summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp667
1 files changed, 490 insertions, 177 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
index 2754d44..c4ab906 100644
--- a/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
@@ -155,7 +155,9 @@ bool StandardConversionSequence::isPointerConversionToBool() const {
// check for their presence as well as checking whether FromType is
// a pointer.
if (getToType(1)->isBooleanType() &&
- (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
+ (getFromType()->isPointerType() ||
+ getFromType()->isObjCObjectPointerType() ||
+ getFromType()->isBlockPointerType() ||
First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
return true;
@@ -498,19 +500,54 @@ void OverloadCandidateSet::clear() {
// identical (return types of functions are not part of the
// signature), IsOverload returns false and MatchedDecl will be set to
// point to the FunctionDecl for #2.
+//
+// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
+// into a class by a using declaration. The rules for whether to hide
+// shadow declarations ignore some properties which otherwise figure
+// into a function template's signature.
Sema::OverloadKind
-Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
- NamedDecl *&Match) {
+Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
+ NamedDecl *&Match, bool NewIsUsingDecl) {
for (LookupResult::iterator I = Old.begin(), E = Old.end();
I != E; ++I) {
- NamedDecl *OldD = (*I)->getUnderlyingDecl();
+ NamedDecl *OldD = *I;
+
+ bool OldIsUsingDecl = false;
+ if (isa<UsingShadowDecl>(OldD)) {
+ OldIsUsingDecl = true;
+
+ // We can always introduce two using declarations into the same
+ // context, even if they have identical signatures.
+ if (NewIsUsingDecl) continue;
+
+ OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
+ }
+
+ // If either declaration was introduced by a using declaration,
+ // we'll need to use slightly different rules for matching.
+ // Essentially, these rules are the normal rules, except that
+ // function templates hide function templates with different
+ // return types or template parameter lists.
+ bool UseMemberUsingDeclRules =
+ (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
+
if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
- if (!IsOverload(New, OldT->getTemplatedDecl())) {
+ if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
+ if (UseMemberUsingDeclRules && OldIsUsingDecl) {
+ HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
+ continue;
+ }
+
Match = *I;
return Ovl_Match;
}
} else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
- if (!IsOverload(New, OldF)) {
+ if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
+ if (UseMemberUsingDeclRules && OldIsUsingDecl) {
+ HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
+ continue;
+ }
+
Match = *I;
return Ovl_Match;
}
@@ -534,7 +571,8 @@ Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
return Ovl_Overload;
}
-bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
+bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
+ bool UseUsingDeclRules) {
FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
@@ -579,7 +617,10 @@ bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
//
// We check the return type and template parameter lists for function
// templates first; the remaining checks follow.
- if (NewTemplate &&
+ //
+ // However, we don't consider either of these when deciding whether
+ // a member introduced by a shadow declaration is hidden.
+ if (!UseUsingDeclRules && NewTemplate &&
(!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
OldTemplate->getTemplateParameters(),
false, TPL_TemplateMatch) ||
@@ -804,7 +845,7 @@ static bool IsVectorConversion(ASTContext &Context, QualType FromType,
return false;
// Vector splat from any arithmetic type to a vector.
- if (!FromType->isVectorType() && FromType->isArithmeticType()) {
+ if (FromType->isArithmeticType()) {
ICK = ICK_Vector_Splat;
return true;
}
@@ -960,8 +1001,8 @@ Sema::IsStandardConversion(Expr* From, QualType ToType,
// Complex promotion (Clang extension)
SCS.Second = ICK_Complex_Promotion;
FromType = ToType.getUnqualifiedType();
- } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
- (ToType->isIntegralType() && !ToType->isEnumeralType())) {
+ } else if (FromType->isIntegralOrEnumerationType() &&
+ ToType->isIntegralType(Context)) {
// Integral conversions (C++ 4.7).
SCS.Second = ICK_Integral_Conversion;
FromType = ToType.getUnqualifiedType();
@@ -974,15 +1015,14 @@ Sema::IsStandardConversion(Expr* From, QualType ToType,
// Complex-real conversions (C99 6.3.1.7)
SCS.Second = ICK_Complex_Real;
FromType = ToType.getUnqualifiedType();
- } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
+ } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
// Floating point conversions (C++ 4.8).
SCS.Second = ICK_Floating_Conversion;
FromType = ToType.getUnqualifiedType();
- } else if ((FromType->isFloatingType() &&
- ToType->isIntegralType() && (!ToType->isBooleanType() &&
- !ToType->isEnumeralType())) ||
- ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
- ToType->isFloatingType())) {
+ } else if ((FromType->isRealFloatingType() &&
+ ToType->isIntegralType(Context) && !ToType->isBooleanType()) ||
+ (FromType->isIntegralOrEnumerationType() &&
+ ToType->isRealFloatingType())) {
// Floating-integral conversions (C++ 4.9).
SCS.Second = ICK_Floating_Integral;
FromType = ToType.getUnqualifiedType();
@@ -1141,7 +1181,7 @@ bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
if (From)
if (FieldDecl *MemberDecl = From->getBitField()) {
APSInt BitWidth;
- if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
+ if (FromType->isIntegralType(Context) &&
MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
ToSize = Context.getTypeSize(ToType);
@@ -1271,7 +1311,7 @@ static bool isNullPointerConstantForConversion(Expr *Expr,
// Handle value-dependent integral null pointer constants correctly.
// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
- Expr->getType()->isIntegralType())
+ Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
return !InOverloadResolution;
return Expr->isNullPointerConstant(Context,
@@ -1622,6 +1662,12 @@ bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
bool IgnoreBaseAccess) {
QualType FromType = From->getType();
+ if (CXXBoolLiteralExpr* LitBool
+ = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens()))
+ if (LitBool->getValue() == false)
+ Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false)
+ << ToType;
+
if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
QualType FromPointeeType = FromPtrType->getPointeeType(),
@@ -1779,7 +1825,7 @@ Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
// in multi-level pointers, subject to the following rules: [...]
bool PreviousToQualsIncludeConst = true;
bool UnwrappedAnyPointer = false;
- while (UnwrapSimilarPointerTypes(FromType, ToType)) {
+ while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
// Within each iteration of the loop, we check the qualifiers to
// determine if this still looks like a qualification
// conversion. Then, if all is well, we unwrap one more level of
@@ -1850,12 +1896,8 @@ OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
// We're not going to find any constructors.
} else if (CXXRecordDecl *ToRecordDecl
= dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
- DeclarationName ConstructorName
- = Context.DeclarationNames.getCXXConstructorName(
- Context.getCanonicalType(ToType).getUnqualifiedType());
DeclContext::lookup_iterator Con, ConEnd;
- for (llvm::tie(Con, ConEnd)
- = ToRecordDecl->lookup(ConstructorName);
+ for (llvm::tie(Con, ConEnd) = LookupConstructors(ToRecordDecl);
Con != ConEnd; ++Con) {
NamedDecl *D = *Con;
DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
@@ -2067,6 +2109,16 @@ Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
return ImplicitConversionSequence::Indistinguishable;
}
+static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
+ while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
+ Qualifiers Quals;
+ T1 = Context.getUnqualifiedArrayType(T1, Quals);
+ T2 = Context.getUnqualifiedArrayType(T2, Quals);
+ }
+
+ return Context.hasSameUnqualifiedType(T1, T2);
+}
+
// Per 13.3.3.2p3, compare the given standard conversion sequences to
// determine if one is a proper subset of the other.
static ImplicitConversionSequence::CompareKind
@@ -2092,7 +2144,7 @@ compareStandardConversionSubsets(ASTContext &Context,
Result = ImplicitConversionSequence::Worse;
else
return ImplicitConversionSequence::Indistinguishable;
- } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
+ } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
return ImplicitConversionSequence::Indistinguishable;
if (SCS1.Third == SCS2.Third) {
@@ -2299,7 +2351,7 @@ Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
ImplicitConversionSequence::CompareKind Result
= ImplicitConversionSequence::Indistinguishable;
- while (UnwrapSimilarPointerTypes(T1, T2)) {
+ while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
// Within each iteration of the loop, we check the qualifiers to
// determine if this still looks like a qualification
// conversion. Then, if all is well, we unwrap one more level of
@@ -2566,6 +2618,95 @@ Sema::CompareReferenceRelationship(SourceLocation Loc,
return Ref_Related;
}
+/// \brief Look for a user-defined conversion to an lvalue reference-compatible
+/// with DeclType. Return true if something definite is found.
+static bool
+FindConversionToLValue(Sema &S, ImplicitConversionSequence &ICS,
+ QualType DeclType, SourceLocation DeclLoc,
+ Expr *Init, QualType T2, bool AllowExplicit) {
+ assert(T2->isRecordType() && "Can only find conversions of record types.");
+ CXXRecordDecl *T2RecordDecl
+ = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
+
+ OverloadCandidateSet CandidateSet(DeclLoc);
+ const UnresolvedSetImpl *Conversions
+ = T2RecordDecl->getVisibleConversionFunctions();
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ NamedDecl *D = *I;
+ CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ FunctionTemplateDecl *ConvTemplate
+ = dyn_cast<FunctionTemplateDecl>(D);
+ CXXConversionDecl *Conv;
+ if (ConvTemplate)
+ Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
+ else
+ Conv = cast<CXXConversionDecl>(D);
+
+ // If the conversion function doesn't return a reference type,
+ // it can't be considered for this conversion. An rvalue reference
+ // is only acceptable if its referencee is a function type.
+ const ReferenceType *RefType =
+ Conv->getConversionType()->getAs<ReferenceType>();
+ if (RefType && (RefType->isLValueReferenceType() ||
+ RefType->getPointeeType()->isFunctionType()) &&
+ (AllowExplicit || !Conv->isExplicit())) {
+ if (ConvTemplate)
+ S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
+ Init, DeclType, CandidateSet);
+ else
+ S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
+ DeclType, CandidateSet);
+ }
+ }
+
+ OverloadCandidateSet::iterator Best;
+ switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
+ case OR_Success:
+ // C++ [over.ics.ref]p1:
+ //
+ // [...] If the parameter binds directly to the result of
+ // applying a conversion function to the argument
+ // expression, the implicit conversion sequence is a
+ // user-defined conversion sequence (13.3.3.1.2), with the
+ // second standard conversion sequence either an identity
+ // conversion or, if the conversion function returns an
+ // entity of a type that is a derived class of the parameter
+ // type, a derived-to-base Conversion.
+ if (!Best->FinalConversion.DirectBinding)
+ return false;
+
+ ICS.setUserDefined();
+ ICS.UserDefined.Before = Best->Conversions[0].Standard;
+ ICS.UserDefined.After = Best->FinalConversion;
+ ICS.UserDefined.ConversionFunction = Best->Function;
+ ICS.UserDefined.EllipsisConversion = false;
+ assert(ICS.UserDefined.After.ReferenceBinding &&
+ ICS.UserDefined.After.DirectBinding &&
+ "Expected a direct reference binding!");
+ return true;
+
+ case OR_Ambiguous:
+ ICS.setAmbiguous();
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
+ Cand != CandidateSet.end(); ++Cand)
+ if (Cand->Viable)
+ ICS.Ambiguous.addConversion(Cand->Function);
+ return true;
+
+ case OR_No_Viable_Function:
+ case OR_Deleted:
+ // There was no suitable conversion, or we found a deleted
+ // conversion; continue with other checks.
+ return false;
+ }
+
+ return false;
+}
+
/// \brief Compute an implicit conversion sequence for reference
/// initialization.
static ImplicitConversionSequence
@@ -2595,149 +2736,72 @@ TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
// Compute some basic properties of the types and the initializer.
bool isRValRef = DeclType->isRValueReferenceType();
bool DerivedToBase = false;
- Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context);
+ Expr::Classification InitCategory = Init->Classify(S.Context);
Sema::ReferenceCompareResult RefRelationship
= S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
- // C++ [over.ics.ref]p3:
- // Except for an implicit object parameter, for which see 13.3.1,
- // a standard conversion sequence cannot be formed if it requires
- // binding an lvalue reference to non-const to an rvalue or
- // binding an rvalue reference to an lvalue.
- //
- // FIXME: DPG doesn't trust this code. It seems far too early to
- // abort because of a binding of an rvalue reference to an lvalue.
- if (isRValRef && InitLvalue == Expr::LV_Valid)
- return ICS;
-
- // C++0x [dcl.init.ref]p16:
+ // C++0x [dcl.init.ref]p5:
// A reference to type "cv1 T1" is initialized by an expression
// of type "cv2 T2" as follows:
- // -- If the initializer expression
- // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
- // reference-compatible with "cv2 T2," or
- //
- // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
- if (InitLvalue == Expr::LV_Valid &&
- RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
- // C++ [over.ics.ref]p1:
- // When a parameter of reference type binds directly (8.5.3)
- // to an argument expression, the implicit conversion sequence
- // is the identity conversion, unless the argument expression
- // has a type that is a derived class of the parameter type,
- // in which case the implicit conversion sequence is a
- // derived-to-base Conversion (13.3.3.1).
- ICS.setStandard();
- ICS.Standard.First = ICK_Identity;
- ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
- ICS.Standard.Third = ICK_Identity;
- ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
- ICS.Standard.setToType(0, T2);
- ICS.Standard.setToType(1, T1);
- ICS.Standard.setToType(2, T1);
- ICS.Standard.ReferenceBinding = true;
- ICS.Standard.DirectBinding = true;
- ICS.Standard.RRefBinding = false;
- ICS.Standard.CopyConstructor = 0;
-
- // Nothing more to do: the inaccessibility/ambiguity check for
- // derived-to-base conversions is suppressed when we're
- // computing the implicit conversion sequence (C++
- // [over.best.ics]p2).
- return ICS;
- }
-
- // -- has a class type (i.e., T2 is a class type), where T1 is
- // not reference-related to T2, and can be implicitly
- // converted to an lvalue of type "cv3 T3," where "cv1 T1"
- // is reference-compatible with "cv3 T3" 92) (this
- // conversion is selected by enumerating the applicable
- // conversion functions (13.3.1.6) and choosing the best
- // one through overload resolution (13.3)),
- if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
- !S.RequireCompleteType(DeclLoc, T2, 0) &&
- RefRelationship == Sema::Ref_Incompatible) {
- CXXRecordDecl *T2RecordDecl
- = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
-
- OverloadCandidateSet CandidateSet(DeclLoc);
- const UnresolvedSetImpl *Conversions
- = T2RecordDecl->getVisibleConversionFunctions();
- for (UnresolvedSetImpl::iterator I = Conversions->begin(),
- E = Conversions->end(); I != E; ++I) {
- NamedDecl *D = *I;
- CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
- if (isa<UsingShadowDecl>(D))
- D = cast<UsingShadowDecl>(D)->getTargetDecl();
-
- FunctionTemplateDecl *ConvTemplate
- = dyn_cast<FunctionTemplateDecl>(D);
- CXXConversionDecl *Conv;
- if (ConvTemplate)
- Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
- else
- Conv = cast<CXXConversionDecl>(D);
-
- // If the conversion function doesn't return a reference type,
- // it can't be considered for this conversion.
- if (Conv->getConversionType()->isLValueReferenceType() &&
- (AllowExplicit || !Conv->isExplicit())) {
- if (ConvTemplate)
- S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
- Init, DeclType, CandidateSet);
- else
- S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
- DeclType, CandidateSet);
- }
- }
-
- OverloadCandidateSet::iterator Best;
- switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
- case OR_Success:
+ // -- If reference is an lvalue reference and the initializer expression
+ // The next bullet point (T1 is a function) is pretty much equivalent to this
+ // one, so it's handled here.
+ if (!isRValRef || T1->isFunctionType()) {
+ // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
+ // reference-compatible with "cv2 T2," or
+ //
+ // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
+ if (InitCategory.isLValue() &&
+ RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
// C++ [over.ics.ref]p1:
- //
- // [...] If the parameter binds directly to the result of
- // applying a conversion function to the argument
- // expression, the implicit conversion sequence is a
- // user-defined conversion sequence (13.3.3.1.2), with the
- // second standard conversion sequence either an identity
- // conversion or, if the conversion function returns an
- // entity of a type that is a derived class of the parameter
- // type, a derived-to-base Conversion.
- if (!Best->FinalConversion.DirectBinding)
- break;
-
- ICS.setUserDefined();
- ICS.UserDefined.Before = Best->Conversions[0].Standard;
- ICS.UserDefined.After = Best->FinalConversion;
- ICS.UserDefined.ConversionFunction = Best->Function;
- ICS.UserDefined.EllipsisConversion = false;
- assert(ICS.UserDefined.After.ReferenceBinding &&
- ICS.UserDefined.After.DirectBinding &&
- "Expected a direct reference binding!");
- return ICS;
-
- case OR_Ambiguous:
- ICS.setAmbiguous();
- for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
- Cand != CandidateSet.end(); ++Cand)
- if (Cand->Viable)
- ICS.Ambiguous.addConversion(Cand->Function);
+ // When a parameter of reference type binds directly (8.5.3)
+ // to an argument expression, the implicit conversion sequence
+ // is the identity conversion, unless the argument expression
+ // has a type that is a derived class of the parameter type,
+ // in which case the implicit conversion sequence is a
+ // derived-to-base Conversion (13.3.3.1).
+ ICS.setStandard();
+ ICS.Standard.First = ICK_Identity;
+ ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
+ ICS.Standard.Third = ICK_Identity;
+ ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
+ ICS.Standard.setToType(0, T2);
+ ICS.Standard.setToType(1, T1);
+ ICS.Standard.setToType(2, T1);
+ ICS.Standard.ReferenceBinding = true;
+ ICS.Standard.DirectBinding = true;
+ ICS.Standard.RRefBinding = isRValRef;
+ ICS.Standard.CopyConstructor = 0;
+
+ // Nothing more to do: the inaccessibility/ambiguity check for
+ // derived-to-base conversions is suppressed when we're
+ // computing the implicit conversion sequence (C++
+ // [over.best.ics]p2).
return ICS;
+ }
- case OR_No_Viable_Function:
- case OR_Deleted:
- // There was no suitable conversion, or we found a deleted
- // conversion; continue with other checks.
- break;
+ // -- has a class type (i.e., T2 is a class type), where T1 is
+ // not reference-related to T2, and can be implicitly
+ // converted to an lvalue of type "cv3 T3," where "cv1 T1"
+ // is reference-compatible with "cv3 T3" 92) (this
+ // conversion is selected by enumerating the applicable
+ // conversion functions (13.3.1.6) and choosing the best
+ // one through overload resolution (13.3)),
+ if (!SuppressUserConversions && T2->isRecordType() &&
+ !S.RequireCompleteType(DeclLoc, T2, 0) &&
+ RefRelationship == Sema::Ref_Incompatible) {
+ if (FindConversionToLValue(S, ICS, DeclType, DeclLoc,
+ Init, T2, AllowExplicit))
+ return ICS;
}
}
- // -- Otherwise, the reference shall be to a non-volatile const
- // type (i.e., cv1 shall be const), or the reference shall be an
- // rvalue reference and the initializer expression shall be an rvalue.
+ // -- Otherwise, the reference shall be an lvalue reference to a
+ // non-volatile const type (i.e., cv1 shall be const), or the reference
+ // shall be an rvalue reference and the initializer expression shall be
+ // an rvalue or have a function type.
//
// We actually handle one oddity of C++ [over.ics.ref] at this
// point, which is that, due to p2 (which short-circuits reference
@@ -2746,10 +2810,26 @@ TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
// reference to bind to an rvalue. Hence the check for the presence
// of "const" rather than checking for "const" being the only
// qualifier.
- if (!isRValRef && !T1.isConstQualified())
+ // This is also the point where rvalue references and lvalue inits no longer
+ // go together.
+ if ((!isRValRef && !T1.isConstQualified()) ||
+ (isRValRef && InitCategory.isLValue()))
+ return ICS;
+
+ // -- If T1 is a function type, then
+ // -- if T2 is the same type as T1, the reference is bound to the
+ // initializer expression lvalue;
+ // -- if T2 is a class type and the initializer expression can be
+ // implicitly converted to an lvalue of type T1 [...], the
+ // reference is bound to the function lvalue that is the result
+ // of the conversion;
+ // This is the same as for the lvalue case above, so it was handled there.
+ // -- otherwise, the program is ill-formed.
+ // This is the one difference to the lvalue case.
+ if (T1->isFunctionType())
return ICS;
- // -- if T2 is a class type and
+ // -- Otherwise, if T2 is a class type and
// -- the initializer expression is an rvalue and "cv1 T1"
// is reference-compatible with "cv2 T2," or
//
@@ -2768,7 +2848,7 @@ TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
//
// We're only checking the first case here, which is a direct
// binding in C++0x but not in C++03.
- if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
+ if (InitCategory.isRValue() && T2->isRecordType() &&
RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
ICS.setStandard();
ICS.Standard.First = ICK_Identity;
@@ -3012,6 +3092,177 @@ bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) {
return true;
}
+/// \brief Attempt to convert the given expression to an integral or
+/// enumeration type.
+///
+/// This routine will attempt to convert an expression of class type to an
+/// integral or enumeration type, if that class type only has a single
+/// conversion to an integral or enumeration type.
+///
+/// \param Loc The source location of the construct that requires the
+/// conversion.
+///
+/// \param FromE The expression we're converting from.
+///
+/// \param NotIntDiag The diagnostic to be emitted if the expression does not
+/// have integral or enumeration type.
+///
+/// \param IncompleteDiag The diagnostic to be emitted if the expression has
+/// incomplete class type.
+///
+/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
+/// explicit conversion function (because no implicit conversion functions
+/// were available). This is a recovery mode.
+///
+/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
+/// showing which conversion was picked.
+///
+/// \param AmbigDiag The diagnostic to be emitted if there is more than one
+/// conversion function that could convert to integral or enumeration type.
+///
+/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
+/// usable conversion function.
+///
+/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
+/// function, which may be an extension in this case.
+///
+/// \returns The expression, converted to an integral or enumeration type if
+/// successful.
+Sema::OwningExprResult
+Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, ExprArg FromE,
+ const PartialDiagnostic &NotIntDiag,
+ const PartialDiagnostic &IncompleteDiag,
+ const PartialDiagnostic &ExplicitConvDiag,
+ const PartialDiagnostic &ExplicitConvNote,
+ const PartialDiagnostic &AmbigDiag,
+ const PartialDiagnostic &AmbigNote,
+ const PartialDiagnostic &ConvDiag) {
+ Expr *From = static_cast<Expr *>(FromE.get());
+
+ // We can't perform any more checking for type-dependent expressions.
+ if (From->isTypeDependent())
+ return move(FromE);
+
+ // If the expression already has integral or enumeration type, we're golden.
+ QualType T = From->getType();
+ if (T->isIntegralOrEnumerationType())
+ return move(FromE);
+
+ // FIXME: Check for missing '()' if T is a function type?
+
+ // If we don't have a class type in C++, there's no way we can get an
+ // expression of integral or enumeration type.
+ const RecordType *RecordTy = T->getAs<RecordType>();
+ if (!RecordTy || !getLangOptions().CPlusPlus) {
+ Diag(Loc, NotIntDiag)
+ << T << From->getSourceRange();
+ return move(FromE);
+ }
+
+ // We must have a complete class type.
+ if (RequireCompleteType(Loc, T, IncompleteDiag))
+ return move(FromE);
+
+ // Look for a conversion to an integral or enumeration type.
+ UnresolvedSet<4> ViableConversions;
+ UnresolvedSet<4> ExplicitConversions;
+ const UnresolvedSetImpl *Conversions
+ = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
+
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end();
+ I != E;
+ ++I) {
+ if (CXXConversionDecl *Conversion
+ = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
+ if (Conversion->getConversionType().getNonReferenceType()
+ ->isIntegralOrEnumerationType()) {
+ if (Conversion->isExplicit())
+ ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
+ else
+ ViableConversions.addDecl(I.getDecl(), I.getAccess());
+ }
+ }
+
+ switch (ViableConversions.size()) {
+ case 0:
+ if (ExplicitConversions.size() == 1) {
+ DeclAccessPair Found = ExplicitConversions[0];
+ CXXConversionDecl *Conversion
+ = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
+
+ // The user probably meant to invoke the given explicit
+ // conversion; use it.
+ QualType ConvTy
+ = Conversion->getConversionType().getNonReferenceType();
+ std::string TypeStr;
+ ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy);
+
+ Diag(Loc, ExplicitConvDiag)
+ << T << ConvTy
+ << FixItHint::CreateInsertion(From->getLocStart(),
+ "static_cast<" + TypeStr + ">(")
+ << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
+ ")");
+ Diag(Conversion->getLocation(), ExplicitConvNote)
+ << ConvTy->isEnumeralType() << ConvTy;
+
+ // If we aren't in a SFINAE context, build a call to the
+ // explicit conversion function.
+ if (isSFINAEContext())
+ return ExprError();
+
+ CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
+ From = BuildCXXMemberCallExpr(FromE.takeAs<Expr>(), Found, Conversion);
+ FromE = Owned(From);
+ }
+
+ // We'll complain below about a non-integral condition type.
+ break;
+
+ case 1: {
+ // Apply this conversion.
+ DeclAccessPair Found = ViableConversions[0];
+ CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
+
+ CXXConversionDecl *Conversion
+ = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
+ QualType ConvTy
+ = Conversion->getConversionType().getNonReferenceType();
+ if (ConvDiag.getDiagID()) {
+ if (isSFINAEContext())
+ return ExprError();
+
+ Diag(Loc, ConvDiag)
+ << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
+ }
+
+ From = BuildCXXMemberCallExpr(FromE.takeAs<Expr>(), Found,
+ cast<CXXConversionDecl>(Found->getUnderlyingDecl()));
+ FromE = Owned(From);
+ break;
+ }
+
+ default:
+ Diag(Loc, AmbigDiag)
+ << T << From->getSourceRange();
+ for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
+ CXXConversionDecl *Conv
+ = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
+ QualType ConvTy = Conv->getConversionType().getNonReferenceType();
+ Diag(Conv->getLocation(), AmbigNote)
+ << ConvTy->isEnumeralType() << ConvTy;
+ }
+ return move(FromE);
+ }
+
+ if (!From->getType()->isIntegralOrEnumerationType())
+ Diag(Loc, NotIntDiag)
+ << From->getType() << From->getSourceRange();
+
+ return move(FromE);
+}
+
/// AddOverloadCandidate - Adds the given function to the set of
/// candidate functions, using the given function call arguments. If
/// @p SuppressUserConversions, then don't allow user-defined
@@ -3476,7 +3727,7 @@ Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
// there are 0 arguments (i.e., nothing is allocated using ASTContext's
// allocator).
CallExpr Call(Context, &ConversionFn, 0, 0,
- Conversion->getConversionType().getNonReferenceType(),
+ Conversion->getConversionType().getNonLValueExprType(Context),
From->getLocStart());
ImplicitConversionSequence ICS =
TryCopyInitialization(*this, &Call, ToType,
@@ -4949,7 +5200,7 @@ Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
// - F1 is a non-template function and F2 is a function template
// specialization, or, if not that,
- if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
+ if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
Cand2.Function && Cand2.Function->getPrimaryTemplate())
return true;
@@ -5230,6 +5481,46 @@ void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
return;
}
+ // Diagnose base -> derived pointer conversions.
+ unsigned BaseToDerivedConversion = 0;
+ if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
+ if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
+ if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
+ FromPtrTy->getPointeeType()) &&
+ !FromPtrTy->getPointeeType()->isIncompleteType() &&
+ !ToPtrTy->getPointeeType()->isIncompleteType() &&
+ S.IsDerivedFrom(ToPtrTy->getPointeeType(),
+ FromPtrTy->getPointeeType()))
+ BaseToDerivedConversion = 1;
+ }
+ } else if (const ObjCObjectPointerType *FromPtrTy
+ = FromTy->getAs<ObjCObjectPointerType>()) {
+ if (const ObjCObjectPointerType *ToPtrTy
+ = ToTy->getAs<ObjCObjectPointerType>())
+ if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
+ if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
+ if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
+ FromPtrTy->getPointeeType()) &&
+ FromIface->isSuperClassOf(ToIface))
+ BaseToDerivedConversion = 2;
+ } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
+ if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
+ !FromTy->isIncompleteType() &&
+ !ToRefTy->getPointeeType()->isIncompleteType() &&
+ S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
+ BaseToDerivedConversion = 3;
+ }
+
+ if (BaseToDerivedConversion) {
+ S.Diag(Fn->getLocation(),
+ diag::note_ovl_candidate_bad_base_to_derived_conv)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << (BaseToDerivedConversion - 1)
+ << FromTy << ToTy << I+1;
+ return;
+ }
+
// TODO: specialize more based on the kind of mismatch
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
<< (unsigned) FnKind << FnDesc
@@ -5673,7 +5964,10 @@ Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
Cands.push_back(Cand);
else if (OCD == OCD_AllCandidates) {
CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
- Cands.push_back(Cand);
+ if (Cand->Function || Cand->IsSurrogate)
+ Cands.push_back(Cand);
+ // Otherwise, this a non-viable builtin candidate. We do not, in general,
+ // want to list every possible builtin candidate.
}
}
@@ -5683,17 +5977,26 @@ Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
bool ReportedAmbiguousConversions = false;
llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
+ const Diagnostic::OverloadsShown ShowOverloads = Diags.getShowOverloads();
+ unsigned CandsShown = 0;
for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
OverloadCandidate *Cand = *I;
+ // Set an arbitrary limit on the number of candidate functions we'll spam
+ // the user with. FIXME: This limit should depend on details of the
+ // candidate list.
+ if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
+ break;
+ }
+ ++CandsShown;
+
if (Cand->Function)
NoteFunctionCandidate(*this, Cand, Args, NumArgs);
else if (Cand->IsSurrogate)
NoteSurrogateCandidate(*this, Cand);
-
- // This a builtin candidate. We do not, in general, want to list
- // every possible builtin candidate.
- else if (Cand->Viable) {
+ else {
+ assert(Cand->Viable &&
+ "Non-viable built-in candidates are not added to Cands.");
// Generally we only see ambiguities including viable builtin
// operators if overload resolution got screwed up by an
// ambiguous user-defined conversion.
@@ -5709,6 +6012,9 @@ Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
}
}
+
+ if (I != E)
+ Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
}
static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
@@ -5981,7 +6287,8 @@ FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
// specified and it, along with any default template arguments,
// identifies a single function template specialization, then the
// template-id is an lvalue for the function template specialization.
- FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
+ FunctionTemplateDecl *FunctionTemplate
+ = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
// C++ [over.over]p2:
// If the name is a function template, template argument deduction is
@@ -6159,7 +6466,7 @@ BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
CommaLocs, RParenLoc);
}
-
+
/// ResolveOverloadedCallFn - Given the call expression that calls Fn
/// (which eventually refers to the declaration Func) and the call
/// arguments Args/NumArgs, attempt to resolve the function call down
@@ -6290,6 +6597,12 @@ Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
}
if (Input->isTypeDependent()) {
+ if (Fns.empty())
+ return Owned(new (Context) UnaryOperator(input.takeAs<Expr>(),
+ Opc,
+ Context.DependentTy,
+ OpLoc));
+
CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
UnresolvedLookupExpr *Fn
= UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
@@ -6356,7 +6669,7 @@ Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
// Determine the result type
- QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
+ QualType ResultTy = FnDecl->getCallResultType();
// Build the actual expression node.
Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
@@ -6563,8 +6876,8 @@ Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
// Determine the result type
QualType ResultTy
- = FnDecl->getType()->getAs<FunctionType>()->getResultType();
- ResultTy = ResultTy.getNonReferenceType();
+ = FnDecl->getType()->getAs<FunctionType>()
+ ->getCallResultType(Context);
// Build the actual expression node.
Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
@@ -6720,8 +7033,8 @@ Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
// Determine the result type
QualType ResultTy
- = FnDecl->getType()->getAs<FunctionType>()->getResultType();
- ResultTy = ResultTy.getNonReferenceType();
+ = FnDecl->getType()->getAs<FunctionType>()
+ ->getCallResultType(Context);
// Build the actual expression node.
Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
@@ -6909,7 +7222,7 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
ExprOwningPtr<CXXMemberCallExpr>
TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
NumArgs,
- Method->getResultType().getNonReferenceType(),
+ Method->getCallResultType(),
RParenLoc));
// Check for a valid return type.
@@ -7124,7 +7437,7 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
// Once we've built TheCall, all of the expressions are properly
// owned.
- QualType ResultTy = Method->getResultType().getNonReferenceType();
+ QualType ResultTy = Method->getCallResultType();
ExprOwningPtr<CXXOperatorCallExpr>
TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
MethodArgs, NumArgs + 1,
@@ -7280,7 +7593,7 @@ Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
SourceLocation());
UsualUnaryConversions(FnExpr);
- QualType ResultTy = Method->getResultType().getNonReferenceType();
+ QualType ResultTy = Method->getCallResultType();
ExprOwningPtr<CXXOperatorCallExpr>
TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
&Base, 1, ResultTy, OpLoc));
OpenPOWER on IntegriCloud