summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaTemplate.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaTemplate.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaTemplate.cpp7188
1 files changed, 7188 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaTemplate.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaTemplate.cpp
new file mode 100644
index 0000000..ff8c4da
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaTemplate.cpp
@@ -0,0 +1,7188 @@
+//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//===----------------------------------------------------------------------===/
+//
+// This file implements semantic analysis for C++ templates.
+//===----------------------------------------------------------------------===/
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/Template.h"
+#include "clang/Sema/TemplateDeduction.h"
+#include "TreeTransform.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/DeclFriend.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/TypeVisitor.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+using namespace clang;
+using namespace sema;
+
+// Exported for use by Parser.
+SourceRange
+clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
+ unsigned N) {
+ if (!N) return SourceRange();
+ return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
+}
+
+/// \brief Determine whether the declaration found is acceptable as the name
+/// of a template and, if so, return that template declaration. Otherwise,
+/// returns NULL.
+static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
+ NamedDecl *Orig,
+ bool AllowFunctionTemplates) {
+ NamedDecl *D = Orig->getUnderlyingDecl();
+
+ if (isa<TemplateDecl>(D)) {
+ if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
+ return 0;
+
+ return Orig;
+ }
+
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
+ // C++ [temp.local]p1:
+ // Like normal (non-template) classes, class templates have an
+ // injected-class-name (Clause 9). The injected-class-name
+ // can be used with or without a template-argument-list. When
+ // it is used without a template-argument-list, it is
+ // equivalent to the injected-class-name followed by the
+ // template-parameters of the class template enclosed in
+ // <>. When it is used with a template-argument-list, it
+ // refers to the specified class template specialization,
+ // which could be the current specialization or another
+ // specialization.
+ if (Record->isInjectedClassName()) {
+ Record = cast<CXXRecordDecl>(Record->getDeclContext());
+ if (Record->getDescribedClassTemplate())
+ return Record->getDescribedClassTemplate();
+
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record))
+ return Spec->getSpecializedTemplate();
+ }
+
+ return 0;
+ }
+
+ return 0;
+}
+
+void Sema::FilterAcceptableTemplateNames(LookupResult &R,
+ bool AllowFunctionTemplates) {
+ // The set of class templates we've already seen.
+ llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
+ LookupResult::Filter filter = R.makeFilter();
+ while (filter.hasNext()) {
+ NamedDecl *Orig = filter.next();
+ NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
+ AllowFunctionTemplates);
+ if (!Repl)
+ filter.erase();
+ else if (Repl != Orig) {
+
+ // C++ [temp.local]p3:
+ // A lookup that finds an injected-class-name (10.2) can result in an
+ // ambiguity in certain cases (for example, if it is found in more than
+ // one base class). If all of the injected-class-names that are found
+ // refer to specializations of the same class template, and if the name
+ // is used as a template-name, the reference refers to the class
+ // template itself and not a specialization thereof, and is not
+ // ambiguous.
+ if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
+ if (!ClassTemplates.insert(ClassTmpl)) {
+ filter.erase();
+ continue;
+ }
+
+ // FIXME: we promote access to public here as a workaround to
+ // the fact that LookupResult doesn't let us remember that we
+ // found this template through a particular injected class name,
+ // which means we end up doing nasty things to the invariants.
+ // Pretending that access is public is *much* safer.
+ filter.replace(Repl, AS_public);
+ }
+ }
+ filter.done();
+}
+
+bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
+ bool AllowFunctionTemplates) {
+ for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
+ if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
+ return true;
+
+ return false;
+}
+
+TemplateNameKind Sema::isTemplateName(Scope *S,
+ CXXScopeSpec &SS,
+ bool hasTemplateKeyword,
+ UnqualifiedId &Name,
+ ParsedType ObjectTypePtr,
+ bool EnteringContext,
+ TemplateTy &TemplateResult,
+ bool &MemberOfUnknownSpecialization) {
+ assert(getLangOpts().CPlusPlus && "No template names in C!");
+
+ DeclarationName TName;
+ MemberOfUnknownSpecialization = false;
+
+ switch (Name.getKind()) {
+ case UnqualifiedId::IK_Identifier:
+ TName = DeclarationName(Name.Identifier);
+ break;
+
+ case UnqualifiedId::IK_OperatorFunctionId:
+ TName = Context.DeclarationNames.getCXXOperatorName(
+ Name.OperatorFunctionId.Operator);
+ break;
+
+ case UnqualifiedId::IK_LiteralOperatorId:
+ TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
+ break;
+
+ default:
+ return TNK_Non_template;
+ }
+
+ QualType ObjectType = ObjectTypePtr.get();
+
+ LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
+ LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
+ MemberOfUnknownSpecialization);
+ if (R.empty()) return TNK_Non_template;
+ if (R.isAmbiguous()) {
+ // Suppress diagnostics; we'll redo this lookup later.
+ R.suppressDiagnostics();
+
+ // FIXME: we might have ambiguous templates, in which case we
+ // should at least parse them properly!
+ return TNK_Non_template;
+ }
+
+ TemplateName Template;
+ TemplateNameKind TemplateKind;
+
+ unsigned ResultCount = R.end() - R.begin();
+ if (ResultCount > 1) {
+ // We assume that we'll preserve the qualifier from a function
+ // template name in other ways.
+ Template = Context.getOverloadedTemplateName(R.begin(), R.end());
+ TemplateKind = TNK_Function_template;
+
+ // We'll do this lookup again later.
+ R.suppressDiagnostics();
+ } else {
+ TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
+
+ if (SS.isSet() && !SS.isInvalid()) {
+ NestedNameSpecifier *Qualifier
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+ Template = Context.getQualifiedTemplateName(Qualifier,
+ hasTemplateKeyword, TD);
+ } else {
+ Template = TemplateName(TD);
+ }
+
+ if (isa<FunctionTemplateDecl>(TD)) {
+ TemplateKind = TNK_Function_template;
+
+ // We'll do this lookup again later.
+ R.suppressDiagnostics();
+ } else {
+ assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
+ isa<TypeAliasTemplateDecl>(TD));
+ TemplateKind = TNK_Type_template;
+ }
+ }
+
+ TemplateResult = TemplateTy::make(Template);
+ return TemplateKind;
+}
+
+bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
+ SourceLocation IILoc,
+ Scope *S,
+ const CXXScopeSpec *SS,
+ TemplateTy &SuggestedTemplate,
+ TemplateNameKind &SuggestedKind) {
+ // We can't recover unless there's a dependent scope specifier preceding the
+ // template name.
+ // FIXME: Typo correction?
+ if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
+ computeDeclContext(*SS))
+ return false;
+
+ // The code is missing a 'template' keyword prior to the dependent template
+ // name.
+ NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
+ Diag(IILoc, diag::err_template_kw_missing)
+ << Qualifier << II.getName()
+ << FixItHint::CreateInsertion(IILoc, "template ");
+ SuggestedTemplate
+ = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
+ SuggestedKind = TNK_Dependent_template_name;
+ return true;
+}
+
+void Sema::LookupTemplateName(LookupResult &Found,
+ Scope *S, CXXScopeSpec &SS,
+ QualType ObjectType,
+ bool EnteringContext,
+ bool &MemberOfUnknownSpecialization) {
+ // Determine where to perform name lookup
+ MemberOfUnknownSpecialization = false;
+ DeclContext *LookupCtx = 0;
+ bool isDependent = false;
+ if (!ObjectType.isNull()) {
+ // This nested-name-specifier occurs in a member access expression, e.g.,
+ // x->B::f, and we are looking into the type of the object.
+ assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
+ LookupCtx = computeDeclContext(ObjectType);
+ isDependent = ObjectType->isDependentType();
+ assert((isDependent || !ObjectType->isIncompleteType()) &&
+ "Caller should have completed object type");
+
+ // Template names cannot appear inside an Objective-C class or object type.
+ if (ObjectType->isObjCObjectOrInterfaceType()) {
+ Found.clear();
+ return;
+ }
+ } else if (SS.isSet()) {
+ // This nested-name-specifier occurs after another nested-name-specifier,
+ // so long into the context associated with the prior nested-name-specifier.
+ LookupCtx = computeDeclContext(SS, EnteringContext);
+ isDependent = isDependentScopeSpecifier(SS);
+
+ // The declaration context must be complete.
+ if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
+ return;
+ }
+
+ bool ObjectTypeSearchedInScope = false;
+ bool AllowFunctionTemplatesInLookup = true;
+ if (LookupCtx) {
+ // Perform "qualified" name lookup into the declaration context we
+ // computed, which is either the type of the base of a member access
+ // expression or the declaration context associated with a prior
+ // nested-name-specifier.
+ LookupQualifiedName(Found, LookupCtx);
+ if (!ObjectType.isNull() && Found.empty()) {
+ // C++ [basic.lookup.classref]p1:
+ // In a class member access expression (5.2.5), if the . or -> token is
+ // immediately followed by an identifier followed by a <, the
+ // identifier must be looked up to determine whether the < is the
+ // beginning of a template argument list (14.2) or a less-than operator.
+ // The identifier is first looked up in the class of the object
+ // expression. If the identifier is not found, it is then looked up in
+ // the context of the entire postfix-expression and shall name a class
+ // or function template.
+ if (S) LookupName(Found, S);
+ ObjectTypeSearchedInScope = true;
+ AllowFunctionTemplatesInLookup = false;
+ }
+ } else if (isDependent && (!S || ObjectType.isNull())) {
+ // We cannot look into a dependent object type or nested nme
+ // specifier.
+ MemberOfUnknownSpecialization = true;
+ return;
+ } else {
+ // Perform unqualified name lookup in the current scope.
+ LookupName(Found, S);
+
+ if (!ObjectType.isNull())
+ AllowFunctionTemplatesInLookup = false;
+ }
+
+ if (Found.empty() && !isDependent) {
+ // If we did not find any names, attempt to correct any typos.
+ DeclarationName Name = Found.getLookupName();
+ Found.clear();
+ // Simple filter callback that, for keywords, only accepts the C++ *_cast
+ CorrectionCandidateCallback FilterCCC;
+ FilterCCC.WantTypeSpecifiers = false;
+ FilterCCC.WantExpressionKeywords = false;
+ FilterCCC.WantRemainingKeywords = false;
+ FilterCCC.WantCXXNamedCasts = true;
+ if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
+ Found.getLookupKind(), S, &SS,
+ FilterCCC, LookupCtx)) {
+ Found.setLookupName(Corrected.getCorrection());
+ if (Corrected.getCorrectionDecl())
+ Found.addDecl(Corrected.getCorrectionDecl());
+ FilterAcceptableTemplateNames(Found);
+ if (!Found.empty()) {
+ std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
+ std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
+ if (LookupCtx)
+ Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
+ << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
+ << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
+ else
+ Diag(Found.getNameLoc(), diag::err_no_template_suggest)
+ << Name << CorrectedQuotedStr
+ << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
+ if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
+ Diag(Template->getLocation(), diag::note_previous_decl)
+ << CorrectedQuotedStr;
+ }
+ } else {
+ Found.setLookupName(Name);
+ }
+ }
+
+ FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
+ if (Found.empty()) {
+ if (isDependent)
+ MemberOfUnknownSpecialization = true;
+ return;
+ }
+
+ if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
+ // C++ [basic.lookup.classref]p1:
+ // [...] If the lookup in the class of the object expression finds a
+ // template, the name is also looked up in the context of the entire
+ // postfix-expression and [...]
+ //
+ LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
+ LookupOrdinaryName);
+ LookupName(FoundOuter, S);
+ FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
+
+ if (FoundOuter.empty()) {
+ // - if the name is not found, the name found in the class of the
+ // object expression is used, otherwise
+ } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
+ FoundOuter.isAmbiguous()) {
+ // - if the name is found in the context of the entire
+ // postfix-expression and does not name a class template, the name
+ // found in the class of the object expression is used, otherwise
+ FoundOuter.clear();
+ } else if (!Found.isSuppressingDiagnostics()) {
+ // - if the name found is a class template, it must refer to the same
+ // entity as the one found in the class of the object expression,
+ // otherwise the program is ill-formed.
+ if (!Found.isSingleResult() ||
+ Found.getFoundDecl()->getCanonicalDecl()
+ != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
+ Diag(Found.getNameLoc(),
+ diag::ext_nested_name_member_ref_lookup_ambiguous)
+ << Found.getLookupName()
+ << ObjectType;
+ Diag(Found.getRepresentativeDecl()->getLocation(),
+ diag::note_ambig_member_ref_object_type)
+ << ObjectType;
+ Diag(FoundOuter.getFoundDecl()->getLocation(),
+ diag::note_ambig_member_ref_scope);
+
+ // Recover by taking the template that we found in the object
+ // expression's type.
+ }
+ }
+ }
+}
+
+/// ActOnDependentIdExpression - Handle a dependent id-expression that
+/// was just parsed. This is only possible with an explicit scope
+/// specifier naming a dependent type.
+ExprResult
+Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ bool isAddressOfOperand,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ DeclContext *DC = getFunctionLevelDeclContext();
+
+ if (!isAddressOfOperand &&
+ isa<CXXMethodDecl>(DC) &&
+ cast<CXXMethodDecl>(DC)->isInstance()) {
+ QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
+
+ // Since the 'this' expression is synthesized, we don't need to
+ // perform the double-lookup check.
+ NamedDecl *FirstQualifierInScope = 0;
+
+ return Owned(CXXDependentScopeMemberExpr::Create(Context,
+ /*This*/ 0, ThisType,
+ /*IsArrow*/ true,
+ /*Op*/ SourceLocation(),
+ SS.getWithLocInContext(Context),
+ TemplateKWLoc,
+ FirstQualifierInScope,
+ NameInfo,
+ TemplateArgs));
+ }
+
+ return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
+}
+
+ExprResult
+Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ return Owned(DependentScopeDeclRefExpr::Create(Context,
+ SS.getWithLocInContext(Context),
+ TemplateKWLoc,
+ NameInfo,
+ TemplateArgs));
+}
+
+/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
+/// that the template parameter 'PrevDecl' is being shadowed by a new
+/// declaration at location Loc. Returns true to indicate that this is
+/// an error, and false otherwise.
+void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
+ assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
+
+ // Microsoft Visual C++ permits template parameters to be shadowed.
+ if (getLangOpts().MicrosoftExt)
+ return;
+
+ // C++ [temp.local]p4:
+ // A template-parameter shall not be redeclared within its
+ // scope (including nested scopes).
+ Diag(Loc, diag::err_template_param_shadow)
+ << cast<NamedDecl>(PrevDecl)->getDeclName();
+ Diag(PrevDecl->getLocation(), diag::note_template_param_here);
+ return;
+}
+
+/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
+/// the parameter D to reference the templated declaration and return a pointer
+/// to the template declaration. Otherwise, do nothing to D and return null.
+TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
+ if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
+ D = Temp->getTemplatedDecl();
+ return Temp;
+ }
+ return 0;
+}
+
+ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
+ SourceLocation EllipsisLoc) const {
+ assert(Kind == Template &&
+ "Only template template arguments can be pack expansions here");
+ assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
+ "Template template argument pack expansion without packs");
+ ParsedTemplateArgument Result(*this);
+ Result.EllipsisLoc = EllipsisLoc;
+ return Result;
+}
+
+static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
+ const ParsedTemplateArgument &Arg) {
+
+ switch (Arg.getKind()) {
+ case ParsedTemplateArgument::Type: {
+ TypeSourceInfo *DI;
+ QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
+ if (!DI)
+ DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
+ return TemplateArgumentLoc(TemplateArgument(T), DI);
+ }
+
+ case ParsedTemplateArgument::NonType: {
+ Expr *E = static_cast<Expr *>(Arg.getAsExpr());
+ return TemplateArgumentLoc(TemplateArgument(E), E);
+ }
+
+ case ParsedTemplateArgument::Template: {
+ TemplateName Template = Arg.getAsTemplate().get();
+ TemplateArgument TArg;
+ if (Arg.getEllipsisLoc().isValid())
+ TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
+ else
+ TArg = Template;
+ return TemplateArgumentLoc(TArg,
+ Arg.getScopeSpec().getWithLocInContext(
+ SemaRef.Context),
+ Arg.getLocation(),
+ Arg.getEllipsisLoc());
+ }
+ }
+
+ llvm_unreachable("Unhandled parsed template argument");
+}
+
+/// \brief Translates template arguments as provided by the parser
+/// into template arguments used by semantic analysis.
+void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
+ TemplateArgumentListInfo &TemplateArgs) {
+ for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
+ TemplateArgs.addArgument(translateTemplateArgument(*this,
+ TemplateArgsIn[I]));
+}
+
+/// ActOnTypeParameter - Called when a C++ template type parameter
+/// (e.g., "typename T") has been parsed. Typename specifies whether
+/// the keyword "typename" was used to declare the type parameter
+/// (otherwise, "class" was used), and KeyLoc is the location of the
+/// "class" or "typename" keyword. ParamName is the name of the
+/// parameter (NULL indicates an unnamed template parameter) and
+/// ParamNameLoc is the location of the parameter name (if any).
+/// If the type parameter has a default argument, it will be added
+/// later via ActOnTypeParameterDefault.
+Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
+ SourceLocation EllipsisLoc,
+ SourceLocation KeyLoc,
+ IdentifierInfo *ParamName,
+ SourceLocation ParamNameLoc,
+ unsigned Depth, unsigned Position,
+ SourceLocation EqualLoc,
+ ParsedType DefaultArg) {
+ assert(S->isTemplateParamScope() &&
+ "Template type parameter not in template parameter scope!");
+ bool Invalid = false;
+
+ if (ParamName) {
+ NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
+ LookupOrdinaryName,
+ ForRedeclaration);
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
+ PrevDecl = 0;
+ }
+ }
+
+ SourceLocation Loc = ParamNameLoc;
+ if (!ParamName)
+ Loc = KeyLoc;
+
+ TemplateTypeParmDecl *Param
+ = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
+ KeyLoc, Loc, Depth, Position, ParamName,
+ Typename, Ellipsis);
+ Param->setAccess(AS_public);
+ if (Invalid)
+ Param->setInvalidDecl();
+
+ if (ParamName) {
+ // Add the template parameter into the current scope.
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+ }
+
+ // C++0x [temp.param]p9:
+ // A default template-argument may be specified for any kind of
+ // template-parameter that is not a template parameter pack.
+ if (DefaultArg && Ellipsis) {
+ Diag(EqualLoc, diag::err_template_param_pack_default_arg);
+ DefaultArg = ParsedType();
+ }
+
+ // Handle the default argument, if provided.
+ if (DefaultArg) {
+ TypeSourceInfo *DefaultTInfo;
+ GetTypeFromParser(DefaultArg, &DefaultTInfo);
+
+ assert(DefaultTInfo && "expected source information for type");
+
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
+ UPPC_DefaultArgument))
+ return Param;
+
+ // Check the template argument itself.
+ if (CheckTemplateArgument(Param, DefaultTInfo)) {
+ Param->setInvalidDecl();
+ return Param;
+ }
+
+ Param->setDefaultArgument(DefaultTInfo, false);
+ }
+
+ return Param;
+}
+
+/// \brief Check that the type of a non-type template parameter is
+/// well-formed.
+///
+/// \returns the (possibly-promoted) parameter type if valid;
+/// otherwise, produces a diagnostic and returns a NULL type.
+QualType
+Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
+ // We don't allow variably-modified types as the type of non-type template
+ // parameters.
+ if (T->isVariablyModifiedType()) {
+ Diag(Loc, diag::err_variably_modified_nontype_template_param)
+ << T;
+ return QualType();
+ }
+
+ // C++ [temp.param]p4:
+ //
+ // A non-type template-parameter shall have one of the following
+ // (optionally cv-qualified) types:
+ //
+ // -- integral or enumeration type,
+ if (T->isIntegralOrEnumerationType() ||
+ // -- pointer to object or pointer to function,
+ T->isPointerType() ||
+ // -- reference to object or reference to function,
+ T->isReferenceType() ||
+ // -- pointer to member,
+ T->isMemberPointerType() ||
+ // -- std::nullptr_t.
+ T->isNullPtrType() ||
+ // If T is a dependent type, we can't do the check now, so we
+ // assume that it is well-formed.
+ T->isDependentType()) {
+ // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
+ // are ignored when determining its type.
+ return T.getUnqualifiedType();
+ }
+
+ // C++ [temp.param]p8:
+ //
+ // A non-type template-parameter of type "array of T" or
+ // "function returning T" is adjusted to be of type "pointer to
+ // T" or "pointer to function returning T", respectively.
+ else if (T->isArrayType())
+ // FIXME: Keep the type prior to promotion?
+ return Context.getArrayDecayedType(T);
+ else if (T->isFunctionType())
+ // FIXME: Keep the type prior to promotion?
+ return Context.getPointerType(T);
+
+ Diag(Loc, diag::err_template_nontype_parm_bad_type)
+ << T;
+
+ return QualType();
+}
+
+Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
+ unsigned Depth,
+ unsigned Position,
+ SourceLocation EqualLoc,
+ Expr *Default) {
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType T = TInfo->getType();
+
+ assert(S->isTemplateParamScope() &&
+ "Non-type template parameter not in template parameter scope!");
+ bool Invalid = false;
+
+ IdentifierInfo *ParamName = D.getIdentifier();
+ if (ParamName) {
+ NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
+ LookupOrdinaryName,
+ ForRedeclaration);
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+ PrevDecl = 0;
+ }
+ }
+
+ T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
+ if (T.isNull()) {
+ T = Context.IntTy; // Recover with an 'int' type.
+ Invalid = true;
+ }
+
+ bool IsParameterPack = D.hasEllipsis();
+ NonTypeTemplateParmDecl *Param
+ = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
+ D.getLocStart(),
+ D.getIdentifierLoc(),
+ Depth, Position, ParamName, T,
+ IsParameterPack, TInfo);
+ Param->setAccess(AS_public);
+
+ if (Invalid)
+ Param->setInvalidDecl();
+
+ if (D.getIdentifier()) {
+ // Add the template parameter into the current scope.
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+ }
+
+ // C++0x [temp.param]p9:
+ // A default template-argument may be specified for any kind of
+ // template-parameter that is not a template parameter pack.
+ if (Default && IsParameterPack) {
+ Diag(EqualLoc, diag::err_template_param_pack_default_arg);
+ Default = 0;
+ }
+
+ // Check the well-formedness of the default template argument, if provided.
+ if (Default) {
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
+ return Param;
+
+ TemplateArgument Converted;
+ ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
+ if (DefaultRes.isInvalid()) {
+ Param->setInvalidDecl();
+ return Param;
+ }
+ Default = DefaultRes.take();
+
+ Param->setDefaultArgument(Default, false);
+ }
+
+ return Param;
+}
+
+/// ActOnTemplateTemplateParameter - Called when a C++ template template
+/// parameter (e.g. T in template <template <typename> class T> class array)
+/// has been parsed. S is the current scope.
+Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
+ SourceLocation TmpLoc,
+ TemplateParameterList *Params,
+ SourceLocation EllipsisLoc,
+ IdentifierInfo *Name,
+ SourceLocation NameLoc,
+ unsigned Depth,
+ unsigned Position,
+ SourceLocation EqualLoc,
+ ParsedTemplateArgument Default) {
+ assert(S->isTemplateParamScope() &&
+ "Template template parameter not in template parameter scope!");
+
+ // Construct the parameter object.
+ bool IsParameterPack = EllipsisLoc.isValid();
+ TemplateTemplateParmDecl *Param =
+ TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
+ NameLoc.isInvalid()? TmpLoc : NameLoc,
+ Depth, Position, IsParameterPack,
+ Name, Params);
+ Param->setAccess(AS_public);
+
+ // If the template template parameter has a name, then link the identifier
+ // into the scope and lookup mechanisms.
+ if (Name) {
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+ }
+
+ if (Params->size() == 0) {
+ Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
+ << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
+ Param->setInvalidDecl();
+ }
+
+ // C++0x [temp.param]p9:
+ // A default template-argument may be specified for any kind of
+ // template-parameter that is not a template parameter pack.
+ if (IsParameterPack && !Default.isInvalid()) {
+ Diag(EqualLoc, diag::err_template_param_pack_default_arg);
+ Default = ParsedTemplateArgument();
+ }
+
+ if (!Default.isInvalid()) {
+ // Check only that we have a template template argument. We don't want to
+ // try to check well-formedness now, because our template template parameter
+ // might have dependent types in its template parameters, which we wouldn't
+ // be able to match now.
+ //
+ // If none of the template template parameter's template arguments mention
+ // other template parameters, we could actually perform more checking here.
+ // However, it isn't worth doing.
+ TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
+ if (DefaultArg.getArgument().getAsTemplate().isNull()) {
+ Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
+ << DefaultArg.getSourceRange();
+ return Param;
+ }
+
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
+ DefaultArg.getArgument().getAsTemplate(),
+ UPPC_DefaultArgument))
+ return Param;
+
+ Param->setDefaultArgument(DefaultArg, false);
+ }
+
+ return Param;
+}
+
+/// ActOnTemplateParameterList - Builds a TemplateParameterList that
+/// contains the template parameters in Params/NumParams.
+TemplateParameterList *
+Sema::ActOnTemplateParameterList(unsigned Depth,
+ SourceLocation ExportLoc,
+ SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ Decl **Params, unsigned NumParams,
+ SourceLocation RAngleLoc) {
+ if (ExportLoc.isValid())
+ Diag(ExportLoc, diag::warn_template_export_unsupported);
+
+ return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
+ (NamedDecl**)Params, NumParams,
+ RAngleLoc);
+}
+
+static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
+ if (SS.isSet())
+ T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
+}
+
+DeclResult
+Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
+ SourceLocation KWLoc, CXXScopeSpec &SS,
+ IdentifierInfo *Name, SourceLocation NameLoc,
+ AttributeList *Attr,
+ TemplateParameterList *TemplateParams,
+ AccessSpecifier AS, SourceLocation ModulePrivateLoc,
+ unsigned NumOuterTemplateParamLists,
+ TemplateParameterList** OuterTemplateParamLists) {
+ assert(TemplateParams && TemplateParams->size() > 0 &&
+ "No template parameters");
+ assert(TUK != TUK_Reference && "Can only declare or define class templates");
+ bool Invalid = false;
+
+ // Check that we can declare a template here.
+ if (CheckTemplateDeclScope(S, TemplateParams))
+ return true;
+
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ assert(Kind != TTK_Enum && "can't build template of enumerated type");
+
+ // There is no such thing as an unnamed class template.
+ if (!Name) {
+ Diag(KWLoc, diag::err_template_unnamed_class);
+ return true;
+ }
+
+ // Find any previous declaration with this name.
+ DeclContext *SemanticContext;
+ LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
+ ForRedeclaration);
+ if (SS.isNotEmpty() && !SS.isInvalid()) {
+ SemanticContext = computeDeclContext(SS, true);
+ if (!SemanticContext) {
+ // FIXME: Horrible, horrible hack! We can't currently represent this
+ // in the AST, and historically we have just ignored such friend
+ // class templates, so don't complain here.
+ if (TUK != TUK_Friend)
+ Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
+ << SS.getScopeRep() << SS.getRange();
+ return true;
+ }
+
+ if (RequireCompleteDeclContext(SS, SemanticContext))
+ return true;
+
+ // If we're adding a template to a dependent context, we may need to
+ // rebuilding some of the types used within the template parameter list,
+ // now that we know what the current instantiation is.
+ if (SemanticContext->isDependentContext()) {
+ ContextRAII SavedContext(*this, SemanticContext);
+ if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
+ Invalid = true;
+ } else if (TUK != TUK_Friend && TUK != TUK_Reference)
+ diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
+
+ LookupQualifiedName(Previous, SemanticContext);
+ } else {
+ SemanticContext = CurContext;
+ LookupName(Previous, S);
+ }
+
+ if (Previous.isAmbiguous())
+ return true;
+
+ NamedDecl *PrevDecl = 0;
+ if (Previous.begin() != Previous.end())
+ PrevDecl = (*Previous.begin())->getUnderlyingDecl();
+
+ // If there is a previous declaration with the same name, check
+ // whether this is a valid redeclaration.
+ ClassTemplateDecl *PrevClassTemplate
+ = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
+
+ // We may have found the injected-class-name of a class template,
+ // class template partial specialization, or class template specialization.
+ // In these cases, grab the template that is being defined or specialized.
+ if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
+ cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
+ PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
+ PrevClassTemplate
+ = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
+ if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
+ PrevClassTemplate
+ = cast<ClassTemplateSpecializationDecl>(PrevDecl)
+ ->getSpecializedTemplate();
+ }
+ }
+
+ if (TUK == TUK_Friend) {
+ // C++ [namespace.memdef]p3:
+ // [...] When looking for a prior declaration of a class or a function
+ // declared as a friend, and when the name of the friend class or
+ // function is neither a qualified name nor a template-id, scopes outside
+ // the innermost enclosing namespace scope are not considered.
+ if (!SS.isSet()) {
+ DeclContext *OutermostContext = CurContext;
+ while (!OutermostContext->isFileContext())
+ OutermostContext = OutermostContext->getLookupParent();
+
+ if (PrevDecl &&
+ (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
+ OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
+ SemanticContext = PrevDecl->getDeclContext();
+ } else {
+ // Declarations in outer scopes don't matter. However, the outermost
+ // context we computed is the semantic context for our new
+ // declaration.
+ PrevDecl = PrevClassTemplate = 0;
+ SemanticContext = OutermostContext;
+ }
+ }
+
+ if (CurContext->isDependentContext()) {
+ // If this is a dependent context, we don't want to link the friend
+ // class template to the template in scope, because that would perform
+ // checking of the template parameter lists that can't be performed
+ // until the outer context is instantiated.
+ PrevDecl = PrevClassTemplate = 0;
+ }
+ } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
+ PrevDecl = PrevClassTemplate = 0;
+
+ if (PrevClassTemplate) {
+ // Ensure that the template parameter lists are compatible.
+ if (!TemplateParameterListsAreEqual(TemplateParams,
+ PrevClassTemplate->getTemplateParameters(),
+ /*Complain=*/true,
+ TPL_TemplateMatch))
+ return true;
+
+ // C++ [temp.class]p4:
+ // In a redeclaration, partial specialization, explicit
+ // specialization or explicit instantiation of a class template,
+ // the class-key shall agree in kind with the original class
+ // template declaration (7.1.5.3).
+ RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
+ if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
+ TUK == TUK_Definition, KWLoc, *Name)) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << Name
+ << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
+ Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
+ Kind = PrevRecordDecl->getTagKind();
+ }
+
+ // Check for redefinition of this class template.
+ if (TUK == TUK_Definition) {
+ if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
+ Diag(NameLoc, diag::err_redefinition) << Name;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ // FIXME: Would it make sense to try to "forget" the previous
+ // definition, as part of error recovery?
+ return true;
+ }
+ }
+ } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ } else if (PrevDecl) {
+ // C++ [temp]p5:
+ // A class template shall not have the same name as any other
+ // template, class, function, object, enumeration, enumerator,
+ // namespace, or type in the same scope (3.3), except as specified
+ // in (14.5.4).
+ Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ return true;
+ }
+
+ // Check the template parameter list of this declaration, possibly
+ // merging in the template parameter list from the previous class
+ // template declaration.
+ if (CheckTemplateParameterList(TemplateParams,
+ PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
+ (SS.isSet() && SemanticContext &&
+ SemanticContext->isRecord() &&
+ SemanticContext->isDependentContext())
+ ? TPC_ClassTemplateMember
+ : TPC_ClassTemplate))
+ Invalid = true;
+
+ if (SS.isSet()) {
+ // If the name of the template was qualified, we must be defining the
+ // template out-of-line.
+ if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
+ !(TUK == TUK_Friend && CurContext->isDependentContext())) {
+ Diag(NameLoc, diag::err_member_def_does_not_match)
+ << Name << SemanticContext << SS.getRange();
+ Invalid = true;
+ }
+ }
+
+ CXXRecordDecl *NewClass =
+ CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
+ PrevClassTemplate?
+ PrevClassTemplate->getTemplatedDecl() : 0,
+ /*DelayTypeCreation=*/true);
+ SetNestedNameSpecifier(NewClass, SS);
+ if (NumOuterTemplateParamLists > 0)
+ NewClass->setTemplateParameterListsInfo(Context,
+ NumOuterTemplateParamLists,
+ OuterTemplateParamLists);
+
+ // Add alignment attributes if necessary; these attributes are checked when
+ // the ASTContext lays out the structure.
+ AddAlignmentAttributesForRecord(NewClass);
+ AddMsStructLayoutForRecord(NewClass);
+
+ ClassTemplateDecl *NewTemplate
+ = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
+ DeclarationName(Name), TemplateParams,
+ NewClass, PrevClassTemplate);
+ NewClass->setDescribedClassTemplate(NewTemplate);
+
+ if (ModulePrivateLoc.isValid())
+ NewTemplate->setModulePrivate();
+
+ // Build the type for the class template declaration now.
+ QualType T = NewTemplate->getInjectedClassNameSpecialization();
+ T = Context.getInjectedClassNameType(NewClass, T);
+ assert(T->isDependentType() && "Class template type is not dependent?");
+ (void)T;
+
+ // If we are providing an explicit specialization of a member that is a
+ // class template, make a note of that.
+ if (PrevClassTemplate &&
+ PrevClassTemplate->getInstantiatedFromMemberTemplate())
+ PrevClassTemplate->setMemberSpecialization();
+
+ // Set the access specifier.
+ if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
+ SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
+
+ // Set the lexical context of these templates
+ NewClass->setLexicalDeclContext(CurContext);
+ NewTemplate->setLexicalDeclContext(CurContext);
+
+ if (TUK == TUK_Definition)
+ NewClass->startDefinition();
+
+ if (Attr)
+ ProcessDeclAttributeList(S, NewClass, Attr);
+
+ if (TUK != TUK_Friend)
+ PushOnScopeChains(NewTemplate, S);
+ else {
+ if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
+ NewTemplate->setAccess(PrevClassTemplate->getAccess());
+ NewClass->setAccess(PrevClassTemplate->getAccess());
+ }
+
+ NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
+ PrevClassTemplate != NULL);
+
+ // Friend templates are visible in fairly strange ways.
+ if (!CurContext->isDependentContext()) {
+ DeclContext *DC = SemanticContext->getRedeclContext();
+ DC->makeDeclVisibleInContext(NewTemplate);
+ if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
+ PushOnScopeChains(NewTemplate, EnclosingScope,
+ /* AddToContext = */ false);
+ }
+
+ FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
+ NewClass->getLocation(),
+ NewTemplate,
+ /*FIXME:*/NewClass->getLocation());
+ Friend->setAccess(AS_public);
+ CurContext->addDecl(Friend);
+ }
+
+ if (Invalid) {
+ NewTemplate->setInvalidDecl();
+ NewClass->setInvalidDecl();
+ }
+ return NewTemplate;
+}
+
+/// \brief Diagnose the presence of a default template argument on a
+/// template parameter, which is ill-formed in certain contexts.
+///
+/// \returns true if the default template argument should be dropped.
+static bool DiagnoseDefaultTemplateArgument(Sema &S,
+ Sema::TemplateParamListContext TPC,
+ SourceLocation ParamLoc,
+ SourceRange DefArgRange) {
+ switch (TPC) {
+ case Sema::TPC_ClassTemplate:
+ case Sema::TPC_TypeAliasTemplate:
+ return false;
+
+ case Sema::TPC_FunctionTemplate:
+ case Sema::TPC_FriendFunctionTemplateDefinition:
+ // C++ [temp.param]p9:
+ // A default template-argument shall not be specified in a
+ // function template declaration or a function template
+ // definition [...]
+ // If a friend function template declaration specifies a default
+ // template-argument, that declaration shall be a definition and shall be
+ // the only declaration of the function template in the translation unit.
+ // (C++98/03 doesn't have this wording; see DR226).
+ S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
+ diag::warn_cxx98_compat_template_parameter_default_in_function_template
+ : diag::ext_template_parameter_default_in_function_template)
+ << DefArgRange;
+ return false;
+
+ case Sema::TPC_ClassTemplateMember:
+ // C++0x [temp.param]p9:
+ // A default template-argument shall not be specified in the
+ // template-parameter-lists of the definition of a member of a
+ // class template that appears outside of the member's class.
+ S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
+ << DefArgRange;
+ return true;
+
+ case Sema::TPC_FriendFunctionTemplate:
+ // C++ [temp.param]p9:
+ // A default template-argument shall not be specified in a
+ // friend template declaration.
+ S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
+ << DefArgRange;
+ return true;
+
+ // FIXME: C++0x [temp.param]p9 allows default template-arguments
+ // for friend function templates if there is only a single
+ // declaration (and it is a definition). Strange!
+ }
+
+ llvm_unreachable("Invalid TemplateParamListContext!");
+}
+
+/// \brief Check for unexpanded parameter packs within the template parameters
+/// of a template template parameter, recursively.
+static bool DiagnoseUnexpandedParameterPacks(Sema &S,
+ TemplateTemplateParmDecl *TTP) {
+ TemplateParameterList *Params = TTP->getTemplateParameters();
+ for (unsigned I = 0, N = Params->size(); I != N; ++I) {
+ NamedDecl *P = Params->getParam(I);
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
+ if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
+ NTTP->getTypeSourceInfo(),
+ Sema::UPPC_NonTypeTemplateParameterType))
+ return true;
+
+ continue;
+ }
+
+ if (TemplateTemplateParmDecl *InnerTTP
+ = dyn_cast<TemplateTemplateParmDecl>(P))
+ if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Checks the validity of a template parameter list, possibly
+/// considering the template parameter list from a previous
+/// declaration.
+///
+/// If an "old" template parameter list is provided, it must be
+/// equivalent (per TemplateParameterListsAreEqual) to the "new"
+/// template parameter list.
+///
+/// \param NewParams Template parameter list for a new template
+/// declaration. This template parameter list will be updated with any
+/// default arguments that are carried through from the previous
+/// template parameter list.
+///
+/// \param OldParams If provided, template parameter list from a
+/// previous declaration of the same template. Default template
+/// arguments will be merged from the old template parameter list to
+/// the new template parameter list.
+///
+/// \param TPC Describes the context in which we are checking the given
+/// template parameter list.
+///
+/// \returns true if an error occurred, false otherwise.
+bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
+ TemplateParameterList *OldParams,
+ TemplateParamListContext TPC) {
+ bool Invalid = false;
+
+ // C++ [temp.param]p10:
+ // The set of default template-arguments available for use with a
+ // template declaration or definition is obtained by merging the
+ // default arguments from the definition (if in scope) and all
+ // declarations in scope in the same way default function
+ // arguments are (8.3.6).
+ bool SawDefaultArgument = false;
+ SourceLocation PreviousDefaultArgLoc;
+
+ // Dummy initialization to avoid warnings.
+ TemplateParameterList::iterator OldParam = NewParams->end();
+ if (OldParams)
+ OldParam = OldParams->begin();
+
+ bool RemoveDefaultArguments = false;
+ for (TemplateParameterList::iterator NewParam = NewParams->begin(),
+ NewParamEnd = NewParams->end();
+ NewParam != NewParamEnd; ++NewParam) {
+ // Variables used to diagnose redundant default arguments
+ bool RedundantDefaultArg = false;
+ SourceLocation OldDefaultLoc;
+ SourceLocation NewDefaultLoc;
+
+ // Variable used to diagnose missing default arguments
+ bool MissingDefaultArg = false;
+
+ // Variable used to diagnose non-final parameter packs
+ bool SawParameterPack = false;
+
+ if (TemplateTypeParmDecl *NewTypeParm
+ = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
+ // Check the presence of a default argument here.
+ if (NewTypeParm->hasDefaultArgument() &&
+ DiagnoseDefaultTemplateArgument(*this, TPC,
+ NewTypeParm->getLocation(),
+ NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
+ .getSourceRange()))
+ NewTypeParm->removeDefaultArgument();
+
+ // Merge default arguments for template type parameters.
+ TemplateTypeParmDecl *OldTypeParm
+ = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
+
+ if (NewTypeParm->isParameterPack()) {
+ assert(!NewTypeParm->hasDefaultArgument() &&
+ "Parameter packs can't have a default argument!");
+ SawParameterPack = true;
+ } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
+ NewTypeParm->hasDefaultArgument()) {
+ OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
+ NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
+ SawDefaultArgument = true;
+ RedundantDefaultArg = true;
+ PreviousDefaultArgLoc = NewDefaultLoc;
+ } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
+ // Merge the default argument from the old declaration to the
+ // new declaration.
+ SawDefaultArgument = true;
+ NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
+ true);
+ PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
+ } else if (NewTypeParm->hasDefaultArgument()) {
+ SawDefaultArgument = true;
+ PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
+ } else if (SawDefaultArgument)
+ MissingDefaultArg = true;
+ } else if (NonTypeTemplateParmDecl *NewNonTypeParm
+ = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
+ NewNonTypeParm->getTypeSourceInfo(),
+ UPPC_NonTypeTemplateParameterType)) {
+ Invalid = true;
+ continue;
+ }
+
+ // Check the presence of a default argument here.
+ if (NewNonTypeParm->hasDefaultArgument() &&
+ DiagnoseDefaultTemplateArgument(*this, TPC,
+ NewNonTypeParm->getLocation(),
+ NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
+ NewNonTypeParm->removeDefaultArgument();
+ }
+
+ // Merge default arguments for non-type template parameters
+ NonTypeTemplateParmDecl *OldNonTypeParm
+ = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
+ if (NewNonTypeParm->isParameterPack()) {
+ assert(!NewNonTypeParm->hasDefaultArgument() &&
+ "Parameter packs can't have a default argument!");
+ SawParameterPack = true;
+ } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
+ NewNonTypeParm->hasDefaultArgument()) {
+ OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
+ NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
+ SawDefaultArgument = true;
+ RedundantDefaultArg = true;
+ PreviousDefaultArgLoc = NewDefaultLoc;
+ } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
+ // Merge the default argument from the old declaration to the
+ // new declaration.
+ SawDefaultArgument = true;
+ // FIXME: We need to create a new kind of "default argument"
+ // expression that points to a previous non-type template
+ // parameter.
+ NewNonTypeParm->setDefaultArgument(
+ OldNonTypeParm->getDefaultArgument(),
+ /*Inherited=*/ true);
+ PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
+ } else if (NewNonTypeParm->hasDefaultArgument()) {
+ SawDefaultArgument = true;
+ PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
+ } else if (SawDefaultArgument)
+ MissingDefaultArg = true;
+ } else {
+ TemplateTemplateParmDecl *NewTemplateParm
+ = cast<TemplateTemplateParmDecl>(*NewParam);
+
+ // Check for unexpanded parameter packs, recursively.
+ if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
+ Invalid = true;
+ continue;
+ }
+
+ // Check the presence of a default argument here.
+ if (NewTemplateParm->hasDefaultArgument() &&
+ DiagnoseDefaultTemplateArgument(*this, TPC,
+ NewTemplateParm->getLocation(),
+ NewTemplateParm->getDefaultArgument().getSourceRange()))
+ NewTemplateParm->removeDefaultArgument();
+
+ // Merge default arguments for template template parameters
+ TemplateTemplateParmDecl *OldTemplateParm
+ = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
+ if (NewTemplateParm->isParameterPack()) {
+ assert(!NewTemplateParm->hasDefaultArgument() &&
+ "Parameter packs can't have a default argument!");
+ SawParameterPack = true;
+ } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
+ NewTemplateParm->hasDefaultArgument()) {
+ OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
+ NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
+ SawDefaultArgument = true;
+ RedundantDefaultArg = true;
+ PreviousDefaultArgLoc = NewDefaultLoc;
+ } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
+ // Merge the default argument from the old declaration to the
+ // new declaration.
+ SawDefaultArgument = true;
+ // FIXME: We need to create a new kind of "default argument" expression
+ // that points to a previous template template parameter.
+ NewTemplateParm->setDefaultArgument(
+ OldTemplateParm->getDefaultArgument(),
+ /*Inherited=*/ true);
+ PreviousDefaultArgLoc
+ = OldTemplateParm->getDefaultArgument().getLocation();
+ } else if (NewTemplateParm->hasDefaultArgument()) {
+ SawDefaultArgument = true;
+ PreviousDefaultArgLoc
+ = NewTemplateParm->getDefaultArgument().getLocation();
+ } else if (SawDefaultArgument)
+ MissingDefaultArg = true;
+ }
+
+ // C++0x [temp.param]p11:
+ // If a template parameter of a primary class template or alias template
+ // is a template parameter pack, it shall be the last template parameter.
+ if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
+ (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
+ Diag((*NewParam)->getLocation(),
+ diag::err_template_param_pack_must_be_last_template_parameter);
+ Invalid = true;
+ }
+
+ if (RedundantDefaultArg) {
+ // C++ [temp.param]p12:
+ // A template-parameter shall not be given default arguments
+ // by two different declarations in the same scope.
+ Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
+ Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
+ Invalid = true;
+ } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
+ // C++ [temp.param]p11:
+ // If a template-parameter of a class template has a default
+ // template-argument, each subsequent template-parameter shall either
+ // have a default template-argument supplied or be a template parameter
+ // pack.
+ Diag((*NewParam)->getLocation(),
+ diag::err_template_param_default_arg_missing);
+ Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
+ Invalid = true;
+ RemoveDefaultArguments = true;
+ }
+
+ // If we have an old template parameter list that we're merging
+ // in, move on to the next parameter.
+ if (OldParams)
+ ++OldParam;
+ }
+
+ // We were missing some default arguments at the end of the list, so remove
+ // all of the default arguments.
+ if (RemoveDefaultArguments) {
+ for (TemplateParameterList::iterator NewParam = NewParams->begin(),
+ NewParamEnd = NewParams->end();
+ NewParam != NewParamEnd; ++NewParam) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
+ TTP->removeDefaultArgument();
+ else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
+ NTTP->removeDefaultArgument();
+ else
+ cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
+ }
+ }
+
+ return Invalid;
+}
+
+namespace {
+
+/// A class which looks for a use of a certain level of template
+/// parameter.
+struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
+ typedef RecursiveASTVisitor<DependencyChecker> super;
+
+ unsigned Depth;
+ bool Match;
+
+ DependencyChecker(TemplateParameterList *Params) : Match(false) {
+ NamedDecl *ND = Params->getParam(0);
+ if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
+ Depth = PD->getDepth();
+ } else if (NonTypeTemplateParmDecl *PD =
+ dyn_cast<NonTypeTemplateParmDecl>(ND)) {
+ Depth = PD->getDepth();
+ } else {
+ Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
+ }
+ }
+
+ bool Matches(unsigned ParmDepth) {
+ if (ParmDepth >= Depth) {
+ Match = true;
+ return true;
+ }
+ return false;
+ }
+
+ bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
+ return !Matches(T->getDepth());
+ }
+
+ bool TraverseTemplateName(TemplateName N) {
+ if (TemplateTemplateParmDecl *PD =
+ dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
+ if (Matches(PD->getDepth())) return false;
+ return super::TraverseTemplateName(N);
+ }
+
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ if (NonTypeTemplateParmDecl *PD =
+ dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
+ if (PD->getDepth() == Depth) {
+ Match = true;
+ return false;
+ }
+ }
+ return super::VisitDeclRefExpr(E);
+ }
+
+ bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
+ return TraverseType(T->getInjectedSpecializationType());
+ }
+};
+}
+
+/// Determines whether a given type depends on the given parameter
+/// list.
+static bool
+DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
+ DependencyChecker Checker(Params);
+ Checker.TraverseType(T);
+ return Checker.Match;
+}
+
+// Find the source range corresponding to the named type in the given
+// nested-name-specifier, if any.
+static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
+ QualType T,
+ const CXXScopeSpec &SS) {
+ NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
+ while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
+ if (const Type *CurType = NNS->getAsType()) {
+ if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
+ return NNSLoc.getTypeLoc().getSourceRange();
+ } else
+ break;
+
+ NNSLoc = NNSLoc.getPrefix();
+ }
+
+ return SourceRange();
+}
+
+/// \brief Match the given template parameter lists to the given scope
+/// specifier, returning the template parameter list that applies to the
+/// name.
+///
+/// \param DeclStartLoc the start of the declaration that has a scope
+/// specifier or a template parameter list.
+///
+/// \param DeclLoc The location of the declaration itself.
+///
+/// \param SS the scope specifier that will be matched to the given template
+/// parameter lists. This scope specifier precedes a qualified name that is
+/// being declared.
+///
+/// \param ParamLists the template parameter lists, from the outermost to the
+/// innermost template parameter lists.
+///
+/// \param NumParamLists the number of template parameter lists in ParamLists.
+///
+/// \param IsFriend Whether to apply the slightly different rules for
+/// matching template parameters to scope specifiers in friend
+/// declarations.
+///
+/// \param IsExplicitSpecialization will be set true if the entity being
+/// declared is an explicit specialization, false otherwise.
+///
+/// \returns the template parameter list, if any, that corresponds to the
+/// name that is preceded by the scope specifier @p SS. This template
+/// parameter list may have template parameters (if we're declaring a
+/// template) or may have no template parameters (if we're declaring a
+/// template specialization), or may be NULL (if what we're declaring isn't
+/// itself a template).
+TemplateParameterList *
+Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
+ SourceLocation DeclLoc,
+ const CXXScopeSpec &SS,
+ TemplateParameterList **ParamLists,
+ unsigned NumParamLists,
+ bool IsFriend,
+ bool &IsExplicitSpecialization,
+ bool &Invalid) {
+ IsExplicitSpecialization = false;
+ Invalid = false;
+
+ // The sequence of nested types to which we will match up the template
+ // parameter lists. We first build this list by starting with the type named
+ // by the nested-name-specifier and walking out until we run out of types.
+ SmallVector<QualType, 4> NestedTypes;
+ QualType T;
+ if (SS.getScopeRep()) {
+ if (CXXRecordDecl *Record
+ = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
+ T = Context.getTypeDeclType(Record);
+ else
+ T = QualType(SS.getScopeRep()->getAsType(), 0);
+ }
+
+ // If we found an explicit specialization that prevents us from needing
+ // 'template<>' headers, this will be set to the location of that
+ // explicit specialization.
+ SourceLocation ExplicitSpecLoc;
+
+ while (!T.isNull()) {
+ NestedTypes.push_back(T);
+
+ // Retrieve the parent of a record type.
+ if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
+ // If this type is an explicit specialization, we're done.
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
+ if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
+ Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
+ ExplicitSpecLoc = Spec->getLocation();
+ break;
+ }
+ } else if (Record->getTemplateSpecializationKind()
+ == TSK_ExplicitSpecialization) {
+ ExplicitSpecLoc = Record->getLocation();
+ break;
+ }
+
+ if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
+ T = Context.getTypeDeclType(Parent);
+ else
+ T = QualType();
+ continue;
+ }
+
+ if (const TemplateSpecializationType *TST
+ = T->getAs<TemplateSpecializationType>()) {
+ if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
+ if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
+ T = Context.getTypeDeclType(Parent);
+ else
+ T = QualType();
+ continue;
+ }
+ }
+
+ // Look one step prior in a dependent template specialization type.
+ if (const DependentTemplateSpecializationType *DependentTST
+ = T->getAs<DependentTemplateSpecializationType>()) {
+ if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
+ T = QualType(NNS->getAsType(), 0);
+ else
+ T = QualType();
+ continue;
+ }
+
+ // Look one step prior in a dependent name type.
+ if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
+ if (NestedNameSpecifier *NNS = DependentName->getQualifier())
+ T = QualType(NNS->getAsType(), 0);
+ else
+ T = QualType();
+ continue;
+ }
+
+ // Retrieve the parent of an enumeration type.
+ if (const EnumType *EnumT = T->getAs<EnumType>()) {
+ // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
+ // check here.
+ EnumDecl *Enum = EnumT->getDecl();
+
+ // Get to the parent type.
+ if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
+ T = Context.getTypeDeclType(Parent);
+ else
+ T = QualType();
+ continue;
+ }
+
+ T = QualType();
+ }
+ // Reverse the nested types list, since we want to traverse from the outermost
+ // to the innermost while checking template-parameter-lists.
+ std::reverse(NestedTypes.begin(), NestedTypes.end());
+
+ // C++0x [temp.expl.spec]p17:
+ // A member or a member template may be nested within many
+ // enclosing class templates. In an explicit specialization for
+ // such a member, the member declaration shall be preceded by a
+ // template<> for each enclosing class template that is
+ // explicitly specialized.
+ bool SawNonEmptyTemplateParameterList = false;
+ unsigned ParamIdx = 0;
+ for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
+ ++TypeIdx) {
+ T = NestedTypes[TypeIdx];
+
+ // Whether we expect a 'template<>' header.
+ bool NeedEmptyTemplateHeader = false;
+
+ // Whether we expect a template header with parameters.
+ bool NeedNonemptyTemplateHeader = false;
+
+ // For a dependent type, the set of template parameters that we
+ // expect to see.
+ TemplateParameterList *ExpectedTemplateParams = 0;
+
+ // C++0x [temp.expl.spec]p15:
+ // A member or a member template may be nested within many enclosing
+ // class templates. In an explicit specialization for such a member, the
+ // member declaration shall be preceded by a template<> for each
+ // enclosing class template that is explicitly specialized.
+ if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
+ if (ClassTemplatePartialSpecializationDecl *Partial
+ = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
+ ExpectedTemplateParams = Partial->getTemplateParameters();
+ NeedNonemptyTemplateHeader = true;
+ } else if (Record->isDependentType()) {
+ if (Record->getDescribedClassTemplate()) {
+ ExpectedTemplateParams = Record->getDescribedClassTemplate()
+ ->getTemplateParameters();
+ NeedNonemptyTemplateHeader = true;
+ }
+ } else if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
+ // C++0x [temp.expl.spec]p4:
+ // Members of an explicitly specialized class template are defined
+ // in the same manner as members of normal classes, and not using
+ // the template<> syntax.
+ if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
+ NeedEmptyTemplateHeader = true;
+ else
+ continue;
+ } else if (Record->getTemplateSpecializationKind()) {
+ if (Record->getTemplateSpecializationKind()
+ != TSK_ExplicitSpecialization &&
+ TypeIdx == NumTypes - 1)
+ IsExplicitSpecialization = true;
+
+ continue;
+ }
+ } else if (const TemplateSpecializationType *TST
+ = T->getAs<TemplateSpecializationType>()) {
+ if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
+ ExpectedTemplateParams = Template->getTemplateParameters();
+ NeedNonemptyTemplateHeader = true;
+ }
+ } else if (T->getAs<DependentTemplateSpecializationType>()) {
+ // FIXME: We actually could/should check the template arguments here
+ // against the corresponding template parameter list.
+ NeedNonemptyTemplateHeader = false;
+ }
+
+ // C++ [temp.expl.spec]p16:
+ // In an explicit specialization declaration for a member of a class
+ // template or a member template that ap- pears in namespace scope, the
+ // member template and some of its enclosing class templates may remain
+ // unspecialized, except that the declaration shall not explicitly
+ // specialize a class member template if its en- closing class templates
+ // are not explicitly specialized as well.
+ if (ParamIdx < NumParamLists) {
+ if (ParamLists[ParamIdx]->size() == 0) {
+ if (SawNonEmptyTemplateParameterList) {
+ Diag(DeclLoc, diag::err_specialize_member_of_template)
+ << ParamLists[ParamIdx]->getSourceRange();
+ Invalid = true;
+ IsExplicitSpecialization = false;
+ return 0;
+ }
+ } else
+ SawNonEmptyTemplateParameterList = true;
+ }
+
+ if (NeedEmptyTemplateHeader) {
+ // If we're on the last of the types, and we need a 'template<>' header
+ // here, then it's an explicit specialization.
+ if (TypeIdx == NumTypes - 1)
+ IsExplicitSpecialization = true;
+
+ if (ParamIdx < NumParamLists) {
+ if (ParamLists[ParamIdx]->size() > 0) {
+ // The header has template parameters when it shouldn't. Complain.
+ Diag(ParamLists[ParamIdx]->getTemplateLoc(),
+ diag::err_template_param_list_matches_nontemplate)
+ << T
+ << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
+ ParamLists[ParamIdx]->getRAngleLoc())
+ << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
+ Invalid = true;
+ return 0;
+ }
+
+ // Consume this template header.
+ ++ParamIdx;
+ continue;
+ }
+
+ if (!IsFriend) {
+ // We don't have a template header, but we should.
+ SourceLocation ExpectedTemplateLoc;
+ if (NumParamLists > 0)
+ ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
+ else
+ ExpectedTemplateLoc = DeclStartLoc;
+
+ Diag(DeclLoc, diag::err_template_spec_needs_header)
+ << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
+ << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
+ }
+
+ continue;
+ }
+
+ if (NeedNonemptyTemplateHeader) {
+ // In friend declarations we can have template-ids which don't
+ // depend on the corresponding template parameter lists. But
+ // assume that empty parameter lists are supposed to match this
+ // template-id.
+ if (IsFriend && T->isDependentType()) {
+ if (ParamIdx < NumParamLists &&
+ DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
+ ExpectedTemplateParams = 0;
+ else
+ continue;
+ }
+
+ if (ParamIdx < NumParamLists) {
+ // Check the template parameter list, if we can.
+ if (ExpectedTemplateParams &&
+ !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
+ ExpectedTemplateParams,
+ true, TPL_TemplateMatch))
+ Invalid = true;
+
+ if (!Invalid &&
+ CheckTemplateParameterList(ParamLists[ParamIdx], 0,
+ TPC_ClassTemplateMember))
+ Invalid = true;
+
+ ++ParamIdx;
+ continue;
+ }
+
+ Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
+ << T
+ << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
+ Invalid = true;
+ continue;
+ }
+ }
+
+ // If there were at least as many template-ids as there were template
+ // parameter lists, then there are no template parameter lists remaining for
+ // the declaration itself.
+ if (ParamIdx >= NumParamLists)
+ return 0;
+
+ // If there were too many template parameter lists, complain about that now.
+ if (ParamIdx < NumParamLists - 1) {
+ bool HasAnyExplicitSpecHeader = false;
+ bool AllExplicitSpecHeaders = true;
+ for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
+ if (ParamLists[I]->size() == 0)
+ HasAnyExplicitSpecHeader = true;
+ else
+ AllExplicitSpecHeaders = false;
+ }
+
+ Diag(ParamLists[ParamIdx]->getTemplateLoc(),
+ AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
+ : diag::err_template_spec_extra_headers)
+ << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
+ ParamLists[NumParamLists - 2]->getRAngleLoc());
+
+ // If there was a specialization somewhere, such that 'template<>' is
+ // not required, and there were any 'template<>' headers, note where the
+ // specialization occurred.
+ if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
+ Diag(ExplicitSpecLoc,
+ diag::note_explicit_template_spec_does_not_need_header)
+ << NestedTypes.back();
+
+ // We have a template parameter list with no corresponding scope, which
+ // means that the resulting template declaration can't be instantiated
+ // properly (we'll end up with dependent nodes when we shouldn't).
+ if (!AllExplicitSpecHeaders)
+ Invalid = true;
+ }
+
+ // C++ [temp.expl.spec]p16:
+ // In an explicit specialization declaration for a member of a class
+ // template or a member template that ap- pears in namespace scope, the
+ // member template and some of its enclosing class templates may remain
+ // unspecialized, except that the declaration shall not explicitly
+ // specialize a class member template if its en- closing class templates
+ // are not explicitly specialized as well.
+ if (ParamLists[NumParamLists - 1]->size() == 0 &&
+ SawNonEmptyTemplateParameterList) {
+ Diag(DeclLoc, diag::err_specialize_member_of_template)
+ << ParamLists[ParamIdx]->getSourceRange();
+ Invalid = true;
+ IsExplicitSpecialization = false;
+ return 0;
+ }
+
+ // Return the last template parameter list, which corresponds to the
+ // entity being declared.
+ return ParamLists[NumParamLists - 1];
+}
+
+void Sema::NoteAllFoundTemplates(TemplateName Name) {
+ if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
+ Diag(Template->getLocation(), diag::note_template_declared_here)
+ << (isa<FunctionTemplateDecl>(Template)? 0
+ : isa<ClassTemplateDecl>(Template)? 1
+ : isa<TypeAliasTemplateDecl>(Template)? 2
+ : 3)
+ << Template->getDeclName();
+ return;
+ }
+
+ if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
+ for (OverloadedTemplateStorage::iterator I = OST->begin(),
+ IEnd = OST->end();
+ I != IEnd; ++I)
+ Diag((*I)->getLocation(), diag::note_template_declared_here)
+ << 0 << (*I)->getDeclName();
+
+ return;
+ }
+}
+
+QualType Sema::CheckTemplateIdType(TemplateName Name,
+ SourceLocation TemplateLoc,
+ TemplateArgumentListInfo &TemplateArgs) {
+ DependentTemplateName *DTN
+ = Name.getUnderlying().getAsDependentTemplateName();
+ if (DTN && DTN->isIdentifier())
+ // When building a template-id where the template-name is dependent,
+ // assume the template is a type template. Either our assumption is
+ // correct, or the code is ill-formed and will be diagnosed when the
+ // dependent name is substituted.
+ return Context.getDependentTemplateSpecializationType(ETK_None,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+
+ TemplateDecl *Template = Name.getAsTemplateDecl();
+ if (!Template || isa<FunctionTemplateDecl>(Template)) {
+ // We might have a substituted template template parameter pack. If so,
+ // build a template specialization type for it.
+ if (Name.getAsSubstTemplateTemplateParmPack())
+ return Context.getTemplateSpecializationType(Name, TemplateArgs);
+
+ Diag(TemplateLoc, diag::err_template_id_not_a_type)
+ << Name;
+ NoteAllFoundTemplates(Name);
+ return QualType();
+ }
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ SmallVector<TemplateArgument, 4> Converted;
+ bool ExpansionIntoFixedList = false;
+ if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
+ false, Converted, &ExpansionIntoFixedList))
+ return QualType();
+
+ QualType CanonType;
+
+ bool InstantiationDependent = false;
+ TypeAliasTemplateDecl *AliasTemplate = 0;
+ if (!ExpansionIntoFixedList &&
+ (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
+ // Find the canonical type for this type alias template specialization.
+ TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
+ if (Pattern->isInvalidDecl())
+ return QualType();
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+
+ // Only substitute for the innermost template argument list.
+ MultiLevelTemplateArgumentList TemplateArgLists;
+ TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
+ unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
+ for (unsigned I = 0; I < Depth; ++I)
+ TemplateArgLists.addOuterTemplateArguments(0, 0);
+
+ InstantiatingTemplate Inst(*this, TemplateLoc, Template);
+ CanonType = SubstType(Pattern->getUnderlyingType(),
+ TemplateArgLists, AliasTemplate->getLocation(),
+ AliasTemplate->getDeclName());
+ if (CanonType.isNull())
+ return QualType();
+ } else if (Name.isDependent() ||
+ TemplateSpecializationType::anyDependentTemplateArguments(
+ TemplateArgs, InstantiationDependent)) {
+ // This class template specialization is a dependent
+ // type. Therefore, its canonical type is another class template
+ // specialization type that contains all of the converted
+ // arguments in canonical form. This ensures that, e.g., A<T> and
+ // A<T, T> have identical types when A is declared as:
+ //
+ // template<typename T, typename U = T> struct A;
+ TemplateName CanonName = Context.getCanonicalTemplateName(Name);
+ CanonType = Context.getTemplateSpecializationType(CanonName,
+ Converted.data(),
+ Converted.size());
+
+ // FIXME: CanonType is not actually the canonical type, and unfortunately
+ // it is a TemplateSpecializationType that we will never use again.
+ // In the future, we need to teach getTemplateSpecializationType to only
+ // build the canonical type and return that to us.
+ CanonType = Context.getCanonicalType(CanonType);
+
+ // This might work out to be a current instantiation, in which
+ // case the canonical type needs to be the InjectedClassNameType.
+ //
+ // TODO: in theory this could be a simple hashtable lookup; most
+ // changes to CurContext don't change the set of current
+ // instantiations.
+ if (isa<ClassTemplateDecl>(Template)) {
+ for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
+ // If we get out to a namespace, we're done.
+ if (Ctx->isFileContext()) break;
+
+ // If this isn't a record, keep looking.
+ CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
+ if (!Record) continue;
+
+ // Look for one of the two cases with InjectedClassNameTypes
+ // and check whether it's the same template.
+ if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
+ !Record->getDescribedClassTemplate())
+ continue;
+
+ // Fetch the injected class name type and check whether its
+ // injected type is equal to the type we just built.
+ QualType ICNT = Context.getTypeDeclType(Record);
+ QualType Injected = cast<InjectedClassNameType>(ICNT)
+ ->getInjectedSpecializationType();
+
+ if (CanonType != Injected->getCanonicalTypeInternal())
+ continue;
+
+ // If so, the canonical type of this TST is the injected
+ // class name type of the record we just found.
+ assert(ICNT.isCanonical());
+ CanonType = ICNT;
+ break;
+ }
+ }
+ } else if (ClassTemplateDecl *ClassTemplate
+ = dyn_cast<ClassTemplateDecl>(Template)) {
+ // Find the class template specialization declaration that
+ // corresponds to these arguments.
+ void *InsertPos = 0;
+ ClassTemplateSpecializationDecl *Decl
+ = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
+ InsertPos);
+ if (!Decl) {
+ // This is the first time we have referenced this class template
+ // specialization. Create the canonical declaration and add it to
+ // the set of specializations.
+ Decl = ClassTemplateSpecializationDecl::Create(Context,
+ ClassTemplate->getTemplatedDecl()->getTagKind(),
+ ClassTemplate->getDeclContext(),
+ ClassTemplate->getTemplatedDecl()->getLocStart(),
+ ClassTemplate->getLocation(),
+ ClassTemplate,
+ Converted.data(),
+ Converted.size(), 0);
+ ClassTemplate->AddSpecialization(Decl, InsertPos);
+ Decl->setLexicalDeclContext(CurContext);
+ }
+
+ CanonType = Context.getTypeDeclType(Decl);
+ assert(isa<RecordType>(CanonType) &&
+ "type of non-dependent specialization is not a RecordType");
+ }
+
+ // Build the fully-sugared type for this class template
+ // specialization, which refers back to the class template
+ // specialization we created or found.
+ return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
+}
+
+TypeResult
+Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
+ TemplateTy TemplateD, SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc,
+ bool IsCtorOrDtorName) {
+ if (SS.isInvalid())
+ return true;
+
+ TemplateName Template = TemplateD.getAsVal<TemplateName>();
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
+ QualType T
+ = Context.getDependentTemplateSpecializationType(ETK_None,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+ // Build type-source information.
+ TypeLocBuilder TLB;
+ DependentTemplateSpecializationTypeLoc SpecTL
+ = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
+ SpecTL.setElaboratedKeywordLoc(SourceLocation());
+ SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+ return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
+ }
+
+ QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
+ TemplateArgsIn.release();
+
+ if (Result.isNull())
+ return true;
+
+ // Build type-source information.
+ TypeLocBuilder TLB;
+ TemplateSpecializationTypeLoc SpecTL
+ = TLB.push<TemplateSpecializationTypeLoc>(Result);
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
+ SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
+
+ // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
+ // constructor or destructor name (in such a case, the scope specifier
+ // will be attached to the enclosing Decl or Expr node).
+ if (SS.isNotEmpty() && !IsCtorOrDtorName) {
+ // Create an elaborated-type-specifier containing the nested-name-specifier.
+ Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
+ ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
+ ElabTL.setElaboratedKeywordLoc(SourceLocation());
+ ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ }
+
+ return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
+}
+
+TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
+ TypeSpecifierType TagSpec,
+ SourceLocation TagLoc,
+ CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ TemplateTy TemplateD,
+ SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc) {
+ TemplateName Template = TemplateD.getAsVal<TemplateName>();
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ // Determine the tag kind
+ TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ ElaboratedTypeKeyword Keyword
+ = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
+
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
+ QualType T = Context.getDependentTemplateSpecializationType(Keyword,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+
+ // Build type-source information.
+ TypeLocBuilder TLB;
+ DependentTemplateSpecializationTypeLoc SpecTL
+ = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
+ SpecTL.setElaboratedKeywordLoc(TagLoc);
+ SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+ return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
+ }
+
+ if (TypeAliasTemplateDecl *TAT =
+ dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
+ // C++0x [dcl.type.elab]p2:
+ // If the identifier resolves to a typedef-name or the simple-template-id
+ // resolves to an alias template specialization, the
+ // elaborated-type-specifier is ill-formed.
+ Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
+ Diag(TAT->getLocation(), diag::note_declared_at);
+ }
+
+ QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
+ if (Result.isNull())
+ return TypeResult(true);
+
+ // Check the tag kind
+ if (const RecordType *RT = Result->getAs<RecordType>()) {
+ RecordDecl *D = RT->getDecl();
+
+ IdentifierInfo *Id = D->getIdentifier();
+ assert(Id && "templated class must have an identifier");
+
+ if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
+ TagLoc, *Id)) {
+ Diag(TagLoc, diag::err_use_with_wrong_tag)
+ << Result
+ << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
+ Diag(D->getLocation(), diag::note_previous_use);
+ }
+ }
+
+ // Provide source-location information for the template specialization.
+ TypeLocBuilder TLB;
+ TemplateSpecializationTypeLoc SpecTL
+ = TLB.push<TemplateSpecializationTypeLoc>(Result);
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
+ SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
+
+ // Construct an elaborated type containing the nested-name-specifier (if any)
+ // and tag keyword.
+ Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
+ ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
+ ElabTL.setElaboratedKeywordLoc(TagLoc);
+ ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
+}
+
+ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ LookupResult &R,
+ bool RequiresADL,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ // FIXME: Can we do any checking at this point? I guess we could check the
+ // template arguments that we have against the template name, if the template
+ // name refers to a single template. That's not a terribly common case,
+ // though.
+ // foo<int> could identify a single function unambiguously
+ // This approach does NOT work, since f<int>(1);
+ // gets resolved prior to resorting to overload resolution
+ // i.e., template<class T> void f(double);
+ // vs template<class T, class U> void f(U);
+
+ // These should be filtered out by our callers.
+ assert(!R.empty() && "empty lookup results when building templateid");
+ assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
+
+ // We don't want lookup warnings at this point.
+ R.suppressDiagnostics();
+
+ UnresolvedLookupExpr *ULE
+ = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
+ SS.getWithLocInContext(Context),
+ TemplateKWLoc,
+ R.getLookupNameInfo(),
+ RequiresADL, TemplateArgs,
+ R.begin(), R.end());
+
+ return Owned(ULE);
+}
+
+// We actually only call this from template instantiation.
+ExprResult
+Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ assert(TemplateArgs || TemplateKWLoc.isValid());
+ DeclContext *DC;
+ if (!(DC = computeDeclContext(SS, false)) ||
+ DC->isDependentContext() ||
+ RequireCompleteDeclContext(SS, DC))
+ return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
+
+ bool MemberOfUnknownSpecialization;
+ LookupResult R(*this, NameInfo, LookupOrdinaryName);
+ LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
+ MemberOfUnknownSpecialization);
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ if (R.empty()) {
+ Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
+ << NameInfo.getName() << SS.getRange();
+ return ExprError();
+ }
+
+ if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
+ Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
+ << (NestedNameSpecifier*) SS.getScopeRep()
+ << NameInfo.getName() << SS.getRange();
+ Diag(Temp->getLocation(), diag::note_referenced_class_template);
+ return ExprError();
+ }
+
+ return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
+}
+
+/// \brief Form a dependent template name.
+///
+/// This action forms a dependent template name given the template
+/// name and its (presumably dependent) scope specifier. For
+/// example, given "MetaFun::template apply", the scope specifier \p
+/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
+/// of the "template" keyword, and "apply" is the \p Name.
+TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
+ CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ UnqualifiedId &Name,
+ ParsedType ObjectType,
+ bool EnteringContext,
+ TemplateTy &Result) {
+ if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
+ Diag(TemplateKWLoc,
+ getLangOpts().CPlusPlus0x ?
+ diag::warn_cxx98_compat_template_outside_of_template :
+ diag::ext_template_outside_of_template)
+ << FixItHint::CreateRemoval(TemplateKWLoc);
+
+ DeclContext *LookupCtx = 0;
+ if (SS.isSet())
+ LookupCtx = computeDeclContext(SS, EnteringContext);
+ if (!LookupCtx && ObjectType)
+ LookupCtx = computeDeclContext(ObjectType.get());
+ if (LookupCtx) {
+ // C++0x [temp.names]p5:
+ // If a name prefixed by the keyword template is not the name of
+ // a template, the program is ill-formed. [Note: the keyword
+ // template may not be applied to non-template members of class
+ // templates. -end note ] [ Note: as is the case with the
+ // typename prefix, the template prefix is allowed in cases
+ // where it is not strictly necessary; i.e., when the
+ // nested-name-specifier or the expression on the left of the ->
+ // or . is not dependent on a template-parameter, or the use
+ // does not appear in the scope of a template. -end note]
+ //
+ // Note: C++03 was more strict here, because it banned the use of
+ // the "template" keyword prior to a template-name that was not a
+ // dependent name. C++ DR468 relaxed this requirement (the
+ // "template" keyword is now permitted). We follow the C++0x
+ // rules, even in C++03 mode with a warning, retroactively applying the DR.
+ bool MemberOfUnknownSpecialization;
+ TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
+ ObjectType, EnteringContext, Result,
+ MemberOfUnknownSpecialization);
+ if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
+ isa<CXXRecordDecl>(LookupCtx) &&
+ (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
+ cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
+ // This is a dependent template. Handle it below.
+ } else if (TNK == TNK_Non_template) {
+ Diag(Name.getLocStart(),
+ diag::err_template_kw_refers_to_non_template)
+ << GetNameFromUnqualifiedId(Name).getName()
+ << Name.getSourceRange()
+ << TemplateKWLoc;
+ return TNK_Non_template;
+ } else {
+ // We found something; return it.
+ return TNK;
+ }
+ }
+
+ NestedNameSpecifier *Qualifier
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+
+ switch (Name.getKind()) {
+ case UnqualifiedId::IK_Identifier:
+ Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
+ Name.Identifier));
+ return TNK_Dependent_template_name;
+
+ case UnqualifiedId::IK_OperatorFunctionId:
+ Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
+ Name.OperatorFunctionId.Operator));
+ return TNK_Dependent_template_name;
+
+ case UnqualifiedId::IK_LiteralOperatorId:
+ llvm_unreachable(
+ "We don't support these; Parse shouldn't have allowed propagation");
+
+ default:
+ break;
+ }
+
+ Diag(Name.getLocStart(),
+ diag::err_template_kw_refers_to_non_template)
+ << GetNameFromUnqualifiedId(Name).getName()
+ << Name.getSourceRange()
+ << TemplateKWLoc;
+ return TNK_Non_template;
+}
+
+bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
+ const TemplateArgumentLoc &AL,
+ SmallVectorImpl<TemplateArgument> &Converted) {
+ const TemplateArgument &Arg = AL.getArgument();
+
+ // Check template type parameter.
+ switch(Arg.getKind()) {
+ case TemplateArgument::Type:
+ // C++ [temp.arg.type]p1:
+ // A template-argument for a template-parameter which is a
+ // type shall be a type-id.
+ break;
+ case TemplateArgument::Template: {
+ // We have a template type parameter but the template argument
+ // is a template without any arguments.
+ SourceRange SR = AL.getSourceRange();
+ TemplateName Name = Arg.getAsTemplate();
+ Diag(SR.getBegin(), diag::err_template_missing_args)
+ << Name << SR;
+ if (TemplateDecl *Decl = Name.getAsTemplateDecl())
+ Diag(Decl->getLocation(), diag::note_template_decl_here);
+
+ return true;
+ }
+ default: {
+ // We have a template type parameter but the template argument
+ // is not a type.
+ SourceRange SR = AL.getSourceRange();
+ Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
+ Diag(Param->getLocation(), diag::note_template_param_here);
+
+ return true;
+ }
+ }
+
+ if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
+ return true;
+
+ // Add the converted template type argument.
+ QualType ArgType = Context.getCanonicalType(Arg.getAsType());
+
+ // Objective-C ARC:
+ // If an explicitly-specified template argument type is a lifetime type
+ // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
+ if (getLangOpts().ObjCAutoRefCount &&
+ ArgType->isObjCLifetimeType() &&
+ !ArgType.getObjCLifetime()) {
+ Qualifiers Qs;
+ Qs.setObjCLifetime(Qualifiers::OCL_Strong);
+ ArgType = Context.getQualifiedType(ArgType, Qs);
+ }
+
+ Converted.push_back(TemplateArgument(ArgType));
+ return false;
+}
+
+/// \brief Substitute template arguments into the default template argument for
+/// the given template type parameter.
+///
+/// \param SemaRef the semantic analysis object for which we are performing
+/// the substitution.
+///
+/// \param Template the template that we are synthesizing template arguments
+/// for.
+///
+/// \param TemplateLoc the location of the template name that started the
+/// template-id we are checking.
+///
+/// \param RAngleLoc the location of the right angle bracket ('>') that
+/// terminates the template-id.
+///
+/// \param Param the template template parameter whose default we are
+/// substituting into.
+///
+/// \param Converted the list of template arguments provided for template
+/// parameters that precede \p Param in the template parameter list.
+/// \returns the substituted template argument, or NULL if an error occurred.
+static TypeSourceInfo *
+SubstDefaultTemplateArgument(Sema &SemaRef,
+ TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ TemplateTypeParmDecl *Param,
+ SmallVectorImpl<TemplateArgument> &Converted) {
+ TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
+
+ // If the argument type is dependent, instantiate it now based
+ // on the previously-computed template arguments.
+ if (ArgType->getType()->isDependentType()) {
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+
+ MultiLevelTemplateArgumentList AllTemplateArgs
+ = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
+
+ Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
+ Template, Converted.data(),
+ Converted.size(),
+ SourceRange(TemplateLoc, RAngleLoc));
+
+ ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
+ Param->getDefaultArgumentLoc(),
+ Param->getDeclName());
+ }
+
+ return ArgType;
+}
+
+/// \brief Substitute template arguments into the default template argument for
+/// the given non-type template parameter.
+///
+/// \param SemaRef the semantic analysis object for which we are performing
+/// the substitution.
+///
+/// \param Template the template that we are synthesizing template arguments
+/// for.
+///
+/// \param TemplateLoc the location of the template name that started the
+/// template-id we are checking.
+///
+/// \param RAngleLoc the location of the right angle bracket ('>') that
+/// terminates the template-id.
+///
+/// \param Param the non-type template parameter whose default we are
+/// substituting into.
+///
+/// \param Converted the list of template arguments provided for template
+/// parameters that precede \p Param in the template parameter list.
+///
+/// \returns the substituted template argument, or NULL if an error occurred.
+static ExprResult
+SubstDefaultTemplateArgument(Sema &SemaRef,
+ TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ NonTypeTemplateParmDecl *Param,
+ SmallVectorImpl<TemplateArgument> &Converted) {
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+
+ MultiLevelTemplateArgumentList AllTemplateArgs
+ = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
+
+ Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
+ Template, Converted.data(),
+ Converted.size(),
+ SourceRange(TemplateLoc, RAngleLoc));
+
+ return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
+}
+
+/// \brief Substitute template arguments into the default template argument for
+/// the given template template parameter.
+///
+/// \param SemaRef the semantic analysis object for which we are performing
+/// the substitution.
+///
+/// \param Template the template that we are synthesizing template arguments
+/// for.
+///
+/// \param TemplateLoc the location of the template name that started the
+/// template-id we are checking.
+///
+/// \param RAngleLoc the location of the right angle bracket ('>') that
+/// terminates the template-id.
+///
+/// \param Param the template template parameter whose default we are
+/// substituting into.
+///
+/// \param Converted the list of template arguments provided for template
+/// parameters that precede \p Param in the template parameter list.
+///
+/// \param QualifierLoc Will be set to the nested-name-specifier (with
+/// source-location information) that precedes the template name.
+///
+/// \returns the substituted template argument, or NULL if an error occurred.
+static TemplateName
+SubstDefaultTemplateArgument(Sema &SemaRef,
+ TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ TemplateTemplateParmDecl *Param,
+ SmallVectorImpl<TemplateArgument> &Converted,
+ NestedNameSpecifierLoc &QualifierLoc) {
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+
+ MultiLevelTemplateArgumentList AllTemplateArgs
+ = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
+
+ Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
+ Template, Converted.data(),
+ Converted.size(),
+ SourceRange(TemplateLoc, RAngleLoc));
+
+ // Substitute into the nested-name-specifier first,
+ QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
+ if (QualifierLoc) {
+ QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
+ AllTemplateArgs);
+ if (!QualifierLoc)
+ return TemplateName();
+ }
+
+ return SemaRef.SubstTemplateName(QualifierLoc,
+ Param->getDefaultArgument().getArgument().getAsTemplate(),
+ Param->getDefaultArgument().getTemplateNameLoc(),
+ AllTemplateArgs);
+}
+
+/// \brief If the given template parameter has a default template
+/// argument, substitute into that default template argument and
+/// return the corresponding template argument.
+TemplateArgumentLoc
+Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ Decl *Param,
+ SmallVectorImpl<TemplateArgument> &Converted) {
+ if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
+ if (!TypeParm->hasDefaultArgument())
+ return TemplateArgumentLoc();
+
+ TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ TypeParm,
+ Converted);
+ if (DI)
+ return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
+
+ return TemplateArgumentLoc();
+ }
+
+ if (NonTypeTemplateParmDecl *NonTypeParm
+ = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ if (!NonTypeParm->hasDefaultArgument())
+ return TemplateArgumentLoc();
+
+ ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ NonTypeParm,
+ Converted);
+ if (Arg.isInvalid())
+ return TemplateArgumentLoc();
+
+ Expr *ArgE = Arg.takeAs<Expr>();
+ return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
+ }
+
+ TemplateTemplateParmDecl *TempTempParm
+ = cast<TemplateTemplateParmDecl>(Param);
+ if (!TempTempParm->hasDefaultArgument())
+ return TemplateArgumentLoc();
+
+
+ NestedNameSpecifierLoc QualifierLoc;
+ TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ TempTempParm,
+ Converted,
+ QualifierLoc);
+ if (TName.isNull())
+ return TemplateArgumentLoc();
+
+ return TemplateArgumentLoc(TemplateArgument(TName),
+ TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
+ TempTempParm->getDefaultArgument().getTemplateNameLoc());
+}
+
+/// \brief Check that the given template argument corresponds to the given
+/// template parameter.
+///
+/// \param Param The template parameter against which the argument will be
+/// checked.
+///
+/// \param Arg The template argument.
+///
+/// \param Template The template in which the template argument resides.
+///
+/// \param TemplateLoc The location of the template name for the template
+/// whose argument list we're matching.
+///
+/// \param RAngleLoc The location of the right angle bracket ('>') that closes
+/// the template argument list.
+///
+/// \param ArgumentPackIndex The index into the argument pack where this
+/// argument will be placed. Only valid if the parameter is a parameter pack.
+///
+/// \param Converted The checked, converted argument will be added to the
+/// end of this small vector.
+///
+/// \param CTAK Describes how we arrived at this particular template argument:
+/// explicitly written, deduced, etc.
+///
+/// \returns true on error, false otherwise.
+bool Sema::CheckTemplateArgument(NamedDecl *Param,
+ const TemplateArgumentLoc &Arg,
+ NamedDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ unsigned ArgumentPackIndex,
+ SmallVectorImpl<TemplateArgument> &Converted,
+ CheckTemplateArgumentKind CTAK) {
+ // Check template type parameters.
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
+ return CheckTemplateTypeArgument(TTP, Arg, Converted);
+
+ // Check non-type template parameters.
+ if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ // Do substitution on the type of the non-type template parameter
+ // with the template arguments we've seen thus far. But if the
+ // template has a dependent context then we cannot substitute yet.
+ QualType NTTPType = NTTP->getType();
+ if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
+ NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
+
+ if (NTTPType->isDependentType() &&
+ !isa<TemplateTemplateParmDecl>(Template) &&
+ !Template->getDeclContext()->isDependentContext()) {
+ // Do substitution on the type of the non-type template parameter.
+ InstantiatingTemplate Inst(*this, TemplateLoc, Template,
+ NTTP, Converted.data(), Converted.size(),
+ SourceRange(TemplateLoc, RAngleLoc));
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+ NTTPType = SubstType(NTTPType,
+ MultiLevelTemplateArgumentList(TemplateArgs),
+ NTTP->getLocation(),
+ NTTP->getDeclName());
+ // If that worked, check the non-type template parameter type
+ // for validity.
+ if (!NTTPType.isNull())
+ NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
+ NTTP->getLocation());
+ if (NTTPType.isNull())
+ return true;
+ }
+
+ switch (Arg.getArgument().getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Should never see a NULL template argument here");
+
+ case TemplateArgument::Expression: {
+ TemplateArgument Result;
+ ExprResult Res =
+ CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
+ Result, CTAK);
+ if (Res.isInvalid())
+ return true;
+
+ Converted.push_back(Result);
+ break;
+ }
+
+ case TemplateArgument::Declaration:
+ case TemplateArgument::Integral:
+ // We've already checked this template argument, so just copy
+ // it to the list of converted arguments.
+ Converted.push_back(Arg.getArgument());
+ break;
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ // We were given a template template argument. It may not be ill-formed;
+ // see below.
+ if (DependentTemplateName *DTN
+ = Arg.getArgument().getAsTemplateOrTemplatePattern()
+ .getAsDependentTemplateName()) {
+ // We have a template argument such as \c T::template X, which we
+ // parsed as a template template argument. However, since we now
+ // know that we need a non-type template argument, convert this
+ // template name into an expression.
+
+ DeclarationNameInfo NameInfo(DTN->getIdentifier(),
+ Arg.getTemplateNameLoc());
+
+ CXXScopeSpec SS;
+ SS.Adopt(Arg.getTemplateQualifierLoc());
+ // FIXME: the template-template arg was a DependentTemplateName,
+ // so it was provided with a template keyword. However, its source
+ // location is not stored in the template argument structure.
+ SourceLocation TemplateKWLoc;
+ ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
+ SS.getWithLocInContext(Context),
+ TemplateKWLoc,
+ NameInfo, 0));
+
+ // If we parsed the template argument as a pack expansion, create a
+ // pack expansion expression.
+ if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
+ E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
+ if (E.isInvalid())
+ return true;
+ }
+
+ TemplateArgument Result;
+ E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
+ if (E.isInvalid())
+ return true;
+
+ Converted.push_back(Result);
+ break;
+ }
+
+ // We have a template argument that actually does refer to a class
+ // template, alias template, or template template parameter, and
+ // therefore cannot be a non-type template argument.
+ Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
+ << Arg.getSourceRange();
+
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+
+ case TemplateArgument::Type: {
+ // We have a non-type template parameter but the template
+ // argument is a type.
+
+ // C++ [temp.arg]p2:
+ // In a template-argument, an ambiguity between a type-id and
+ // an expression is resolved to a type-id, regardless of the
+ // form of the corresponding template-parameter.
+ //
+ // We warn specifically about this case, since it can be rather
+ // confusing for users.
+ QualType T = Arg.getArgument().getAsType();
+ SourceRange SR = Arg.getSourceRange();
+ if (T->isFunctionType())
+ Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
+ else
+ Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ case TemplateArgument::Pack:
+ llvm_unreachable("Caller must expand template argument packs");
+ }
+
+ return false;
+ }
+
+
+ // Check template template parameters.
+ TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
+
+ // Substitute into the template parameter list of the template
+ // template parameter, since previously-supplied template arguments
+ // may appear within the template template parameter.
+ {
+ // Set up a template instantiation context.
+ LocalInstantiationScope Scope(*this);
+ InstantiatingTemplate Inst(*this, TemplateLoc, Template,
+ TempParm, Converted.data(), Converted.size(),
+ SourceRange(TemplateLoc, RAngleLoc));
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+ TempParm = cast_or_null<TemplateTemplateParmDecl>(
+ SubstDecl(TempParm, CurContext,
+ MultiLevelTemplateArgumentList(TemplateArgs)));
+ if (!TempParm)
+ return true;
+ }
+
+ switch (Arg.getArgument().getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Should never see a NULL template argument here");
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ if (CheckTemplateArgument(TempParm, Arg))
+ return true;
+
+ Converted.push_back(Arg.getArgument());
+ break;
+
+ case TemplateArgument::Expression:
+ case TemplateArgument::Type:
+ // We have a template template parameter but the template
+ // argument does not refer to a template.
+ Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
+ << getLangOpts().CPlusPlus0x;
+ return true;
+
+ case TemplateArgument::Declaration:
+ llvm_unreachable("Declaration argument with template template parameter");
+ case TemplateArgument::Integral:
+ llvm_unreachable("Integral argument with template template parameter");
+
+ case TemplateArgument::Pack:
+ llvm_unreachable("Caller must expand template argument packs");
+ }
+
+ return false;
+}
+
+/// \brief Diagnose an arity mismatch in the
+static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ TemplateArgumentListInfo &TemplateArgs) {
+ TemplateParameterList *Params = Template->getTemplateParameters();
+ unsigned NumParams = Params->size();
+ unsigned NumArgs = TemplateArgs.size();
+
+ SourceRange Range;
+ if (NumArgs > NumParams)
+ Range = SourceRange(TemplateArgs[NumParams].getLocation(),
+ TemplateArgs.getRAngleLoc());
+ S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
+ << (NumArgs > NumParams)
+ << (isa<ClassTemplateDecl>(Template)? 0 :
+ isa<FunctionTemplateDecl>(Template)? 1 :
+ isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
+ << Template << Range;
+ S.Diag(Template->getLocation(), diag::note_template_decl_here)
+ << Params->getSourceRange();
+ return true;
+}
+
+/// \brief Check that the given template argument list is well-formed
+/// for specializing the given template.
+bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ TemplateArgumentListInfo &TemplateArgs,
+ bool PartialTemplateArgs,
+ SmallVectorImpl<TemplateArgument> &Converted,
+ bool *ExpansionIntoFixedList) {
+ if (ExpansionIntoFixedList)
+ *ExpansionIntoFixedList = false;
+
+ TemplateParameterList *Params = Template->getTemplateParameters();
+ unsigned NumParams = Params->size();
+ unsigned NumArgs = TemplateArgs.size();
+ bool Invalid = false;
+
+ SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
+
+ bool HasParameterPack =
+ NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
+
+ // C++ [temp.arg]p1:
+ // [...] The type and form of each template-argument specified in
+ // a template-id shall match the type and form specified for the
+ // corresponding parameter declared by the template in its
+ // template-parameter-list.
+ bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
+ SmallVector<TemplateArgument, 2> ArgumentPack;
+ TemplateParameterList::iterator Param = Params->begin(),
+ ParamEnd = Params->end();
+ unsigned ArgIdx = 0;
+ LocalInstantiationScope InstScope(*this, true);
+ bool SawPackExpansion = false;
+ while (Param != ParamEnd) {
+ if (ArgIdx < NumArgs) {
+ // If we have an expanded parameter pack, make sure we don't have too
+ // many arguments.
+ // FIXME: This really should fall out from the normal arity checking.
+ if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
+ if (NTTP->isExpandedParameterPack() &&
+ ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
+ Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
+ << true
+ << (isa<ClassTemplateDecl>(Template)? 0 :
+ isa<FunctionTemplateDecl>(Template)? 1 :
+ isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
+ << Template;
+ Diag(Template->getLocation(), diag::note_template_decl_here)
+ << Params->getSourceRange();
+ return true;
+ }
+ }
+
+ // Check the template argument we were given.
+ if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
+ TemplateLoc, RAngleLoc,
+ ArgumentPack.size(), Converted))
+ return true;
+
+ if ((*Param)->isTemplateParameterPack()) {
+ // The template parameter was a template parameter pack, so take the
+ // deduced argument and place it on the argument pack. Note that we
+ // stay on the same template parameter so that we can deduce more
+ // arguments.
+ ArgumentPack.push_back(Converted.back());
+ Converted.pop_back();
+ } else {
+ // Move to the next template parameter.
+ ++Param;
+ }
+
+ // If this template argument is a pack expansion, record that fact
+ // and break out; we can't actually check any more.
+ if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) {
+ SawPackExpansion = true;
+ ++ArgIdx;
+ break;
+ }
+
+ ++ArgIdx;
+ continue;
+ }
+
+ // If we're checking a partial template argument list, we're done.
+ if (PartialTemplateArgs) {
+ if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
+ Converted.push_back(TemplateArgument::CreatePackCopy(Context,
+ ArgumentPack.data(),
+ ArgumentPack.size()));
+
+ return Invalid;
+ }
+
+ // If we have a template parameter pack with no more corresponding
+ // arguments, just break out now and we'll fill in the argument pack below.
+ if ((*Param)->isTemplateParameterPack())
+ break;
+
+ // Check whether we have a default argument.
+ TemplateArgumentLoc Arg;
+
+ // Retrieve the default template argument from the template
+ // parameter. For each kind of template parameter, we substitute the
+ // template arguments provided thus far and any "outer" template arguments
+ // (when the template parameter was part of a nested template) into
+ // the default argument.
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
+ if (!TTP->hasDefaultArgument())
+ return diagnoseArityMismatch(*this, Template, TemplateLoc,
+ TemplateArgs);
+
+ TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
+ Template,
+ TemplateLoc,
+ RAngleLoc,
+ TTP,
+ Converted);
+ if (!ArgType)
+ return true;
+
+ Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
+ ArgType);
+ } else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
+ if (!NTTP->hasDefaultArgument())
+ return diagnoseArityMismatch(*this, Template, TemplateLoc,
+ TemplateArgs);
+
+ ExprResult E = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ NTTP,
+ Converted);
+ if (E.isInvalid())
+ return true;
+
+ Expr *Ex = E.takeAs<Expr>();
+ Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
+ } else {
+ TemplateTemplateParmDecl *TempParm
+ = cast<TemplateTemplateParmDecl>(*Param);
+
+ if (!TempParm->hasDefaultArgument())
+ return diagnoseArityMismatch(*this, Template, TemplateLoc,
+ TemplateArgs);
+
+ NestedNameSpecifierLoc QualifierLoc;
+ TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ TempParm,
+ Converted,
+ QualifierLoc);
+ if (Name.isNull())
+ return true;
+
+ Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
+ TempParm->getDefaultArgument().getTemplateNameLoc());
+ }
+
+ // Introduce an instantiation record that describes where we are using
+ // the default template argument.
+ InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
+ Converted.data(), Converted.size(),
+ SourceRange(TemplateLoc, RAngleLoc));
+
+ // Check the default template argument.
+ if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
+ RAngleLoc, 0, Converted))
+ return true;
+
+ // Core issue 150 (assumed resolution): if this is a template template
+ // parameter, keep track of the default template arguments from the
+ // template definition.
+ if (isTemplateTemplateParameter)
+ TemplateArgs.addArgument(Arg);
+
+ // Move to the next template parameter and argument.
+ ++Param;
+ ++ArgIdx;
+ }
+
+ // If we saw a pack expansion, then directly convert the remaining arguments,
+ // because we don't know what parameters they'll match up with.
+ if (SawPackExpansion) {
+ bool AddToArgumentPack
+ = Param != ParamEnd && (*Param)->isTemplateParameterPack();
+ while (ArgIdx < NumArgs) {
+ if (AddToArgumentPack)
+ ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
+ else
+ Converted.push_back(TemplateArgs[ArgIdx].getArgument());
+ ++ArgIdx;
+ }
+
+ // Push the argument pack onto the list of converted arguments.
+ if (AddToArgumentPack) {
+ if (ArgumentPack.empty())
+ Converted.push_back(TemplateArgument(0, 0));
+ else {
+ Converted.push_back(
+ TemplateArgument::CreatePackCopy(Context,
+ ArgumentPack.data(),
+ ArgumentPack.size()));
+ ArgumentPack.clear();
+ }
+ } else if (ExpansionIntoFixedList) {
+ // We have expanded a pack into a fixed list.
+ *ExpansionIntoFixedList = true;
+ }
+
+ return Invalid;
+ }
+
+ // If we have any leftover arguments, then there were too many arguments.
+ // Complain and fail.
+ if (ArgIdx < NumArgs)
+ return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
+
+ // If we have an expanded parameter pack, make sure we don't have too
+ // many arguments.
+ // FIXME: This really should fall out from the normal arity checking.
+ if (Param != ParamEnd) {
+ if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
+ if (NTTP->isExpandedParameterPack() &&
+ ArgumentPack.size() < NTTP->getNumExpansionTypes()) {
+ Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
+ << false
+ << (isa<ClassTemplateDecl>(Template)? 0 :
+ isa<FunctionTemplateDecl>(Template)? 1 :
+ isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
+ << Template;
+ Diag(Template->getLocation(), diag::note_template_decl_here)
+ << Params->getSourceRange();
+ return true;
+ }
+ }
+ }
+
+ // Form argument packs for each of the parameter packs remaining.
+ while (Param != ParamEnd) {
+ // If we're checking a partial list of template arguments, don't fill
+ // in arguments for non-template parameter packs.
+ if ((*Param)->isTemplateParameterPack()) {
+ if (!HasParameterPack)
+ return true;
+ if (ArgumentPack.empty())
+ Converted.push_back(TemplateArgument(0, 0));
+ else {
+ Converted.push_back(TemplateArgument::CreatePackCopy(Context,
+ ArgumentPack.data(),
+ ArgumentPack.size()));
+ ArgumentPack.clear();
+ }
+ } else if (!PartialTemplateArgs)
+ return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
+
+ ++Param;
+ }
+
+ return Invalid;
+}
+
+namespace {
+ class UnnamedLocalNoLinkageFinder
+ : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
+ {
+ Sema &S;
+ SourceRange SR;
+
+ typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
+
+ public:
+ UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
+
+ bool Visit(QualType T) {
+ return inherited::Visit(T.getTypePtr());
+ }
+
+#define TYPE(Class, Parent) \
+ bool Visit##Class##Type(const Class##Type *);
+#define ABSTRACT_TYPE(Class, Parent) \
+ bool Visit##Class##Type(const Class##Type *) { return false; }
+#define NON_CANONICAL_TYPE(Class, Parent) \
+ bool Visit##Class##Type(const Class##Type *) { return false; }
+#include "clang/AST/TypeNodes.def"
+
+ bool VisitTagDecl(const TagDecl *Tag);
+ bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
+ };
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
+ const BlockPointerType* T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
+ const LValueReferenceType* T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
+ const RValueReferenceType* T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
+ const MemberPointerType* T) {
+ return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
+ const ConstantArrayType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
+ const IncompleteArrayType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
+ const VariableArrayType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
+ const DependentSizedArrayType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
+ const DependentSizedExtVectorType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
+ const FunctionProtoType* T) {
+ for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
+ AEnd = T->arg_type_end();
+ A != AEnd; ++A) {
+ if (Visit(*A))
+ return true;
+ }
+
+ return Visit(T->getResultType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
+ const FunctionNoProtoType* T) {
+ return Visit(T->getResultType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
+ const UnresolvedUsingType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
+ return Visit(T->getUnderlyingType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
+ const UnaryTransformType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
+ return Visit(T->getDeducedType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
+ return VisitTagDecl(T->getDecl());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
+ return VisitTagDecl(T->getDecl());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
+ const TemplateTypeParmType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
+ const SubstTemplateTypeParmPackType *) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
+ const TemplateSpecializationType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
+ const InjectedClassNameType* T) {
+ return VisitTagDecl(T->getDecl());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
+ const DependentNameType* T) {
+ return VisitNestedNameSpecifier(T->getQualifier());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
+ const DependentTemplateSpecializationType* T) {
+ return VisitNestedNameSpecifier(T->getQualifier());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
+ const PackExpansionType* T) {
+ return Visit(T->getPattern());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
+ const ObjCInterfaceType *) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
+ const ObjCObjectPointerType *) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
+ return Visit(T->getValueType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
+ if (Tag->getDeclContext()->isFunctionOrMethod()) {
+ S.Diag(SR.getBegin(),
+ S.getLangOpts().CPlusPlus0x ?
+ diag::warn_cxx98_compat_template_arg_local_type :
+ diag::ext_template_arg_local_type)
+ << S.Context.getTypeDeclType(Tag) << SR;
+ return true;
+ }
+
+ if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
+ S.Diag(SR.getBegin(),
+ S.getLangOpts().CPlusPlus0x ?
+ diag::warn_cxx98_compat_template_arg_unnamed_type :
+ diag::ext_template_arg_unnamed_type) << SR;
+ S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
+ return true;
+ }
+
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
+ NestedNameSpecifier *NNS) {
+ if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
+ return true;
+
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ case NestedNameSpecifier::Global:
+ return false;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ return Visit(QualType(NNS->getAsType(), 0));
+ }
+ llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
+}
+
+
+/// \brief Check a template argument against its corresponding
+/// template type parameter.
+///
+/// This routine implements the semantics of C++ [temp.arg.type]. It
+/// returns true if an error occurred, and false otherwise.
+bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
+ TypeSourceInfo *ArgInfo) {
+ assert(ArgInfo && "invalid TypeSourceInfo");
+ QualType Arg = ArgInfo->getType();
+ SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
+
+ if (Arg->isVariablyModifiedType()) {
+ return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
+ } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
+ return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
+ }
+
+ // C++03 [temp.arg.type]p2:
+ // A local type, a type with no linkage, an unnamed type or a type
+ // compounded from any of these types shall not be used as a
+ // template-argument for a template type-parameter.
+ //
+ // C++11 allows these, and even in C++03 we allow them as an extension with
+ // a warning.
+ if (LangOpts.CPlusPlus0x ?
+ Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
+ SR.getBegin()) != DiagnosticsEngine::Ignored ||
+ Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
+ SR.getBegin()) != DiagnosticsEngine::Ignored :
+ Arg->hasUnnamedOrLocalType()) {
+ UnnamedLocalNoLinkageFinder Finder(*this, SR);
+ (void)Finder.Visit(Context.getCanonicalType(Arg));
+ }
+
+ return false;
+}
+
+enum NullPointerValueKind {
+ NPV_NotNullPointer,
+ NPV_NullPointer,
+ NPV_Error
+};
+
+/// \brief Determine whether the given template argument is a null pointer
+/// value of the appropriate type.
+static NullPointerValueKind
+isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
+ QualType ParamType, Expr *Arg) {
+ if (Arg->isValueDependent() || Arg->isTypeDependent())
+ return NPV_NotNullPointer;
+
+ if (!S.getLangOpts().CPlusPlus0x)
+ return NPV_NotNullPointer;
+
+ // Determine whether we have a constant expression.
+ ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
+ if (ArgRV.isInvalid())
+ return NPV_Error;
+ Arg = ArgRV.take();
+
+ Expr::EvalResult EvalResult;
+ llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
+ EvalResult.Diag = &Notes;
+ if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
+ EvalResult.HasSideEffects) {
+ SourceLocation DiagLoc = Arg->getExprLoc();
+
+ // If our only note is the usual "invalid subexpression" note, just point
+ // the caret at its location rather than producing an essentially
+ // redundant note.
+ if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
+ diag::note_invalid_subexpr_in_const_expr) {
+ DiagLoc = Notes[0].first;
+ Notes.clear();
+ }
+
+ S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
+ << Arg->getType() << Arg->getSourceRange();
+ for (unsigned I = 0, N = Notes.size(); I != N; ++I)
+ S.Diag(Notes[I].first, Notes[I].second);
+
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return NPV_Error;
+ }
+
+ // C++11 [temp.arg.nontype]p1:
+ // - an address constant expression of type std::nullptr_t
+ if (Arg->getType()->isNullPtrType())
+ return NPV_NullPointer;
+
+ // - a constant expression that evaluates to a null pointer value (4.10); or
+ // - a constant expression that evaluates to a null member pointer value
+ // (4.11); or
+ if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
+ (EvalResult.Val.isMemberPointer() &&
+ !EvalResult.Val.getMemberPointerDecl())) {
+ // If our expression has an appropriate type, we've succeeded.
+ bool ObjCLifetimeConversion;
+ if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
+ S.IsQualificationConversion(Arg->getType(), ParamType, false,
+ ObjCLifetimeConversion))
+ return NPV_NullPointer;
+
+ // The types didn't match, but we know we got a null pointer; complain,
+ // then recover as if the types were correct.
+ S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
+ << Arg->getType() << ParamType << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return NPV_NullPointer;
+ }
+
+ // If we don't have a null pointer value, but we do have a NULL pointer
+ // constant, suggest a cast to the appropriate type.
+ if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
+ std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
+ S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
+ << ParamType
+ << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
+ << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
+ ")");
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return NPV_NullPointer;
+ }
+
+ // FIXME: If we ever want to support general, address-constant expressions
+ // as non-type template arguments, we should return the ExprResult here to
+ // be interpreted by the caller.
+ return NPV_NotNullPointer;
+}
+
+/// \brief Checks whether the given template argument is the address
+/// of an object or function according to C++ [temp.arg.nontype]p1.
+static bool
+CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
+ NonTypeTemplateParmDecl *Param,
+ QualType ParamType,
+ Expr *ArgIn,
+ TemplateArgument &Converted) {
+ bool Invalid = false;
+ Expr *Arg = ArgIn;
+ QualType ArgType = Arg->getType();
+
+ // If our parameter has pointer type, check for a null template value.
+ if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
+ switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
+ case NPV_NullPointer:
+ Converted = TemplateArgument((Decl *)0);
+ return false;
+
+ case NPV_Error:
+ return true;
+
+ case NPV_NotNullPointer:
+ break;
+ }
+ }
+
+ // See through any implicit casts we added to fix the type.
+ Arg = Arg->IgnoreImpCasts();
+
+ // C++ [temp.arg.nontype]p1:
+ //
+ // A template-argument for a non-type, non-template
+ // template-parameter shall be one of: [...]
+ //
+ // -- the address of an object or function with external
+ // linkage, including function templates and function
+ // template-ids but excluding non-static class members,
+ // expressed as & id-expression where the & is optional if
+ // the name refers to a function or array, or if the
+ // corresponding template-parameter is a reference; or
+
+ // In C++98/03 mode, give an extension warning on any extra parentheses.
+ // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
+ bool ExtraParens = false;
+ while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
+ if (!Invalid && !ExtraParens) {
+ S.Diag(Arg->getLocStart(),
+ S.getLangOpts().CPlusPlus0x ?
+ diag::warn_cxx98_compat_template_arg_extra_parens :
+ diag::ext_template_arg_extra_parens)
+ << Arg->getSourceRange();
+ ExtraParens = true;
+ }
+
+ Arg = Parens->getSubExpr();
+ }
+
+ while (SubstNonTypeTemplateParmExpr *subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
+ Arg = subst->getReplacement()->IgnoreImpCasts();
+
+ bool AddressTaken = false;
+ SourceLocation AddrOpLoc;
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
+ if (UnOp->getOpcode() == UO_AddrOf) {
+ Arg = UnOp->getSubExpr();
+ AddressTaken = true;
+ AddrOpLoc = UnOp->getOperatorLoc();
+ }
+ }
+
+ if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
+ Converted = TemplateArgument(ArgIn);
+ return false;
+ }
+
+ while (SubstNonTypeTemplateParmExpr *subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
+ Arg = subst->getReplacement()->IgnoreImpCasts();
+
+ // Stop checking the precise nature of the argument if it is value dependent,
+ // it should be checked when instantiated.
+ if (Arg->isValueDependent()) {
+ Converted = TemplateArgument(ArgIn);
+ return false;
+ }
+
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
+ if (!DRE) {
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
+ << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ if (!isa<ValueDecl>(DRE->getDecl())) {
+ S.Diag(Arg->getLocStart(),
+ diag::err_template_arg_not_object_or_func_form)
+ << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ NamedDecl *Entity = DRE->getDecl();
+
+ // Cannot refer to non-static data members
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
+ << Field << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // Cannot refer to non-static member functions
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
+ if (!Method->isStatic()) {
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
+ << Method << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+ }
+
+ FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
+ VarDecl *Var = dyn_cast<VarDecl>(Entity);
+
+ // A non-type template argument must refer to an object or function.
+ if (!Func && !Var) {
+ // We found something, but we don't know specifically what it is.
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
+ << Arg->getSourceRange();
+ S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
+ return true;
+ }
+
+ // Address / reference template args must have external linkage in C++98.
+ if (Entity->getLinkage() == InternalLinkage) {
+ S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ?
+ diag::warn_cxx98_compat_template_arg_object_internal :
+ diag::ext_template_arg_object_internal)
+ << !Func << Entity << Arg->getSourceRange();
+ S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
+ << !Func;
+ } else if (Entity->getLinkage() == NoLinkage) {
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
+ << !Func << Entity << Arg->getSourceRange();
+ S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
+ << !Func;
+ return true;
+ }
+
+ if (Func) {
+ // If the template parameter has pointer type, the function decays.
+ if (ParamType->isPointerType() && !AddressTaken)
+ ArgType = S.Context.getPointerType(Func->getType());
+ else if (AddressTaken && ParamType->isReferenceType()) {
+ // If we originally had an address-of operator, but the
+ // parameter has reference type, complain and (if things look
+ // like they will work) drop the address-of operator.
+ if (!S.Context.hasSameUnqualifiedType(Func->getType(),
+ ParamType.getNonReferenceType())) {
+ S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
+ << ParamType;
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
+ << ParamType
+ << FixItHint::CreateRemoval(AddrOpLoc);
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+
+ ArgType = Func->getType();
+ }
+ } else {
+ // A value of reference type is not an object.
+ if (Var->getType()->isReferenceType()) {
+ S.Diag(Arg->getLocStart(),
+ diag::err_template_arg_reference_var)
+ << Var->getType() << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // A template argument must have static storage duration.
+ // FIXME: Ensure this works for thread_local as well as __thread.
+ if (Var->isThreadSpecified()) {
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
+ << Arg->getSourceRange();
+ S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
+ return true;
+ }
+
+ // If the template parameter has pointer type, we must have taken
+ // the address of this object.
+ if (ParamType->isReferenceType()) {
+ if (AddressTaken) {
+ // If we originally had an address-of operator, but the
+ // parameter has reference type, complain and (if things look
+ // like they will work) drop the address-of operator.
+ if (!S.Context.hasSameUnqualifiedType(Var->getType(),
+ ParamType.getNonReferenceType())) {
+ S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
+ << ParamType;
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
+ << ParamType
+ << FixItHint::CreateRemoval(AddrOpLoc);
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+
+ ArgType = Var->getType();
+ }
+ } else if (!AddressTaken && ParamType->isPointerType()) {
+ if (Var->getType()->isArrayType()) {
+ // Array-to-pointer decay.
+ ArgType = S.Context.getArrayDecayedType(Var->getType());
+ } else {
+ // If the template parameter has pointer type but the address of
+ // this object was not taken, complain and (possibly) recover by
+ // taking the address of the entity.
+ ArgType = S.Context.getPointerType(Var->getType());
+ if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
+ << ParamType;
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
+ << ParamType
+ << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
+
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ }
+ }
+ }
+
+ bool ObjCLifetimeConversion;
+ if (ParamType->isPointerType() &&
+ !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
+ S.IsQualificationConversion(ArgType, ParamType, false,
+ ObjCLifetimeConversion)) {
+ // For pointer-to-object types, qualification conversions are
+ // permitted.
+ } else {
+ if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
+ if (!ParamRef->getPointeeType()->isFunctionType()) {
+ // C++ [temp.arg.nontype]p5b3:
+ // For a non-type template-parameter of type reference to
+ // object, no conversions apply. The type referred to by the
+ // reference may be more cv-qualified than the (otherwise
+ // identical) type of the template- argument. The
+ // template-parameter is bound directly to the
+ // template-argument, which shall be an lvalue.
+
+ // FIXME: Other qualifiers?
+ unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
+ unsigned ArgQuals = ArgType.getCVRQualifiers();
+
+ if ((ParamQuals | ArgQuals) != ParamQuals) {
+ S.Diag(Arg->getLocStart(),
+ diag::err_template_arg_ref_bind_ignores_quals)
+ << ParamType << Arg->getType()
+ << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+ }
+ }
+
+ // At this point, the template argument refers to an object or
+ // function with external linkage. We now need to check whether the
+ // argument and parameter types are compatible.
+ if (!S.Context.hasSameUnqualifiedType(ArgType,
+ ParamType.getNonReferenceType())) {
+ // We can't perform this conversion or binding.
+ if (ParamType->isReferenceType())
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
+ << ParamType << ArgIn->getType() << Arg->getSourceRange();
+ else
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
+ << ArgIn->getType() << ParamType << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+ }
+
+ // Create the template argument.
+ Converted = TemplateArgument(Entity->getCanonicalDecl());
+ S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
+ return false;
+}
+
+/// \brief Checks whether the given template argument is a pointer to
+/// member constant according to C++ [temp.arg.nontype]p1.
+static bool CheckTemplateArgumentPointerToMember(Sema &S,
+ NonTypeTemplateParmDecl *Param,
+ QualType ParamType,
+ Expr *&ResultArg,
+ TemplateArgument &Converted) {
+ bool Invalid = false;
+
+ // Check for a null pointer value.
+ Expr *Arg = ResultArg;
+ switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
+ case NPV_Error:
+ return true;
+ case NPV_NullPointer:
+ Converted = TemplateArgument((Decl *)0);
+ return false;
+ case NPV_NotNullPointer:
+ break;
+ }
+
+ bool ObjCLifetimeConversion;
+ if (S.IsQualificationConversion(Arg->getType(),
+ ParamType.getNonReferenceType(),
+ false, ObjCLifetimeConversion)) {
+ Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
+ Arg->getValueKind()).take();
+ ResultArg = Arg;
+ } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
+ ParamType.getNonReferenceType())) {
+ // We can't perform this conversion.
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
+ << Arg->getType() << ParamType << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // See through any implicit casts we added to fix the type.
+ while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
+ Arg = Cast->getSubExpr();
+
+ // C++ [temp.arg.nontype]p1:
+ //
+ // A template-argument for a non-type, non-template
+ // template-parameter shall be one of: [...]
+ //
+ // -- a pointer to member expressed as described in 5.3.1.
+ DeclRefExpr *DRE = 0;
+
+ // In C++98/03 mode, give an extension warning on any extra parentheses.
+ // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
+ bool ExtraParens = false;
+ while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
+ if (!Invalid && !ExtraParens) {
+ S.Diag(Arg->getLocStart(),
+ S.getLangOpts().CPlusPlus0x ?
+ diag::warn_cxx98_compat_template_arg_extra_parens :
+ diag::ext_template_arg_extra_parens)
+ << Arg->getSourceRange();
+ ExtraParens = true;
+ }
+
+ Arg = Parens->getSubExpr();
+ }
+
+ while (SubstNonTypeTemplateParmExpr *subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
+ Arg = subst->getReplacement()->IgnoreImpCasts();
+
+ // A pointer-to-member constant written &Class::member.
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
+ if (UnOp->getOpcode() == UO_AddrOf) {
+ DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
+ if (DRE && !DRE->getQualifier())
+ DRE = 0;
+ }
+ }
+ // A constant of pointer-to-member type.
+ else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
+ if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
+ if (VD->getType()->isMemberPointerType()) {
+ if (isa<NonTypeTemplateParmDecl>(VD) ||
+ (isa<VarDecl>(VD) &&
+ S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
+ if (Arg->isTypeDependent() || Arg->isValueDependent())
+ Converted = TemplateArgument(Arg);
+ else
+ Converted = TemplateArgument(VD->getCanonicalDecl());
+ return Invalid;
+ }
+ }
+ }
+
+ DRE = 0;
+ }
+
+ if (!DRE)
+ return S.Diag(Arg->getLocStart(),
+ diag::err_template_arg_not_pointer_to_member_form)
+ << Arg->getSourceRange();
+
+ if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
+ assert((isa<FieldDecl>(DRE->getDecl()) ||
+ !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
+ "Only non-static member pointers can make it here");
+
+ // Okay: this is the address of a non-static member, and therefore
+ // a member pointer constant.
+ if (Arg->isTypeDependent() || Arg->isValueDependent())
+ Converted = TemplateArgument(Arg);
+ else
+ Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
+ return Invalid;
+ }
+
+ // We found something else, but we don't know specifically what it is.
+ S.Diag(Arg->getLocStart(),
+ diag::err_template_arg_not_pointer_to_member_form)
+ << Arg->getSourceRange();
+ S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
+ return true;
+}
+
+/// \brief Check a template argument against its corresponding
+/// non-type template parameter.
+///
+/// This routine implements the semantics of C++ [temp.arg.nontype].
+/// If an error occurred, it returns ExprError(); otherwise, it
+/// returns the converted template argument. \p
+/// InstantiatedParamType is the type of the non-type template
+/// parameter after it has been instantiated.
+ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
+ QualType InstantiatedParamType, Expr *Arg,
+ TemplateArgument &Converted,
+ CheckTemplateArgumentKind CTAK) {
+ SourceLocation StartLoc = Arg->getLocStart();
+
+ // If either the parameter has a dependent type or the argument is
+ // type-dependent, there's nothing we can check now.
+ if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
+ // FIXME: Produce a cloned, canonical expression?
+ Converted = TemplateArgument(Arg);
+ return Owned(Arg);
+ }
+
+ // C++ [temp.arg.nontype]p5:
+ // The following conversions are performed on each expression used
+ // as a non-type template-argument. If a non-type
+ // template-argument cannot be converted to the type of the
+ // corresponding template-parameter then the program is
+ // ill-formed.
+ QualType ParamType = InstantiatedParamType;
+ if (ParamType->isIntegralOrEnumerationType()) {
+ // C++11:
+ // -- for a non-type template-parameter of integral or
+ // enumeration type, conversions permitted in a converted
+ // constant expression are applied.
+ //
+ // C++98:
+ // -- for a non-type template-parameter of integral or
+ // enumeration type, integral promotions (4.5) and integral
+ // conversions (4.7) are applied.
+
+ if (CTAK == CTAK_Deduced &&
+ !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
+ // C++ [temp.deduct.type]p17:
+ // If, in the declaration of a function template with a non-type
+ // template-parameter, the non-type template-parameter is used
+ // in an expression in the function parameter-list and, if the
+ // corresponding template-argument is deduced, the
+ // template-argument type shall match the type of the
+ // template-parameter exactly, except that a template-argument
+ // deduced from an array bound may be of any integral type.
+ Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
+ << Arg->getType().getUnqualifiedType()
+ << ParamType.getUnqualifiedType();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+ }
+
+ if (getLangOpts().CPlusPlus0x) {
+ // We can't check arbitrary value-dependent arguments.
+ // FIXME: If there's no viable conversion to the template parameter type,
+ // we should be able to diagnose that prior to instantiation.
+ if (Arg->isValueDependent()) {
+ Converted = TemplateArgument(Arg);
+ return Owned(Arg);
+ }
+
+ // C++ [temp.arg.nontype]p1:
+ // A template-argument for a non-type, non-template template-parameter
+ // shall be one of:
+ //
+ // -- for a non-type template-parameter of integral or enumeration
+ // type, a converted constant expression of the type of the
+ // template-parameter; or
+ llvm::APSInt Value;
+ ExprResult ArgResult =
+ CheckConvertedConstantExpression(Arg, ParamType, Value,
+ CCEK_TemplateArg);
+ if (ArgResult.isInvalid())
+ return ExprError();
+
+ // Widen the argument value to sizeof(parameter type). This is almost
+ // always a no-op, except when the parameter type is bool. In
+ // that case, this may extend the argument from 1 bit to 8 bits.
+ QualType IntegerType = ParamType;
+ if (const EnumType *Enum = IntegerType->getAs<EnumType>())
+ IntegerType = Enum->getDecl()->getIntegerType();
+ Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
+
+ Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType));
+ return ArgResult;
+ }
+
+ ExprResult ArgResult = DefaultLvalueConversion(Arg);
+ if (ArgResult.isInvalid())
+ return ExprError();
+ Arg = ArgResult.take();
+
+ QualType ArgType = Arg->getType();
+
+ // C++ [temp.arg.nontype]p1:
+ // A template-argument for a non-type, non-template
+ // template-parameter shall be one of:
+ //
+ // -- an integral constant-expression of integral or enumeration
+ // type; or
+ // -- the name of a non-type template-parameter; or
+ SourceLocation NonConstantLoc;
+ llvm::APSInt Value;
+ if (!ArgType->isIntegralOrEnumerationType()) {
+ Diag(Arg->getLocStart(),
+ diag::err_template_arg_not_integral_or_enumeral)
+ << ArgType << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+ } else if (!Arg->isValueDependent()) {
+ Arg = VerifyIntegerConstantExpression(Arg, &Value,
+ PDiag(diag::err_template_arg_not_ice) << ArgType, false).take();
+ if (!Arg)
+ return ExprError();
+ }
+
+ // From here on out, all we care about are the unqualified forms
+ // of the parameter and argument types.
+ ParamType = ParamType.getUnqualifiedType();
+ ArgType = ArgType.getUnqualifiedType();
+
+ // Try to convert the argument to the parameter's type.
+ if (Context.hasSameType(ParamType, ArgType)) {
+ // Okay: no conversion necessary
+ } else if (ParamType->isBooleanType()) {
+ // This is an integral-to-boolean conversion.
+ Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
+ } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
+ !ParamType->isEnumeralType()) {
+ // This is an integral promotion or conversion.
+ Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
+ } else {
+ // We can't perform this conversion.
+ Diag(Arg->getLocStart(),
+ diag::err_template_arg_not_convertible)
+ << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+ }
+
+ // Add the value of this argument to the list of converted
+ // arguments. We use the bitwidth and signedness of the template
+ // parameter.
+ if (Arg->isValueDependent()) {
+ // The argument is value-dependent. Create a new
+ // TemplateArgument with the converted expression.
+ Converted = TemplateArgument(Arg);
+ return Owned(Arg);
+ }
+
+ QualType IntegerType = Context.getCanonicalType(ParamType);
+ if (const EnumType *Enum = IntegerType->getAs<EnumType>())
+ IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
+
+ if (ParamType->isBooleanType()) {
+ // Value must be zero or one.
+ Value = Value != 0;
+ unsigned AllowedBits = Context.getTypeSize(IntegerType);
+ if (Value.getBitWidth() != AllowedBits)
+ Value = Value.extOrTrunc(AllowedBits);
+ Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
+ } else {
+ llvm::APSInt OldValue = Value;
+
+ // Coerce the template argument's value to the value it will have
+ // based on the template parameter's type.
+ unsigned AllowedBits = Context.getTypeSize(IntegerType);
+ if (Value.getBitWidth() != AllowedBits)
+ Value = Value.extOrTrunc(AllowedBits);
+ Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
+
+ // Complain if an unsigned parameter received a negative value.
+ if (IntegerType->isUnsignedIntegerOrEnumerationType()
+ && (OldValue.isSigned() && OldValue.isNegative())) {
+ Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
+ << OldValue.toString(10) << Value.toString(10) << Param->getType()
+ << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ }
+
+ // Complain if we overflowed the template parameter's type.
+ unsigned RequiredBits;
+ if (IntegerType->isUnsignedIntegerOrEnumerationType())
+ RequiredBits = OldValue.getActiveBits();
+ else if (OldValue.isUnsigned())
+ RequiredBits = OldValue.getActiveBits() + 1;
+ else
+ RequiredBits = OldValue.getMinSignedBits();
+ if (RequiredBits > AllowedBits) {
+ Diag(Arg->getLocStart(),
+ diag::warn_template_arg_too_large)
+ << OldValue.toString(10) << Value.toString(10) << Param->getType()
+ << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ }
+ }
+
+ Converted = TemplateArgument(Value,
+ ParamType->isEnumeralType()
+ ? Context.getCanonicalType(ParamType)
+ : IntegerType);
+ return Owned(Arg);
+ }
+
+ QualType ArgType = Arg->getType();
+ DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
+
+ // Handle pointer-to-function, reference-to-function, and
+ // pointer-to-member-function all in (roughly) the same way.
+ if (// -- For a non-type template-parameter of type pointer to
+ // function, only the function-to-pointer conversion (4.3) is
+ // applied. If the template-argument represents a set of
+ // overloaded functions (or a pointer to such), the matching
+ // function is selected from the set (13.4).
+ (ParamType->isPointerType() &&
+ ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
+ // -- For a non-type template-parameter of type reference to
+ // function, no conversions apply. If the template-argument
+ // represents a set of overloaded functions, the matching
+ // function is selected from the set (13.4).
+ (ParamType->isReferenceType() &&
+ ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
+ // -- For a non-type template-parameter of type pointer to
+ // member function, no conversions apply. If the
+ // template-argument represents a set of overloaded member
+ // functions, the matching member function is selected from
+ // the set (13.4).
+ (ParamType->isMemberPointerType() &&
+ ParamType->getAs<MemberPointerType>()->getPointeeType()
+ ->isFunctionType())) {
+
+ if (Arg->getType() == Context.OverloadTy) {
+ if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
+ true,
+ FoundResult)) {
+ if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
+ return ExprError();
+
+ Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
+ ArgType = Arg->getType();
+ } else
+ return ExprError();
+ }
+
+ if (!ParamType->isMemberPointerType()) {
+ if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
+ ParamType,
+ Arg, Converted))
+ return ExprError();
+ return Owned(Arg);
+ }
+
+ if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
+ Converted))
+ return ExprError();
+ return Owned(Arg);
+ }
+
+ if (ParamType->isPointerType()) {
+ // -- for a non-type template-parameter of type pointer to
+ // object, qualification conversions (4.4) and the
+ // array-to-pointer conversion (4.2) are applied.
+ // C++0x also allows a value of std::nullptr_t.
+ assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
+ "Only object pointers allowed here");
+
+ if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
+ ParamType,
+ Arg, Converted))
+ return ExprError();
+ return Owned(Arg);
+ }
+
+ if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
+ // -- For a non-type template-parameter of type reference to
+ // object, no conversions apply. The type referred to by the
+ // reference may be more cv-qualified than the (otherwise
+ // identical) type of the template-argument. The
+ // template-parameter is bound directly to the
+ // template-argument, which must be an lvalue.
+ assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
+ "Only object references allowed here");
+
+ if (Arg->getType() == Context.OverloadTy) {
+ if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
+ ParamRefType->getPointeeType(),
+ true,
+ FoundResult)) {
+ if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
+ return ExprError();
+
+ Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
+ ArgType = Arg->getType();
+ } else
+ return ExprError();
+ }
+
+ if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
+ ParamType,
+ Arg, Converted))
+ return ExprError();
+ return Owned(Arg);
+ }
+
+ // Deal with parameters of type std::nullptr_t.
+ if (ParamType->isNullPtrType()) {
+ if (Arg->isTypeDependent() || Arg->isValueDependent()) {
+ Converted = TemplateArgument(Arg);
+ return Owned(Arg);
+ }
+
+ switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
+ case NPV_NotNullPointer:
+ Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
+ << Arg->getType() << ParamType;
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+
+ case NPV_Error:
+ return ExprError();
+
+ case NPV_NullPointer:
+ Converted = TemplateArgument((Decl *)0);
+ return Owned(Arg);;
+ }
+ }
+
+ // -- For a non-type template-parameter of type pointer to data
+ // member, qualification conversions (4.4) are applied.
+ assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
+
+ if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
+ Converted))
+ return ExprError();
+ return Owned(Arg);
+}
+
+/// \brief Check a template argument against its corresponding
+/// template template parameter.
+///
+/// This routine implements the semantics of C++ [temp.arg.template].
+/// It returns true if an error occurred, and false otherwise.
+bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
+ const TemplateArgumentLoc &Arg) {
+ TemplateName Name = Arg.getArgument().getAsTemplate();
+ TemplateDecl *Template = Name.getAsTemplateDecl();
+ if (!Template) {
+ // Any dependent template name is fine.
+ assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
+ return false;
+ }
+
+ // C++0x [temp.arg.template]p1:
+ // A template-argument for a template template-parameter shall be
+ // the name of a class template or an alias template, expressed as an
+ // id-expression. When the template-argument names a class template, only
+ // primary class templates are considered when matching the
+ // template template argument with the corresponding parameter;
+ // partial specializations are not considered even if their
+ // parameter lists match that of the template template parameter.
+ //
+ // Note that we also allow template template parameters here, which
+ // will happen when we are dealing with, e.g., class template
+ // partial specializations.
+ if (!isa<ClassTemplateDecl>(Template) &&
+ !isa<TemplateTemplateParmDecl>(Template) &&
+ !isa<TypeAliasTemplateDecl>(Template)) {
+ assert(isa<FunctionTemplateDecl>(Template) &&
+ "Only function templates are possible here");
+ Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
+ Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
+ << Template;
+ }
+
+ return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
+ Param->getTemplateParameters(),
+ true,
+ TPL_TemplateTemplateArgumentMatch,
+ Arg.getLocation());
+}
+
+/// \brief Given a non-type template argument that refers to a
+/// declaration and the type of its corresponding non-type template
+/// parameter, produce an expression that properly refers to that
+/// declaration.
+ExprResult
+Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
+ QualType ParamType,
+ SourceLocation Loc) {
+ assert(Arg.getKind() == TemplateArgument::Declaration &&
+ "Only declaration template arguments permitted here");
+
+ // For a NULL non-type template argument, return nullptr casted to the
+ // parameter's type.
+ if (!Arg.getAsDecl()) {
+ return ImpCastExprToType(
+ new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
+ ParamType,
+ ParamType->getAs<MemberPointerType>()
+ ? CK_NullToMemberPointer
+ : CK_NullToPointer);
+ }
+
+ ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
+
+ if (VD->getDeclContext()->isRecord() &&
+ (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
+ // If the value is a class member, we might have a pointer-to-member.
+ // Determine whether the non-type template template parameter is of
+ // pointer-to-member type. If so, we need to build an appropriate
+ // expression for a pointer-to-member, since a "normal" DeclRefExpr
+ // would refer to the member itself.
+ if (ParamType->isMemberPointerType()) {
+ QualType ClassType
+ = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
+ NestedNameSpecifier *Qualifier
+ = NestedNameSpecifier::Create(Context, 0, false,
+ ClassType.getTypePtr());
+ CXXScopeSpec SS;
+ SS.MakeTrivial(Context, Qualifier, Loc);
+
+ // The actual value-ness of this is unimportant, but for
+ // internal consistency's sake, references to instance methods
+ // are r-values.
+ ExprValueKind VK = VK_LValue;
+ if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
+ VK = VK_RValue;
+
+ ExprResult RefExpr = BuildDeclRefExpr(VD,
+ VD->getType().getNonReferenceType(),
+ VK,
+ Loc,
+ &SS);
+ if (RefExpr.isInvalid())
+ return ExprError();
+
+ RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
+
+ // We might need to perform a trailing qualification conversion, since
+ // the element type on the parameter could be more qualified than the
+ // element type in the expression we constructed.
+ bool ObjCLifetimeConversion;
+ if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
+ ParamType.getUnqualifiedType(), false,
+ ObjCLifetimeConversion))
+ RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
+
+ assert(!RefExpr.isInvalid() &&
+ Context.hasSameType(((Expr*) RefExpr.get())->getType(),
+ ParamType.getUnqualifiedType()));
+ return move(RefExpr);
+ }
+ }
+
+ QualType T = VD->getType().getNonReferenceType();
+ if (ParamType->isPointerType()) {
+ // When the non-type template parameter is a pointer, take the
+ // address of the declaration.
+ ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
+ if (RefExpr.isInvalid())
+ return ExprError();
+
+ if (T->isFunctionType() || T->isArrayType()) {
+ // Decay functions and arrays.
+ RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
+ if (RefExpr.isInvalid())
+ return ExprError();
+
+ return move(RefExpr);
+ }
+
+ // Take the address of everything else
+ return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
+ }
+
+ ExprValueKind VK = VK_RValue;
+
+ // If the non-type template parameter has reference type, qualify the
+ // resulting declaration reference with the extra qualifiers on the
+ // type that the reference refers to.
+ if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
+ VK = VK_LValue;
+ T = Context.getQualifiedType(T,
+ TargetRef->getPointeeType().getQualifiers());
+ }
+
+ return BuildDeclRefExpr(VD, T, VK, Loc);
+}
+
+/// \brief Construct a new expression that refers to the given
+/// integral template argument with the given source-location
+/// information.
+///
+/// This routine takes care of the mapping from an integral template
+/// argument (which may have any integral type) to the appropriate
+/// literal value.
+ExprResult
+Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
+ SourceLocation Loc) {
+ assert(Arg.getKind() == TemplateArgument::Integral &&
+ "Operation is only valid for integral template arguments");
+ QualType T = Arg.getIntegralType();
+ if (T->isAnyCharacterType()) {
+ CharacterLiteral::CharacterKind Kind;
+ if (T->isWideCharType())
+ Kind = CharacterLiteral::Wide;
+ else if (T->isChar16Type())
+ Kind = CharacterLiteral::UTF16;
+ else if (T->isChar32Type())
+ Kind = CharacterLiteral::UTF32;
+ else
+ Kind = CharacterLiteral::Ascii;
+
+ return Owned(new (Context) CharacterLiteral(
+ Arg.getAsIntegral()->getZExtValue(),
+ Kind, T, Loc));
+ }
+
+ if (T->isBooleanType())
+ return Owned(new (Context) CXXBoolLiteralExpr(
+ Arg.getAsIntegral()->getBoolValue(),
+ T, Loc));
+
+ if (T->isNullPtrType())
+ return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
+
+ // If this is an enum type that we're instantiating, we need to use an integer
+ // type the same size as the enumerator. We don't want to build an
+ // IntegerLiteral with enum type.
+ QualType BT;
+ if (const EnumType *ET = T->getAs<EnumType>())
+ BT = ET->getDecl()->getIntegerType();
+ else
+ BT = T;
+
+ Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
+ if (T->isEnumeralType()) {
+ // FIXME: This is a hack. We need a better way to handle substituted
+ // non-type template parameters.
+ E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
+ Context.getTrivialTypeSourceInfo(T, Loc),
+ Loc, Loc);
+ }
+
+ return Owned(E);
+}
+
+/// \brief Match two template parameters within template parameter lists.
+static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
+ bool Complain,
+ Sema::TemplateParameterListEqualKind Kind,
+ SourceLocation TemplateArgLoc) {
+ // Check the actual kind (type, non-type, template).
+ if (Old->getKind() != New->getKind()) {
+ if (Complain) {
+ unsigned NextDiag = diag::err_template_param_different_kind;
+ if (TemplateArgLoc.isValid()) {
+ S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_param_different_kind;
+ }
+ S.Diag(New->getLocation(), NextDiag)
+ << (Kind != Sema::TPL_TemplateMatch);
+ S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
+ << (Kind != Sema::TPL_TemplateMatch);
+ }
+
+ return false;
+ }
+
+ // Check that both are parameter packs are neither are parameter packs.
+ // However, if we are matching a template template argument to a
+ // template template parameter, the template template parameter can have
+ // a parameter pack where the template template argument does not.
+ if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
+ !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
+ Old->isTemplateParameterPack())) {
+ if (Complain) {
+ unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
+ if (TemplateArgLoc.isValid()) {
+ S.Diag(TemplateArgLoc,
+ diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_parameter_pack_non_pack;
+ }
+
+ unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
+ : isa<NonTypeTemplateParmDecl>(New)? 1
+ : 2;
+ S.Diag(New->getLocation(), NextDiag)
+ << ParamKind << New->isParameterPack();
+ S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
+ << ParamKind << Old->isParameterPack();
+ }
+
+ return false;
+ }
+
+ // For non-type template parameters, check the type of the parameter.
+ if (NonTypeTemplateParmDecl *OldNTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
+ NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
+
+ // If we are matching a template template argument to a template
+ // template parameter and one of the non-type template parameter types
+ // is dependent, then we must wait until template instantiation time
+ // to actually compare the arguments.
+ if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
+ (OldNTTP->getType()->isDependentType() ||
+ NewNTTP->getType()->isDependentType()))
+ return true;
+
+ if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
+ if (Complain) {
+ unsigned NextDiag = diag::err_template_nontype_parm_different_type;
+ if (TemplateArgLoc.isValid()) {
+ S.Diag(TemplateArgLoc,
+ diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_nontype_parm_different_type;
+ }
+ S.Diag(NewNTTP->getLocation(), NextDiag)
+ << NewNTTP->getType()
+ << (Kind != Sema::TPL_TemplateMatch);
+ S.Diag(OldNTTP->getLocation(),
+ diag::note_template_nontype_parm_prev_declaration)
+ << OldNTTP->getType();
+ }
+
+ return false;
+ }
+
+ return true;
+ }
+
+ // For template template parameters, check the template parameter types.
+ // The template parameter lists of template template
+ // parameters must agree.
+ if (TemplateTemplateParmDecl *OldTTP
+ = dyn_cast<TemplateTemplateParmDecl>(Old)) {
+ TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
+ return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
+ OldTTP->getTemplateParameters(),
+ Complain,
+ (Kind == Sema::TPL_TemplateMatch
+ ? Sema::TPL_TemplateTemplateParmMatch
+ : Kind),
+ TemplateArgLoc);
+ }
+
+ return true;
+}
+
+/// \brief Diagnose a known arity mismatch when comparing template argument
+/// lists.
+static
+void DiagnoseTemplateParameterListArityMismatch(Sema &S,
+ TemplateParameterList *New,
+ TemplateParameterList *Old,
+ Sema::TemplateParameterListEqualKind Kind,
+ SourceLocation TemplateArgLoc) {
+ unsigned NextDiag = diag::err_template_param_list_different_arity;
+ if (TemplateArgLoc.isValid()) {
+ S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_param_list_different_arity;
+ }
+ S.Diag(New->getTemplateLoc(), NextDiag)
+ << (New->size() > Old->size())
+ << (Kind != Sema::TPL_TemplateMatch)
+ << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
+ S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
+ << (Kind != Sema::TPL_TemplateMatch)
+ << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
+}
+
+/// \brief Determine whether the given template parameter lists are
+/// equivalent.
+///
+/// \param New The new template parameter list, typically written in the
+/// source code as part of a new template declaration.
+///
+/// \param Old The old template parameter list, typically found via
+/// name lookup of the template declared with this template parameter
+/// list.
+///
+/// \param Complain If true, this routine will produce a diagnostic if
+/// the template parameter lists are not equivalent.
+///
+/// \param Kind describes how we are to match the template parameter lists.
+///
+/// \param TemplateArgLoc If this source location is valid, then we
+/// are actually checking the template parameter list of a template
+/// argument (New) against the template parameter list of its
+/// corresponding template template parameter (Old). We produce
+/// slightly different diagnostics in this scenario.
+///
+/// \returns True if the template parameter lists are equal, false
+/// otherwise.
+bool
+Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
+ TemplateParameterList *Old,
+ bool Complain,
+ TemplateParameterListEqualKind Kind,
+ SourceLocation TemplateArgLoc) {
+ if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
+ if (Complain)
+ DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
+ TemplateArgLoc);
+
+ return false;
+ }
+
+ // C++0x [temp.arg.template]p3:
+ // A template-argument matches a template template-parameter (call it P)
+ // when each of the template parameters in the template-parameter-list of
+ // the template-argument's corresponding class template or alias template
+ // (call it A) matches the corresponding template parameter in the
+ // template-parameter-list of P. [...]
+ TemplateParameterList::iterator NewParm = New->begin();
+ TemplateParameterList::iterator NewParmEnd = New->end();
+ for (TemplateParameterList::iterator OldParm = Old->begin(),
+ OldParmEnd = Old->end();
+ OldParm != OldParmEnd; ++OldParm) {
+ if (Kind != TPL_TemplateTemplateArgumentMatch ||
+ !(*OldParm)->isTemplateParameterPack()) {
+ if (NewParm == NewParmEnd) {
+ if (Complain)
+ DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
+ TemplateArgLoc);
+
+ return false;
+ }
+
+ if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
+ Kind, TemplateArgLoc))
+ return false;
+
+ ++NewParm;
+ continue;
+ }
+
+ // C++0x [temp.arg.template]p3:
+ // [...] When P's template- parameter-list contains a template parameter
+ // pack (14.5.3), the template parameter pack will match zero or more
+ // template parameters or template parameter packs in the
+ // template-parameter-list of A with the same type and form as the
+ // template parameter pack in P (ignoring whether those template
+ // parameters are template parameter packs).
+ for (; NewParm != NewParmEnd; ++NewParm) {
+ if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
+ Kind, TemplateArgLoc))
+ return false;
+ }
+ }
+
+ // Make sure we exhausted all of the arguments.
+ if (NewParm != NewParmEnd) {
+ if (Complain)
+ DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
+ TemplateArgLoc);
+
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Check whether a template can be declared within this scope.
+///
+/// If the template declaration is valid in this scope, returns
+/// false. Otherwise, issues a diagnostic and returns true.
+bool
+Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
+ if (!S)
+ return false;
+
+ // Find the nearest enclosing declaration scope.
+ while ((S->getFlags() & Scope::DeclScope) == 0 ||
+ (S->getFlags() & Scope::TemplateParamScope) != 0)
+ S = S->getParent();
+
+ // C++ [temp]p2:
+ // A template-declaration can appear only as a namespace scope or
+ // class scope declaration.
+ DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
+ if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
+ cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
+ return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
+ << TemplateParams->getSourceRange();
+
+ while (Ctx && isa<LinkageSpecDecl>(Ctx))
+ Ctx = Ctx->getParent();
+
+ if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
+ return false;
+
+ return Diag(TemplateParams->getTemplateLoc(),
+ diag::err_template_outside_namespace_or_class_scope)
+ << TemplateParams->getSourceRange();
+}
+
+/// \brief Determine what kind of template specialization the given declaration
+/// is.
+static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
+ if (!D)
+ return TSK_Undeclared;
+
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
+ return Record->getTemplateSpecializationKind();
+ if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
+ return Function->getTemplateSpecializationKind();
+ if (VarDecl *Var = dyn_cast<VarDecl>(D))
+ return Var->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+/// \brief Check whether a specialization is well-formed in the current
+/// context.
+///
+/// This routine determines whether a template specialization can be declared
+/// in the current context (C++ [temp.expl.spec]p2).
+///
+/// \param S the semantic analysis object for which this check is being
+/// performed.
+///
+/// \param Specialized the entity being specialized or instantiated, which
+/// may be a kind of template (class template, function template, etc.) or
+/// a member of a class template (member function, static data member,
+/// member class).
+///
+/// \param PrevDecl the previous declaration of this entity, if any.
+///
+/// \param Loc the location of the explicit specialization or instantiation of
+/// this entity.
+///
+/// \param IsPartialSpecialization whether this is a partial specialization of
+/// a class template.
+///
+/// \returns true if there was an error that we cannot recover from, false
+/// otherwise.
+static bool CheckTemplateSpecializationScope(Sema &S,
+ NamedDecl *Specialized,
+ NamedDecl *PrevDecl,
+ SourceLocation Loc,
+ bool IsPartialSpecialization) {
+ // Keep these "kind" numbers in sync with the %select statements in the
+ // various diagnostics emitted by this routine.
+ int EntityKind = 0;
+ if (isa<ClassTemplateDecl>(Specialized))
+ EntityKind = IsPartialSpecialization? 1 : 0;
+ else if (isa<FunctionTemplateDecl>(Specialized))
+ EntityKind = 2;
+ else if (isa<CXXMethodDecl>(Specialized))
+ EntityKind = 3;
+ else if (isa<VarDecl>(Specialized))
+ EntityKind = 4;
+ else if (isa<RecordDecl>(Specialized))
+ EntityKind = 5;
+ else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
+ EntityKind = 6;
+ else {
+ S.Diag(Loc, diag::err_template_spec_unknown_kind)
+ << S.getLangOpts().CPlusPlus0x;
+ S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
+ return true;
+ }
+
+ // C++ [temp.expl.spec]p2:
+ // An explicit specialization shall be declared in the namespace
+ // of which the template is a member, or, for member templates, in
+ // the namespace of which the enclosing class or enclosing class
+ // template is a member. An explicit specialization of a member
+ // function, member class or static data member of a class
+ // template shall be declared in the namespace of which the class
+ // template is a member. Such a declaration may also be a
+ // definition. If the declaration is not a definition, the
+ // specialization may be defined later in the name- space in which
+ // the explicit specialization was declared, or in a namespace
+ // that encloses the one in which the explicit specialization was
+ // declared.
+ if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
+ S.Diag(Loc, diag::err_template_spec_decl_function_scope)
+ << Specialized;
+ return true;
+ }
+
+ if (S.CurContext->isRecord() && !IsPartialSpecialization) {
+ if (S.getLangOpts().MicrosoftExt) {
+ // Do not warn for class scope explicit specialization during
+ // instantiation, warning was already emitted during pattern
+ // semantic analysis.
+ if (!S.ActiveTemplateInstantiations.size())
+ S.Diag(Loc, diag::ext_function_specialization_in_class)
+ << Specialized;
+ } else {
+ S.Diag(Loc, diag::err_template_spec_decl_class_scope)
+ << Specialized;
+ return true;
+ }
+ }
+
+ if (S.CurContext->isRecord() &&
+ !S.CurContext->Equals(Specialized->getDeclContext())) {
+ // Make sure that we're specializing in the right record context.
+ // Otherwise, things can go horribly wrong.
+ S.Diag(Loc, diag::err_template_spec_decl_class_scope)
+ << Specialized;
+ return true;
+ }
+
+ // C++ [temp.class.spec]p6:
+ // A class template partial specialization may be declared or redeclared
+ // in any namespace scope in which its definition may be defined (14.5.1
+ // and 14.5.2).
+ bool ComplainedAboutScope = false;
+ DeclContext *SpecializedContext
+ = Specialized->getDeclContext()->getEnclosingNamespaceContext();
+ DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
+ if ((!PrevDecl ||
+ getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
+ getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
+ // C++ [temp.exp.spec]p2:
+ // An explicit specialization shall be declared in the namespace of which
+ // the template is a member, or, for member templates, in the namespace
+ // of which the enclosing class or enclosing class template is a member.
+ // An explicit specialization of a member function, member class or
+ // static data member of a class template shall be declared in the
+ // namespace of which the class template is a member.
+ //
+ // C++0x [temp.expl.spec]p2:
+ // An explicit specialization shall be declared in a namespace enclosing
+ // the specialized template.
+ if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
+ bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
+ if (isa<TranslationUnitDecl>(SpecializedContext)) {
+ assert(!IsCPlusPlus0xExtension &&
+ "DC encloses TU but isn't in enclosing namespace set");
+ S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
+ << EntityKind << Specialized;
+ } else if (isa<NamespaceDecl>(SpecializedContext)) {
+ int Diag;
+ if (!IsCPlusPlus0xExtension)
+ Diag = diag::err_template_spec_decl_out_of_scope;
+ else if (!S.getLangOpts().CPlusPlus0x)
+ Diag = diag::ext_template_spec_decl_out_of_scope;
+ else
+ Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
+ S.Diag(Loc, Diag)
+ << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
+ }
+
+ S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
+ ComplainedAboutScope =
+ !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
+ }
+ }
+
+ // Make sure that this redeclaration (or definition) occurs in an enclosing
+ // namespace.
+ // Note that HandleDeclarator() performs this check for explicit
+ // specializations of function templates, static data members, and member
+ // functions, so we skip the check here for those kinds of entities.
+ // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
+ // Should we refactor that check, so that it occurs later?
+ if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
+ !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
+ isa<FunctionDecl>(Specialized))) {
+ if (isa<TranslationUnitDecl>(SpecializedContext))
+ S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
+ << EntityKind << Specialized;
+ else if (isa<NamespaceDecl>(SpecializedContext))
+ S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
+ << EntityKind << Specialized
+ << cast<NamedDecl>(SpecializedContext);
+
+ S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
+ }
+
+ // FIXME: check for specialization-after-instantiation errors and such.
+
+ return false;
+}
+
+/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
+/// that checks non-type template partial specialization arguments.
+static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
+ NonTypeTemplateParmDecl *Param,
+ const TemplateArgument *Args,
+ unsigned NumArgs) {
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ if (Args[I].getKind() == TemplateArgument::Pack) {
+ if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
+ Args[I].pack_begin(),
+ Args[I].pack_size()))
+ return true;
+
+ continue;
+ }
+
+ Expr *ArgExpr = Args[I].getAsExpr();
+ if (!ArgExpr) {
+ continue;
+ }
+
+ // We can have a pack expansion of any of the bullets below.
+ if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
+ ArgExpr = Expansion->getPattern();
+
+ // Strip off any implicit casts we added as part of type checking.
+ while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
+ ArgExpr = ICE->getSubExpr();
+
+ // C++ [temp.class.spec]p8:
+ // A non-type argument is non-specialized if it is the name of a
+ // non-type parameter. All other non-type arguments are
+ // specialized.
+ //
+ // Below, we check the two conditions that only apply to
+ // specialized non-type arguments, so skip any non-specialized
+ // arguments.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
+ if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
+ continue;
+
+ // C++ [temp.class.spec]p9:
+ // Within the argument list of a class template partial
+ // specialization, the following restrictions apply:
+ // -- A partially specialized non-type argument expression
+ // shall not involve a template parameter of the partial
+ // specialization except when the argument expression is a
+ // simple identifier.
+ if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
+ S.Diag(ArgExpr->getLocStart(),
+ diag::err_dependent_non_type_arg_in_partial_spec)
+ << ArgExpr->getSourceRange();
+ return true;
+ }
+
+ // -- The type of a template parameter corresponding to a
+ // specialized non-type argument shall not be dependent on a
+ // parameter of the specialization.
+ if (Param->getType()->isDependentType()) {
+ S.Diag(ArgExpr->getLocStart(),
+ diag::err_dependent_typed_non_type_arg_in_partial_spec)
+ << Param->getType()
+ << ArgExpr->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// \brief Check the non-type template arguments of a class template
+/// partial specialization according to C++ [temp.class.spec]p9.
+///
+/// \param TemplateParams the template parameters of the primary class
+/// template.
+///
+/// \param TemplateArg the template arguments of the class template
+/// partial specialization.
+///
+/// \returns true if there was an error, false otherwise.
+static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
+ TemplateParameterList *TemplateParams,
+ SmallVectorImpl<TemplateArgument> &TemplateArgs) {
+ const TemplateArgument *ArgList = TemplateArgs.data();
+
+ for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
+ NonTypeTemplateParmDecl *Param
+ = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
+ if (!Param)
+ continue;
+
+ if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
+ &ArgList[I], 1))
+ return true;
+ }
+
+ return false;
+}
+
+DeclResult
+Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
+ TagUseKind TUK,
+ SourceLocation KWLoc,
+ SourceLocation ModulePrivateLoc,
+ CXXScopeSpec &SS,
+ TemplateTy TemplateD,
+ SourceLocation TemplateNameLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc,
+ AttributeList *Attr,
+ MultiTemplateParamsArg TemplateParameterLists) {
+ assert(TUK != TUK_Reference && "References are not specializations");
+
+ // NOTE: KWLoc is the location of the tag keyword. This will instead
+ // store the location of the outermost template keyword in the declaration.
+ SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
+ ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
+
+ // Find the class template we're specializing
+ TemplateName Name = TemplateD.getAsVal<TemplateName>();
+ ClassTemplateDecl *ClassTemplate
+ = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
+
+ if (!ClassTemplate) {
+ Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
+ << (Name.getAsTemplateDecl() &&
+ isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
+ return true;
+ }
+
+ bool isExplicitSpecialization = false;
+ bool isPartialSpecialization = false;
+
+ // Check the validity of the template headers that introduce this
+ // template.
+ // FIXME: We probably shouldn't complain about these headers for
+ // friend declarations.
+ bool Invalid = false;
+ TemplateParameterList *TemplateParams
+ = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
+ TemplateNameLoc,
+ SS,
+ (TemplateParameterList**)TemplateParameterLists.get(),
+ TemplateParameterLists.size(),
+ TUK == TUK_Friend,
+ isExplicitSpecialization,
+ Invalid);
+ if (Invalid)
+ return true;
+
+ if (TemplateParams && TemplateParams->size() > 0) {
+ isPartialSpecialization = true;
+
+ if (TUK == TUK_Friend) {
+ Diag(KWLoc, diag::err_partial_specialization_friend)
+ << SourceRange(LAngleLoc, RAngleLoc);
+ return true;
+ }
+
+ // C++ [temp.class.spec]p10:
+ // The template parameter list of a specialization shall not
+ // contain default template argument values.
+ for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
+ Decl *Param = TemplateParams->getParam(I);
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
+ if (TTP->hasDefaultArgument()) {
+ Diag(TTP->getDefaultArgumentLoc(),
+ diag::err_default_arg_in_partial_spec);
+ TTP->removeDefaultArgument();
+ }
+ } else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ if (Expr *DefArg = NTTP->getDefaultArgument()) {
+ Diag(NTTP->getDefaultArgumentLoc(),
+ diag::err_default_arg_in_partial_spec)
+ << DefArg->getSourceRange();
+ NTTP->removeDefaultArgument();
+ }
+ } else {
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
+ if (TTP->hasDefaultArgument()) {
+ Diag(TTP->getDefaultArgument().getLocation(),
+ diag::err_default_arg_in_partial_spec)
+ << TTP->getDefaultArgument().getSourceRange();
+ TTP->removeDefaultArgument();
+ }
+ }
+ }
+ } else if (TemplateParams) {
+ if (TUK == TUK_Friend)
+ Diag(KWLoc, diag::err_template_spec_friend)
+ << FixItHint::CreateRemoval(
+ SourceRange(TemplateParams->getTemplateLoc(),
+ TemplateParams->getRAngleLoc()))
+ << SourceRange(LAngleLoc, RAngleLoc);
+ else
+ isExplicitSpecialization = true;
+ } else if (TUK != TUK_Friend) {
+ Diag(KWLoc, diag::err_template_spec_needs_header)
+ << FixItHint::CreateInsertion(KWLoc, "template<> ");
+ isExplicitSpecialization = true;
+ }
+
+ // Check that the specialization uses the same tag kind as the
+ // original template.
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
+ if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
+ Kind, TUK == TUK_Definition, KWLoc,
+ *ClassTemplate->getIdentifier())) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << ClassTemplate
+ << FixItHint::CreateReplacement(KWLoc,
+ ClassTemplate->getTemplatedDecl()->getKindName());
+ Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
+ diag::note_previous_use);
+ Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
+ }
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs;
+ TemplateArgs.setLAngleLoc(LAngleLoc);
+ TemplateArgs.setRAngleLoc(RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ // Check for unexpanded parameter packs in any of the template arguments.
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
+ UPPC_PartialSpecialization))
+ return true;
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
+ TemplateArgs, false, Converted))
+ return true;
+
+ // Find the class template (partial) specialization declaration that
+ // corresponds to these arguments.
+ if (isPartialSpecialization) {
+ if (CheckClassTemplatePartialSpecializationArgs(*this,
+ ClassTemplate->getTemplateParameters(),
+ Converted))
+ return true;
+
+ bool InstantiationDependent;
+ if (!Name.isDependent() &&
+ !TemplateSpecializationType::anyDependentTemplateArguments(
+ TemplateArgs.getArgumentArray(),
+ TemplateArgs.size(),
+ InstantiationDependent)) {
+ Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
+ << ClassTemplate->getDeclName();
+ isPartialSpecialization = false;
+ }
+ }
+
+ void *InsertPos = 0;
+ ClassTemplateSpecializationDecl *PrevDecl = 0;
+
+ if (isPartialSpecialization)
+ // FIXME: Template parameter list matters, too
+ PrevDecl
+ = ClassTemplate->findPartialSpecialization(Converted.data(),
+ Converted.size(),
+ InsertPos);
+ else
+ PrevDecl
+ = ClassTemplate->findSpecialization(Converted.data(),
+ Converted.size(), InsertPos);
+
+ ClassTemplateSpecializationDecl *Specialization = 0;
+
+ // Check whether we can declare a class template specialization in
+ // the current scope.
+ if (TUK != TUK_Friend &&
+ CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
+ TemplateNameLoc,
+ isPartialSpecialization))
+ return true;
+
+ // The canonical type
+ QualType CanonType;
+ if (PrevDecl &&
+ (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
+ TUK == TUK_Friend)) {
+ // Since the only prior class template specialization with these
+ // arguments was referenced but not declared, or we're only
+ // referencing this specialization as a friend, reuse that
+ // declaration node as our own, updating its source location and
+ // the list of outer template parameters to reflect our new declaration.
+ Specialization = PrevDecl;
+ Specialization->setLocation(TemplateNameLoc);
+ if (TemplateParameterLists.size() > 0) {
+ Specialization->setTemplateParameterListsInfo(Context,
+ TemplateParameterLists.size(),
+ (TemplateParameterList**) TemplateParameterLists.release());
+ }
+ PrevDecl = 0;
+ CanonType = Context.getTypeDeclType(Specialization);
+ } else if (isPartialSpecialization) {
+ // Build the canonical type that describes the converted template
+ // arguments of the class template partial specialization.
+ TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
+ CanonType = Context.getTemplateSpecializationType(CanonTemplate,
+ Converted.data(),
+ Converted.size());
+
+ if (Context.hasSameType(CanonType,
+ ClassTemplate->getInjectedClassNameSpecialization())) {
+ // C++ [temp.class.spec]p9b3:
+ //
+ // -- The argument list of the specialization shall not be identical
+ // to the implicit argument list of the primary template.
+ Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
+ << (TUK == TUK_Definition)
+ << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
+ return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
+ ClassTemplate->getIdentifier(),
+ TemplateNameLoc,
+ Attr,
+ TemplateParams,
+ AS_none, /*ModulePrivateLoc=*/SourceLocation(),
+ TemplateParameterLists.size() - 1,
+ (TemplateParameterList**) TemplateParameterLists.release());
+ }
+
+ // Create a new class template partial specialization declaration node.
+ ClassTemplatePartialSpecializationDecl *PrevPartial
+ = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
+ unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
+ : ClassTemplate->getNextPartialSpecSequenceNumber();
+ ClassTemplatePartialSpecializationDecl *Partial
+ = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
+ ClassTemplate->getDeclContext(),
+ KWLoc, TemplateNameLoc,
+ TemplateParams,
+ ClassTemplate,
+ Converted.data(),
+ Converted.size(),
+ TemplateArgs,
+ CanonType,
+ PrevPartial,
+ SequenceNumber);
+ SetNestedNameSpecifier(Partial, SS);
+ if (TemplateParameterLists.size() > 1 && SS.isSet()) {
+ Partial->setTemplateParameterListsInfo(Context,
+ TemplateParameterLists.size() - 1,
+ (TemplateParameterList**) TemplateParameterLists.release());
+ }
+
+ if (!PrevPartial)
+ ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
+ Specialization = Partial;
+
+ // If we are providing an explicit specialization of a member class
+ // template specialization, make a note of that.
+ if (PrevPartial && PrevPartial->getInstantiatedFromMember())
+ PrevPartial->setMemberSpecialization();
+
+ // Check that all of the template parameters of the class template
+ // partial specialization are deducible from the template
+ // arguments. If not, this class template partial specialization
+ // will never be used.
+ llvm::SmallBitVector DeducibleParams(TemplateParams->size());
+ MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
+ TemplateParams->getDepth(),
+ DeducibleParams);
+
+ if (!DeducibleParams.all()) {
+ unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
+ Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
+ << (NumNonDeducible > 1)
+ << SourceRange(TemplateNameLoc, RAngleLoc);
+ for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
+ if (!DeducibleParams[I]) {
+ NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
+ if (Param->getDeclName())
+ Diag(Param->getLocation(),
+ diag::note_partial_spec_unused_parameter)
+ << Param->getDeclName();
+ else
+ Diag(Param->getLocation(),
+ diag::note_partial_spec_unused_parameter)
+ << "<anonymous>";
+ }
+ }
+ }
+ } else {
+ // Create a new class template specialization declaration node for
+ // this explicit specialization or friend declaration.
+ Specialization
+ = ClassTemplateSpecializationDecl::Create(Context, Kind,
+ ClassTemplate->getDeclContext(),
+ KWLoc, TemplateNameLoc,
+ ClassTemplate,
+ Converted.data(),
+ Converted.size(),
+ PrevDecl);
+ SetNestedNameSpecifier(Specialization, SS);
+ if (TemplateParameterLists.size() > 0) {
+ Specialization->setTemplateParameterListsInfo(Context,
+ TemplateParameterLists.size(),
+ (TemplateParameterList**) TemplateParameterLists.release());
+ }
+
+ if (!PrevDecl)
+ ClassTemplate->AddSpecialization(Specialization, InsertPos);
+
+ CanonType = Context.getTypeDeclType(Specialization);
+ }
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template is
+ // explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an implicit
+ // instantiation to take place, in every translation unit in which such a
+ // use occurs; no diagnostic is required.
+ if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
+ bool Okay = false;
+ for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
+ // Is there any previous explicit specialization declaration?
+ if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
+ Okay = true;
+ break;
+ }
+ }
+
+ if (!Okay) {
+ SourceRange Range(TemplateNameLoc, RAngleLoc);
+ Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
+ << Context.getTypeDeclType(Specialization) << Range;
+
+ Diag(PrevDecl->getPointOfInstantiation(),
+ diag::note_instantiation_required_here)
+ << (PrevDecl->getTemplateSpecializationKind()
+ != TSK_ImplicitInstantiation);
+ return true;
+ }
+ }
+
+ // If this is not a friend, note that this is an explicit specialization.
+ if (TUK != TUK_Friend)
+ Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
+
+ // Check that this isn't a redefinition of this specialization.
+ if (TUK == TUK_Definition) {
+ if (RecordDecl *Def = Specialization->getDefinition()) {
+ SourceRange Range(TemplateNameLoc, RAngleLoc);
+ Diag(TemplateNameLoc, diag::err_redefinition)
+ << Context.getTypeDeclType(Specialization) << Range;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ Specialization->setInvalidDecl();
+ return true;
+ }
+ }
+
+ if (Attr)
+ ProcessDeclAttributeList(S, Specialization, Attr);
+
+ if (ModulePrivateLoc.isValid())
+ Diag(Specialization->getLocation(), diag::err_module_private_specialization)
+ << (isPartialSpecialization? 1 : 0)
+ << FixItHint::CreateRemoval(ModulePrivateLoc);
+
+ // Build the fully-sugared type for this class template
+ // specialization as the user wrote in the specialization
+ // itself. This means that we'll pretty-print the type retrieved
+ // from the specialization's declaration the way that the user
+ // actually wrote the specialization, rather than formatting the
+ // name based on the "canonical" representation used to store the
+ // template arguments in the specialization.
+ TypeSourceInfo *WrittenTy
+ = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
+ TemplateArgs, CanonType);
+ if (TUK != TUK_Friend) {
+ Specialization->setTypeAsWritten(WrittenTy);
+ Specialization->setTemplateKeywordLoc(TemplateKWLoc);
+ }
+ TemplateArgsIn.release();
+
+ // C++ [temp.expl.spec]p9:
+ // A template explicit specialization is in the scope of the
+ // namespace in which the template was defined.
+ //
+ // We actually implement this paragraph where we set the semantic
+ // context (in the creation of the ClassTemplateSpecializationDecl),
+ // but we also maintain the lexical context where the actual
+ // definition occurs.
+ Specialization->setLexicalDeclContext(CurContext);
+
+ // We may be starting the definition of this specialization.
+ if (TUK == TUK_Definition)
+ Specialization->startDefinition();
+
+ if (TUK == TUK_Friend) {
+ FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
+ TemplateNameLoc,
+ WrittenTy,
+ /*FIXME:*/KWLoc);
+ Friend->setAccess(AS_public);
+ CurContext->addDecl(Friend);
+ } else {
+ // Add the specialization into its lexical context, so that it can
+ // be seen when iterating through the list of declarations in that
+ // context. However, specializations are not found by name lookup.
+ CurContext->addDecl(Specialization);
+ }
+ return Specialization;
+}
+
+Decl *Sema::ActOnTemplateDeclarator(Scope *S,
+ MultiTemplateParamsArg TemplateParameterLists,
+ Declarator &D) {
+ return HandleDeclarator(S, D, move(TemplateParameterLists));
+}
+
+Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
+ MultiTemplateParamsArg TemplateParameterLists,
+ Declarator &D) {
+ assert(getCurFunctionDecl() == 0 && "Function parsing confused");
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
+
+ if (FTI.hasPrototype) {
+ // FIXME: Diagnose arguments without names in C.
+ }
+
+ Scope *ParentScope = FnBodyScope->getParent();
+
+ D.setFunctionDefinitionKind(FDK_Definition);
+ Decl *DP = HandleDeclarator(ParentScope, D,
+ move(TemplateParameterLists));
+ if (FunctionTemplateDecl *FunctionTemplate
+ = dyn_cast_or_null<FunctionTemplateDecl>(DP))
+ return ActOnStartOfFunctionDef(FnBodyScope,
+ FunctionTemplate->getTemplatedDecl());
+ if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
+ return ActOnStartOfFunctionDef(FnBodyScope, Function);
+ return 0;
+}
+
+/// \brief Strips various properties off an implicit instantiation
+/// that has just been explicitly specialized.
+static void StripImplicitInstantiation(NamedDecl *D) {
+ // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
+ D->dropAttrs();
+
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ FD->setInlineSpecified(false);
+ }
+}
+
+/// \brief Compute the diagnostic location for an explicit instantiation
+// declaration or definition.
+static SourceLocation DiagLocForExplicitInstantiation(
+ NamedDecl* D, SourceLocation PointOfInstantiation) {
+ // Explicit instantiations following a specialization have no effect and
+ // hence no PointOfInstantiation. In that case, walk decl backwards
+ // until a valid name loc is found.
+ SourceLocation PrevDiagLoc = PointOfInstantiation;
+ for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
+ Prev = Prev->getPreviousDecl()) {
+ PrevDiagLoc = Prev->getLocation();
+ }
+ assert(PrevDiagLoc.isValid() &&
+ "Explicit instantiation without point of instantiation?");
+ return PrevDiagLoc;
+}
+
+/// \brief Diagnose cases where we have an explicit template specialization
+/// before/after an explicit template instantiation, producing diagnostics
+/// for those cases where they are required and determining whether the
+/// new specialization/instantiation will have any effect.
+///
+/// \param NewLoc the location of the new explicit specialization or
+/// instantiation.
+///
+/// \param NewTSK the kind of the new explicit specialization or instantiation.
+///
+/// \param PrevDecl the previous declaration of the entity.
+///
+/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
+///
+/// \param PrevPointOfInstantiation if valid, indicates where the previus
+/// declaration was instantiated (either implicitly or explicitly).
+///
+/// \param HasNoEffect will be set to true to indicate that the new
+/// specialization or instantiation has no effect and should be ignored.
+///
+/// \returns true if there was an error that should prevent the introduction of
+/// the new declaration into the AST, false otherwise.
+bool
+Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
+ TemplateSpecializationKind NewTSK,
+ NamedDecl *PrevDecl,
+ TemplateSpecializationKind PrevTSK,
+ SourceLocation PrevPointOfInstantiation,
+ bool &HasNoEffect) {
+ HasNoEffect = false;
+
+ switch (NewTSK) {
+ case TSK_Undeclared:
+ case TSK_ImplicitInstantiation:
+ llvm_unreachable("Don't check implicit instantiations here");
+
+ case TSK_ExplicitSpecialization:
+ switch (PrevTSK) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ // Okay, we're just specializing something that is either already
+ // explicitly specialized or has merely been mentioned without any
+ // instantiation.
+ return false;
+
+ case TSK_ImplicitInstantiation:
+ if (PrevPointOfInstantiation.isInvalid()) {
+ // The declaration itself has not actually been instantiated, so it is
+ // still okay to specialize it.
+ StripImplicitInstantiation(PrevDecl);
+ return false;
+ }
+ // Fall through
+
+ case TSK_ExplicitInstantiationDeclaration:
+ case TSK_ExplicitInstantiationDefinition:
+ assert((PrevTSK == TSK_ImplicitInstantiation ||
+ PrevPointOfInstantiation.isValid()) &&
+ "Explicit instantiation without point of instantiation?");
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template
+ // is explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an
+ // implicit instantiation to take place, in every translation unit in
+ // which such a use occurs; no diagnostic is required.
+ for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
+ // Is there any previous explicit specialization declaration?
+ if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
+ return false;
+ }
+
+ Diag(NewLoc, diag::err_specialization_after_instantiation)
+ << PrevDecl;
+ Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
+ << (PrevTSK != TSK_ImplicitInstantiation);
+
+ return true;
+ }
+
+ case TSK_ExplicitInstantiationDeclaration:
+ switch (PrevTSK) {
+ case TSK_ExplicitInstantiationDeclaration:
+ // This explicit instantiation declaration is redundant (that's okay).
+ HasNoEffect = true;
+ return false;
+
+ case TSK_Undeclared:
+ case TSK_ImplicitInstantiation:
+ // We're explicitly instantiating something that may have already been
+ // implicitly instantiated; that's fine.
+ return false;
+
+ case TSK_ExplicitSpecialization:
+ // C++0x [temp.explicit]p4:
+ // For a given set of template parameters, if an explicit instantiation
+ // of a template appears after a declaration of an explicit
+ // specialization for that template, the explicit instantiation has no
+ // effect.
+ HasNoEffect = true;
+ return false;
+
+ case TSK_ExplicitInstantiationDefinition:
+ // C++0x [temp.explicit]p10:
+ // If an entity is the subject of both an explicit instantiation
+ // declaration and an explicit instantiation definition in the same
+ // translation unit, the definition shall follow the declaration.
+ Diag(NewLoc,
+ diag::err_explicit_instantiation_declaration_after_definition);
+
+ // Explicit instantiations following a specialization have no effect and
+ // hence no PrevPointOfInstantiation. In that case, walk decl backwards
+ // until a valid name loc is found.
+ Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
+ diag::note_explicit_instantiation_definition_here);
+ HasNoEffect = true;
+ return false;
+ }
+
+ case TSK_ExplicitInstantiationDefinition:
+ switch (PrevTSK) {
+ case TSK_Undeclared:
+ case TSK_ImplicitInstantiation:
+ // We're explicitly instantiating something that may have already been
+ // implicitly instantiated; that's fine.
+ return false;
+
+ case TSK_ExplicitSpecialization:
+ // C++ DR 259, C++0x [temp.explicit]p4:
+ // For a given set of template parameters, if an explicit
+ // instantiation of a template appears after a declaration of
+ // an explicit specialization for that template, the explicit
+ // instantiation has no effect.
+ //
+ // In C++98/03 mode, we only give an extension warning here, because it
+ // is not harmful to try to explicitly instantiate something that
+ // has been explicitly specialized.
+ Diag(NewLoc, getLangOpts().CPlusPlus0x ?
+ diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
+ diag::ext_explicit_instantiation_after_specialization)
+ << PrevDecl;
+ Diag(PrevDecl->getLocation(),
+ diag::note_previous_template_specialization);
+ HasNoEffect = true;
+ return false;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ // We're explicity instantiating a definition for something for which we
+ // were previously asked to suppress instantiations. That's fine.
+
+ // C++0x [temp.explicit]p4:
+ // For a given set of template parameters, if an explicit instantiation
+ // of a template appears after a declaration of an explicit
+ // specialization for that template, the explicit instantiation has no
+ // effect.
+ for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
+ // Is there any previous explicit specialization declaration?
+ if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
+ HasNoEffect = true;
+ break;
+ }
+ }
+
+ return false;
+
+ case TSK_ExplicitInstantiationDefinition:
+ // C++0x [temp.spec]p5:
+ // For a given template and a given set of template-arguments,
+ // - an explicit instantiation definition shall appear at most once
+ // in a program,
+ Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
+ << PrevDecl;
+ Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
+ diag::note_previous_explicit_instantiation);
+ HasNoEffect = true;
+ return false;
+ }
+ }
+
+ llvm_unreachable("Missing specialization/instantiation case?");
+}
+
+/// \brief Perform semantic analysis for the given dependent function
+/// template specialization. The only possible way to get a dependent
+/// function template specialization is with a friend declaration,
+/// like so:
+///
+/// template <class T> void foo(T);
+/// template <class T> class A {
+/// friend void foo<>(T);
+/// };
+///
+/// There really isn't any useful analysis we can do here, so we
+/// just store the information.
+bool
+Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
+ const TemplateArgumentListInfo &ExplicitTemplateArgs,
+ LookupResult &Previous) {
+ // Remove anything from Previous that isn't a function template in
+ // the correct context.
+ DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
+ LookupResult::Filter F = Previous.makeFilter();
+ while (F.hasNext()) {
+ NamedDecl *D = F.next()->getUnderlyingDecl();
+ if (!isa<FunctionTemplateDecl>(D) ||
+ !FDLookupContext->InEnclosingNamespaceSetOf(
+ D->getDeclContext()->getRedeclContext()))
+ F.erase();
+ }
+ F.done();
+
+ // Should this be diagnosed here?
+ if (Previous.empty()) return true;
+
+ FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
+ ExplicitTemplateArgs);
+ return false;
+}
+
+/// \brief Perform semantic analysis for the given function template
+/// specialization.
+///
+/// This routine performs all of the semantic analysis required for an
+/// explicit function template specialization. On successful completion,
+/// the function declaration \p FD will become a function template
+/// specialization.
+///
+/// \param FD the function declaration, which will be updated to become a
+/// function template specialization.
+///
+/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
+/// if any. Note that this may be valid info even when 0 arguments are
+/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
+/// as it anyway contains info on the angle brackets locations.
+///
+/// \param Previous the set of declarations that may be specialized by
+/// this function specialization.
+bool
+Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ LookupResult &Previous) {
+ // The set of function template specializations that could match this
+ // explicit function template specialization.
+ UnresolvedSet<8> Candidates;
+
+ DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
+ for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
+ I != E; ++I) {
+ NamedDecl *Ovl = (*I)->getUnderlyingDecl();
+ if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
+ // Only consider templates found within the same semantic lookup scope as
+ // FD.
+ if (!FDLookupContext->InEnclosingNamespaceSetOf(
+ Ovl->getDeclContext()->getRedeclContext()))
+ continue;
+
+ // C++ [temp.expl.spec]p11:
+ // A trailing template-argument can be left unspecified in the
+ // template-id naming an explicit function template specialization
+ // provided it can be deduced from the function argument type.
+ // Perform template argument deduction to determine whether we may be
+ // specializing this template.
+ // FIXME: It is somewhat wasteful to build
+ TemplateDeductionInfo Info(Context, FD->getLocation());
+ FunctionDecl *Specialization = 0;
+ if (TemplateDeductionResult TDK
+ = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
+ FD->getType(),
+ Specialization,
+ Info)) {
+ // FIXME: Template argument deduction failed; record why it failed, so
+ // that we can provide nifty diagnostics.
+ (void)TDK;
+ continue;
+ }
+
+ // Record this candidate.
+ Candidates.addDecl(Specialization, I.getAccess());
+ }
+ }
+
+ // Find the most specialized function template.
+ UnresolvedSetIterator Result
+ = getMostSpecialized(Candidates.begin(), Candidates.end(),
+ TPOC_Other, 0, FD->getLocation(),
+ PDiag(diag::err_function_template_spec_no_match)
+ << FD->getDeclName(),
+ PDiag(diag::err_function_template_spec_ambiguous)
+ << FD->getDeclName() << (ExplicitTemplateArgs != 0),
+ PDiag(diag::note_function_template_spec_matched));
+ if (Result == Candidates.end())
+ return true;
+
+ // Ignore access information; it doesn't figure into redeclaration checking.
+ FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
+
+ FunctionTemplateSpecializationInfo *SpecInfo
+ = Specialization->getTemplateSpecializationInfo();
+ assert(SpecInfo && "Function template specialization info missing?");
+
+ // Note: do not overwrite location info if previous template
+ // specialization kind was explicit.
+ TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
+ if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
+ Specialization->setLocation(FD->getLocation());
+ // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
+ // function can differ from the template declaration with respect to
+ // the constexpr specifier.
+ Specialization->setConstexpr(FD->isConstexpr());
+ }
+
+ // FIXME: Check if the prior specialization has a point of instantiation.
+ // If so, we have run afoul of .
+
+ // If this is a friend declaration, then we're not really declaring
+ // an explicit specialization.
+ bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
+
+ // Check the scope of this explicit specialization.
+ if (!isFriend &&
+ CheckTemplateSpecializationScope(*this,
+ Specialization->getPrimaryTemplate(),
+ Specialization, FD->getLocation(),
+ false))
+ return true;
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template is
+ // explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an implicit
+ // instantiation to take place, in every translation unit in which such a
+ // use occurs; no diagnostic is required.
+ bool HasNoEffect = false;
+ if (!isFriend &&
+ CheckSpecializationInstantiationRedecl(FD->getLocation(),
+ TSK_ExplicitSpecialization,
+ Specialization,
+ SpecInfo->getTemplateSpecializationKind(),
+ SpecInfo->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+
+ // Mark the prior declaration as an explicit specialization, so that later
+ // clients know that this is an explicit specialization.
+ if (!isFriend) {
+ SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
+ MarkUnusedFileScopedDecl(Specialization);
+ }
+
+ // Turn the given function declaration into a function template
+ // specialization, with the template arguments from the previous
+ // specialization.
+ // Take copies of (semantic and syntactic) template argument lists.
+ const TemplateArgumentList* TemplArgs = new (Context)
+ TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
+ FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
+ TemplArgs, /*InsertPos=*/0,
+ SpecInfo->getTemplateSpecializationKind(),
+ ExplicitTemplateArgs);
+ FD->setStorageClass(Specialization->getStorageClass());
+
+ // The "previous declaration" for this function template specialization is
+ // the prior function template specialization.
+ Previous.clear();
+ Previous.addDecl(Specialization);
+ return false;
+}
+
+/// \brief Perform semantic analysis for the given non-template member
+/// specialization.
+///
+/// This routine performs all of the semantic analysis required for an
+/// explicit member function specialization. On successful completion,
+/// the function declaration \p FD will become a member function
+/// specialization.
+///
+/// \param Member the member declaration, which will be updated to become a
+/// specialization.
+///
+/// \param Previous the set of declarations, one of which may be specialized
+/// by this function specialization; the set will be modified to contain the
+/// redeclared member.
+bool
+Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
+ assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
+
+ // Try to find the member we are instantiating.
+ NamedDecl *Instantiation = 0;
+ NamedDecl *InstantiatedFrom = 0;
+ MemberSpecializationInfo *MSInfo = 0;
+
+ if (Previous.empty()) {
+ // Nowhere to look anyway.
+ } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
+ for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
+ I != E; ++I) {
+ NamedDecl *D = (*I)->getUnderlyingDecl();
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ if (Context.hasSameType(Function->getType(), Method->getType())) {
+ Instantiation = Method;
+ InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
+ MSInfo = Method->getMemberSpecializationInfo();
+ break;
+ }
+ }
+ }
+ } else if (isa<VarDecl>(Member)) {
+ VarDecl *PrevVar;
+ if (Previous.isSingleResult() &&
+ (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
+ if (PrevVar->isStaticDataMember()) {
+ Instantiation = PrevVar;
+ InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
+ MSInfo = PrevVar->getMemberSpecializationInfo();
+ }
+ } else if (isa<RecordDecl>(Member)) {
+ CXXRecordDecl *PrevRecord;
+ if (Previous.isSingleResult() &&
+ (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
+ Instantiation = PrevRecord;
+ InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
+ MSInfo = PrevRecord->getMemberSpecializationInfo();
+ }
+ } else if (isa<EnumDecl>(Member)) {
+ EnumDecl *PrevEnum;
+ if (Previous.isSingleResult() &&
+ (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
+ Instantiation = PrevEnum;
+ InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
+ MSInfo = PrevEnum->getMemberSpecializationInfo();
+ }
+ }
+
+ if (!Instantiation) {
+ // There is no previous declaration that matches. Since member
+ // specializations are always out-of-line, the caller will complain about
+ // this mismatch later.
+ return false;
+ }
+
+ // If this is a friend, just bail out here before we start turning
+ // things into explicit specializations.
+ if (Member->getFriendObjectKind() != Decl::FOK_None) {
+ // Preserve instantiation information.
+ if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
+ cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
+ cast<CXXMethodDecl>(InstantiatedFrom),
+ cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
+ } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
+ cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
+ cast<CXXRecordDecl>(InstantiatedFrom),
+ cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
+ }
+
+ Previous.clear();
+ Previous.addDecl(Instantiation);
+ return false;
+ }
+
+ // Make sure that this is a specialization of a member.
+ if (!InstantiatedFrom) {
+ Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
+ << Member;
+ Diag(Instantiation->getLocation(), diag::note_specialized_decl);
+ return true;
+ }
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template is
+ // explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an implicit
+ // instantiation to take place, in every translation unit in which such a
+ // use occurs; no diagnostic is required.
+ assert(MSInfo && "Member specialization info missing?");
+
+ bool HasNoEffect = false;
+ if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
+ TSK_ExplicitSpecialization,
+ Instantiation,
+ MSInfo->getTemplateSpecializationKind(),
+ MSInfo->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+
+ // Check the scope of this explicit specialization.
+ if (CheckTemplateSpecializationScope(*this,
+ InstantiatedFrom,
+ Instantiation, Member->getLocation(),
+ false))
+ return true;
+
+ // Note that this is an explicit instantiation of a member.
+ // the original declaration to note that it is an explicit specialization
+ // (if it was previously an implicit instantiation). This latter step
+ // makes bookkeeping easier.
+ if (isa<FunctionDecl>(Member)) {
+ FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
+ if (InstantiationFunction->getTemplateSpecializationKind() ==
+ TSK_ImplicitInstantiation) {
+ InstantiationFunction->setTemplateSpecializationKind(
+ TSK_ExplicitSpecialization);
+ InstantiationFunction->setLocation(Member->getLocation());
+ }
+
+ cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
+ cast<CXXMethodDecl>(InstantiatedFrom),
+ TSK_ExplicitSpecialization);
+ MarkUnusedFileScopedDecl(InstantiationFunction);
+ } else if (isa<VarDecl>(Member)) {
+ VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
+ if (InstantiationVar->getTemplateSpecializationKind() ==
+ TSK_ImplicitInstantiation) {
+ InstantiationVar->setTemplateSpecializationKind(
+ TSK_ExplicitSpecialization);
+ InstantiationVar->setLocation(Member->getLocation());
+ }
+
+ Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
+ cast<VarDecl>(InstantiatedFrom),
+ TSK_ExplicitSpecialization);
+ MarkUnusedFileScopedDecl(InstantiationVar);
+ } else if (isa<CXXRecordDecl>(Member)) {
+ CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
+ if (InstantiationClass->getTemplateSpecializationKind() ==
+ TSK_ImplicitInstantiation) {
+ InstantiationClass->setTemplateSpecializationKind(
+ TSK_ExplicitSpecialization);
+ InstantiationClass->setLocation(Member->getLocation());
+ }
+
+ cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
+ cast<CXXRecordDecl>(InstantiatedFrom),
+ TSK_ExplicitSpecialization);
+ } else {
+ assert(isa<EnumDecl>(Member) && "Only member enums remain");
+ EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
+ if (InstantiationEnum->getTemplateSpecializationKind() ==
+ TSK_ImplicitInstantiation) {
+ InstantiationEnum->setTemplateSpecializationKind(
+ TSK_ExplicitSpecialization);
+ InstantiationEnum->setLocation(Member->getLocation());
+ }
+
+ cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
+ cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
+ }
+
+ // Save the caller the trouble of having to figure out which declaration
+ // this specialization matches.
+ Previous.clear();
+ Previous.addDecl(Instantiation);
+ return false;
+}
+
+/// \brief Check the scope of an explicit instantiation.
+///
+/// \returns true if a serious error occurs, false otherwise.
+static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
+ SourceLocation InstLoc,
+ bool WasQualifiedName) {
+ DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
+ DeclContext *CurContext = S.CurContext->getRedeclContext();
+
+ if (CurContext->isRecord()) {
+ S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
+ << D;
+ return true;
+ }
+
+ // C++11 [temp.explicit]p3:
+ // An explicit instantiation shall appear in an enclosing namespace of its
+ // template. If the name declared in the explicit instantiation is an
+ // unqualified name, the explicit instantiation shall appear in the
+ // namespace where its template is declared or, if that namespace is inline
+ // (7.3.1), any namespace from its enclosing namespace set.
+ //
+ // This is DR275, which we do not retroactively apply to C++98/03.
+ if (WasQualifiedName) {
+ if (CurContext->Encloses(OrigContext))
+ return false;
+ } else {
+ if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
+ return false;
+ }
+
+ if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
+ if (WasQualifiedName)
+ S.Diag(InstLoc,
+ S.getLangOpts().CPlusPlus0x?
+ diag::err_explicit_instantiation_out_of_scope :
+ diag::warn_explicit_instantiation_out_of_scope_0x)
+ << D << NS;
+ else
+ S.Diag(InstLoc,
+ S.getLangOpts().CPlusPlus0x?
+ diag::err_explicit_instantiation_unqualified_wrong_namespace :
+ diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
+ << D << NS;
+ } else
+ S.Diag(InstLoc,
+ S.getLangOpts().CPlusPlus0x?
+ diag::err_explicit_instantiation_must_be_global :
+ diag::warn_explicit_instantiation_must_be_global_0x)
+ << D;
+ S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
+ return false;
+}
+
+/// \brief Determine whether the given scope specifier has a template-id in it.
+static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
+ if (!SS.isSet())
+ return false;
+
+ // C++11 [temp.explicit]p3:
+ // If the explicit instantiation is for a member function, a member class
+ // or a static data member of a class template specialization, the name of
+ // the class template specialization in the qualified-id for the member
+ // name shall be a simple-template-id.
+ //
+ // C++98 has the same restriction, just worded differently.
+ for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
+ NNS; NNS = NNS->getPrefix())
+ if (const Type *T = NNS->getAsType())
+ if (isa<TemplateSpecializationType>(T))
+ return true;
+
+ return false;
+}
+
+// Explicit instantiation of a class template specialization
+DeclResult
+Sema::ActOnExplicitInstantiation(Scope *S,
+ SourceLocation ExternLoc,
+ SourceLocation TemplateLoc,
+ unsigned TagSpec,
+ SourceLocation KWLoc,
+ const CXXScopeSpec &SS,
+ TemplateTy TemplateD,
+ SourceLocation TemplateNameLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc,
+ AttributeList *Attr) {
+ // Find the class template we're specializing
+ TemplateName Name = TemplateD.getAsVal<TemplateName>();
+ ClassTemplateDecl *ClassTemplate
+ = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
+
+ // Check that the specialization uses the same tag kind as the
+ // original template.
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ assert(Kind != TTK_Enum &&
+ "Invalid enum tag in class template explicit instantiation!");
+ if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
+ Kind, /*isDefinition*/false, KWLoc,
+ *ClassTemplate->getIdentifier())) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << ClassTemplate
+ << FixItHint::CreateReplacement(KWLoc,
+ ClassTemplate->getTemplatedDecl()->getKindName());
+ Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
+ diag::note_previous_use);
+ Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
+ }
+
+ // C++0x [temp.explicit]p2:
+ // There are two forms of explicit instantiation: an explicit instantiation
+ // definition and an explicit instantiation declaration. An explicit
+ // instantiation declaration begins with the extern keyword. [...]
+ TemplateSpecializationKind TSK
+ = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
+ : TSK_ExplicitInstantiationDeclaration;
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
+ TemplateArgs, false, Converted))
+ return true;
+
+ // Find the class template specialization declaration that
+ // corresponds to these arguments.
+ void *InsertPos = 0;
+ ClassTemplateSpecializationDecl *PrevDecl
+ = ClassTemplate->findSpecialization(Converted.data(),
+ Converted.size(), InsertPos);
+
+ TemplateSpecializationKind PrevDecl_TSK
+ = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
+
+ // C++0x [temp.explicit]p2:
+ // [...] An explicit instantiation shall appear in an enclosing
+ // namespace of its template. [...]
+ //
+ // This is C++ DR 275.
+ if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
+ SS.isSet()))
+ return true;
+
+ ClassTemplateSpecializationDecl *Specialization = 0;
+
+ bool HasNoEffect = false;
+ if (PrevDecl) {
+ if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
+ PrevDecl, PrevDecl_TSK,
+ PrevDecl->getPointOfInstantiation(),
+ HasNoEffect))
+ return PrevDecl;
+
+ // Even though HasNoEffect == true means that this explicit instantiation
+ // has no effect on semantics, we go on to put its syntax in the AST.
+
+ if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
+ PrevDecl_TSK == TSK_Undeclared) {
+ // Since the only prior class template specialization with these
+ // arguments was referenced but not declared, reuse that
+ // declaration node as our own, updating the source location
+ // for the template name to reflect our new declaration.
+ // (Other source locations will be updated later.)
+ Specialization = PrevDecl;
+ Specialization->setLocation(TemplateNameLoc);
+ PrevDecl = 0;
+ }
+ }
+
+ if (!Specialization) {
+ // Create a new class template specialization declaration node for
+ // this explicit specialization.
+ Specialization
+ = ClassTemplateSpecializationDecl::Create(Context, Kind,
+ ClassTemplate->getDeclContext(),
+ KWLoc, TemplateNameLoc,
+ ClassTemplate,
+ Converted.data(),
+ Converted.size(),
+ PrevDecl);
+ SetNestedNameSpecifier(Specialization, SS);
+
+ if (!HasNoEffect && !PrevDecl) {
+ // Insert the new specialization.
+ ClassTemplate->AddSpecialization(Specialization, InsertPos);
+ }
+ }
+
+ // Build the fully-sugared type for this explicit instantiation as
+ // the user wrote in the explicit instantiation itself. This means
+ // that we'll pretty-print the type retrieved from the
+ // specialization's declaration the way that the user actually wrote
+ // the explicit instantiation, rather than formatting the name based
+ // on the "canonical" representation used to store the template
+ // arguments in the specialization.
+ TypeSourceInfo *WrittenTy
+ = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
+ TemplateArgs,
+ Context.getTypeDeclType(Specialization));
+ Specialization->setTypeAsWritten(WrittenTy);
+ TemplateArgsIn.release();
+
+ // Set source locations for keywords.
+ Specialization->setExternLoc(ExternLoc);
+ Specialization->setTemplateKeywordLoc(TemplateLoc);
+
+ if (Attr)
+ ProcessDeclAttributeList(S, Specialization, Attr);
+
+ // Add the explicit instantiation into its lexical context. However,
+ // since explicit instantiations are never found by name lookup, we
+ // just put it into the declaration context directly.
+ Specialization->setLexicalDeclContext(CurContext);
+ CurContext->addDecl(Specialization);
+
+ // Syntax is now OK, so return if it has no other effect on semantics.
+ if (HasNoEffect) {
+ // Set the template specialization kind.
+ Specialization->setTemplateSpecializationKind(TSK);
+ return Specialization;
+ }
+
+ // C++ [temp.explicit]p3:
+ // A definition of a class template or class member template
+ // shall be in scope at the point of the explicit instantiation of
+ // the class template or class member template.
+ //
+ // This check comes when we actually try to perform the
+ // instantiation.
+ ClassTemplateSpecializationDecl *Def
+ = cast_or_null<ClassTemplateSpecializationDecl>(
+ Specialization->getDefinition());
+ if (!Def)
+ InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
+ else if (TSK == TSK_ExplicitInstantiationDefinition) {
+ MarkVTableUsed(TemplateNameLoc, Specialization, true);
+ Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
+ }
+
+ // Instantiate the members of this class template specialization.
+ Def = cast_or_null<ClassTemplateSpecializationDecl>(
+ Specialization->getDefinition());
+ if (Def) {
+ TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
+
+ // Fix a TSK_ExplicitInstantiationDeclaration followed by a
+ // TSK_ExplicitInstantiationDefinition
+ if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
+ TSK == TSK_ExplicitInstantiationDefinition)
+ Def->setTemplateSpecializationKind(TSK);
+
+ InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
+ }
+
+ // Set the template specialization kind.
+ Specialization->setTemplateSpecializationKind(TSK);
+ return Specialization;
+}
+
+// Explicit instantiation of a member class of a class template.
+DeclResult
+Sema::ActOnExplicitInstantiation(Scope *S,
+ SourceLocation ExternLoc,
+ SourceLocation TemplateLoc,
+ unsigned TagSpec,
+ SourceLocation KWLoc,
+ CXXScopeSpec &SS,
+ IdentifierInfo *Name,
+ SourceLocation NameLoc,
+ AttributeList *Attr) {
+
+ bool Owned = false;
+ bool IsDependent = false;
+ Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
+ KWLoc, SS, Name, NameLoc, Attr, AS_none,
+ /*ModulePrivateLoc=*/SourceLocation(),
+ MultiTemplateParamsArg(*this, 0, 0),
+ Owned, IsDependent, SourceLocation(), false,
+ TypeResult());
+ assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
+
+ if (!TagD)
+ return true;
+
+ TagDecl *Tag = cast<TagDecl>(TagD);
+ assert(!Tag->isEnum() && "shouldn't see enumerations here");
+
+ if (Tag->isInvalidDecl())
+ return true;
+
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
+ CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
+ if (!Pattern) {
+ Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
+ << Context.getTypeDeclType(Record);
+ Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
+ return true;
+ }
+
+ // C++0x [temp.explicit]p2:
+ // If the explicit instantiation is for a class or member class, the
+ // elaborated-type-specifier in the declaration shall include a
+ // simple-template-id.
+ //
+ // C++98 has the same restriction, just worded differently.
+ if (!ScopeSpecifierHasTemplateId(SS))
+ Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
+ << Record << SS.getRange();
+
+ // C++0x [temp.explicit]p2:
+ // There are two forms of explicit instantiation: an explicit instantiation
+ // definition and an explicit instantiation declaration. An explicit
+ // instantiation declaration begins with the extern keyword. [...]
+ TemplateSpecializationKind TSK
+ = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
+ : TSK_ExplicitInstantiationDeclaration;
+
+ // C++0x [temp.explicit]p2:
+ // [...] An explicit instantiation shall appear in an enclosing
+ // namespace of its template. [...]
+ //
+ // This is C++ DR 275.
+ CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
+
+ // Verify that it is okay to explicitly instantiate here.
+ CXXRecordDecl *PrevDecl
+ = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
+ if (!PrevDecl && Record->getDefinition())
+ PrevDecl = Record;
+ if (PrevDecl) {
+ MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
+ bool HasNoEffect = false;
+ assert(MSInfo && "No member specialization information?");
+ if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
+ PrevDecl,
+ MSInfo->getTemplateSpecializationKind(),
+ MSInfo->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+ if (HasNoEffect)
+ return TagD;
+ }
+
+ CXXRecordDecl *RecordDef
+ = cast_or_null<CXXRecordDecl>(Record->getDefinition());
+ if (!RecordDef) {
+ // C++ [temp.explicit]p3:
+ // A definition of a member class of a class template shall be in scope
+ // at the point of an explicit instantiation of the member class.
+ CXXRecordDecl *Def
+ = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
+ if (!Def) {
+ Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
+ << 0 << Record->getDeclName() << Record->getDeclContext();
+ Diag(Pattern->getLocation(), diag::note_forward_declaration)
+ << Pattern;
+ return true;
+ } else {
+ if (InstantiateClass(NameLoc, Record, Def,
+ getTemplateInstantiationArgs(Record),
+ TSK))
+ return true;
+
+ RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
+ if (!RecordDef)
+ return true;
+ }
+ }
+
+ // Instantiate all of the members of the class.
+ InstantiateClassMembers(NameLoc, RecordDef,
+ getTemplateInstantiationArgs(Record), TSK);
+
+ if (TSK == TSK_ExplicitInstantiationDefinition)
+ MarkVTableUsed(NameLoc, RecordDef, true);
+
+ // FIXME: We don't have any representation for explicit instantiations of
+ // member classes. Such a representation is not needed for compilation, but it
+ // should be available for clients that want to see all of the declarations in
+ // the source code.
+ return TagD;
+}
+
+DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
+ SourceLocation ExternLoc,
+ SourceLocation TemplateLoc,
+ Declarator &D) {
+ // Explicit instantiations always require a name.
+ // TODO: check if/when DNInfo should replace Name.
+ DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
+ DeclarationName Name = NameInfo.getName();
+ if (!Name) {
+ if (!D.isInvalidType())
+ Diag(D.getDeclSpec().getLocStart(),
+ diag::err_explicit_instantiation_requires_name)
+ << D.getDeclSpec().getSourceRange()
+ << D.getSourceRange();
+
+ return true;
+ }
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ while ((S->getFlags() & Scope::DeclScope) == 0 ||
+ (S->getFlags() & Scope::TemplateParamScope) != 0)
+ S = S->getParent();
+
+ // Determine the type of the declaration.
+ TypeSourceInfo *T = GetTypeForDeclarator(D, S);
+ QualType R = T->getType();
+ if (R.isNull())
+ return true;
+
+ // C++ [dcl.stc]p1:
+ // A storage-class-specifier shall not be specified in [...] an explicit
+ // instantiation (14.7.2) directive.
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
+ Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
+ << Name;
+ return true;
+ } else if (D.getDeclSpec().getStorageClassSpec()
+ != DeclSpec::SCS_unspecified) {
+ // Complain about then remove the storage class specifier.
+ Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+ }
+
+ // C++0x [temp.explicit]p1:
+ // [...] An explicit instantiation of a function template shall not use the
+ // inline or constexpr specifiers.
+ // Presumably, this also applies to member functions of class templates as
+ // well.
+ if (D.getDeclSpec().isInlineSpecified())
+ Diag(D.getDeclSpec().getInlineSpecLoc(),
+ getLangOpts().CPlusPlus0x ?
+ diag::err_explicit_instantiation_inline :
+ diag::warn_explicit_instantiation_inline_0x)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
+ if (D.getDeclSpec().isConstexprSpecified())
+ // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
+ // not already specified.
+ Diag(D.getDeclSpec().getConstexprSpecLoc(),
+ diag::err_explicit_instantiation_constexpr);
+
+ // C++0x [temp.explicit]p2:
+ // There are two forms of explicit instantiation: an explicit instantiation
+ // definition and an explicit instantiation declaration. An explicit
+ // instantiation declaration begins with the extern keyword. [...]
+ TemplateSpecializationKind TSK
+ = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
+ : TSK_ExplicitInstantiationDeclaration;
+
+ LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
+ LookupParsedName(Previous, S, &D.getCXXScopeSpec());
+
+ if (!R->isFunctionType()) {
+ // C++ [temp.explicit]p1:
+ // A [...] static data member of a class template can be explicitly
+ // instantiated from the member definition associated with its class
+ // template.
+ if (Previous.isAmbiguous())
+ return true;
+
+ VarDecl *Prev = Previous.getAsSingle<VarDecl>();
+ if (!Prev || !Prev->isStaticDataMember()) {
+ // We expect to see a data data member here.
+ Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
+ << Name;
+ for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
+ P != PEnd; ++P)
+ Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
+ return true;
+ }
+
+ if (!Prev->getInstantiatedFromStaticDataMember()) {
+ // FIXME: Check for explicit specialization?
+ Diag(D.getIdentifierLoc(),
+ diag::err_explicit_instantiation_data_member_not_instantiated)
+ << Prev;
+ Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
+ // FIXME: Can we provide a note showing where this was declared?
+ return true;
+ }
+
+ // C++0x [temp.explicit]p2:
+ // If the explicit instantiation is for a member function, a member class
+ // or a static data member of a class template specialization, the name of
+ // the class template specialization in the qualified-id for the member
+ // name shall be a simple-template-id.
+ //
+ // C++98 has the same restriction, just worded differently.
+ if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
+ Diag(D.getIdentifierLoc(),
+ diag::ext_explicit_instantiation_without_qualified_id)
+ << Prev << D.getCXXScopeSpec().getRange();
+
+ // Check the scope of this explicit instantiation.
+ CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
+
+ // Verify that it is okay to explicitly instantiate here.
+ MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
+ assert(MSInfo && "Missing static data member specialization info?");
+ bool HasNoEffect = false;
+ if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
+ MSInfo->getTemplateSpecializationKind(),
+ MSInfo->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+ if (HasNoEffect)
+ return (Decl*) 0;
+
+ // Instantiate static data member.
+ Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
+ if (TSK == TSK_ExplicitInstantiationDefinition)
+ InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
+
+ // FIXME: Create an ExplicitInstantiation node?
+ return (Decl*) 0;
+ }
+
+ // If the declarator is a template-id, translate the parser's template
+ // argument list into our AST format.
+ bool HasExplicitTemplateArgs = false;
+ TemplateArgumentListInfo TemplateArgs;
+ if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
+ TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
+ TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
+ TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
+ ASTTemplateArgsPtr TemplateArgsPtr(*this,
+ TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+ translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
+ HasExplicitTemplateArgs = true;
+ TemplateArgsPtr.release();
+ }
+
+ // C++ [temp.explicit]p1:
+ // A [...] function [...] can be explicitly instantiated from its template.
+ // A member function [...] of a class template can be explicitly
+ // instantiated from the member definition associated with its class
+ // template.
+ UnresolvedSet<8> Matches;
+ for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
+ P != PEnd; ++P) {
+ NamedDecl *Prev = *P;
+ if (!HasExplicitTemplateArgs) {
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
+ if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
+ Matches.clear();
+
+ Matches.addDecl(Method, P.getAccess());
+ if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
+ break;
+ }
+ }
+ }
+
+ FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
+ if (!FunTmpl)
+ continue;
+
+ TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
+ FunctionDecl *Specialization = 0;
+ if (TemplateDeductionResult TDK
+ = DeduceTemplateArguments(FunTmpl,
+ (HasExplicitTemplateArgs ? &TemplateArgs : 0),
+ R, Specialization, Info)) {
+ // FIXME: Keep track of almost-matches?
+ (void)TDK;
+ continue;
+ }
+
+ Matches.addDecl(Specialization, P.getAccess());
+ }
+
+ // Find the most specialized function template specialization.
+ UnresolvedSetIterator Result
+ = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
+ D.getIdentifierLoc(),
+ PDiag(diag::err_explicit_instantiation_not_known) << Name,
+ PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
+ PDiag(diag::note_explicit_instantiation_candidate));
+
+ if (Result == Matches.end())
+ return true;
+
+ // Ignore access control bits, we don't need them for redeclaration checking.
+ FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
+
+ if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
+ Diag(D.getIdentifierLoc(),
+ diag::err_explicit_instantiation_member_function_not_instantiated)
+ << Specialization
+ << (Specialization->getTemplateSpecializationKind() ==
+ TSK_ExplicitSpecialization);
+ Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
+ return true;
+ }
+
+ FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
+ if (!PrevDecl && Specialization->isThisDeclarationADefinition())
+ PrevDecl = Specialization;
+
+ if (PrevDecl) {
+ bool HasNoEffect = false;
+ if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
+ PrevDecl,
+ PrevDecl->getTemplateSpecializationKind(),
+ PrevDecl->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+
+ // FIXME: We may still want to build some representation of this
+ // explicit specialization.
+ if (HasNoEffect)
+ return (Decl*) 0;
+ }
+
+ Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
+ AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
+ if (Attr)
+ ProcessDeclAttributeList(S, Specialization, Attr);
+
+ if (TSK == TSK_ExplicitInstantiationDefinition)
+ InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
+
+ // C++0x [temp.explicit]p2:
+ // If the explicit instantiation is for a member function, a member class
+ // or a static data member of a class template specialization, the name of
+ // the class template specialization in the qualified-id for the member
+ // name shall be a simple-template-id.
+ //
+ // C++98 has the same restriction, just worded differently.
+ FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
+ if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
+ D.getCXXScopeSpec().isSet() &&
+ !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
+ Diag(D.getIdentifierLoc(),
+ diag::ext_explicit_instantiation_without_qualified_id)
+ << Specialization << D.getCXXScopeSpec().getRange();
+
+ CheckExplicitInstantiationScope(*this,
+ FunTmpl? (NamedDecl *)FunTmpl
+ : Specialization->getInstantiatedFromMemberFunction(),
+ D.getIdentifierLoc(),
+ D.getCXXScopeSpec().isSet());
+
+ // FIXME: Create some kind of ExplicitInstantiationDecl here.
+ return (Decl*) 0;
+}
+
+TypeResult
+Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
+ const CXXScopeSpec &SS, IdentifierInfo *Name,
+ SourceLocation TagLoc, SourceLocation NameLoc) {
+ // This has to hold, because SS is expected to be defined.
+ assert(Name && "Expected a name in a dependent tag");
+
+ NestedNameSpecifier *NNS
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+ if (!NNS)
+ return true;
+
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+
+ if (TUK == TUK_Declaration || TUK == TUK_Definition) {
+ Diag(NameLoc, diag::err_dependent_tag_decl)
+ << (TUK == TUK_Definition) << Kind << SS.getRange();
+ return true;
+ }
+
+ // Create the resulting type.
+ ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
+ QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
+
+ // Create type-source location information for this type.
+ TypeLocBuilder TLB;
+ DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
+ TL.setElaboratedKeywordLoc(TagLoc);
+ TL.setQualifierLoc(SS.getWithLocInContext(Context));
+ TL.setNameLoc(NameLoc);
+ return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
+}
+
+TypeResult
+Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
+ const CXXScopeSpec &SS, const IdentifierInfo &II,
+ SourceLocation IdLoc) {
+ if (SS.isInvalid())
+ return true;
+
+ if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
+ Diag(TypenameLoc,
+ getLangOpts().CPlusPlus0x ?
+ diag::warn_cxx98_compat_typename_outside_of_template :
+ diag::ext_typename_outside_of_template)
+ << FixItHint::CreateRemoval(TypenameLoc);
+
+ NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
+ QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
+ TypenameLoc, QualifierLoc, II, IdLoc);
+ if (T.isNull())
+ return true;
+
+ TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
+ if (isa<DependentNameType>(T)) {
+ DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
+ TL.setElaboratedKeywordLoc(TypenameLoc);
+ TL.setQualifierLoc(QualifierLoc);
+ TL.setNameLoc(IdLoc);
+ } else {
+ ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
+ TL.setElaboratedKeywordLoc(TypenameLoc);
+ TL.setQualifierLoc(QualifierLoc);
+ cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
+ }
+
+ return CreateParsedType(T, TSI);
+}
+
+TypeResult
+Sema::ActOnTypenameType(Scope *S,
+ SourceLocation TypenameLoc,
+ const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ TemplateTy TemplateIn,
+ SourceLocation TemplateNameLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc) {
+ if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
+ Diag(TypenameLoc,
+ getLangOpts().CPlusPlus0x ?
+ diag::warn_cxx98_compat_typename_outside_of_template :
+ diag::ext_typename_outside_of_template)
+ << FixItHint::CreateRemoval(TypenameLoc);
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ TemplateName Template = TemplateIn.get();
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
+ // Construct a dependent template specialization type.
+ assert(DTN && "dependent template has non-dependent name?");
+ assert(DTN->getQualifier()
+ == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
+ QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+
+ // Create source-location information for this type.
+ TypeLocBuilder Builder;
+ DependentTemplateSpecializationTypeLoc SpecTL
+ = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
+ SpecTL.setElaboratedKeywordLoc(TypenameLoc);
+ SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateNameLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+ return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
+ }
+
+ QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
+ if (T.isNull())
+ return true;
+
+ // Provide source-location information for the template specialization type.
+ TypeLocBuilder Builder;
+ TemplateSpecializationTypeLoc SpecTL
+ = Builder.push<TemplateSpecializationTypeLoc>(T);
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateNameLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+
+ T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
+ ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
+ TL.setElaboratedKeywordLoc(TypenameLoc);
+ TL.setQualifierLoc(SS.getWithLocInContext(Context));
+
+ TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
+ return CreateParsedType(T, TSI);
+}
+
+
+/// \brief Build the type that describes a C++ typename specifier,
+/// e.g., "typename T::type".
+QualType
+Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
+ SourceLocation KeywordLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ const IdentifierInfo &II,
+ SourceLocation IILoc) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ DeclContext *Ctx = computeDeclContext(SS);
+ if (!Ctx) {
+ // If the nested-name-specifier is dependent and couldn't be
+ // resolved to a type, build a typename type.
+ assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
+ return Context.getDependentNameType(Keyword,
+ QualifierLoc.getNestedNameSpecifier(),
+ &II);
+ }
+
+ // If the nested-name-specifier refers to the current instantiation,
+ // the "typename" keyword itself is superfluous. In C++03, the
+ // program is actually ill-formed. However, DR 382 (in C++0x CD1)
+ // allows such extraneous "typename" keywords, and we retroactively
+ // apply this DR to C++03 code with only a warning. In any case we continue.
+
+ if (RequireCompleteDeclContext(SS, Ctx))
+ return QualType();
+
+ DeclarationName Name(&II);
+ LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
+ LookupQualifiedName(Result, Ctx);
+ unsigned DiagID = 0;
+ Decl *Referenced = 0;
+ switch (Result.getResultKind()) {
+ case LookupResult::NotFound:
+ DiagID = diag::err_typename_nested_not_found;
+ break;
+
+ case LookupResult::FoundUnresolvedValue: {
+ // We found a using declaration that is a value. Most likely, the using
+ // declaration itself is meant to have the 'typename' keyword.
+ SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
+ IILoc);
+ Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
+ << Name << Ctx << FullRange;
+ if (UnresolvedUsingValueDecl *Using
+ = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
+ SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
+ Diag(Loc, diag::note_using_value_decl_missing_typename)
+ << FixItHint::CreateInsertion(Loc, "typename ");
+ }
+ }
+ // Fall through to create a dependent typename type, from which we can recover
+ // better.
+
+ case LookupResult::NotFoundInCurrentInstantiation:
+ // Okay, it's a member of an unknown instantiation.
+ return Context.getDependentNameType(Keyword,
+ QualifierLoc.getNestedNameSpecifier(),
+ &II);
+
+ case LookupResult::Found:
+ if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
+ // We found a type. Build an ElaboratedType, since the
+ // typename-specifier was just sugar.
+ return Context.getElaboratedType(ETK_Typename,
+ QualifierLoc.getNestedNameSpecifier(),
+ Context.getTypeDeclType(Type));
+ }
+
+ DiagID = diag::err_typename_nested_not_type;
+ Referenced = Result.getFoundDecl();
+ break;
+
+ case LookupResult::FoundOverloaded:
+ DiagID = diag::err_typename_nested_not_type;
+ Referenced = *Result.begin();
+ break;
+
+ case LookupResult::Ambiguous:
+ return QualType();
+ }
+
+ // If we get here, it's because name lookup did not find a
+ // type. Emit an appropriate diagnostic and return an error.
+ SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
+ IILoc);
+ Diag(IILoc, DiagID) << FullRange << Name << Ctx;
+ if (Referenced)
+ Diag(Referenced->getLocation(), diag::note_typename_refers_here)
+ << Name;
+ return QualType();
+}
+
+namespace {
+ // See Sema::RebuildTypeInCurrentInstantiation
+ class CurrentInstantiationRebuilder
+ : public TreeTransform<CurrentInstantiationRebuilder> {
+ SourceLocation Loc;
+ DeclarationName Entity;
+
+ public:
+ typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
+
+ CurrentInstantiationRebuilder(Sema &SemaRef,
+ SourceLocation Loc,
+ DeclarationName Entity)
+ : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
+ Loc(Loc), Entity(Entity) { }
+
+ /// \brief Determine whether the given type \p T has already been
+ /// transformed.
+ ///
+ /// For the purposes of type reconstruction, a type has already been
+ /// transformed if it is NULL or if it is not dependent.
+ bool AlreadyTransformed(QualType T) {
+ return T.isNull() || !T->isDependentType();
+ }
+
+ /// \brief Returns the location of the entity whose type is being
+ /// rebuilt.
+ SourceLocation getBaseLocation() { return Loc; }
+
+ /// \brief Returns the name of the entity whose type is being rebuilt.
+ DeclarationName getBaseEntity() { return Entity; }
+
+ /// \brief Sets the "base" location and entity when that
+ /// information is known based on another transformation.
+ void setBase(SourceLocation Loc, DeclarationName Entity) {
+ this->Loc = Loc;
+ this->Entity = Entity;
+ }
+
+ ExprResult TransformLambdaExpr(LambdaExpr *E) {
+ // Lambdas never need to be transformed.
+ return E;
+ }
+ };
+}
+
+/// \brief Rebuilds a type within the context of the current instantiation.
+///
+/// The type \p T is part of the type of an out-of-line member definition of
+/// a class template (or class template partial specialization) that was parsed
+/// and constructed before we entered the scope of the class template (or
+/// partial specialization thereof). This routine will rebuild that type now
+/// that we have entered the declarator's scope, which may produce different
+/// canonical types, e.g.,
+///
+/// \code
+/// template<typename T>
+/// struct X {
+/// typedef T* pointer;
+/// pointer data();
+/// };
+///
+/// template<typename T>
+/// typename X<T>::pointer X<T>::data() { ... }
+/// \endcode
+///
+/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
+/// since we do not know that we can look into X<T> when we parsed the type.
+/// This function will rebuild the type, performing the lookup of "pointer"
+/// in X<T> and returning an ElaboratedType whose canonical type is the same
+/// as the canonical type of T*, allowing the return types of the out-of-line
+/// definition and the declaration to match.
+TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
+ SourceLocation Loc,
+ DeclarationName Name) {
+ if (!T || !T->getType()->isDependentType())
+ return T;
+
+ CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
+ return Rebuilder.TransformType(T);
+}
+
+ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
+ CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
+ DeclarationName());
+ return Rebuilder.TransformExpr(E);
+}
+
+bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
+ if (SS.isInvalid())
+ return true;
+
+ NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
+ CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
+ DeclarationName());
+ NestedNameSpecifierLoc Rebuilt
+ = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
+ if (!Rebuilt)
+ return true;
+
+ SS.Adopt(Rebuilt);
+ return false;
+}
+
+/// \brief Rebuild the template parameters now that we know we're in a current
+/// instantiation.
+bool Sema::RebuildTemplateParamsInCurrentInstantiation(
+ TemplateParameterList *Params) {
+ for (unsigned I = 0, N = Params->size(); I != N; ++I) {
+ Decl *Param = Params->getParam(I);
+
+ // There is nothing to rebuild in a type parameter.
+ if (isa<TemplateTypeParmDecl>(Param))
+ continue;
+
+ // Rebuild the template parameter list of a template template parameter.
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(Param)) {
+ if (RebuildTemplateParamsInCurrentInstantiation(
+ TTP->getTemplateParameters()))
+ return true;
+
+ continue;
+ }
+
+ // Rebuild the type of a non-type template parameter.
+ NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
+ TypeSourceInfo *NewTSI
+ = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
+ NTTP->getLocation(),
+ NTTP->getDeclName());
+ if (!NewTSI)
+ return true;
+
+ if (NewTSI != NTTP->getTypeSourceInfo()) {
+ NTTP->setTypeSourceInfo(NewTSI);
+ NTTP->setType(NewTSI->getType());
+ }
+ }
+
+ return false;
+}
+
+/// \brief Produces a formatted string that describes the binding of
+/// template parameters to template arguments.
+std::string
+Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
+ const TemplateArgumentList &Args) {
+ return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
+}
+
+std::string
+Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
+ const TemplateArgument *Args,
+ unsigned NumArgs) {
+ SmallString<128> Str;
+ llvm::raw_svector_ostream Out(Str);
+
+ if (!Params || Params->size() == 0 || NumArgs == 0)
+ return std::string();
+
+ for (unsigned I = 0, N = Params->size(); I != N; ++I) {
+ if (I >= NumArgs)
+ break;
+
+ if (I == 0)
+ Out << "[with ";
+ else
+ Out << ", ";
+
+ if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
+ Out << Id->getName();
+ } else {
+ Out << '$' << I;
+ }
+
+ Out << " = ";
+ Args[I].print(getPrintingPolicy(), Out);
+ }
+
+ Out << ']';
+ return Out.str();
+}
+
+void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
+ if (!FD)
+ return;
+ FD->setLateTemplateParsed(Flag);
+}
+
+bool Sema::IsInsideALocalClassWithinATemplateFunction() {
+ DeclContext *DC = CurContext;
+
+ while (DC) {
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
+ const FunctionDecl *FD = RD->isLocalClass();
+ return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
+ } else if (DC->isTranslationUnit() || DC->isNamespace())
+ return false;
+
+ DC = DC->getParent();
+ }
+ return false;
+}
OpenPOWER on IntegriCloud