summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp1981
1 files changed, 1981 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp
new file mode 100644
index 0000000..9eb7edf
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp
@@ -0,0 +1,1981 @@
+//= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines CStringChecker, which is an assortment of checks on calls
+// to functions in <string.h>.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "InterCheckerAPI.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class CStringChecker : public Checker< eval::Call,
+ check::PreStmt<DeclStmt>,
+ check::LiveSymbols,
+ check::DeadSymbols,
+ check::RegionChanges
+ > {
+ mutable OwningPtr<BugType> BT_Null,
+ BT_Bounds,
+ BT_Overlap,
+ BT_NotCString,
+ BT_AdditionOverflow;
+
+ mutable const char *CurrentFunctionDescription;
+
+public:
+ /// The filter is used to filter out the diagnostics which are not enabled by
+ /// the user.
+ struct CStringChecksFilter {
+ DefaultBool CheckCStringNullArg;
+ DefaultBool CheckCStringOutOfBounds;
+ DefaultBool CheckCStringBufferOverlap;
+ DefaultBool CheckCStringNotNullTerm;
+ };
+
+ CStringChecksFilter Filter;
+
+ static void *getTag() { static int tag; return &tag; }
+
+ bool evalCall(const CallExpr *CE, CheckerContext &C) const;
+ void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
+ void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
+ void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
+ bool wantsRegionChangeUpdate(ProgramStateRef state) const;
+
+ ProgramStateRef
+ checkRegionChanges(ProgramStateRef state,
+ const StoreManager::InvalidatedSymbols *,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const CallOrObjCMessage *Call) const;
+
+ typedef void (CStringChecker::*FnCheck)(CheckerContext &,
+ const CallExpr *) const;
+
+ void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
+ void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
+ void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
+ void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
+ void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
+ ProgramStateRef state,
+ const Expr *Size,
+ const Expr *Source,
+ const Expr *Dest,
+ bool Restricted = false,
+ bool IsMempcpy = false) const;
+
+ void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
+
+ void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
+ void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
+ void evalstrLengthCommon(CheckerContext &C,
+ const CallExpr *CE,
+ bool IsStrnlen = false) const;
+
+ void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
+ void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrcpyCommon(CheckerContext &C,
+ const CallExpr *CE,
+ bool returnEnd,
+ bool isBounded,
+ bool isAppending) const;
+
+ void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
+
+ void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrcmpCommon(CheckerContext &C,
+ const CallExpr *CE,
+ bool isBounded = false,
+ bool ignoreCase = false) const;
+
+ // Utility methods
+ std::pair<ProgramStateRef , ProgramStateRef >
+ static assumeZero(CheckerContext &C,
+ ProgramStateRef state, SVal V, QualType Ty);
+
+ static ProgramStateRef setCStringLength(ProgramStateRef state,
+ const MemRegion *MR,
+ SVal strLength);
+ static SVal getCStringLengthForRegion(CheckerContext &C,
+ ProgramStateRef &state,
+ const Expr *Ex,
+ const MemRegion *MR,
+ bool hypothetical);
+ SVal getCStringLength(CheckerContext &C,
+ ProgramStateRef &state,
+ const Expr *Ex,
+ SVal Buf,
+ bool hypothetical = false) const;
+
+ const StringLiteral *getCStringLiteral(CheckerContext &C,
+ ProgramStateRef &state,
+ const Expr *expr,
+ SVal val) const;
+
+ static ProgramStateRef InvalidateBuffer(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *Ex, SVal V);
+
+ static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
+ const MemRegion *MR);
+
+ // Re-usable checks
+ ProgramStateRef checkNonNull(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *S,
+ SVal l) const;
+ ProgramStateRef CheckLocation(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *S,
+ SVal l,
+ const char *message = NULL) const;
+ ProgramStateRef CheckBufferAccess(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *Size,
+ const Expr *FirstBuf,
+ const Expr *SecondBuf,
+ const char *firstMessage = NULL,
+ const char *secondMessage = NULL,
+ bool WarnAboutSize = false) const;
+
+ ProgramStateRef CheckBufferAccess(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *Size,
+ const Expr *Buf,
+ const char *message = NULL,
+ bool WarnAboutSize = false) const {
+ // This is a convenience override.
+ return CheckBufferAccess(C, state, Size, Buf, NULL, message, NULL,
+ WarnAboutSize);
+ }
+ ProgramStateRef CheckOverlap(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *Size,
+ const Expr *First,
+ const Expr *Second) const;
+ void emitOverlapBug(CheckerContext &C,
+ ProgramStateRef state,
+ const Stmt *First,
+ const Stmt *Second) const;
+
+ ProgramStateRef checkAdditionOverflow(CheckerContext &C,
+ ProgramStateRef state,
+ NonLoc left,
+ NonLoc right) const;
+};
+
+class CStringLength {
+public:
+ typedef llvm::ImmutableMap<const MemRegion *, SVal> EntryMap;
+};
+} //end anonymous namespace
+
+namespace clang {
+namespace ento {
+ template <>
+ struct ProgramStateTrait<CStringLength>
+ : public ProgramStatePartialTrait<CStringLength::EntryMap> {
+ static void *GDMIndex() { return CStringChecker::getTag(); }
+ };
+}
+}
+
+//===----------------------------------------------------------------------===//
+// Individual checks and utility methods.
+//===----------------------------------------------------------------------===//
+
+std::pair<ProgramStateRef , ProgramStateRef >
+CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
+ QualType Ty) {
+ DefinedSVal *val = dyn_cast<DefinedSVal>(&V);
+ if (!val)
+ return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
+ return state->assume(svalBuilder.evalEQ(state, *val, zero));
+}
+
+ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *S, SVal l) const {
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return NULL;
+
+ ProgramStateRef stateNull, stateNonNull;
+ llvm::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
+
+ if (stateNull && !stateNonNull) {
+ if (!Filter.CheckCStringNullArg)
+ return NULL;
+
+ ExplodedNode *N = C.generateSink(stateNull);
+ if (!N)
+ return NULL;
+
+ if (!BT_Null)
+ BT_Null.reset(new BuiltinBug("Unix API",
+ "Null pointer argument in call to byte string function"));
+
+ SmallString<80> buf;
+ llvm::raw_svector_ostream os(buf);
+ assert(CurrentFunctionDescription);
+ os << "Null pointer argument in call to " << CurrentFunctionDescription;
+
+ // Generate a report for this bug.
+ BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get());
+ BugReport *report = new BugReport(*BT, os.str(), N);
+
+ report->addRange(S->getSourceRange());
+ report->addVisitor(bugreporter::getTrackNullOrUndefValueVisitor(N, S,
+ report));
+ C.EmitReport(report);
+ return NULL;
+ }
+
+ // From here on, assume that the value is non-null.
+ assert(stateNonNull);
+ return stateNonNull;
+}
+
+// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
+ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *S, SVal l,
+ const char *warningMsg) const {
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return NULL;
+
+ // Check for out of bound array element access.
+ const MemRegion *R = l.getAsRegion();
+ if (!R)
+ return state;
+
+ const ElementRegion *ER = dyn_cast<ElementRegion>(R);
+ if (!ER)
+ return state;
+
+ assert(ER->getValueType() == C.getASTContext().CharTy &&
+ "CheckLocation should only be called with char* ElementRegions");
+
+ // Get the size of the array.
+ const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ SVal Extent =
+ svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
+ DefinedOrUnknownSVal Size = cast<DefinedOrUnknownSVal>(Extent);
+
+ // Get the index of the accessed element.
+ DefinedOrUnknownSVal Idx = cast<DefinedOrUnknownSVal>(ER->getIndex());
+
+ ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
+ ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
+ if (StOutBound && !StInBound) {
+ ExplodedNode *N = C.generateSink(StOutBound);
+ if (!N)
+ return NULL;
+
+ if (!BT_Bounds) {
+ BT_Bounds.reset(new BuiltinBug("Out-of-bound array access",
+ "Byte string function accesses out-of-bound array element"));
+ }
+ BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get());
+
+ // Generate a report for this bug.
+ BugReport *report;
+ if (warningMsg) {
+ report = new BugReport(*BT, warningMsg, N);
+ } else {
+ assert(CurrentFunctionDescription);
+ assert(CurrentFunctionDescription[0] != '\0');
+
+ SmallString<80> buf;
+ llvm::raw_svector_ostream os(buf);
+ os << (char)toupper(CurrentFunctionDescription[0])
+ << &CurrentFunctionDescription[1]
+ << " accesses out-of-bound array element";
+ report = new BugReport(*BT, os.str(), N);
+ }
+
+ // FIXME: It would be nice to eventually make this diagnostic more clear,
+ // e.g., by referencing the original declaration or by saying *why* this
+ // reference is outside the range.
+
+ report->addRange(S->getSourceRange());
+ C.EmitReport(report);
+ return NULL;
+ }
+
+ // Array bound check succeeded. From this point forward the array bound
+ // should always succeed.
+ return StInBound;
+}
+
+ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *Size,
+ const Expr *FirstBuf,
+ const Expr *SecondBuf,
+ const char *firstMessage,
+ const char *secondMessage,
+ bool WarnAboutSize) const {
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return NULL;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ ASTContext &Ctx = svalBuilder.getContext();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ QualType sizeTy = Size->getType();
+ QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
+
+ // Check that the first buffer is non-null.
+ SVal BufVal = state->getSVal(FirstBuf, LCtx);
+ state = checkNonNull(C, state, FirstBuf, BufVal);
+ if (!state)
+ return NULL;
+
+ // If out-of-bounds checking is turned off, skip the rest.
+ if (!Filter.CheckCStringOutOfBounds)
+ return state;
+
+ // Get the access length and make sure it is known.
+ // FIXME: This assumes the caller has already checked that the access length
+ // is positive. And that it's unsigned.
+ SVal LengthVal = state->getSVal(Size, LCtx);
+ NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
+ if (!Length)
+ return state;
+
+ // Compute the offset of the last element to be accessed: size-1.
+ NonLoc One = cast<NonLoc>(svalBuilder.makeIntVal(1, sizeTy));
+ NonLoc LastOffset = cast<NonLoc>(svalBuilder.evalBinOpNN(state, BO_Sub,
+ *Length, One, sizeTy));
+
+ // Check that the first buffer is sufficiently long.
+ SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
+ if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) {
+ const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
+
+ SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
+ LastOffset, PtrTy);
+ state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
+
+ // If the buffer isn't large enough, abort.
+ if (!state)
+ return NULL;
+ }
+
+ // If there's a second buffer, check it as well.
+ if (SecondBuf) {
+ BufVal = state->getSVal(SecondBuf, LCtx);
+ state = checkNonNull(C, state, SecondBuf, BufVal);
+ if (!state)
+ return NULL;
+
+ BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
+ if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) {
+ const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
+
+ SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
+ LastOffset, PtrTy);
+ state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
+ }
+ }
+
+ // Large enough or not, return this state!
+ return state;
+}
+
+ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *Size,
+ const Expr *First,
+ const Expr *Second) const {
+ if (!Filter.CheckCStringBufferOverlap)
+ return state;
+
+ // Do a simple check for overlap: if the two arguments are from the same
+ // buffer, see if the end of the first is greater than the start of the second
+ // or vice versa.
+
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return NULL;
+
+ ProgramStateRef stateTrue, stateFalse;
+
+ // Get the buffer values and make sure they're known locations.
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal firstVal = state->getSVal(First, LCtx);
+ SVal secondVal = state->getSVal(Second, LCtx);
+
+ Loc *firstLoc = dyn_cast<Loc>(&firstVal);
+ if (!firstLoc)
+ return state;
+
+ Loc *secondLoc = dyn_cast<Loc>(&secondVal);
+ if (!secondLoc)
+ return state;
+
+ // Are the two values the same?
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ llvm::tie(stateTrue, stateFalse) =
+ state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
+
+ if (stateTrue && !stateFalse) {
+ // If the values are known to be equal, that's automatically an overlap.
+ emitOverlapBug(C, stateTrue, First, Second);
+ return NULL;
+ }
+
+ // assume the two expressions are not equal.
+ assert(stateFalse);
+ state = stateFalse;
+
+ // Which value comes first?
+ QualType cmpTy = svalBuilder.getConditionType();
+ SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
+ *firstLoc, *secondLoc, cmpTy);
+ DefinedOrUnknownSVal *reverseTest = dyn_cast<DefinedOrUnknownSVal>(&reverse);
+ if (!reverseTest)
+ return state;
+
+ llvm::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
+ if (stateTrue) {
+ if (stateFalse) {
+ // If we don't know which one comes first, we can't perform this test.
+ return state;
+ } else {
+ // Switch the values so that firstVal is before secondVal.
+ Loc *tmpLoc = firstLoc;
+ firstLoc = secondLoc;
+ secondLoc = tmpLoc;
+
+ // Switch the Exprs as well, so that they still correspond.
+ const Expr *tmpExpr = First;
+ First = Second;
+ Second = tmpExpr;
+ }
+ }
+
+ // Get the length, and make sure it too is known.
+ SVal LengthVal = state->getSVal(Size, LCtx);
+ NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
+ if (!Length)
+ return state;
+
+ // Convert the first buffer's start address to char*.
+ // Bail out if the cast fails.
+ ASTContext &Ctx = svalBuilder.getContext();
+ QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
+ SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
+ First->getType());
+ Loc *FirstStartLoc = dyn_cast<Loc>(&FirstStart);
+ if (!FirstStartLoc)
+ return state;
+
+ // Compute the end of the first buffer. Bail out if THAT fails.
+ SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
+ *FirstStartLoc, *Length, CharPtrTy);
+ Loc *FirstEndLoc = dyn_cast<Loc>(&FirstEnd);
+ if (!FirstEndLoc)
+ return state;
+
+ // Is the end of the first buffer past the start of the second buffer?
+ SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
+ *FirstEndLoc, *secondLoc, cmpTy);
+ DefinedOrUnknownSVal *OverlapTest = dyn_cast<DefinedOrUnknownSVal>(&Overlap);
+ if (!OverlapTest)
+ return state;
+
+ llvm::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
+
+ if (stateTrue && !stateFalse) {
+ // Overlap!
+ emitOverlapBug(C, stateTrue, First, Second);
+ return NULL;
+ }
+
+ // assume the two expressions don't overlap.
+ assert(stateFalse);
+ return stateFalse;
+}
+
+void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
+ const Stmt *First, const Stmt *Second) const {
+ ExplodedNode *N = C.generateSink(state);
+ if (!N)
+ return;
+
+ if (!BT_Overlap)
+ BT_Overlap.reset(new BugType("Unix API", "Improper arguments"));
+
+ // Generate a report for this bug.
+ BugReport *report =
+ new BugReport(*BT_Overlap,
+ "Arguments must not be overlapping buffers", N);
+ report->addRange(First->getSourceRange());
+ report->addRange(Second->getSourceRange());
+
+ C.EmitReport(report);
+}
+
+ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
+ ProgramStateRef state,
+ NonLoc left,
+ NonLoc right) const {
+ // If out-of-bounds checking is turned off, skip the rest.
+ if (!Filter.CheckCStringOutOfBounds)
+ return state;
+
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return NULL;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
+
+ QualType sizeTy = svalBuilder.getContext().getSizeType();
+ const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
+ NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
+
+ SVal maxMinusRight;
+ if (isa<nonloc::ConcreteInt>(right)) {
+ maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
+ sizeTy);
+ } else {
+ // Try switching the operands. (The order of these two assignments is
+ // important!)
+ maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
+ sizeTy);
+ left = right;
+ }
+
+ if (NonLoc *maxMinusRightNL = dyn_cast<NonLoc>(&maxMinusRight)) {
+ QualType cmpTy = svalBuilder.getConditionType();
+ // If left > max - right, we have an overflow.
+ SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
+ *maxMinusRightNL, cmpTy);
+
+ ProgramStateRef stateOverflow, stateOkay;
+ llvm::tie(stateOverflow, stateOkay) =
+ state->assume(cast<DefinedOrUnknownSVal>(willOverflow));
+
+ if (stateOverflow && !stateOkay) {
+ // We have an overflow. Emit a bug report.
+ ExplodedNode *N = C.generateSink(stateOverflow);
+ if (!N)
+ return NULL;
+
+ if (!BT_AdditionOverflow)
+ BT_AdditionOverflow.reset(new BuiltinBug("API",
+ "Sum of expressions causes overflow"));
+
+ // This isn't a great error message, but this should never occur in real
+ // code anyway -- you'd have to create a buffer longer than a size_t can
+ // represent, which is sort of a contradiction.
+ const char *warning =
+ "This expression will create a string whose length is too big to "
+ "be represented as a size_t";
+
+ // Generate a report for this bug.
+ BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N);
+ C.EmitReport(report);
+
+ return NULL;
+ }
+
+ // From now on, assume an overflow didn't occur.
+ assert(stateOkay);
+ state = stateOkay;
+ }
+
+ return state;
+}
+
+ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
+ const MemRegion *MR,
+ SVal strLength) {
+ assert(!strLength.isUndef() && "Attempt to set an undefined string length");
+
+ MR = MR->StripCasts();
+
+ switch (MR->getKind()) {
+ case MemRegion::StringRegionKind:
+ // FIXME: This can happen if we strcpy() into a string region. This is
+ // undefined [C99 6.4.5p6], but we should still warn about it.
+ return state;
+
+ case MemRegion::SymbolicRegionKind:
+ case MemRegion::AllocaRegionKind:
+ case MemRegion::VarRegionKind:
+ case MemRegion::FieldRegionKind:
+ case MemRegion::ObjCIvarRegionKind:
+ // These are the types we can currently track string lengths for.
+ break;
+
+ case MemRegion::ElementRegionKind:
+ // FIXME: Handle element regions by upper-bounding the parent region's
+ // string length.
+ return state;
+
+ default:
+ // Other regions (mostly non-data) can't have a reliable C string length.
+ // For now, just ignore the change.
+ // FIXME: These are rare but not impossible. We should output some kind of
+ // warning for things like strcpy((char[]){'a', 0}, "b");
+ return state;
+ }
+
+ if (strLength.isUnknown())
+ return state->remove<CStringLength>(MR);
+
+ return state->set<CStringLength>(MR, strLength);
+}
+
+SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
+ ProgramStateRef &state,
+ const Expr *Ex,
+ const MemRegion *MR,
+ bool hypothetical) {
+ if (!hypothetical) {
+ // If there's a recorded length, go ahead and return it.
+ const SVal *Recorded = state->get<CStringLength>(MR);
+ if (Recorded)
+ return *Recorded;
+ }
+
+ // Otherwise, get a new symbol and update the state.
+ unsigned Count = C.getCurrentBlockCount();
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ QualType sizeTy = svalBuilder.getContext().getSizeType();
+ SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
+ MR, Ex, sizeTy, Count);
+
+ if (!hypothetical)
+ state = state->set<CStringLength>(MR, strLength);
+
+ return strLength;
+}
+
+SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
+ const Expr *Ex, SVal Buf,
+ bool hypothetical) const {
+ const MemRegion *MR = Buf.getAsRegion();
+ if (!MR) {
+ // If we can't get a region, see if it's something we /know/ isn't a
+ // C string. In the context of locations, the only time we can issue such
+ // a warning is for labels.
+ if (loc::GotoLabel *Label = dyn_cast<loc::GotoLabel>(&Buf)) {
+ if (!Filter.CheckCStringNotNullTerm)
+ return UndefinedVal();
+
+ if (ExplodedNode *N = C.addTransition(state)) {
+ if (!BT_NotCString)
+ BT_NotCString.reset(new BuiltinBug("Unix API",
+ "Argument is not a null-terminated string."));
+
+ SmallString<120> buf;
+ llvm::raw_svector_ostream os(buf);
+ assert(CurrentFunctionDescription);
+ os << "Argument to " << CurrentFunctionDescription
+ << " is the address of the label '" << Label->getLabel()->getName()
+ << "', which is not a null-terminated string";
+
+ // Generate a report for this bug.
+ BugReport *report = new BugReport(*BT_NotCString,
+ os.str(), N);
+
+ report->addRange(Ex->getSourceRange());
+ C.EmitReport(report);
+ }
+ return UndefinedVal();
+
+ }
+
+ // If it's not a region and not a label, give up.
+ return UnknownVal();
+ }
+
+ // If we have a region, strip casts from it and see if we can figure out
+ // its length. For anything we can't figure out, just return UnknownVal.
+ MR = MR->StripCasts();
+
+ switch (MR->getKind()) {
+ case MemRegion::StringRegionKind: {
+ // Modifying the contents of string regions is undefined [C99 6.4.5p6],
+ // so we can assume that the byte length is the correct C string length.
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ QualType sizeTy = svalBuilder.getContext().getSizeType();
+ const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
+ return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
+ }
+ case MemRegion::SymbolicRegionKind:
+ case MemRegion::AllocaRegionKind:
+ case MemRegion::VarRegionKind:
+ case MemRegion::FieldRegionKind:
+ case MemRegion::ObjCIvarRegionKind:
+ return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
+ case MemRegion::CompoundLiteralRegionKind:
+ // FIXME: Can we track this? Is it necessary?
+ return UnknownVal();
+ case MemRegion::ElementRegionKind:
+ // FIXME: How can we handle this? It's not good enough to subtract the
+ // offset from the base string length; consider "123\x00567" and &a[5].
+ return UnknownVal();
+ default:
+ // Other regions (mostly non-data) can't have a reliable C string length.
+ // In this case, an error is emitted and UndefinedVal is returned.
+ // The caller should always be prepared to handle this case.
+ if (!Filter.CheckCStringNotNullTerm)
+ return UndefinedVal();
+
+ if (ExplodedNode *N = C.addTransition(state)) {
+ if (!BT_NotCString)
+ BT_NotCString.reset(new BuiltinBug("Unix API",
+ "Argument is not a null-terminated string."));
+
+ SmallString<120> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ assert(CurrentFunctionDescription);
+ os << "Argument to " << CurrentFunctionDescription << " is ";
+
+ if (SummarizeRegion(os, C.getASTContext(), MR))
+ os << ", which is not a null-terminated string";
+ else
+ os << "not a null-terminated string";
+
+ // Generate a report for this bug.
+ BugReport *report = new BugReport(*BT_NotCString,
+ os.str(), N);
+
+ report->addRange(Ex->getSourceRange());
+ C.EmitReport(report);
+ }
+
+ return UndefinedVal();
+ }
+}
+
+const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
+ ProgramStateRef &state, const Expr *expr, SVal val) const {
+
+ // Get the memory region pointed to by the val.
+ const MemRegion *bufRegion = val.getAsRegion();
+ if (!bufRegion)
+ return NULL;
+
+ // Strip casts off the memory region.
+ bufRegion = bufRegion->StripCasts();
+
+ // Cast the memory region to a string region.
+ const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
+ if (!strRegion)
+ return NULL;
+
+ // Return the actual string in the string region.
+ return strRegion->getStringLiteral();
+}
+
+ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *E, SVal V) {
+ Loc *L = dyn_cast<Loc>(&V);
+ if (!L)
+ return state;
+
+ // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
+ // some assumptions about the value that CFRefCount can't. Even so, it should
+ // probably be refactored.
+ if (loc::MemRegionVal* MR = dyn_cast<loc::MemRegionVal>(L)) {
+ const MemRegion *R = MR->getRegion()->StripCasts();
+
+ // Are we dealing with an ElementRegion? If so, we should be invalidating
+ // the super-region.
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ R = ER->getSuperRegion();
+ // FIXME: What about layers of ElementRegions?
+ }
+
+ // Invalidate this region.
+ unsigned Count = C.getCurrentBlockCount();
+ const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
+ return state->invalidateRegions(R, E, Count, LCtx);
+ }
+
+ // If we have a non-region value by chance, just remove the binding.
+ // FIXME: is this necessary or correct? This handles the non-Region
+ // cases. Is it ever valid to store to these?
+ return state->unbindLoc(*L);
+}
+
+bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
+ const MemRegion *MR) {
+ const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
+
+ switch (MR->getKind()) {
+ case MemRegion::FunctionTextRegionKind: {
+ const FunctionDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
+ if (FD)
+ os << "the address of the function '" << *FD << '\'';
+ else
+ os << "the address of a function";
+ return true;
+ }
+ case MemRegion::BlockTextRegionKind:
+ os << "block text";
+ return true;
+ case MemRegion::BlockDataRegionKind:
+ os << "a block";
+ return true;
+ case MemRegion::CXXThisRegionKind:
+ case MemRegion::CXXTempObjectRegionKind:
+ os << "a C++ temp object of type " << TVR->getValueType().getAsString();
+ return true;
+ case MemRegion::VarRegionKind:
+ os << "a variable of type" << TVR->getValueType().getAsString();
+ return true;
+ case MemRegion::FieldRegionKind:
+ os << "a field of type " << TVR->getValueType().getAsString();
+ return true;
+ case MemRegion::ObjCIvarRegionKind:
+ os << "an instance variable of type " << TVR->getValueType().getAsString();
+ return true;
+ default:
+ return false;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// evaluation of individual function calls.
+//===----------------------------------------------------------------------===//
+
+void CStringChecker::evalCopyCommon(CheckerContext &C,
+ const CallExpr *CE,
+ ProgramStateRef state,
+ const Expr *Size, const Expr *Dest,
+ const Expr *Source, bool Restricted,
+ bool IsMempcpy) const {
+ CurrentFunctionDescription = "memory copy function";
+
+ // See if the size argument is zero.
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal sizeVal = state->getSVal(Size, LCtx);
+ QualType sizeTy = Size->getType();
+
+ ProgramStateRef stateZeroSize, stateNonZeroSize;
+ llvm::tie(stateZeroSize, stateNonZeroSize) =
+ assumeZero(C, state, sizeVal, sizeTy);
+
+ // Get the value of the Dest.
+ SVal destVal = state->getSVal(Dest, LCtx);
+
+ // If the size is zero, there won't be any actual memory access, so
+ // just bind the return value to the destination buffer and return.
+ if (stateZeroSize) {
+ stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
+ C.addTransition(stateZeroSize);
+ }
+
+ // If the size can be nonzero, we have to check the other arguments.
+ if (stateNonZeroSize) {
+ state = stateNonZeroSize;
+
+ // Ensure the destination is not null. If it is NULL there will be a
+ // NULL pointer dereference.
+ state = checkNonNull(C, state, Dest, destVal);
+ if (!state)
+ return;
+
+ // Get the value of the Src.
+ SVal srcVal = state->getSVal(Source, LCtx);
+
+ // Ensure the source is not null. If it is NULL there will be a
+ // NULL pointer dereference.
+ state = checkNonNull(C, state, Source, srcVal);
+ if (!state)
+ return;
+
+ // Ensure the accesses are valid and that the buffers do not overlap.
+ const char * const writeWarning =
+ "Memory copy function overflows destination buffer";
+ state = CheckBufferAccess(C, state, Size, Dest, Source,
+ writeWarning, /* sourceWarning = */ NULL);
+ if (Restricted)
+ state = CheckOverlap(C, state, Size, Dest, Source);
+
+ if (!state)
+ return;
+
+ // If this is mempcpy, get the byte after the last byte copied and
+ // bind the expr.
+ if (IsMempcpy) {
+ loc::MemRegionVal *destRegVal = dyn_cast<loc::MemRegionVal>(&destVal);
+ assert(destRegVal && "Destination should be a known MemRegionVal here");
+
+ // Get the length to copy.
+ NonLoc *lenValNonLoc = dyn_cast<NonLoc>(&sizeVal);
+
+ if (lenValNonLoc) {
+ // Get the byte after the last byte copied.
+ SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add,
+ *destRegVal,
+ *lenValNonLoc,
+ Dest->getType());
+
+ // The byte after the last byte copied is the return value.
+ state = state->BindExpr(CE, LCtx, lastElement);
+ } else {
+ // If we don't know how much we copied, we can at least
+ // conjure a return value for later.
+ unsigned Count = C.getCurrentBlockCount();
+ SVal result =
+ C.getSValBuilder().getConjuredSymbolVal(NULL, CE, LCtx, Count);
+ state = state->BindExpr(CE, LCtx, result);
+ }
+
+ } else {
+ // All other copies return the destination buffer.
+ // (Well, bcopy() has a void return type, but this won't hurt.)
+ state = state->BindExpr(CE, LCtx, destVal);
+ }
+
+ // Invalidate the destination.
+ // FIXME: Even if we can't perfectly model the copy, we should see if we
+ // can use LazyCompoundVals to copy the source values into the destination.
+ // This would probably remove any existing bindings past the end of the
+ // copied region, but that's still an improvement over blank invalidation.
+ state = InvalidateBuffer(C, state, Dest,
+ state->getSVal(Dest, C.getLocationContext()));
+ C.addTransition(state);
+ }
+}
+
+
+void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
+ // The return value is the address of the destination buffer.
+ const Expr *Dest = CE->getArg(0);
+ ProgramStateRef state = C.getState();
+
+ evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
+}
+
+void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
+ // The return value is a pointer to the byte following the last written byte.
+ const Expr *Dest = CE->getArg(0);
+ ProgramStateRef state = C.getState();
+
+ evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
+}
+
+void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ // void *memmove(void *dst, const void *src, size_t n);
+ // The return value is the address of the destination buffer.
+ const Expr *Dest = CE->getArg(0);
+ ProgramStateRef state = C.getState();
+
+ evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
+}
+
+void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ // void bcopy(const void *src, void *dst, size_t n);
+ evalCopyCommon(C, CE, C.getState(),
+ CE->getArg(2), CE->getArg(1), CE->getArg(0));
+}
+
+void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ // int memcmp(const void *s1, const void *s2, size_t n);
+ CurrentFunctionDescription = "memory comparison function";
+
+ const Expr *Left = CE->getArg(0);
+ const Expr *Right = CE->getArg(1);
+ const Expr *Size = CE->getArg(2);
+
+ ProgramStateRef state = C.getState();
+ SValBuilder &svalBuilder = C.getSValBuilder();
+
+ // See if the size argument is zero.
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal sizeVal = state->getSVal(Size, LCtx);
+ QualType sizeTy = Size->getType();
+
+ ProgramStateRef stateZeroSize, stateNonZeroSize;
+ llvm::tie(stateZeroSize, stateNonZeroSize) =
+ assumeZero(C, state, sizeVal, sizeTy);
+
+ // If the size can be zero, the result will be 0 in that case, and we don't
+ // have to check either of the buffers.
+ if (stateZeroSize) {
+ state = stateZeroSize;
+ state = state->BindExpr(CE, LCtx,
+ svalBuilder.makeZeroVal(CE->getType()));
+ C.addTransition(state);
+ }
+
+ // If the size can be nonzero, we have to check the other arguments.
+ if (stateNonZeroSize) {
+ state = stateNonZeroSize;
+ // If we know the two buffers are the same, we know the result is 0.
+ // First, get the two buffers' addresses. Another checker will have already
+ // made sure they're not undefined.
+ DefinedOrUnknownSVal LV =
+ cast<DefinedOrUnknownSVal>(state->getSVal(Left, LCtx));
+ DefinedOrUnknownSVal RV =
+ cast<DefinedOrUnknownSVal>(state->getSVal(Right, LCtx));
+
+ // See if they are the same.
+ DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
+ ProgramStateRef StSameBuf, StNotSameBuf;
+ llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
+
+ // If the two arguments might be the same buffer, we know the result is 0,
+ // and we only need to check one size.
+ if (StSameBuf) {
+ state = StSameBuf;
+ state = CheckBufferAccess(C, state, Size, Left);
+ if (state) {
+ state = StSameBuf->BindExpr(CE, LCtx,
+ svalBuilder.makeZeroVal(CE->getType()));
+ C.addTransition(state);
+ }
+ }
+
+ // If the two arguments might be different buffers, we have to check the
+ // size of both of them.
+ if (StNotSameBuf) {
+ state = StNotSameBuf;
+ state = CheckBufferAccess(C, state, Size, Left, Right);
+ if (state) {
+ // The return value is the comparison result, which we don't know.
+ unsigned Count = C.getCurrentBlockCount();
+ SVal CmpV = svalBuilder.getConjuredSymbolVal(NULL, CE, LCtx, Count);
+ state = state->BindExpr(CE, LCtx, CmpV);
+ C.addTransition(state);
+ }
+ }
+ }
+}
+
+void CStringChecker::evalstrLength(CheckerContext &C,
+ const CallExpr *CE) const {
+ if (CE->getNumArgs() < 1)
+ return;
+
+ // size_t strlen(const char *s);
+ evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
+}
+
+void CStringChecker::evalstrnLength(CheckerContext &C,
+ const CallExpr *CE) const {
+ if (CE->getNumArgs() < 2)
+ return;
+
+ // size_t strnlen(const char *s, size_t maxlen);
+ evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
+}
+
+void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
+ bool IsStrnlen) const {
+ CurrentFunctionDescription = "string length function";
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ if (IsStrnlen) {
+ const Expr *maxlenExpr = CE->getArg(1);
+ SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
+
+ ProgramStateRef stateZeroSize, stateNonZeroSize;
+ llvm::tie(stateZeroSize, stateNonZeroSize) =
+ assumeZero(C, state, maxlenVal, maxlenExpr->getType());
+
+ // If the size can be zero, the result will be 0 in that case, and we don't
+ // have to check the string itself.
+ if (stateZeroSize) {
+ SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
+ stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
+ C.addTransition(stateZeroSize);
+ }
+
+ // If the size is GUARANTEED to be zero, we're done!
+ if (!stateNonZeroSize)
+ return;
+
+ // Otherwise, record the assumption that the size is nonzero.
+ state = stateNonZeroSize;
+ }
+
+ // Check that the string argument is non-null.
+ const Expr *Arg = CE->getArg(0);
+ SVal ArgVal = state->getSVal(Arg, LCtx);
+
+ state = checkNonNull(C, state, Arg, ArgVal);
+
+ if (!state)
+ return;
+
+ SVal strLength = getCStringLength(C, state, Arg, ArgVal);
+
+ // If the argument isn't a valid C string, there's no valid state to
+ // transition to.
+ if (strLength.isUndef())
+ return;
+
+ DefinedOrUnknownSVal result = UnknownVal();
+
+ // If the check is for strnlen() then bind the return value to no more than
+ // the maxlen value.
+ if (IsStrnlen) {
+ QualType cmpTy = C.getSValBuilder().getConditionType();
+
+ // It's a little unfortunate to be getting this again,
+ // but it's not that expensive...
+ const Expr *maxlenExpr = CE->getArg(1);
+ SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
+
+ NonLoc *strLengthNL = dyn_cast<NonLoc>(&strLength);
+ NonLoc *maxlenValNL = dyn_cast<NonLoc>(&maxlenVal);
+
+ if (strLengthNL && maxlenValNL) {
+ ProgramStateRef stateStringTooLong, stateStringNotTooLong;
+
+ // Check if the strLength is greater than the maxlen.
+ llvm::tie(stateStringTooLong, stateStringNotTooLong) =
+ state->assume(cast<DefinedOrUnknownSVal>
+ (C.getSValBuilder().evalBinOpNN(state, BO_GT,
+ *strLengthNL,
+ *maxlenValNL,
+ cmpTy)));
+
+ if (stateStringTooLong && !stateStringNotTooLong) {
+ // If the string is longer than maxlen, return maxlen.
+ result = *maxlenValNL;
+ } else if (stateStringNotTooLong && !stateStringTooLong) {
+ // If the string is shorter than maxlen, return its length.
+ result = *strLengthNL;
+ }
+ }
+
+ if (result.isUnknown()) {
+ // If we don't have enough information for a comparison, there's
+ // no guarantee the full string length will actually be returned.
+ // All we know is the return value is the min of the string length
+ // and the limit. This is better than nothing.
+ unsigned Count = C.getCurrentBlockCount();
+ result = C.getSValBuilder().getConjuredSymbolVal(NULL, CE, LCtx, Count);
+ NonLoc *resultNL = cast<NonLoc>(&result);
+
+ if (strLengthNL) {
+ state = state->assume(cast<DefinedOrUnknownSVal>
+ (C.getSValBuilder().evalBinOpNN(state, BO_LE,
+ *resultNL,
+ *strLengthNL,
+ cmpTy)), true);
+ }
+
+ if (maxlenValNL) {
+ state = state->assume(cast<DefinedOrUnknownSVal>
+ (C.getSValBuilder().evalBinOpNN(state, BO_LE,
+ *resultNL,
+ *maxlenValNL,
+ cmpTy)), true);
+ }
+ }
+
+ } else {
+ // This is a plain strlen(), not strnlen().
+ result = cast<DefinedOrUnknownSVal>(strLength);
+
+ // If we don't know the length of the string, conjure a return
+ // value, so it can be used in constraints, at least.
+ if (result.isUnknown()) {
+ unsigned Count = C.getCurrentBlockCount();
+ result = C.getSValBuilder().getConjuredSymbolVal(NULL, CE, LCtx, Count);
+ }
+ }
+
+ // Bind the return value.
+ assert(!result.isUnknown() && "Should have conjured a value by now");
+ state = state->BindExpr(CE, LCtx, result);
+ C.addTransition(state);
+}
+
+void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 2)
+ return;
+
+ // char *strcpy(char *restrict dst, const char *restrict src);
+ evalStrcpyCommon(C, CE,
+ /* returnEnd = */ false,
+ /* isBounded = */ false,
+ /* isAppending = */ false);
+}
+
+void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
+ evalStrcpyCommon(C, CE,
+ /* returnEnd = */ false,
+ /* isBounded = */ true,
+ /* isAppending = */ false);
+}
+
+void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 2)
+ return;
+
+ // char *stpcpy(char *restrict dst, const char *restrict src);
+ evalStrcpyCommon(C, CE,
+ /* returnEnd = */ true,
+ /* isBounded = */ false,
+ /* isAppending = */ false);
+}
+
+void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 2)
+ return;
+
+ //char *strcat(char *restrict s1, const char *restrict s2);
+ evalStrcpyCommon(C, CE,
+ /* returnEnd = */ false,
+ /* isBounded = */ false,
+ /* isAppending = */ true);
+}
+
+void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
+ evalStrcpyCommon(C, CE,
+ /* returnEnd = */ false,
+ /* isBounded = */ true,
+ /* isAppending = */ true);
+}
+
+void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
+ bool returnEnd, bool isBounded,
+ bool isAppending) const {
+ CurrentFunctionDescription = "string copy function";
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ // Check that the destination is non-null.
+ const Expr *Dst = CE->getArg(0);
+ SVal DstVal = state->getSVal(Dst, LCtx);
+
+ state = checkNonNull(C, state, Dst, DstVal);
+ if (!state)
+ return;
+
+ // Check that the source is non-null.
+ const Expr *srcExpr = CE->getArg(1);
+ SVal srcVal = state->getSVal(srcExpr, LCtx);
+ state = checkNonNull(C, state, srcExpr, srcVal);
+ if (!state)
+ return;
+
+ // Get the string length of the source.
+ SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
+
+ // If the source isn't a valid C string, give up.
+ if (strLength.isUndef())
+ return;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ QualType cmpTy = svalBuilder.getConditionType();
+ QualType sizeTy = svalBuilder.getContext().getSizeType();
+
+ // These two values allow checking two kinds of errors:
+ // - actual overflows caused by a source that doesn't fit in the destination
+ // - potential overflows caused by a bound that could exceed the destination
+ SVal amountCopied = UnknownVal();
+ SVal maxLastElementIndex = UnknownVal();
+ const char *boundWarning = NULL;
+
+ // If the function is strncpy, strncat, etc... it is bounded.
+ if (isBounded) {
+ // Get the max number of characters to copy.
+ const Expr *lenExpr = CE->getArg(2);
+ SVal lenVal = state->getSVal(lenExpr, LCtx);
+
+ // Protect against misdeclared strncpy().
+ lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
+
+ NonLoc *strLengthNL = dyn_cast<NonLoc>(&strLength);
+ NonLoc *lenValNL = dyn_cast<NonLoc>(&lenVal);
+
+ // If we know both values, we might be able to figure out how much
+ // we're copying.
+ if (strLengthNL && lenValNL) {
+ ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
+
+ // Check if the max number to copy is less than the length of the src.
+ // If the bound is equal to the source length, strncpy won't null-
+ // terminate the result!
+ llvm::tie(stateSourceTooLong, stateSourceNotTooLong) =
+ state->assume(cast<DefinedOrUnknownSVal>
+ (svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL,
+ *lenValNL, cmpTy)));
+
+ if (stateSourceTooLong && !stateSourceNotTooLong) {
+ // Max number to copy is less than the length of the src, so the actual
+ // strLength copied is the max number arg.
+ state = stateSourceTooLong;
+ amountCopied = lenVal;
+
+ } else if (!stateSourceTooLong && stateSourceNotTooLong) {
+ // The source buffer entirely fits in the bound.
+ state = stateSourceNotTooLong;
+ amountCopied = strLength;
+ }
+ }
+
+ // We still want to know if the bound is known to be too large.
+ if (lenValNL) {
+ if (isAppending) {
+ // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
+
+ // Get the string length of the destination. If the destination is
+ // memory that can't have a string length, we shouldn't be copying
+ // into it anyway.
+ SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
+ if (dstStrLength.isUndef())
+ return;
+
+ if (NonLoc *dstStrLengthNL = dyn_cast<NonLoc>(&dstStrLength)) {
+ maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
+ *lenValNL,
+ *dstStrLengthNL,
+ sizeTy);
+ boundWarning = "Size argument is greater than the free space in the "
+ "destination buffer";
+ }
+
+ } else {
+ // For strncpy, this is just checking that lenVal <= sizeof(dst)
+ // (Yes, strncpy and strncat differ in how they treat termination.
+ // strncat ALWAYS terminates, but strncpy doesn't.)
+ NonLoc one = cast<NonLoc>(svalBuilder.makeIntVal(1, sizeTy));
+ maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
+ one, sizeTy);
+ boundWarning = "Size argument is greater than the length of the "
+ "destination buffer";
+ }
+ }
+
+ // If we couldn't pin down the copy length, at least bound it.
+ // FIXME: We should actually run this code path for append as well, but
+ // right now it creates problems with constraints (since we can end up
+ // trying to pass constraints from symbol to symbol).
+ if (amountCopied.isUnknown() && !isAppending) {
+ // Try to get a "hypothetical" string length symbol, which we can later
+ // set as a real value if that turns out to be the case.
+ amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
+ assert(!amountCopied.isUndef());
+
+ if (NonLoc *amountCopiedNL = dyn_cast<NonLoc>(&amountCopied)) {
+ if (lenValNL) {
+ // amountCopied <= lenVal
+ SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
+ *amountCopiedNL,
+ *lenValNL,
+ cmpTy);
+ state = state->assume(cast<DefinedOrUnknownSVal>(copiedLessThanBound),
+ true);
+ if (!state)
+ return;
+ }
+
+ if (strLengthNL) {
+ // amountCopied <= strlen(source)
+ SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
+ *amountCopiedNL,
+ *strLengthNL,
+ cmpTy);
+ state = state->assume(cast<DefinedOrUnknownSVal>(copiedLessThanSrc),
+ true);
+ if (!state)
+ return;
+ }
+ }
+ }
+
+ } else {
+ // The function isn't bounded. The amount copied should match the length
+ // of the source buffer.
+ amountCopied = strLength;
+ }
+
+ assert(state);
+
+ // This represents the number of characters copied into the destination
+ // buffer. (It may not actually be the strlen if the destination buffer
+ // is not terminated.)
+ SVal finalStrLength = UnknownVal();
+
+ // If this is an appending function (strcat, strncat...) then set the
+ // string length to strlen(src) + strlen(dst) since the buffer will
+ // ultimately contain both.
+ if (isAppending) {
+ // Get the string length of the destination. If the destination is memory
+ // that can't have a string length, we shouldn't be copying into it anyway.
+ SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
+ if (dstStrLength.isUndef())
+ return;
+
+ NonLoc *srcStrLengthNL = dyn_cast<NonLoc>(&amountCopied);
+ NonLoc *dstStrLengthNL = dyn_cast<NonLoc>(&dstStrLength);
+
+ // If we know both string lengths, we might know the final string length.
+ if (srcStrLengthNL && dstStrLengthNL) {
+ // Make sure the two lengths together don't overflow a size_t.
+ state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
+ if (!state)
+ return;
+
+ finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
+ *dstStrLengthNL, sizeTy);
+ }
+
+ // If we couldn't get a single value for the final string length,
+ // we can at least bound it by the individual lengths.
+ if (finalStrLength.isUnknown()) {
+ // Try to get a "hypothetical" string length symbol, which we can later
+ // set as a real value if that turns out to be the case.
+ finalStrLength = getCStringLength(C, state, CE, DstVal, true);
+ assert(!finalStrLength.isUndef());
+
+ if (NonLoc *finalStrLengthNL = dyn_cast<NonLoc>(&finalStrLength)) {
+ if (srcStrLengthNL) {
+ // finalStrLength >= srcStrLength
+ SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
+ *finalStrLengthNL,
+ *srcStrLengthNL,
+ cmpTy);
+ state = state->assume(cast<DefinedOrUnknownSVal>(sourceInResult),
+ true);
+ if (!state)
+ return;
+ }
+
+ if (dstStrLengthNL) {
+ // finalStrLength >= dstStrLength
+ SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
+ *finalStrLengthNL,
+ *dstStrLengthNL,
+ cmpTy);
+ state = state->assume(cast<DefinedOrUnknownSVal>(destInResult),
+ true);
+ if (!state)
+ return;
+ }
+ }
+ }
+
+ } else {
+ // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
+ // the final string length will match the input string length.
+ finalStrLength = amountCopied;
+ }
+
+ // The final result of the function will either be a pointer past the last
+ // copied element, or a pointer to the start of the destination buffer.
+ SVal Result = (returnEnd ? UnknownVal() : DstVal);
+
+ assert(state);
+
+ // If the destination is a MemRegion, try to check for a buffer overflow and
+ // record the new string length.
+ if (loc::MemRegionVal *dstRegVal = dyn_cast<loc::MemRegionVal>(&DstVal)) {
+ QualType ptrTy = Dst->getType();
+
+ // If we have an exact value on a bounded copy, use that to check for
+ // overflows, rather than our estimate about how much is actually copied.
+ if (boundWarning) {
+ if (NonLoc *maxLastNL = dyn_cast<NonLoc>(&maxLastElementIndex)) {
+ SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
+ *maxLastNL, ptrTy);
+ state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
+ boundWarning);
+ if (!state)
+ return;
+ }
+ }
+
+ // Then, if the final length is known...
+ if (NonLoc *knownStrLength = dyn_cast<NonLoc>(&finalStrLength)) {
+ SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
+ *knownStrLength, ptrTy);
+
+ // ...and we haven't checked the bound, we'll check the actual copy.
+ if (!boundWarning) {
+ const char * const warningMsg =
+ "String copy function overflows destination buffer";
+ state = CheckLocation(C, state, Dst, lastElement, warningMsg);
+ if (!state)
+ return;
+ }
+
+ // If this is a stpcpy-style copy, the last element is the return value.
+ if (returnEnd)
+ Result = lastElement;
+ }
+
+ // Invalidate the destination. This must happen before we set the C string
+ // length because invalidation will clear the length.
+ // FIXME: Even if we can't perfectly model the copy, we should see if we
+ // can use LazyCompoundVals to copy the source values into the destination.
+ // This would probably remove any existing bindings past the end of the
+ // string, but that's still an improvement over blank invalidation.
+ state = InvalidateBuffer(C, state, Dst, *dstRegVal);
+
+ // Set the C string length of the destination, if we know it.
+ if (isBounded && !isAppending) {
+ // strncpy is annoying in that it doesn't guarantee to null-terminate
+ // the result string. If the original string didn't fit entirely inside
+ // the bound (including the null-terminator), we don't know how long the
+ // result is.
+ if (amountCopied != strLength)
+ finalStrLength = UnknownVal();
+ }
+ state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
+ }
+
+ assert(state);
+
+ // If this is a stpcpy-style copy, but we were unable to check for a buffer
+ // overflow, we still need a result. Conjure a return value.
+ if (returnEnd && Result.isUnknown()) {
+ unsigned Count = C.getCurrentBlockCount();
+ Result = svalBuilder.getConjuredSymbolVal(NULL, CE, LCtx, Count);
+ }
+
+ // Set the return value.
+ state = state->BindExpr(CE, LCtx, Result);
+ C.addTransition(state);
+}
+
+void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 2)
+ return;
+
+ //int strcmp(const char *s1, const char *s2);
+ evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
+}
+
+void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ //int strncmp(const char *s1, const char *s2, size_t n);
+ evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
+}
+
+void CStringChecker::evalStrcasecmp(CheckerContext &C,
+ const CallExpr *CE) const {
+ if (CE->getNumArgs() < 2)
+ return;
+
+ //int strcasecmp(const char *s1, const char *s2);
+ evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
+}
+
+void CStringChecker::evalStrncasecmp(CheckerContext &C,
+ const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ //int strncasecmp(const char *s1, const char *s2, size_t n);
+ evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
+}
+
+void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
+ bool isBounded, bool ignoreCase) const {
+ CurrentFunctionDescription = "string comparison function";
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ // Check that the first string is non-null
+ const Expr *s1 = CE->getArg(0);
+ SVal s1Val = state->getSVal(s1, LCtx);
+ state = checkNonNull(C, state, s1, s1Val);
+ if (!state)
+ return;
+
+ // Check that the second string is non-null.
+ const Expr *s2 = CE->getArg(1);
+ SVal s2Val = state->getSVal(s2, LCtx);
+ state = checkNonNull(C, state, s2, s2Val);
+ if (!state)
+ return;
+
+ // Get the string length of the first string or give up.
+ SVal s1Length = getCStringLength(C, state, s1, s1Val);
+ if (s1Length.isUndef())
+ return;
+
+ // Get the string length of the second string or give up.
+ SVal s2Length = getCStringLength(C, state, s2, s2Val);
+ if (s2Length.isUndef())
+ return;
+
+ // If we know the two buffers are the same, we know the result is 0.
+ // First, get the two buffers' addresses. Another checker will have already
+ // made sure they're not undefined.
+ DefinedOrUnknownSVal LV = cast<DefinedOrUnknownSVal>(s1Val);
+ DefinedOrUnknownSVal RV = cast<DefinedOrUnknownSVal>(s2Val);
+
+ // See if they are the same.
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
+ ProgramStateRef StSameBuf, StNotSameBuf;
+ llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
+
+ // If the two arguments might be the same buffer, we know the result is 0,
+ // and we only need to check one size.
+ if (StSameBuf) {
+ StSameBuf = StSameBuf->BindExpr(CE, LCtx,
+ svalBuilder.makeZeroVal(CE->getType()));
+ C.addTransition(StSameBuf);
+
+ // If the two arguments are GUARANTEED to be the same, we're done!
+ if (!StNotSameBuf)
+ return;
+ }
+
+ assert(StNotSameBuf);
+ state = StNotSameBuf;
+
+ // At this point we can go about comparing the two buffers.
+ // For now, we only do this if they're both known string literals.
+
+ // Attempt to extract string literals from both expressions.
+ const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
+ const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
+ bool canComputeResult = false;
+
+ if (s1StrLiteral && s2StrLiteral) {
+ StringRef s1StrRef = s1StrLiteral->getString();
+ StringRef s2StrRef = s2StrLiteral->getString();
+
+ if (isBounded) {
+ // Get the max number of characters to compare.
+ const Expr *lenExpr = CE->getArg(2);
+ SVal lenVal = state->getSVal(lenExpr, LCtx);
+
+ // If the length is known, we can get the right substrings.
+ if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
+ // Create substrings of each to compare the prefix.
+ s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
+ s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
+ canComputeResult = true;
+ }
+ } else {
+ // This is a normal, unbounded strcmp.
+ canComputeResult = true;
+ }
+
+ if (canComputeResult) {
+ // Real strcmp stops at null characters.
+ size_t s1Term = s1StrRef.find('\0');
+ if (s1Term != StringRef::npos)
+ s1StrRef = s1StrRef.substr(0, s1Term);
+
+ size_t s2Term = s2StrRef.find('\0');
+ if (s2Term != StringRef::npos)
+ s2StrRef = s2StrRef.substr(0, s2Term);
+
+ // Use StringRef's comparison methods to compute the actual result.
+ int result;
+
+ if (ignoreCase) {
+ // Compare string 1 to string 2 the same way strcasecmp() does.
+ result = s1StrRef.compare_lower(s2StrRef);
+ } else {
+ // Compare string 1 to string 2 the same way strcmp() does.
+ result = s1StrRef.compare(s2StrRef);
+ }
+
+ // Build the SVal of the comparison and bind the return value.
+ SVal resultVal = svalBuilder.makeIntVal(result, CE->getType());
+ state = state->BindExpr(CE, LCtx, resultVal);
+ }
+ }
+
+ if (!canComputeResult) {
+ // Conjure a symbolic value. It's the best we can do.
+ unsigned Count = C.getCurrentBlockCount();
+ SVal resultVal = svalBuilder.getConjuredSymbolVal(NULL, CE, LCtx, Count);
+ state = state->BindExpr(CE, LCtx, resultVal);
+ }
+
+ // Record this as a possible path.
+ C.addTransition(state);
+}
+
+//===----------------------------------------------------------------------===//
+// The driver method, and other Checker callbacks.
+//===----------------------------------------------------------------------===//
+
+bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
+ const FunctionDecl *FDecl = C.getCalleeDecl(CE);
+
+ if (!FDecl)
+ return false;
+
+ FnCheck evalFunction = 0;
+ if (C.isCLibraryFunction(FDecl, "memcpy"))
+ evalFunction = &CStringChecker::evalMemcpy;
+ else if (C.isCLibraryFunction(FDecl, "mempcpy"))
+ evalFunction = &CStringChecker::evalMempcpy;
+ else if (C.isCLibraryFunction(FDecl, "memcmp"))
+ evalFunction = &CStringChecker::evalMemcmp;
+ else if (C.isCLibraryFunction(FDecl, "memmove"))
+ evalFunction = &CStringChecker::evalMemmove;
+ else if (C.isCLibraryFunction(FDecl, "strcpy"))
+ evalFunction = &CStringChecker::evalStrcpy;
+ else if (C.isCLibraryFunction(FDecl, "strncpy"))
+ evalFunction = &CStringChecker::evalStrncpy;
+ else if (C.isCLibraryFunction(FDecl, "stpcpy"))
+ evalFunction = &CStringChecker::evalStpcpy;
+ else if (C.isCLibraryFunction(FDecl, "strcat"))
+ evalFunction = &CStringChecker::evalStrcat;
+ else if (C.isCLibraryFunction(FDecl, "strncat"))
+ evalFunction = &CStringChecker::evalStrncat;
+ else if (C.isCLibraryFunction(FDecl, "strlen"))
+ evalFunction = &CStringChecker::evalstrLength;
+ else if (C.isCLibraryFunction(FDecl, "strnlen"))
+ evalFunction = &CStringChecker::evalstrnLength;
+ else if (C.isCLibraryFunction(FDecl, "strcmp"))
+ evalFunction = &CStringChecker::evalStrcmp;
+ else if (C.isCLibraryFunction(FDecl, "strncmp"))
+ evalFunction = &CStringChecker::evalStrncmp;
+ else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
+ evalFunction = &CStringChecker::evalStrcasecmp;
+ else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
+ evalFunction = &CStringChecker::evalStrncasecmp;
+ else if (C.isCLibraryFunction(FDecl, "bcopy"))
+ evalFunction = &CStringChecker::evalBcopy;
+ else if (C.isCLibraryFunction(FDecl, "bcmp"))
+ evalFunction = &CStringChecker::evalMemcmp;
+
+ // If the callee isn't a string function, let another checker handle it.
+ if (!evalFunction)
+ return false;
+
+ // Make sure each function sets its own description.
+ // (But don't bother in a release build.)
+ assert(!(CurrentFunctionDescription = NULL));
+
+ // Check and evaluate the call.
+ (this->*evalFunction)(C, CE);
+
+ // If the evaluate call resulted in no change, chain to the next eval call
+ // handler.
+ // Note, the custom CString evaluation calls assume that basic safety
+ // properties are held. However, if the user chooses to turn off some of these
+ // checks, we ignore the issues and leave the call evaluation to a generic
+ // handler.
+ if (!C.isDifferent())
+ return false;
+
+ return true;
+}
+
+void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
+ // Record string length for char a[] = "abc";
+ ProgramStateRef state = C.getState();
+
+ for (DeclStmt::const_decl_iterator I = DS->decl_begin(), E = DS->decl_end();
+ I != E; ++I) {
+ const VarDecl *D = dyn_cast<VarDecl>(*I);
+ if (!D)
+ continue;
+
+ // FIXME: Handle array fields of structs.
+ if (!D->getType()->isArrayType())
+ continue;
+
+ const Expr *Init = D->getInit();
+ if (!Init)
+ continue;
+ if (!isa<StringLiteral>(Init))
+ continue;
+
+ Loc VarLoc = state->getLValue(D, C.getLocationContext());
+ const MemRegion *MR = VarLoc.getAsRegion();
+ if (!MR)
+ continue;
+
+ SVal StrVal = state->getSVal(Init, C.getLocationContext());
+ assert(StrVal.isValid() && "Initializer string is unknown or undefined");
+ DefinedOrUnknownSVal strLength
+ = cast<DefinedOrUnknownSVal>(getCStringLength(C, state, Init, StrVal));
+
+ state = state->set<CStringLength>(MR, strLength);
+ }
+
+ C.addTransition(state);
+}
+
+bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const {
+ CStringLength::EntryMap Entries = state->get<CStringLength>();
+ return !Entries.isEmpty();
+}
+
+ProgramStateRef
+CStringChecker::checkRegionChanges(ProgramStateRef state,
+ const StoreManager::InvalidatedSymbols *,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const CallOrObjCMessage *Call) const {
+ CStringLength::EntryMap Entries = state->get<CStringLength>();
+ if (Entries.isEmpty())
+ return state;
+
+ llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
+ llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
+
+ // First build sets for the changed regions and their super-regions.
+ for (ArrayRef<const MemRegion *>::iterator
+ I = Regions.begin(), E = Regions.end(); I != E; ++I) {
+ const MemRegion *MR = *I;
+ Invalidated.insert(MR);
+
+ SuperRegions.insert(MR);
+ while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
+ MR = SR->getSuperRegion();
+ SuperRegions.insert(MR);
+ }
+ }
+
+ CStringLength::EntryMap::Factory &F = state->get_context<CStringLength>();
+
+ // Then loop over the entries in the current state.
+ for (CStringLength::EntryMap::iterator I = Entries.begin(),
+ E = Entries.end(); I != E; ++I) {
+ const MemRegion *MR = I.getKey();
+
+ // Is this entry for a super-region of a changed region?
+ if (SuperRegions.count(MR)) {
+ Entries = F.remove(Entries, MR);
+ continue;
+ }
+
+ // Is this entry for a sub-region of a changed region?
+ const MemRegion *Super = MR;
+ while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
+ Super = SR->getSuperRegion();
+ if (Invalidated.count(Super)) {
+ Entries = F.remove(Entries, MR);
+ break;
+ }
+ }
+ }
+
+ return state->set<CStringLength>(Entries);
+}
+
+void CStringChecker::checkLiveSymbols(ProgramStateRef state,
+ SymbolReaper &SR) const {
+ // Mark all symbols in our string length map as valid.
+ CStringLength::EntryMap Entries = state->get<CStringLength>();
+
+ for (CStringLength::EntryMap::iterator I = Entries.begin(), E = Entries.end();
+ I != E; ++I) {
+ SVal Len = I.getData();
+
+ for (SymExpr::symbol_iterator si = Len.symbol_begin(),
+ se = Len.symbol_end(); si != se; ++si)
+ SR.markInUse(*si);
+ }
+}
+
+void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
+ CheckerContext &C) const {
+ if (!SR.hasDeadSymbols())
+ return;
+
+ ProgramStateRef state = C.getState();
+ CStringLength::EntryMap Entries = state->get<CStringLength>();
+ if (Entries.isEmpty())
+ return;
+
+ CStringLength::EntryMap::Factory &F = state->get_context<CStringLength>();
+ for (CStringLength::EntryMap::iterator I = Entries.begin(), E = Entries.end();
+ I != E; ++I) {
+ SVal Len = I.getData();
+ if (SymbolRef Sym = Len.getAsSymbol()) {
+ if (SR.isDead(Sym))
+ Entries = F.remove(Entries, I.getKey());
+ }
+ }
+
+ state = state->set<CStringLength>(Entries);
+ C.addTransition(state);
+}
+
+#define REGISTER_CHECKER(name) \
+void ento::register##name(CheckerManager &mgr) {\
+ static CStringChecker *TheChecker = 0; \
+ if (TheChecker == 0) \
+ TheChecker = mgr.registerChecker<CStringChecker>(); \
+ TheChecker->Filter.Check##name = true; \
+}
+
+REGISTER_CHECKER(CStringNullArg)
+REGISTER_CHECKER(CStringOutOfBounds)
+REGISTER_CHECKER(CStringBufferOverlap)
+REGISTER_CHECKER(CStringNotNullTerm)
+
+void ento::registerCStringCheckerBasic(CheckerManager &Mgr) {
+ registerCStringNullArg(Mgr);
+}
OpenPOWER on IntegriCloud