *CreateImplicit(";
+ OS << "ASTContext &Ctx";
+ if (!ElideSpelling)
+ OS << ", Spelling S";
+ for (auto const &ai : Args) {
+ if (ai->isFake() && !emitFake) continue;
+ OS << ", ";
+ ai->writeCtorParameters(OS);
+ }
+ OS << ", SourceRange Loc = SourceRange()";
+ OS << ") {\n";
+ OS << " auto *A = new (Ctx) " << R.getName();
+ OS << "Attr(Loc, Ctx, ";
+ for (auto const &ai : Args) {
+ if (ai->isFake() && !emitFake) continue;
+ ai->writeImplicitCtorArgs(OS);
+ OS << ", ";
+ }
+ OS << (ElideSpelling ? "0" : "S") << ");\n";
+ OS << " A->setImplicit(true);\n";
+ OS << " return A;\n }\n\n";
+ };
+
+ // Emit a CreateImplicit that takes all the arguments.
+ emitCreateImplicit(true);
+
+ // Emit a CreateImplicit that takes all the non-fake arguments.
+ if (HasFakeArg) {
+ emitCreateImplicit(false);
+ }
+
+ // Emit constructors.
+ auto emitCtor = [&](bool emitOpt, bool emitFake) {
+ auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
+ if (arg->isFake()) return emitFake;
+ if (arg->isOptional()) return emitOpt;
+ return true;
+ };
+
+ OS << " " << R.getName() << "Attr(SourceRange R, ASTContext &Ctx\n";
+ for (auto const &ai : Args) {
+ if (!shouldEmitArg(ai)) continue;
+ OS << " , ";
+ ai->writeCtorParameters(OS);
+ OS << "\n";
+ }
+
+ OS << " , ";
+ OS << "unsigned SI\n";
+
+ OS << " )\n";
+ OS << " : " << SuperName << "(attr::" << R.getName() << ", R, SI, "
+ << R.getValueAsBit("LateParsed") << ", "
+ << R.getValueAsBit("DuplicatesAllowedWhileMerging") << ")\n";
+
+ for (auto const &ai : Args) {
+ OS << " , ";
+ if (!shouldEmitArg(ai)) {
+ ai->writeCtorDefaultInitializers(OS);
+ } else {
+ ai->writeCtorInitializers(OS);
+ }
+ OS << "\n";
+ }
+
+ OS << " {\n";
+
+ for (auto const &ai : Args) {
+ if (!shouldEmitArg(ai)) continue;
+ ai->writeCtorBody(OS);
+ OS << "\n";
+ }
+ OS << " }\n\n";
+
+ };
+
+ // Emit a constructor that includes all the arguments.
+ // This is necessary for cloning.
+ emitCtor(true, true);
+
+ // Emit a constructor that takes all the non-fake arguments.
+ if (HasFakeArg) {
+ emitCtor(true, false);
+ }
+
+ // Emit a constructor that takes all the non-fake, non-optional arguments.
+ if (HasOptArg) {
+ emitCtor(false, false);
+ }
+
+ OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
+ OS << " void printPretty(raw_ostream &OS,\n"
+ << " const PrintingPolicy &Policy) const;\n";
+ OS << " const char *getSpelling() const;\n";
+
+ if (!ElideSpelling) {
+ assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
+ OS << " Spelling getSemanticSpelling() const {\n";
+ WriteSemanticSpellingSwitch("SpellingListIndex", SemanticToSyntacticMap,
+ OS);
+ OS << " }\n";
+ }
+
+ writeAttrAccessorDefinition(R, OS);
+
+ for (auto const &ai : Args) {
+ ai->writeAccessors(OS);
+ OS << "\n\n";
+
+ // Don't write conversion routines for fake arguments.
+ if (ai->isFake()) continue;
+
+ if (ai->isEnumArg())
+ static_cast<const EnumArgument *>(ai.get())->writeConversion(OS);
+ else if (ai->isVariadicEnumArg())
+ static_cast<const VariadicEnumArgument *>(ai.get())
+ ->writeConversion(OS);
+ }
+
+ OS << R.getValueAsString("AdditionalMembers");
+ OS << "\n\n";
+
+ OS << " static bool classof(const Attr *A) { return A->getKind() == "
+ << "attr::" << R.getName() << "; }\n";
+
+ OS << "};\n\n";
+ }
+
+ OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
+}
+
+// Emits the class method definitions for attributes.
+void EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute classes' member function definitions", OS);
+
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ for (auto *Attr : Attrs) {
+ Record &R = *Attr;
+
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
+ std::vector<std::unique_ptr<Argument>> Args;
+ for (const auto *Arg : ArgRecords)
+ Args.emplace_back(createArgument(*Arg, R.getName()));
+
+ for (auto const &ai : Args)
+ ai->writeAccessorDefinitions(OS);
+
+ OS << R.getName() << "Attr *" << R.getName()
+ << "Attr::clone(ASTContext &C) const {\n";
+ OS << " auto *A = new (C) " << R.getName() << "Attr(getLocation(), C";
+ for (auto const &ai : Args) {
+ OS << ", ";
+ ai->writeCloneArgs(OS);
+ }
+ OS << ", getSpellingListIndex());\n";
+ OS << " A->Inherited = Inherited;\n";
+ OS << " A->IsPackExpansion = IsPackExpansion;\n";
+ OS << " A->Implicit = Implicit;\n";
+ OS << " return A;\n}\n\n";
+
+ writePrettyPrintFunction(R, Args, OS);
+ writeGetSpellingFunction(R, OS);
+ }
+
+ // Instead of relying on virtual dispatch we just create a huge dispatch
+ // switch. This is both smaller and faster than virtual functions.
+ auto EmitFunc = [&](const char *Method) {
+ OS << " switch (getKind()) {\n";
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ OS << " case attr::" << R.getName() << ":\n";
+ OS << " return cast<" << R.getName() << "Attr>(this)->" << Method
+ << ";\n";
+ }
+ OS << " case attr::NUM_ATTRS:\n";
+ OS << " break;\n";
+ OS << " }\n";
+ OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n";
+ OS << "}\n\n";
+ };
+
+ OS << "const char *Attr::getSpelling() const {\n";
+ EmitFunc("getSpelling()");
+
+ OS << "Attr *Attr::clone(ASTContext &C) const {\n";
+ EmitFunc("clone(C)");
+
+ OS << "void Attr::printPretty(raw_ostream &OS, "
+ "const PrintingPolicy &Policy) const {\n";
+ EmitFunc("printPretty(OS, Policy)");
+}
+
+} // end namespace clang
+
+static void EmitAttrList(raw_ostream &OS, StringRef Class,
+ const std::vector<Record*> &AttrList) {
+ auto i = AttrList.cbegin(), e = AttrList.cend();
+
+ if (i != e) {
+ // Move the end iterator back to emit the last attribute.
+ for(--e; i != e; ++i) {
+ if (!(*i)->getValueAsBit("ASTNode"))
+ continue;
+
+ OS << Class << "(" << (*i)->getName() << ")\n";
+ }
+
+ OS << "LAST_" << Class << "(" << (*i)->getName() << ")\n\n";
+ }
+}
+
+// Determines if an attribute has a Pragma spelling.
+static bool AttrHasPragmaSpelling(const Record *R) {
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
+ return std::find_if(Spellings.begin(), Spellings.end(),
+ [](const FlattenedSpelling &S) {
+ return S.variety() == "Pragma";
+ }) != Spellings.end();
+}
+
+namespace clang {
+// Emits the enumeration list for attributes.
+void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
+
+ OS << "#ifndef LAST_ATTR\n";
+ OS << "#define LAST_ATTR(NAME) ATTR(NAME)\n";
+ OS << "#endif\n\n";
+
+ OS << "#ifndef INHERITABLE_ATTR\n";
+ OS << "#define INHERITABLE_ATTR(NAME) ATTR(NAME)\n";
+ OS << "#endif\n\n";
+
+ OS << "#ifndef LAST_INHERITABLE_ATTR\n";
+ OS << "#define LAST_INHERITABLE_ATTR(NAME) INHERITABLE_ATTR(NAME)\n";
+ OS << "#endif\n\n";
+
+ OS << "#ifndef INHERITABLE_PARAM_ATTR\n";
+ OS << "#define INHERITABLE_PARAM_ATTR(NAME) ATTR(NAME)\n";
+ OS << "#endif\n\n";
+
+ OS << "#ifndef LAST_INHERITABLE_PARAM_ATTR\n";
+ OS << "#define LAST_INHERITABLE_PARAM_ATTR(NAME)"
+ " INHERITABLE_PARAM_ATTR(NAME)\n";
+ OS << "#endif\n\n";
+
+ OS << "#ifndef PRAGMA_SPELLING_ATTR\n";
+ OS << "#define PRAGMA_SPELLING_ATTR(NAME)\n";
+ OS << "#endif\n\n";
+
+ OS << "#ifndef LAST_PRAGMA_SPELLING_ATTR\n";
+ OS << "#define LAST_PRAGMA_SPELLING_ATTR(NAME) PRAGMA_SPELLING_ATTR(NAME)\n";
+ OS << "#endif\n\n";
+
+ Record *InhClass = Records.getClass("InheritableAttr");
+ Record *InhParamClass = Records.getClass("InheritableParamAttr");
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"),
+ NonInhAttrs, InhAttrs, InhParamAttrs, PragmaAttrs;
+ for (auto *Attr : Attrs) {
+ if (!Attr->getValueAsBit("ASTNode"))
+ continue;
+
+ if (AttrHasPragmaSpelling(Attr))
+ PragmaAttrs.push_back(Attr);
+
+ if (Attr->isSubClassOf(InhParamClass))
+ InhParamAttrs.push_back(Attr);
+ else if (Attr->isSubClassOf(InhClass))
+ InhAttrs.push_back(Attr);
+ else
+ NonInhAttrs.push_back(Attr);
+ }
+
+ EmitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs);
+ EmitAttrList(OS, "INHERITABLE_PARAM_ATTR", InhParamAttrs);
+ EmitAttrList(OS, "INHERITABLE_ATTR", InhAttrs);
+ EmitAttrList(OS, "ATTR", NonInhAttrs);
+
+ OS << "#undef LAST_ATTR\n";
+ OS << "#undef INHERITABLE_ATTR\n";
+ OS << "#undef LAST_INHERITABLE_ATTR\n";
+ OS << "#undef LAST_INHERITABLE_PARAM_ATTR\n";
+ OS << "#undef LAST_PRAGMA_ATTR\n";
+ OS << "#undef PRAGMA_SPELLING_ATTR\n";
+ OS << "#undef ATTR\n";
+}
+
+// Emits the code to read an attribute from a precompiled header.
+void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute deserialization code", OS);
+
+ Record *InhClass = Records.getClass("InheritableAttr");
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
+ ArgRecords;
+ std::vector<std::unique_ptr<Argument>> Args;
+
+ OS << " switch (Kind) {\n";
+ OS << " default:\n";
+ OS << " llvm_unreachable(\"Unknown attribute!\");\n";
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ OS << " case attr::" << R.getName() << ": {\n";
+ if (R.isSubClassOf(InhClass))
+ OS << " bool isInherited = Record[Idx++];\n";
+ OS << " bool isImplicit = Record[Idx++];\n";
+ OS << " unsigned Spelling = Record[Idx++];\n";
+ ArgRecords = R.getValueAsListOfDefs("Args");
+ Args.clear();
+ for (const auto *Arg : ArgRecords) {
+ Args.emplace_back(createArgument(*Arg, R.getName()));
+ Args.back()->writePCHReadDecls(OS);
+ }
+ OS << " New = new (Context) " << R.getName() << "Attr(Range, Context";
+ for (auto const &ri : Args) {
+ OS << ", ";
+ ri->writePCHReadArgs(OS);
+ }
+ OS << ", Spelling);\n";
+ if (R.isSubClassOf(InhClass))
+ OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n";
+ OS << " New->setImplicit(isImplicit);\n";
+ OS << " break;\n";
+ OS << " }\n";
+ }
+ OS << " }\n";
+}
+
+// Emits the code to write an attribute to a precompiled header.
+void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute serialization code", OS);
+
+ Record *InhClass = Records.getClass("InheritableAttr");
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
+
+ OS << " switch (A->getKind()) {\n";
+ OS << " default:\n";
+ OS << " llvm_unreachable(\"Unknown attribute kind!\");\n";
+ OS << " break;\n";
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+ OS << " case attr::" << R.getName() << ": {\n";
+ Args = R.getValueAsListOfDefs("Args");
+ if (R.isSubClassOf(InhClass) || !Args.empty())
+ OS << " const auto *SA = cast<" << R.getName()
+ << "Attr>(A);\n";
+ if (R.isSubClassOf(InhClass))
+ OS << " Record.push_back(SA->isInherited());\n";
+ OS << " Record.push_back(A->isImplicit());\n";
+ OS << " Record.push_back(A->getSpellingListIndex());\n";
+
+ for (const auto *Arg : Args)
+ createArgument(*Arg, R.getName())->writePCHWrite(OS);
+ OS << " break;\n";
+ OS << " }\n";
+ }
+ OS << " }\n";
+}
+
+// Generate a conditional expression to check if the current target satisfies
+// the conditions for a TargetSpecificAttr record, and append the code for
+// those checks to the Test string. If the FnName string pointer is non-null,
+// append a unique suffix to distinguish this set of target checks from other
+// TargetSpecificAttr records.
+static void GenerateTargetSpecificAttrChecks(const Record *R,
+ std::vector<std::string> &Arches,
+ std::string &Test,
+ std::string *FnName) {
+ // It is assumed that there will be an llvm::Triple object
+ // named "T" and a TargetInfo object named "Target" within
+ // scope that can be used to determine whether the attribute exists in
+ // a given target.
+ Test += "(";
+
+ for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
+ std::string Part = *I;
+ Test += "T.getArch() == llvm::Triple::" + Part;
+ if (I + 1 != E)
+ Test += " || ";
+ if (FnName)
+ *FnName += Part;
+ }
+ Test += ")";
+
+ // If the attribute is specific to particular OSes, check those.
+ if (!R->isValueUnset("OSes")) {
+ // We know that there was at least one arch test, so we need to and in the
+ // OS tests.
+ Test += " && (";
+ std::vector<std::string> OSes = R->getValueAsListOfStrings("OSes");
+ for (auto I = OSes.begin(), E = OSes.end(); I != E; ++I) {
+ std::string Part = *I;
+
+ Test += "T.getOS() == llvm::Triple::" + Part;
+ if (I + 1 != E)
+ Test += " || ";
+ if (FnName)
+ *FnName += Part;
+ }
+ Test += ")";
+ }
+
+ // If one or more CXX ABIs are specified, check those as well.
+ if (!R->isValueUnset("CXXABIs")) {
+ Test += " && (";
+ std::vector<std::string> CXXABIs = R->getValueAsListOfStrings("CXXABIs");
+ for (auto I = CXXABIs.begin(), E = CXXABIs.end(); I != E; ++I) {
+ std::string Part = *I;
+ Test += "Target.getCXXABI().getKind() == TargetCXXABI::" + Part;
+ if (I + 1 != E)
+ Test += " || ";
+ if (FnName)
+ *FnName += Part;
+ }
+ Test += ")";
+ }
+}
+
+static void GenerateHasAttrSpellingStringSwitch(
+ const std::vector<Record *> &Attrs, raw_ostream &OS,
+ const std::string &Variety = "", const std::string &Scope = "") {
+ for (const auto *Attr : Attrs) {
+ // C++11-style attributes have specific version information associated with
+ // them. If the attribute has no scope, the version information must not
+ // have the default value (1), as that's incorrect. Instead, the unscoped
+ // attribute version information should be taken from the SD-6 standing
+ // document, which can be found at:
+ // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
+ int Version = 1;
+
+ if (Variety == "CXX11") {
+ std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings");
+ for (const auto &Spelling : Spellings) {
+ if (Spelling->getValueAsString("Variety") == "CXX11") {
+ Version = static_cast<int>(Spelling->getValueAsInt("Version"));
+ if (Scope.empty() && Version == 1)
+ PrintError(Spelling->getLoc(), "C++ standard attributes must "
+ "have valid version information.");
+ break;
+ }
+ }
+ }
+
+ std::string Test;
+ if (Attr->isSubClassOf("TargetSpecificAttr")) {
+ const Record *R = Attr->getValueAsDef("Target");
+ std::vector<std::string> Arches = R->getValueAsListOfStrings("Arches");
+ GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr);
+
+ // If this is the C++11 variety, also add in the LangOpts test.
+ if (Variety == "CXX11")
+ Test += " && LangOpts.CPlusPlus11";
+ } else if (Variety == "CXX11")
+ // C++11 mode should be checked against LangOpts, which is presumed to be
+ // present in the caller.
+ Test = "LangOpts.CPlusPlus11";
+
+ std::string TestStr =
+ !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1";
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
+ for (const auto &S : Spellings)
+ if (Variety.empty() || (Variety == S.variety() &&
+ (Scope.empty() || Scope == S.nameSpace())))
+ OS << " .Case(\"" << S.name() << "\", " << TestStr << ")\n";
+ }
+ OS << " .Default(0);\n";
+}
+
+// Emits the list of spellings for attributes.
+void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Code to implement the __has_attribute logic", OS);
+
+ // Separate all of the attributes out into four group: generic, C++11, GNU,
+ // and declspecs. Then generate a big switch statement for each of them.
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+ std::vector<Record *> Declspec, GNU, Pragma;
+ std::map<std::string, std::vector<Record *>> CXX;
+
+ // Walk over the list of all attributes, and split them out based on the
+ // spelling variety.
+ for (auto *R : Attrs) {
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
+ for (const auto &SI : Spellings) {
+ std::string Variety = SI.variety();
+ if (Variety == "GNU")
+ GNU.push_back(R);
+ else if (Variety == "Declspec")
+ Declspec.push_back(R);
+ else if (Variety == "CXX11")
+ CXX[SI.nameSpace()].push_back(R);
+ else if (Variety == "Pragma")
+ Pragma.push_back(R);
+ }
+ }
+
+ OS << "const llvm::Triple &T = Target.getTriple();\n";
+ OS << "switch (Syntax) {\n";
+ OS << "case AttrSyntax::GNU:\n";
+ OS << " return llvm::StringSwitch<int>(Name)\n";
+ GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
+ OS << "case AttrSyntax::Declspec:\n";
+ OS << " return llvm::StringSwitch<int>(Name)\n";
+ GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
+ OS << "case AttrSyntax::Pragma:\n";
+ OS << " return llvm::StringSwitch<int>(Name)\n";
+ GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
+ OS << "case AttrSyntax::CXX: {\n";
+ // C++11-style attributes are further split out based on the Scope.
+ for (auto I = CXX.cbegin(), E = CXX.cend(); I != E; ++I) {
+ if (I != CXX.begin())
+ OS << " else ";
+ if (I->first.empty())
+ OS << "if (!Scope || Scope->getName() == \"\") {\n";
+ else
+ OS << "if (Scope->getName() == \"" << I->first << "\") {\n";
+ OS << " return llvm::StringSwitch<int>(Name)\n";
+ GenerateHasAttrSpellingStringSwitch(I->second, OS, "CXX11", I->first);
+ OS << "}";
+ }
+ OS << "\n}\n";
+ OS << "}\n";
+}
+
+void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Code to translate different attribute spellings "
+ "into internal identifiers", OS);
+
+ OS <<
+ " switch (AttrKind) {\n"
+ " default:\n"
+ " llvm_unreachable(\"Unknown attribute kind!\");\n"
+ " break;\n";
+
+ ParsedAttrMap Attrs = getParsedAttrList(Records);
+ for (const auto &I : Attrs) {
+ const Record &R = *I.second;
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
+ OS << " case AT_" << I.first << ": {\n";
+ for (unsigned I = 0; I < Spellings.size(); ++ I) {
+ OS << " if (Name == \"" << Spellings[I].name() << "\" && "
+ << "SyntaxUsed == "
+ << StringSwitch<unsigned>(Spellings[I].variety())
+ .Case("GNU", 0)
+ .Case("CXX11", 1)
+ .Case("Declspec", 2)
+ .Case("Keyword", 3)
+ .Case("Pragma", 4)
+ .Default(0)
+ << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n"
+ << " return " << I << ";\n";
+ }
+
+ OS << " break;\n";
+ OS << " }\n";
+ }
+
+ OS << " }\n";
+ OS << " return 0;\n";
+}
+
+// Emits code used by RecursiveASTVisitor to visit attributes
+void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS);
+
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ // Write method declarations for Traverse* methods.
+ // We emit this here because we only generate methods for attributes that
+ // are declared as ASTNodes.
+ OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+ OS << " bool Traverse"
+ << R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
+ OS << " bool Visit"
+ << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
+ << " return true; \n"
+ << " }\n";
+ }
+ OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
+
+ // Write individual Traverse* methods for each attribute class.
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ OS << "template <typename Derived>\n"
+ << "bool VISITORCLASS<Derived>::Traverse"
+ << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
+ << " if (!getDerived().VisitAttr(A))\n"
+ << " return false;\n"
+ << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
+ << " return false;\n";
+
+ std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
+ for (const auto *Arg : ArgRecords)
+ createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
+
+ OS << " return true;\n";
+ OS << "}\n\n";
+ }
+
+ // Write generic Traverse routine
+ OS << "template <typename Derived>\n"
+ << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
+ << " if (!A)\n"
+ << " return true;\n"
+ << "\n"
+ << " switch (A->getKind()) {\n"
+ << " default:\n"
+ << " return true;\n";
+
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ OS << " case attr::" << R.getName() << ":\n"
+ << " return getDerived().Traverse" << R.getName() << "Attr("
+ << "cast<" << R.getName() << "Attr>(A));\n";
+ }
+ OS << " }\n"; // end case
+ OS << "}\n"; // end function
+ OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n";
+}
+
+// Emits code to instantiate dependent attributes on templates.
+void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Template instantiation code for attributes", OS);
+
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ OS << "namespace clang {\n"
+ << "namespace sema {\n\n"
+ << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
+ << "Sema &S,\n"
+ << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n"
+ << " switch (At->getKind()) {\n"
+ << " default:\n"
+ << " break;\n";
+
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ OS << " case attr::" << R.getName() << ": {\n";
+ bool ShouldClone = R.getValueAsBit("Clone");
+
+ if (!ShouldClone) {
+ OS << " return nullptr;\n";
+ OS << " }\n";
+ continue;
+ }
+
+ OS << " const auto *A = cast<"
+ << R.getName() << "Attr>(At);\n";
+ bool TDependent = R.getValueAsBit("TemplateDependent");
+
+ if (!TDependent) {
+ OS << " return A->clone(C);\n";
+ OS << " }\n";
+ continue;
+ }
+
+ std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
+ std::vector<std::unique_ptr<Argument>> Args;
+ Args.reserve(ArgRecords.size());
+
+ for (const auto *ArgRecord : ArgRecords)
+ Args.emplace_back(createArgument(*ArgRecord, R.getName()));
+
+ for (auto const &ai : Args)
+ ai->writeTemplateInstantiation(OS);
+
+ OS << " return new (C) " << R.getName() << "Attr(A->getLocation(), C";
+ for (auto const &ai : Args) {
+ OS << ", ";
+ ai->writeTemplateInstantiationArgs(OS);
+ }
+ OS << ", A->getSpellingListIndex());\n }\n";
+ }
+ OS << " } // end switch\n"
+ << " llvm_unreachable(\"Unknown attribute!\");\n"
+ << " return nullptr;\n"
+ << "}\n\n"
+ << "} // end namespace sema\n"
+ << "} // end namespace clang\n";
+}
+
+// Emits the list of parsed attributes.
+void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
+
+ OS << "#ifndef PARSED_ATTR\n";
+ OS << "#define PARSED_ATTR(NAME) NAME\n";
+ OS << "#endif\n\n";
+
+ ParsedAttrMap Names = getParsedAttrList(Records);
+ for (const auto &I : Names) {
+ OS << "PARSED_ATTR(" << I.first << ")\n";
+ }
+}
+
+static bool isArgVariadic(const Record &R, StringRef AttrName) {
+ return createArgument(R, AttrName)->isVariadic();
+}
+
+static void emitArgInfo(const Record &R, std::stringstream &OS) {
+ // This function will count the number of arguments specified for the
+ // attribute and emit the number of required arguments followed by the
+ // number of optional arguments.
+ std::vector<Record *> Args = R.getValueAsListOfDefs("Args");
+ unsigned ArgCount = 0, OptCount = 0;
+ bool HasVariadic = false;
+ for (const auto *Arg : Args) {
+ Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
+ if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
+ HasVariadic = true;
+ }
+
+ // If there is a variadic argument, we will set the optional argument count
+ // to its largest value. Since it's currently a 4-bit number, we set it to 15.
+ OS << ArgCount << ", " << (HasVariadic ? 15 : OptCount);
+}
+
+static void GenerateDefaultAppertainsTo(raw_ostream &OS) {
+ OS << "static bool defaultAppertainsTo(Sema &, const AttributeList &,";
+ OS << "const Decl *) {\n";
+ OS << " return true;\n";
+ OS << "}\n\n";
+}
+
+static std::string CalculateDiagnostic(const Record &S) {
+ // If the SubjectList object has a custom diagnostic associated with it,
+ // return that directly.
+ std::string CustomDiag = S.getValueAsString("CustomDiag");
+ if (!CustomDiag.empty())
+ return CustomDiag;
+
+ // Given the list of subjects, determine what diagnostic best fits.
+ enum {
+ Func = 1U << 0,
+ Var = 1U << 1,
+ ObjCMethod = 1U << 2,
+ Param = 1U << 3,
+ Class = 1U << 4,
+ GenericRecord = 1U << 5,
+ Type = 1U << 6,
+ ObjCIVar = 1U << 7,
+ ObjCProp = 1U << 8,
+ ObjCInterface = 1U << 9,
+ Block = 1U << 10,
+ Namespace = 1U << 11,
+ Field = 1U << 12,
+ CXXMethod = 1U << 13,
+ ObjCProtocol = 1U << 14,
+ Enum = 1U << 15
+ };
+ uint32_t SubMask = 0;
+
+ std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects");
+ for (const auto *Subject : Subjects) {
+ const Record &R = *Subject;
+ std::string Name;
+
+ if (R.isSubClassOf("SubsetSubject")) {
+ PrintError(R.getLoc(), "SubsetSubjects should use a custom diagnostic");
+ // As a fallback, look through the SubsetSubject to see what its base
+ // type is, and use that. This needs to be updated if SubsetSubjects
+ // are allowed within other SubsetSubjects.
+ Name = R.getValueAsDef("Base")->getName();
+ } else
+ Name = R.getName();
+
+ uint32_t V = StringSwitch<uint32_t>(Name)
+ .Case("Function", Func)
+ .Case("Var", Var)
+ .Case("ObjCMethod", ObjCMethod)
+ .Case("ParmVar", Param)
+ .Case("TypedefName", Type)
+ .Case("ObjCIvar", ObjCIVar)
+ .Case("ObjCProperty", ObjCProp)
+ .Case("Record", GenericRecord)
+ .Case("ObjCInterface", ObjCInterface)
+ .Case("ObjCProtocol", ObjCProtocol)
+ .Case("Block", Block)
+ .Case("CXXRecord", Class)
+ .Case("Namespace", Namespace)
+ .Case("Field", Field)
+ .Case("CXXMethod", CXXMethod)
+ .Case("Enum", Enum)
+ .Default(0);
+ if (!V) {
+ // Something wasn't in our mapping, so be helpful and let the developer
+ // know about it.
+ PrintFatalError(R.getLoc(), "Unknown subject type: " + R.getName());
+ return "";
+ }
+
+ SubMask |= V;
+ }
+
+ switch (SubMask) {
+ // For the simple cases where there's only a single entry in the mask, we
+ // don't have to resort to bit fiddling.
+ case Func: return "ExpectedFunction";
+ case Var: return "ExpectedVariable";
+ case Param: return "ExpectedParameter";
+ case Class: return "ExpectedClass";
+ case Enum: return "ExpectedEnum";
+ case CXXMethod:
+ // FIXME: Currently, this maps to ExpectedMethod based on existing code,
+ // but should map to something a bit more accurate at some point.
+ case ObjCMethod: return "ExpectedMethod";
+ case Type: return "ExpectedType";
+ case ObjCInterface: return "ExpectedObjectiveCInterface";
+ case ObjCProtocol: return "ExpectedObjectiveCProtocol";
+
+ // "GenericRecord" means struct, union or class; check the language options
+ // and if not compiling for C++, strip off the class part. Note that this
+ // relies on the fact that the context for this declares "Sema &S".
+ case GenericRecord:
+ return "(S.getLangOpts().CPlusPlus ? ExpectedStructOrUnionOrClass : "
+ "ExpectedStructOrUnion)";
+ case Func | ObjCMethod | Block: return "ExpectedFunctionMethodOrBlock";
+ case Func | ObjCMethod | Class: return "ExpectedFunctionMethodOrClass";
+ case Func | Param:
+ case Func | ObjCMethod | Param: return "ExpectedFunctionMethodOrParameter";
+ case Func | ObjCMethod: return "ExpectedFunctionOrMethod";
+ case Func | Var: return "ExpectedVariableOrFunction";
+
+ // If not compiling for C++, the class portion does not apply.
+ case Func | Var | Class:
+ return "(S.getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass : "
+ "ExpectedVariableOrFunction)";
+
+ case ObjCMethod | ObjCProp: return "ExpectedMethodOrProperty";
+ case ObjCProtocol | ObjCInterface:
+ return "ExpectedObjectiveCInterfaceOrProtocol";
+ case Field | Var: return "ExpectedFieldOrGlobalVar";
+ }
+
+ PrintFatalError(S.getLoc(),
+ "Could not deduce diagnostic argument for Attr subjects");
+
+ return "";
+}
+
+static std::string GetSubjectWithSuffix(const Record *R) {
+ std::string B = R->getName();
+ if (B == "DeclBase")
+ return "Decl";
+ return B + "Decl";
+}
+
+static std::string GenerateCustomAppertainsTo(const Record &Subject,
+ raw_ostream &OS) {
+ std::string FnName = "is" + Subject.getName();
+
+ // If this code has already been generated, simply return the previous
+ // instance of it.
+ static std::set<std::string> CustomSubjectSet;
+ auto I = CustomSubjectSet.find(FnName);
+ if (I != CustomSubjectSet.end())
+ return *I;
+
+ Record *Base = Subject.getValueAsDef("Base");
+
+ // Not currently support custom subjects within custom subjects.
+ if (Base->isSubClassOf("SubsetSubject")) {
+ PrintFatalError(Subject.getLoc(),
+ "SubsetSubjects within SubsetSubjects is not supported");
+ return "";
+ }
+
+ OS << "static bool " << FnName << "(const Decl *D) {\n";
+ OS << " if (const auto *S = dyn_cast<";
+ OS << GetSubjectWithSuffix(Base);
+ OS << ">(D))\n";
+ OS << " return " << Subject.getValueAsString("CheckCode") << ";\n";
+ OS << " return false;\n";
+ OS << "}\n\n";
+
+ CustomSubjectSet.insert(FnName);
+ return FnName;
+}
+
+static std::string GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
+ // If the attribute does not contain a Subjects definition, then use the
+ // default appertainsTo logic.
+ if (Attr.isValueUnset("Subjects"))
+ return "defaultAppertainsTo";
+
+ const Record *SubjectObj = Attr.getValueAsDef("Subjects");
+ std::vector<Record*> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
+
+ // If the list of subjects is empty, it is assumed that the attribute
+ // appertains to everything.
+ if (Subjects.empty())
+ return "defaultAppertainsTo";
+
+ bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
+
+ // Otherwise, generate an appertainsTo check specific to this attribute which
+ // checks all of the given subjects against the Decl passed in. Return the
+ // name of that check to the caller.
+ std::string FnName = "check" + Attr.getName() + "AppertainsTo";
+ std::stringstream SS;
+ SS << "static bool " << FnName << "(Sema &S, const AttributeList &Attr, ";
+ SS << "const Decl *D) {\n";
+ SS << " if (";
+ for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
+ // If the subject has custom code associated with it, generate a function
+ // for it. The function cannot be inlined into this check (yet) because it
+ // requires the subject to be of a specific type, and were that information
+ // inlined here, it would not support an attribute with multiple custom
+ // subjects.
+ if ((*I)->isSubClassOf("SubsetSubject")) {
+ SS << "!" << GenerateCustomAppertainsTo(**I, OS) << "(D)";
+ } else {
+ SS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
+ }
+
+ if (I + 1 != E)
+ SS << " && ";
+ }
+ SS << ") {\n";
+ SS << " S.Diag(Attr.getLoc(), diag::";
+ SS << (Warn ? "warn_attribute_wrong_decl_type" :
+ "err_attribute_wrong_decl_type");
+ SS << ")\n";
+ SS << " << Attr.getName() << ";
+ SS << CalculateDiagnostic(*SubjectObj) << ";\n";
+ SS << " return false;\n";
+ SS << " }\n";
+ SS << " return true;\n";
+ SS << "}\n\n";
+
+ OS << SS.str();
+ return FnName;
+}
+
+static void GenerateDefaultLangOptRequirements(raw_ostream &OS) {
+ OS << "static bool defaultDiagnoseLangOpts(Sema &, ";
+ OS << "const AttributeList &) {\n";
+ OS << " return true;\n";
+ OS << "}\n\n";
+}
+
+static std::string GenerateLangOptRequirements(const Record &R,
+ raw_ostream &OS) {
+ // If the attribute has an empty or unset list of language requirements,
+ // return the default handler.
+ std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
+ if (LangOpts.empty())
+ return "defaultDiagnoseLangOpts";
+
+ // Generate the test condition, as well as a unique function name for the
+ // diagnostic test. The list of options should usually be short (one or two
+ // options), and the uniqueness isn't strictly necessary (it is just for
+ // codegen efficiency).
+ std::string FnName = "check", Test;
+ for (auto I = LangOpts.begin(), E = LangOpts.end(); I != E; ++I) {
+ std::string Part = (*I)->getValueAsString("Name");
+ if ((*I)->getValueAsBit("Negated"))
+ Test += "!";
+ Test += "S.LangOpts." + Part;
+ if (I + 1 != E)
+ Test += " || ";
+ FnName += Part;
+ }
+ FnName += "LangOpts";
+
+ // If this code has already been generated, simply return the previous
+ // instance of it.
+ static std::set<std::string> CustomLangOptsSet;
+ auto I = CustomLangOptsSet.find(FnName);
+ if (I != CustomLangOptsSet.end())
+ return *I;
+
+ OS << "static bool " << FnName << "(Sema &S, const AttributeList &Attr) {\n";
+ OS << " if (" << Test << ")\n";
+ OS << " return true;\n\n";
+ OS << " S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) ";
+ OS << "<< Attr.getName();\n";
+ OS << " return false;\n";
+ OS << "}\n\n";
+
+ CustomLangOptsSet.insert(FnName);
+ return FnName;
+}
+
+static void GenerateDefaultTargetRequirements(raw_ostream &OS) {
+ OS << "static bool defaultTargetRequirements(const TargetInfo &) {\n";
+ OS << " return true;\n";
+ OS << "}\n\n";
+}
+
+static std::string GenerateTargetRequirements(const Record &Attr,
+ const ParsedAttrMap &Dupes,
+ raw_ostream &OS) {
+ // If the attribute is not a target specific attribute, return the default
+ // target handler.
+ if (!Attr.isSubClassOf("TargetSpecificAttr"))
+ return "defaultTargetRequirements";
+
+ // Get the list of architectures to be tested for.
+ const Record *R = Attr.getValueAsDef("Target");
+ std::vector<std::string> Arches = R->getValueAsListOfStrings("Arches");
+ if (Arches.empty()) {
+ PrintError(Attr.getLoc(), "Empty list of target architectures for a "
+ "target-specific attr");
+ return "defaultTargetRequirements";
+ }
+
+ // If there are other attributes which share the same parsed attribute kind,
+ // such as target-specific attributes with a shared spelling, collapse the
+ // duplicate architectures. This is required because a shared target-specific
+ // attribute has only one AttributeList::Kind enumeration value, but it
+ // applies to multiple target architectures. In order for the attribute to be
+ // considered valid, all of its architectures need to be included.
+ if (!Attr.isValueUnset("ParseKind")) {
+ std::string APK = Attr.getValueAsString("ParseKind");
+ for (const auto &I : Dupes) {
+ if (I.first == APK) {
+ std::vector<std::string> DA = I.second->getValueAsDef("Target")
+ ->getValueAsListOfStrings("Arches");
+ std::copy(DA.begin(), DA.end(), std::back_inserter(Arches));
+ }
+ }
+ }
+
+ std::string FnName = "isTarget";
+ std::string Test;
+ GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName);
+
+ // If this code has already been generated, simply return the previous
+ // instance of it.
+ static std::set<std::string> CustomTargetSet;
+ auto I = CustomTargetSet.find(FnName);
+ if (I != CustomTargetSet.end())
+ return *I;
+
+ OS << "static bool " << FnName << "(const TargetInfo &Target) {\n";
+ OS << " const llvm::Triple &T = Target.getTriple();\n";
+ OS << " return " << Test << ";\n";
+ OS << "}\n\n";
+
+ CustomTargetSet.insert(FnName);
+ return FnName;
+}
+
+static void GenerateDefaultSpellingIndexToSemanticSpelling(raw_ostream &OS) {
+ OS << "static unsigned defaultSpellingIndexToSemanticSpelling("
+ << "const AttributeList &Attr) {\n";
+ OS << " return UINT_MAX;\n";
+ OS << "}\n\n";
+}
+
+static std::string GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
+ raw_ostream &OS) {
+ // If the attribute does not have a semantic form, we can bail out early.
+ if (!Attr.getValueAsBit("ASTNode"))
+ return "defaultSpellingIndexToSemanticSpelling";
+
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
+
+ // If there are zero or one spellings, or all of the spellings share the same
+ // name, we can also bail out early.
+ if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
+ return "defaultSpellingIndexToSemanticSpelling";
+
+ // Generate the enumeration we will use for the mapping.
+ SemanticSpellingMap SemanticToSyntacticMap;
+ std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
+ std::string Name = Attr.getName() + "AttrSpellingMap";
+
+ OS << "static unsigned " << Name << "(const AttributeList &Attr) {\n";
+ OS << Enum;
+ OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
+ WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
+ OS << "}\n\n";
+
+ return Name;
+}
+
+static bool IsKnownToGCC(const Record &Attr) {
+ // Look at the spellings for this subject; if there are any spellings which
+ // claim to be known to GCC, the attribute is known to GCC.
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
+ for (const auto &I : Spellings) {
+ if (I.knownToGCC())
+ return true;
+ }
+ return false;
+}
+
+/// Emits the parsed attribute helpers
+void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Parsed attribute helpers", OS);
+
+ // Get the list of parsed attributes, and accept the optional list of
+ // duplicates due to the ParseKind.
+ ParsedAttrMap Dupes;
+ ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
+
+ // Generate the default appertainsTo, target and language option diagnostic,
+ // and spelling list index mapping methods.
+ GenerateDefaultAppertainsTo(OS);
+ GenerateDefaultLangOptRequirements(OS);
+ GenerateDefaultTargetRequirements(OS);
+ GenerateDefaultSpellingIndexToSemanticSpelling(OS);
+
+ // Generate the appertainsTo diagnostic methods and write their names into
+ // another mapping. At the same time, generate the AttrInfoMap object
+ // contents. Due to the reliance on generated code, use separate streams so
+ // that code will not be interleaved.
+ std::stringstream SS;
+ for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
+ // TODO: If the attribute's kind appears in the list of duplicates, that is
+ // because it is a target-specific attribute that appears multiple times.
+ // It would be beneficial to test whether the duplicates are "similar
+ // enough" to each other to not cause problems. For instance, check that
+ // the spellings are identical, and custom parsing rules match, etc.
+
+ // We need to generate struct instances based off ParsedAttrInfo from
+ // AttributeList.cpp.
+ SS << " { ";
+ emitArgInfo(*I->second, SS);
+ SS << ", " << I->second->getValueAsBit("HasCustomParsing");
+ SS << ", " << I->second->isSubClassOf("TargetSpecificAttr");
+ SS << ", " << I->second->isSubClassOf("TypeAttr");
+ SS << ", " << IsKnownToGCC(*I->second);
+ SS << ", " << GenerateAppertainsTo(*I->second, OS);
+ SS << ", " << GenerateLangOptRequirements(*I->second, OS);
+ SS << ", " << GenerateTargetRequirements(*I->second, Dupes, OS);
+ SS << ", " << GenerateSpellingIndexToSemanticSpelling(*I->second, OS);
+ SS << " }";
+
+ if (I + 1 != E)
+ SS << ",";
+
+ SS << " // AT_" << I->first << "\n";
+ }
+
+ OS << "static const ParsedAttrInfo AttrInfoMap[AttributeList::UnknownAttribute + 1] = {\n";
+ OS << SS.str();
+ OS << "};\n\n";
+}
+
+// Emits the kind list of parsed attributes
+void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute name matcher", OS);
+
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+ std::vector<StringMatcher::StringPair> GNU, Declspec, CXX11, Keywords, Pragma;
+ std::set<std::string> Seen;
+ for (const auto *A : Attrs) {
+ const Record &Attr = *A;
+
+ bool SemaHandler = Attr.getValueAsBit("SemaHandler");
+ bool Ignored = Attr.getValueAsBit("Ignored");
+ if (SemaHandler || Ignored) {
+ // Attribute spellings can be shared between target-specific attributes,
+ // and can be shared between syntaxes for the same attribute. For
+ // instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
+ // specific attribute, or MSP430-specific attribute. Additionally, an
+ // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
+ // for the same semantic attribute. Ultimately, we need to map each of
+ // these to a single AttributeList::Kind value, but the StringMatcher
+ // class cannot handle duplicate match strings. So we generate a list of
+ // string to match based on the syntax, and emit multiple string matchers
+ // depending on the syntax used.
+ std::string AttrName;
+ if (Attr.isSubClassOf("TargetSpecificAttr") &&
+ !Attr.isValueUnset("ParseKind")) {
+ AttrName = Attr.getValueAsString("ParseKind");
+ if (Seen.find(AttrName) != Seen.end())
+ continue;
+ Seen.insert(AttrName);
+ } else
+ AttrName = NormalizeAttrName(StringRef(Attr.getName())).str();
+
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
+ for (const auto &S : Spellings) {
+ std::string RawSpelling = S.name();
+ std::vector<StringMatcher::StringPair> *Matches = nullptr;
+ std::string Spelling, Variety = S.variety();
+ if (Variety == "CXX11") {
+ Matches = &CXX11;
+ Spelling += S.nameSpace();
+ Spelling += "::";
+ } else if (Variety == "GNU")
+ Matches = &GNU;
+ else if (Variety == "Declspec")
+ Matches = &Declspec;
+ else if (Variety == "Keyword")
+ Matches = &Keywords;
+ else if (Variety == "Pragma")
+ Matches = &Pragma;
+
+ assert(Matches && "Unsupported spelling variety found");
+
+ Spelling += NormalizeAttrSpelling(RawSpelling);
+ if (SemaHandler)
+ Matches->push_back(StringMatcher::StringPair(Spelling,
+ "return AttributeList::AT_" + AttrName + ";"));
+ else
+ Matches->push_back(StringMatcher::StringPair(Spelling,
+ "return AttributeList::IgnoredAttribute;"));
+ }
+ }
+ }
+
+ OS << "static AttributeList::Kind getAttrKind(StringRef Name, ";
+ OS << "AttributeList::Syntax Syntax) {\n";
+ OS << " if (AttributeList::AS_GNU == Syntax) {\n";
+ StringMatcher("Name", GNU, OS).Emit();
+ OS << " } else if (AttributeList::AS_Declspec == Syntax) {\n";
+ StringMatcher("Name", Declspec, OS).Emit();
+ OS << " } else if (AttributeList::AS_CXX11 == Syntax) {\n";
+ StringMatcher("Name", CXX11, OS).Emit();
+ OS << " } else if (AttributeList::AS_Keyword == Syntax || ";
+ OS << "AttributeList::AS_ContextSensitiveKeyword == Syntax) {\n";
+ StringMatcher("Name", Keywords, OS).Emit();
+ OS << " } else if (AttributeList::AS_Pragma == Syntax) {\n";
+ StringMatcher("Name", Pragma, OS).Emit();
+ OS << " }\n";
+ OS << " return AttributeList::UnknownAttribute;\n"
+ << "}\n";
+}
+
+// Emits the code to dump an attribute.
+void EmitClangAttrDump(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute dumper", OS);
+
+ OS <<
+ " switch (A->getKind()) {\n"
+ " default:\n"
+ " llvm_unreachable(\"Unknown attribute kind!\");\n"
+ " break;\n";
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+ OS << " case attr::" << R.getName() << ": {\n";
+
+ // If the attribute has a semantically-meaningful name (which is determined
+ // by whether there is a Spelling enumeration for it), then write out the
+ // spelling used for the attribute.
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
+ if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
+ OS << " OS << \" \" << A->getSpelling();\n";
+
+ Args = R.getValueAsListOfDefs("Args");
+ if (!Args.empty()) {
+ OS << " const auto *SA = cast<" << R.getName()
+ << "Attr>(A);\n";
+ for (const auto *Arg : Args)
+ createArgument(*Arg, R.getName())->writeDump(OS);
+
+ for (const auto *AI : Args)
+ createArgument(*AI, R.getName())->writeDumpChildren(OS);
+ }
+ OS <<
+ " break;\n"
+ " }\n";
+ }
+ OS << " }\n";
+}
+
+void EmitClangAttrParserStringSwitches(RecordKeeper &Records,
+ raw_ostream &OS) {
+ emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS);
+ emitClangAttrArgContextList(Records, OS);
+ emitClangAttrIdentifierArgList(Records, OS);
+ emitClangAttrTypeArgList(Records, OS);
+ emitClangAttrLateParsedList(Records, OS);
+}
+
+class DocumentationData {
+public:
+ const Record *Documentation;
+ const Record *Attribute;
+
+ DocumentationData(const Record &Documentation, const Record &Attribute)
+ : Documentation(&Documentation), Attribute(&Attribute) {}
+};
+
+static void WriteCategoryHeader(const Record *DocCategory,
+ raw_ostream &OS) {
+ const std::string &Name = DocCategory->getValueAsString("Name");
+ OS << Name << "\n" << std::string(Name.length(), '=') << "\n";
+
+ // If there is content, print that as well.
+ std::string ContentStr = DocCategory->getValueAsString("Content");
+ // Trim leading and trailing newlines and spaces.
+ OS << StringRef(ContentStr).trim();
+
+ OS << "\n\n";
+}
+
+enum SpellingKind {
+ GNU = 1 << 0,
+ CXX11 = 1 << 1,
+ Declspec = 1 << 2,
+ Keyword = 1 << 3,
+ Pragma = 1 << 4
+};
+
+static void WriteDocumentation(const DocumentationData &Doc,
+ raw_ostream &OS) {
+ // FIXME: there is no way to have a per-spelling category for the attribute
+ // documentation. This may not be a limiting factor since the spellings
+ // should generally be consistently applied across the category.
+
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Doc.Attribute);
+
+ // Determine the heading to be used for this attribute.
+ std::string Heading = Doc.Documentation->getValueAsString("Heading");
+ bool CustomHeading = !Heading.empty();
+ if (Heading.empty()) {
+ // If there's only one spelling, we can simply use that.
+ if (Spellings.size() == 1)
+ Heading = Spellings.begin()->name();
+ else {
+ std::set<std::string> Uniques;
+ for (auto I = Spellings.begin(), E = Spellings.end();
+ I != E && Uniques.size() <= 1; ++I) {
+ std::string Spelling = NormalizeNameForSpellingComparison(I->name());
+ Uniques.insert(Spelling);
+ }
+ // If the semantic map has only one spelling, that is sufficient for our
+ // needs.
+ if (Uniques.size() == 1)
+ Heading = *Uniques.begin();
+ }
+ }
+
+ // If the heading is still empty, it is an error.
+ if (Heading.empty())
+ PrintFatalError(Doc.Attribute->getLoc(),
+ "This attribute requires a heading to be specified");
+
+ // Gather a list of unique spellings; this is not the same as the semantic
+ // spelling for the attribute. Variations in underscores and other non-
+ // semantic characters are still acceptable.
+ std::vector<std::string> Names;
+
+ unsigned SupportedSpellings = 0;
+ for (const auto &I : Spellings) {
+ SpellingKind Kind = StringSwitch<SpellingKind>(I.variety())
+ .Case("GNU", GNU)
+ .Case("CXX11", CXX11)
+ .Case("Declspec", Declspec)
+ .Case("Keyword", Keyword)
+ .Case("Pragma", Pragma);
+
+ // Mask in the supported spelling.
+ SupportedSpellings |= Kind;
+
+ std::string Name;
+ if (Kind == CXX11 && !I.nameSpace().empty())
+ Name = I.nameSpace() + "::";
+ Name += I.name();
+
+ // If this name is the same as the heading, do not add it.
+ if (Name != Heading)
+ Names.push_back(Name);
+ }
+
+ // Print out the heading for the attribute. If there are alternate spellings,
+ // then display those after the heading.
+ if (!CustomHeading && !Names.empty()) {
+ Heading += " (";
+ for (auto I = Names.begin(), E = Names.end(); I != E; ++I) {
+ if (I != Names.begin())
+ Heading += ", ";
+ Heading += *I;
+ }
+ Heading += ")";
+ }
+ OS << Heading << "\n" << std::string(Heading.length(), '-') << "\n";
+
+ if (!SupportedSpellings)
+ PrintFatalError(Doc.Attribute->getLoc(),
+ "Attribute has no supported spellings; cannot be "
+ "documented");
+
+ // List what spelling syntaxes the attribute supports.
+ OS << ".. csv-table:: Supported Syntaxes\n";
+ OS << " :header: \"GNU\", \"C++11\", \"__declspec\", \"Keyword\",";
+ OS << " \"Pragma\"\n\n";
+ OS << " \"";
+ if (SupportedSpellings & GNU) OS << "X";
+ OS << "\",\"";
+ if (SupportedSpellings & CXX11) OS << "X";
+ OS << "\",\"";
+ if (SupportedSpellings & Declspec) OS << "X";
+ OS << "\",\"";
+ if (SupportedSpellings & Keyword) OS << "X";
+ OS << "\", \"";
+ if (SupportedSpellings & Pragma) OS << "X";
+ OS << "\"\n\n";
+
+ // If the attribute is deprecated, print a message about it, and possibly
+ // provide a replacement attribute.
+ if (!Doc.Documentation->isValueUnset("Deprecated")) {
+ OS << "This attribute has been deprecated, and may be removed in a future "
+ << "version of Clang.";
+ const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
+ std::string Replacement = Deprecated.getValueAsString("Replacement");
+ if (!Replacement.empty())
+ OS << " This attribute has been superseded by ``"
+ << Replacement << "``.";
+ OS << "\n\n";
+ }
+
+ std::string ContentStr = Doc.Documentation->getValueAsString("Content");
+ // Trim leading and trailing newlines and spaces.
+ OS << StringRef(ContentStr).trim();
+
+ OS << "\n\n\n";
+}
+
+void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) {
+ // Get the documentation introduction paragraph.
+ const Record *Documentation = Records.getDef("GlobalDocumentation");
+ if (!Documentation) {
+ PrintFatalError("The Documentation top-level definition is missing, "
+ "no documentation will be generated.");
+ return;
+ }
+
+ OS << Documentation->getValueAsString("Intro") << "\n";
+
+ // Gather the Documentation lists from each of the attributes, based on the
+ // category provided.
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+ std::map<const Record *, std::vector<DocumentationData>> SplitDocs;
+ for (const auto *A : Attrs) {
+ const Record &Attr = *A;
+ std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation");
+ for (const auto *D : Docs) {
+ const Record &Doc = *D;
+ const Record *Category = Doc.getValueAsDef("Category");
+ // If the category is "undocumented", then there cannot be any other
+ // documentation categories (otherwise, the attribute would become
+ // documented).
+ std::string Cat = Category->getValueAsString("Name");
+ bool Undocumented = Cat == "Undocumented";
+ if (Undocumented && Docs.size() > 1)
+ PrintFatalError(Doc.getLoc(),
+ "Attribute is \"Undocumented\", but has multiple "
+ "documentation categories");
+
+ if (!Undocumented)
+ SplitDocs[Category].push_back(DocumentationData(Doc, Attr));
+ }
+ }
+
+ // Having split the attributes out based on what documentation goes where,
+ // we can begin to generate sections of documentation.
+ for (const auto &I : SplitDocs) {
+ WriteCategoryHeader(I.first, OS);
+
+ // Walk over each of the attributes in the category and write out their
+ // documentation.
+ for (const auto &Doc : I.second)
+ WriteDocumentation(Doc, OS);
+ }
+}
+
+} // end namespace clang
OpenPOWER on IntegriCloud