summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaStmtAsm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaStmtAsm.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaStmtAsm.cpp644
1 files changed, 644 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaStmtAsm.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaStmtAsm.cpp
new file mode 100644
index 0000000..9f48616
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaStmtAsm.cpp
@@ -0,0 +1,644 @@
+//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for inline asm statements.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+using namespace clang;
+using namespace sema;
+
+/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
+/// ignore "noop" casts in places where an lvalue is required by an inline asm.
+/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
+/// provide a strong guidance to not use it.
+///
+/// This method checks to see if the argument is an acceptable l-value and
+/// returns false if it is a case we can handle.
+static bool CheckAsmLValue(const Expr *E, Sema &S) {
+ // Type dependent expressions will be checked during instantiation.
+ if (E->isTypeDependent())
+ return false;
+
+ if (E->isLValue())
+ return false; // Cool, this is an lvalue.
+
+ // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
+ // are supposed to allow.
+ const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
+ if (E != E2 && E2->isLValue()) {
+ if (!S.getLangOpts().HeinousExtensions)
+ S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
+ << E->getSourceRange();
+ else
+ S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
+ << E->getSourceRange();
+ // Accept, even if we emitted an error diagnostic.
+ return false;
+ }
+
+ // None of the above, just randomly invalid non-lvalue.
+ return true;
+}
+
+/// isOperandMentioned - Return true if the specified operand # is mentioned
+/// anywhere in the decomposed asm string.
+static bool isOperandMentioned(unsigned OpNo,
+ ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
+ for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
+ const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
+ if (!Piece.isOperand()) continue;
+
+ // If this is a reference to the input and if the input was the smaller
+ // one, then we have to reject this asm.
+ if (Piece.getOperandNo() == OpNo)
+ return true;
+ }
+ return false;
+}
+
+static bool CheckNakedParmReference(Expr *E, Sema &S) {
+ FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
+ if (!Func)
+ return false;
+ if (!Func->hasAttr<NakedAttr>())
+ return false;
+
+ SmallVector<Expr*, 4> WorkList;
+ WorkList.push_back(E);
+ while (WorkList.size()) {
+ Expr *E = WorkList.pop_back_val();
+ if (isa<CXXThisExpr>(E)) {
+ S.Diag(E->getLocStart(), diag::err_asm_naked_this_ref);
+ S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
+ return true;
+ }
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (isa<ParmVarDecl>(DRE->getDecl())) {
+ S.Diag(DRE->getLocStart(), diag::err_asm_naked_parm_ref);
+ S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
+ return true;
+ }
+ }
+ for (Stmt *Child : E->children()) {
+ if (Expr *E = dyn_cast_or_null<Expr>(Child))
+ WorkList.push_back(E);
+ }
+ }
+ return false;
+}
+
+StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
+ bool IsVolatile, unsigned NumOutputs,
+ unsigned NumInputs, IdentifierInfo **Names,
+ MultiExprArg constraints, MultiExprArg Exprs,
+ Expr *asmString, MultiExprArg clobbers,
+ SourceLocation RParenLoc) {
+ unsigned NumClobbers = clobbers.size();
+ StringLiteral **Constraints =
+ reinterpret_cast<StringLiteral**>(constraints.data());
+ StringLiteral *AsmString = cast<StringLiteral>(asmString);
+ StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
+
+ SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
+
+ // The parser verifies that there is a string literal here.
+ assert(AsmString->isAscii());
+
+ bool ValidateConstraints =
+ DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl());
+
+ for (unsigned i = 0; i != NumOutputs; i++) {
+ StringLiteral *Literal = Constraints[i];
+ assert(Literal->isAscii());
+
+ StringRef OutputName;
+ if (Names[i])
+ OutputName = Names[i]->getName();
+
+ TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
+ if (ValidateConstraints &&
+ !Context.getTargetInfo().validateOutputConstraint(Info))
+ return StmtError(Diag(Literal->getLocStart(),
+ diag::err_asm_invalid_output_constraint)
+ << Info.getConstraintStr());
+
+ ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
+ if (ER.isInvalid())
+ return StmtError();
+ Exprs[i] = ER.get();
+
+ // Check that the output exprs are valid lvalues.
+ Expr *OutputExpr = Exprs[i];
+
+ // Referring to parameters is not allowed in naked functions.
+ if (CheckNakedParmReference(OutputExpr, *this))
+ return StmtError();
+
+ OutputConstraintInfos.push_back(Info);
+
+ // If this is dependent, just continue.
+ if (OutputExpr->isTypeDependent())
+ continue;
+
+ Expr::isModifiableLvalueResult IsLV =
+ OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
+ switch (IsLV) {
+ case Expr::MLV_Valid:
+ // Cool, this is an lvalue.
+ break;
+ case Expr::MLV_ArrayType:
+ // This is OK too.
+ break;
+ case Expr::MLV_LValueCast: {
+ const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
+ if (!getLangOpts().HeinousExtensions) {
+ Diag(LVal->getLocStart(), diag::err_invalid_asm_cast_lvalue)
+ << OutputExpr->getSourceRange();
+ } else {
+ Diag(LVal->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
+ << OutputExpr->getSourceRange();
+ }
+ // Accept, even if we emitted an error diagnostic.
+ break;
+ }
+ case Expr::MLV_IncompleteType:
+ case Expr::MLV_IncompleteVoidType:
+ if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
+ diag::err_dereference_incomplete_type))
+ return StmtError();
+ default:
+ return StmtError(Diag(OutputExpr->getLocStart(),
+ diag::err_asm_invalid_lvalue_in_output)
+ << OutputExpr->getSourceRange());
+ }
+
+ unsigned Size = Context.getTypeSize(OutputExpr->getType());
+ if (!Context.getTargetInfo().validateOutputSize(Literal->getString(),
+ Size))
+ return StmtError(Diag(OutputExpr->getLocStart(),
+ diag::err_asm_invalid_output_size)
+ << Info.getConstraintStr());
+ }
+
+ SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
+
+ for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
+ StringLiteral *Literal = Constraints[i];
+ assert(Literal->isAscii());
+
+ StringRef InputName;
+ if (Names[i])
+ InputName = Names[i]->getName();
+
+ TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
+ if (ValidateConstraints &&
+ !Context.getTargetInfo().validateInputConstraint(
+ OutputConstraintInfos.data(), NumOutputs, Info)) {
+ return StmtError(Diag(Literal->getLocStart(),
+ diag::err_asm_invalid_input_constraint)
+ << Info.getConstraintStr());
+ }
+
+ ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
+ if (ER.isInvalid())
+ return StmtError();
+ Exprs[i] = ER.get();
+
+ Expr *InputExpr = Exprs[i];
+
+ // Referring to parameters is not allowed in naked functions.
+ if (CheckNakedParmReference(InputExpr, *this))
+ return StmtError();
+
+ // Only allow void types for memory constraints.
+ if (Info.allowsMemory() && !Info.allowsRegister()) {
+ if (CheckAsmLValue(InputExpr, *this))
+ return StmtError(Diag(InputExpr->getLocStart(),
+ diag::err_asm_invalid_lvalue_in_input)
+ << Info.getConstraintStr()
+ << InputExpr->getSourceRange());
+ } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
+ llvm::APSInt Result;
+ if (!InputExpr->EvaluateAsInt(Result, Context))
+ return StmtError(
+ Diag(InputExpr->getLocStart(), diag::err_asm_immediate_expected)
+ << Info.getConstraintStr() << InputExpr->getSourceRange());
+ if (Result.slt(Info.getImmConstantMin()) ||
+ Result.sgt(Info.getImmConstantMax()))
+ return StmtError(Diag(InputExpr->getLocStart(),
+ diag::err_invalid_asm_value_for_constraint)
+ << Result.toString(10) << Info.getConstraintStr()
+ << InputExpr->getSourceRange());
+
+ } else {
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
+ if (Result.isInvalid())
+ return StmtError();
+
+ Exprs[i] = Result.get();
+ }
+
+ if (Info.allowsRegister()) {
+ if (InputExpr->getType()->isVoidType()) {
+ return StmtError(Diag(InputExpr->getLocStart(),
+ diag::err_asm_invalid_type_in_input)
+ << InputExpr->getType() << Info.getConstraintStr()
+ << InputExpr->getSourceRange());
+ }
+ }
+
+ InputConstraintInfos.push_back(Info);
+
+ const Type *Ty = Exprs[i]->getType().getTypePtr();
+ if (Ty->isDependentType())
+ continue;
+
+ if (!Ty->isVoidType() || !Info.allowsMemory())
+ if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
+ diag::err_dereference_incomplete_type))
+ return StmtError();
+
+ unsigned Size = Context.getTypeSize(Ty);
+ if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
+ Size))
+ return StmtError(Diag(InputExpr->getLocStart(),
+ diag::err_asm_invalid_input_size)
+ << Info.getConstraintStr());
+ }
+
+ // Check that the clobbers are valid.
+ for (unsigned i = 0; i != NumClobbers; i++) {
+ StringLiteral *Literal = Clobbers[i];
+ assert(Literal->isAscii());
+
+ StringRef Clobber = Literal->getString();
+
+ if (!Context.getTargetInfo().isValidClobber(Clobber))
+ return StmtError(Diag(Literal->getLocStart(),
+ diag::err_asm_unknown_register_name) << Clobber);
+ }
+
+ GCCAsmStmt *NS =
+ new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
+ NumInputs, Names, Constraints, Exprs.data(),
+ AsmString, NumClobbers, Clobbers, RParenLoc);
+ // Validate the asm string, ensuring it makes sense given the operands we
+ // have.
+ SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
+ unsigned DiagOffs;
+ if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
+ Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
+ << AsmString->getSourceRange();
+ return StmtError();
+ }
+
+ // Validate constraints and modifiers.
+ for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
+ GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
+ if (!Piece.isOperand()) continue;
+
+ // Look for the correct constraint index.
+ unsigned ConstraintIdx = Piece.getOperandNo();
+ unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
+
+ // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
+ // modifier '+'.
+ if (ConstraintIdx >= NumOperands) {
+ unsigned I = 0, E = NS->getNumOutputs();
+
+ for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
+ if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
+ ConstraintIdx = I;
+ break;
+ }
+
+ assert(I != E && "Invalid operand number should have been caught in "
+ " AnalyzeAsmString");
+ }
+
+ // Now that we have the right indexes go ahead and check.
+ StringLiteral *Literal = Constraints[ConstraintIdx];
+ const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
+ if (Ty->isDependentType() || Ty->isIncompleteType())
+ continue;
+
+ unsigned Size = Context.getTypeSize(Ty);
+ std::string SuggestedModifier;
+ if (!Context.getTargetInfo().validateConstraintModifier(
+ Literal->getString(), Piece.getModifier(), Size,
+ SuggestedModifier)) {
+ Diag(Exprs[ConstraintIdx]->getLocStart(),
+ diag::warn_asm_mismatched_size_modifier);
+
+ if (!SuggestedModifier.empty()) {
+ auto B = Diag(Piece.getRange().getBegin(),
+ diag::note_asm_missing_constraint_modifier)
+ << SuggestedModifier;
+ SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
+ B.AddFixItHint(FixItHint::CreateReplacement(Piece.getRange(),
+ SuggestedModifier));
+ }
+ }
+ }
+
+ // Validate tied input operands for type mismatches.
+ unsigned NumAlternatives = ~0U;
+ for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
+ TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
+ StringRef ConstraintStr = Info.getConstraintStr();
+ unsigned AltCount = ConstraintStr.count(',') + 1;
+ if (NumAlternatives == ~0U)
+ NumAlternatives = AltCount;
+ else if (NumAlternatives != AltCount)
+ return StmtError(Diag(NS->getOutputExpr(i)->getLocStart(),
+ diag::err_asm_unexpected_constraint_alternatives)
+ << NumAlternatives << AltCount);
+ }
+ for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
+ TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
+ StringRef ConstraintStr = Info.getConstraintStr();
+ unsigned AltCount = ConstraintStr.count(',') + 1;
+ if (NumAlternatives == ~0U)
+ NumAlternatives = AltCount;
+ else if (NumAlternatives != AltCount)
+ return StmtError(Diag(NS->getInputExpr(i)->getLocStart(),
+ diag::err_asm_unexpected_constraint_alternatives)
+ << NumAlternatives << AltCount);
+
+ // If this is a tied constraint, verify that the output and input have
+ // either exactly the same type, or that they are int/ptr operands with the
+ // same size (int/long, int*/long, are ok etc).
+ if (!Info.hasTiedOperand()) continue;
+
+ unsigned TiedTo = Info.getTiedOperand();
+ unsigned InputOpNo = i+NumOutputs;
+ Expr *OutputExpr = Exprs[TiedTo];
+ Expr *InputExpr = Exprs[InputOpNo];
+
+ if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
+ continue;
+
+ QualType InTy = InputExpr->getType();
+ QualType OutTy = OutputExpr->getType();
+ if (Context.hasSameType(InTy, OutTy))
+ continue; // All types can be tied to themselves.
+
+ // Decide if the input and output are in the same domain (integer/ptr or
+ // floating point.
+ enum AsmDomain {
+ AD_Int, AD_FP, AD_Other
+ } InputDomain, OutputDomain;
+
+ if (InTy->isIntegerType() || InTy->isPointerType())
+ InputDomain = AD_Int;
+ else if (InTy->isRealFloatingType())
+ InputDomain = AD_FP;
+ else
+ InputDomain = AD_Other;
+
+ if (OutTy->isIntegerType() || OutTy->isPointerType())
+ OutputDomain = AD_Int;
+ else if (OutTy->isRealFloatingType())
+ OutputDomain = AD_FP;
+ else
+ OutputDomain = AD_Other;
+
+ // They are ok if they are the same size and in the same domain. This
+ // allows tying things like:
+ // void* to int*
+ // void* to int if they are the same size.
+ // double to long double if they are the same size.
+ //
+ uint64_t OutSize = Context.getTypeSize(OutTy);
+ uint64_t InSize = Context.getTypeSize(InTy);
+ if (OutSize == InSize && InputDomain == OutputDomain &&
+ InputDomain != AD_Other)
+ continue;
+
+ // If the smaller input/output operand is not mentioned in the asm string,
+ // then we can promote the smaller one to a larger input and the asm string
+ // won't notice.
+ bool SmallerValueMentioned = false;
+
+ // If this is a reference to the input and if the input was the smaller
+ // one, then we have to reject this asm.
+ if (isOperandMentioned(InputOpNo, Pieces)) {
+ // This is a use in the asm string of the smaller operand. Since we
+ // codegen this by promoting to a wider value, the asm will get printed
+ // "wrong".
+ SmallerValueMentioned |= InSize < OutSize;
+ }
+ if (isOperandMentioned(TiedTo, Pieces)) {
+ // If this is a reference to the output, and if the output is the larger
+ // value, then it's ok because we'll promote the input to the larger type.
+ SmallerValueMentioned |= OutSize < InSize;
+ }
+
+ // If the smaller value wasn't mentioned in the asm string, and if the
+ // output was a register, just extend the shorter one to the size of the
+ // larger one.
+ if (!SmallerValueMentioned && InputDomain != AD_Other &&
+ OutputConstraintInfos[TiedTo].allowsRegister())
+ continue;
+
+ // Either both of the operands were mentioned or the smaller one was
+ // mentioned. One more special case that we'll allow: if the tied input is
+ // integer, unmentioned, and is a constant, then we'll allow truncating it
+ // down to the size of the destination.
+ if (InputDomain == AD_Int && OutputDomain == AD_Int &&
+ !isOperandMentioned(InputOpNo, Pieces) &&
+ InputExpr->isEvaluatable(Context)) {
+ CastKind castKind =
+ (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
+ InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
+ Exprs[InputOpNo] = InputExpr;
+ NS->setInputExpr(i, InputExpr);
+ continue;
+ }
+
+ Diag(InputExpr->getLocStart(),
+ diag::err_asm_tying_incompatible_types)
+ << InTy << OutTy << OutputExpr->getSourceRange()
+ << InputExpr->getSourceRange();
+ return StmtError();
+ }
+
+ return NS;
+}
+
+ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ UnqualifiedId &Id,
+ llvm::InlineAsmIdentifierInfo &Info,
+ bool IsUnevaluatedContext) {
+ Info.clear();
+
+ if (IsUnevaluatedContext)
+ PushExpressionEvaluationContext(UnevaluatedAbstract,
+ ReuseLambdaContextDecl);
+
+ ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
+ /*trailing lparen*/ false,
+ /*is & operand*/ false,
+ /*CorrectionCandidateCallback=*/nullptr,
+ /*IsInlineAsmIdentifier=*/ true);
+
+ if (IsUnevaluatedContext)
+ PopExpressionEvaluationContext();
+
+ if (!Result.isUsable()) return Result;
+
+ Result = CheckPlaceholderExpr(Result.get());
+ if (!Result.isUsable()) return Result;
+
+ // Referring to parameters is not allowed in naked functions.
+ if (CheckNakedParmReference(Result.get(), *this))
+ return ExprError();
+
+ QualType T = Result.get()->getType();
+
+ // For now, reject dependent types.
+ if (T->isDependentType()) {
+ Diag(Id.getLocStart(), diag::err_asm_incomplete_type) << T;
+ return ExprError();
+ }
+
+ // Any sort of function type is fine.
+ if (T->isFunctionType()) {
+ return Result;
+ }
+
+ // Otherwise, it needs to be a complete type.
+ if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
+ return ExprError();
+ }
+
+ // Compute the type size (and array length if applicable?).
+ Info.Type = Info.Size = Context.getTypeSizeInChars(T).getQuantity();
+ if (T->isArrayType()) {
+ const ArrayType *ATy = Context.getAsArrayType(T);
+ Info.Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
+ Info.Length = Info.Size / Info.Type;
+ }
+
+ // We can work with the expression as long as it's not an r-value.
+ if (!Result.get()->isRValue())
+ Info.IsVarDecl = true;
+
+ return Result;
+}
+
+bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
+ unsigned &Offset, SourceLocation AsmLoc) {
+ Offset = 0;
+ LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
+ LookupOrdinaryName);
+
+ if (!LookupName(BaseResult, getCurScope()))
+ return true;
+
+ if (!BaseResult.isSingleResult())
+ return true;
+
+ const RecordType *RT = nullptr;
+ NamedDecl *FoundDecl = BaseResult.getFoundDecl();
+ if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
+ RT = VD->getType()->getAs<RecordType>();
+ else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
+ MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
+ RT = TD->getUnderlyingType()->getAs<RecordType>();
+ } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
+ RT = TD->getTypeForDecl()->getAs<RecordType>();
+ if (!RT)
+ return true;
+
+ if (RequireCompleteType(AsmLoc, QualType(RT, 0), 0))
+ return true;
+
+ LookupResult FieldResult(*this, &Context.Idents.get(Member), SourceLocation(),
+ LookupMemberName);
+
+ if (!LookupQualifiedName(FieldResult, RT->getDecl()))
+ return true;
+
+ // FIXME: Handle IndirectFieldDecl?
+ FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
+ if (!FD)
+ return true;
+
+ const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
+ unsigned i = FD->getFieldIndex();
+ CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
+ Offset = (unsigned)Result.getQuantity();
+
+ return false;
+}
+
+StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
+ ArrayRef<Token> AsmToks,
+ StringRef AsmString,
+ unsigned NumOutputs, unsigned NumInputs,
+ ArrayRef<StringRef> Constraints,
+ ArrayRef<StringRef> Clobbers,
+ ArrayRef<Expr*> Exprs,
+ SourceLocation EndLoc) {
+ bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
+ getCurFunction()->setHasBranchProtectedScope();
+ MSAsmStmt *NS =
+ new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
+ /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
+ Constraints, Exprs, AsmString,
+ Clobbers, EndLoc);
+ return NS;
+}
+
+LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
+ SourceLocation Location,
+ bool AlwaysCreate) {
+ LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
+ Location);
+
+ if (Label->isMSAsmLabel()) {
+ // If we have previously created this label implicitly, mark it as used.
+ Label->markUsed(Context);
+ } else {
+ // Otherwise, insert it, but only resolve it if we have seen the label itself.
+ std::string InternalName;
+ llvm::raw_string_ostream OS(InternalName);
+ // Create an internal name for the label. The name should not be a valid mangled
+ // name, and should be unique. We use a dot to make the name an invalid mangled
+ // name.
+ OS << "__MSASMLABEL_." << MSAsmLabelNameCounter++ << "__" << ExternalLabelName;
+ Label->setMSAsmLabel(OS.str());
+ }
+ if (AlwaysCreate) {
+ // The label might have been created implicitly from a previously encountered
+ // goto statement. So, for both newly created and looked up labels, we mark
+ // them as resolved.
+ Label->setMSAsmLabelResolved();
+ }
+ // Adjust their location for being able to generate accurate diagnostics.
+ Label->setLocation(Location);
+
+ return Label;
+}
OpenPOWER on IntegriCloud