summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp11227
1 files changed, 11227 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
new file mode 100644
index 0000000..284c8de
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
@@ -0,0 +1,11227 @@
+//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Sema routines for C++ overloading.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Template.h"
+#include "clang/Sema/TemplateDeduction.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/TypeOrdering.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+
+namespace clang {
+using namespace sema;
+
+/// A convenience routine for creating a decayed reference to a
+/// function.
+static ExprResult
+CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
+ SourceLocation Loc = SourceLocation(),
+ const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
+ DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
+ VK_LValue, Loc, LocInfo);
+ if (HadMultipleCandidates)
+ DRE->setHadMultipleCandidates(true);
+ ExprResult E = S.Owned(DRE);
+ E = S.DefaultFunctionArrayConversion(E.take());
+ if (E.isInvalid())
+ return ExprError();
+ return move(E);
+}
+
+static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle,
+ bool AllowObjCWritebackConversion);
+
+static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
+ QualType &ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle);
+static OverloadingResult
+IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
+ UserDefinedConversionSequence& User,
+ OverloadCandidateSet& Conversions,
+ bool AllowExplicit);
+
+
+static ImplicitConversionSequence::CompareKind
+CompareStandardConversionSequences(Sema &S,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2);
+
+static ImplicitConversionSequence::CompareKind
+CompareQualificationConversions(Sema &S,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2);
+
+static ImplicitConversionSequence::CompareKind
+CompareDerivedToBaseConversions(Sema &S,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2);
+
+
+
+/// GetConversionCategory - Retrieve the implicit conversion
+/// category corresponding to the given implicit conversion kind.
+ImplicitConversionCategory
+GetConversionCategory(ImplicitConversionKind Kind) {
+ static const ImplicitConversionCategory
+ Category[(int)ICK_Num_Conversion_Kinds] = {
+ ICC_Identity,
+ ICC_Lvalue_Transformation,
+ ICC_Lvalue_Transformation,
+ ICC_Lvalue_Transformation,
+ ICC_Identity,
+ ICC_Qualification_Adjustment,
+ ICC_Promotion,
+ ICC_Promotion,
+ ICC_Promotion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion
+ };
+ return Category[(int)Kind];
+}
+
+/// GetConversionRank - Retrieve the implicit conversion rank
+/// corresponding to the given implicit conversion kind.
+ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
+ static const ImplicitConversionRank
+ Rank[(int)ICK_Num_Conversion_Kinds] = {
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Promotion,
+ ICR_Promotion,
+ ICR_Promotion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Complex_Real_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Writeback_Conversion
+ };
+ return Rank[(int)Kind];
+}
+
+/// GetImplicitConversionName - Return the name of this kind of
+/// implicit conversion.
+const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
+ static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
+ "No conversion",
+ "Lvalue-to-rvalue",
+ "Array-to-pointer",
+ "Function-to-pointer",
+ "Noreturn adjustment",
+ "Qualification",
+ "Integral promotion",
+ "Floating point promotion",
+ "Complex promotion",
+ "Integral conversion",
+ "Floating conversion",
+ "Complex conversion",
+ "Floating-integral conversion",
+ "Pointer conversion",
+ "Pointer-to-member conversion",
+ "Boolean conversion",
+ "Compatible-types conversion",
+ "Derived-to-base conversion",
+ "Vector conversion",
+ "Vector splat",
+ "Complex-real conversion",
+ "Block Pointer conversion",
+ "Transparent Union Conversion"
+ "Writeback conversion"
+ };
+ return Name[Kind];
+}
+
+/// StandardConversionSequence - Set the standard conversion
+/// sequence to the identity conversion.
+void StandardConversionSequence::setAsIdentityConversion() {
+ First = ICK_Identity;
+ Second = ICK_Identity;
+ Third = ICK_Identity;
+ DeprecatedStringLiteralToCharPtr = false;
+ QualificationIncludesObjCLifetime = false;
+ ReferenceBinding = false;
+ DirectBinding = false;
+ IsLvalueReference = true;
+ BindsToFunctionLvalue = false;
+ BindsToRvalue = false;
+ BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ ObjCLifetimeConversionBinding = false;
+ CopyConstructor = 0;
+}
+
+/// getRank - Retrieve the rank of this standard conversion sequence
+/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
+/// implicit conversions.
+ImplicitConversionRank StandardConversionSequence::getRank() const {
+ ImplicitConversionRank Rank = ICR_Exact_Match;
+ if (GetConversionRank(First) > Rank)
+ Rank = GetConversionRank(First);
+ if (GetConversionRank(Second) > Rank)
+ Rank = GetConversionRank(Second);
+ if (GetConversionRank(Third) > Rank)
+ Rank = GetConversionRank(Third);
+ return Rank;
+}
+
+/// isPointerConversionToBool - Determines whether this conversion is
+/// a conversion of a pointer or pointer-to-member to bool. This is
+/// used as part of the ranking of standard conversion sequences
+/// (C++ 13.3.3.2p4).
+bool StandardConversionSequence::isPointerConversionToBool() const {
+ // Note that FromType has not necessarily been transformed by the
+ // array-to-pointer or function-to-pointer implicit conversions, so
+ // check for their presence as well as checking whether FromType is
+ // a pointer.
+ if (getToType(1)->isBooleanType() &&
+ (getFromType()->isPointerType() ||
+ getFromType()->isObjCObjectPointerType() ||
+ getFromType()->isBlockPointerType() ||
+ getFromType()->isNullPtrType() ||
+ First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
+ return true;
+
+ return false;
+}
+
+/// isPointerConversionToVoidPointer - Determines whether this
+/// conversion is a conversion of a pointer to a void pointer. This is
+/// used as part of the ranking of standard conversion sequences (C++
+/// 13.3.3.2p4).
+bool
+StandardConversionSequence::
+isPointerConversionToVoidPointer(ASTContext& Context) const {
+ QualType FromType = getFromType();
+ QualType ToType = getToType(1);
+
+ // Note that FromType has not necessarily been transformed by the
+ // array-to-pointer implicit conversion, so check for its presence
+ // and redo the conversion to get a pointer.
+ if (First == ICK_Array_To_Pointer)
+ FromType = Context.getArrayDecayedType(FromType);
+
+ if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
+ if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
+ return ToPtrType->getPointeeType()->isVoidType();
+
+ return false;
+}
+
+/// Skip any implicit casts which could be either part of a narrowing conversion
+/// or after one in an implicit conversion.
+static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
+ switch (ICE->getCastKind()) {
+ case CK_NoOp:
+ case CK_IntegralCast:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ Converted = ICE->getSubExpr();
+ continue;
+
+ default:
+ return Converted;
+ }
+ }
+
+ return Converted;
+}
+
+/// Check if this standard conversion sequence represents a narrowing
+/// conversion, according to C++11 [dcl.init.list]p7.
+///
+/// \param Ctx The AST context.
+/// \param Converted The result of applying this standard conversion sequence.
+/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
+/// value of the expression prior to the narrowing conversion.
+/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
+/// type of the expression prior to the narrowing conversion.
+NarrowingKind
+StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
+ const Expr *Converted,
+ APValue &ConstantValue,
+ QualType &ConstantType) const {
+ assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
+
+ // C++11 [dcl.init.list]p7:
+ // A narrowing conversion is an implicit conversion ...
+ QualType FromType = getToType(0);
+ QualType ToType = getToType(1);
+ switch (Second) {
+ // -- from a floating-point type to an integer type, or
+ //
+ // -- from an integer type or unscoped enumeration type to a floating-point
+ // type, except where the source is a constant expression and the actual
+ // value after conversion will fit into the target type and will produce
+ // the original value when converted back to the original type, or
+ case ICK_Floating_Integral:
+ if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
+ return NK_Type_Narrowing;
+ } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
+ llvm::APSInt IntConstantValue;
+ const Expr *Initializer = IgnoreNarrowingConversion(Converted);
+ if (Initializer &&
+ Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
+ // Convert the integer to the floating type.
+ llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
+ Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
+ llvm::APFloat::rmNearestTiesToEven);
+ // And back.
+ llvm::APSInt ConvertedValue = IntConstantValue;
+ bool ignored;
+ Result.convertToInteger(ConvertedValue,
+ llvm::APFloat::rmTowardZero, &ignored);
+ // If the resulting value is different, this was a narrowing conversion.
+ if (IntConstantValue != ConvertedValue) {
+ ConstantValue = APValue(IntConstantValue);
+ ConstantType = Initializer->getType();
+ return NK_Constant_Narrowing;
+ }
+ } else {
+ // Variables are always narrowings.
+ return NK_Variable_Narrowing;
+ }
+ }
+ return NK_Not_Narrowing;
+
+ // -- from long double to double or float, or from double to float, except
+ // where the source is a constant expression and the actual value after
+ // conversion is within the range of values that can be represented (even
+ // if it cannot be represented exactly), or
+ case ICK_Floating_Conversion:
+ if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
+ Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
+ // FromType is larger than ToType.
+ const Expr *Initializer = IgnoreNarrowingConversion(Converted);
+ if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
+ // Constant!
+ assert(ConstantValue.isFloat());
+ llvm::APFloat FloatVal = ConstantValue.getFloat();
+ // Convert the source value into the target type.
+ bool ignored;
+ llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
+ Ctx.getFloatTypeSemantics(ToType),
+ llvm::APFloat::rmNearestTiesToEven, &ignored);
+ // If there was no overflow, the source value is within the range of
+ // values that can be represented.
+ if (ConvertStatus & llvm::APFloat::opOverflow) {
+ ConstantType = Initializer->getType();
+ return NK_Constant_Narrowing;
+ }
+ } else {
+ return NK_Variable_Narrowing;
+ }
+ }
+ return NK_Not_Narrowing;
+
+ // -- from an integer type or unscoped enumeration type to an integer type
+ // that cannot represent all the values of the original type, except where
+ // the source is a constant expression and the actual value after
+ // conversion will fit into the target type and will produce the original
+ // value when converted back to the original type.
+ case ICK_Boolean_Conversion: // Bools are integers too.
+ if (!FromType->isIntegralOrUnscopedEnumerationType()) {
+ // Boolean conversions can be from pointers and pointers to members
+ // [conv.bool], and those aren't considered narrowing conversions.
+ return NK_Not_Narrowing;
+ } // Otherwise, fall through to the integral case.
+ case ICK_Integral_Conversion: {
+ assert(FromType->isIntegralOrUnscopedEnumerationType());
+ assert(ToType->isIntegralOrUnscopedEnumerationType());
+ const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
+ const unsigned FromWidth = Ctx.getIntWidth(FromType);
+ const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
+ const unsigned ToWidth = Ctx.getIntWidth(ToType);
+
+ if (FromWidth > ToWidth ||
+ (FromWidth == ToWidth && FromSigned != ToSigned)) {
+ // Not all values of FromType can be represented in ToType.
+ llvm::APSInt InitializerValue;
+ const Expr *Initializer = IgnoreNarrowingConversion(Converted);
+ if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
+ ConstantValue = APValue(InitializerValue);
+
+ // Add a bit to the InitializerValue so we don't have to worry about
+ // signed vs. unsigned comparisons.
+ InitializerValue = InitializerValue.extend(
+ InitializerValue.getBitWidth() + 1);
+ // Convert the initializer to and from the target width and signed-ness.
+ llvm::APSInt ConvertedValue = InitializerValue;
+ ConvertedValue = ConvertedValue.trunc(ToWidth);
+ ConvertedValue.setIsSigned(ToSigned);
+ ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
+ ConvertedValue.setIsSigned(InitializerValue.isSigned());
+ // If the result is different, this was a narrowing conversion.
+ if (ConvertedValue != InitializerValue) {
+ ConstantType = Initializer->getType();
+ return NK_Constant_Narrowing;
+ }
+ } else {
+ // Variables are always narrowings.
+ return NK_Variable_Narrowing;
+ }
+ }
+ return NK_Not_Narrowing;
+ }
+
+ default:
+ // Other kinds of conversions are not narrowings.
+ return NK_Not_Narrowing;
+ }
+}
+
+/// DebugPrint - Print this standard conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void StandardConversionSequence::DebugPrint() const {
+ raw_ostream &OS = llvm::errs();
+ bool PrintedSomething = false;
+ if (First != ICK_Identity) {
+ OS << GetImplicitConversionName(First);
+ PrintedSomething = true;
+ }
+
+ if (Second != ICK_Identity) {
+ if (PrintedSomething) {
+ OS << " -> ";
+ }
+ OS << GetImplicitConversionName(Second);
+
+ if (CopyConstructor) {
+ OS << " (by copy constructor)";
+ } else if (DirectBinding) {
+ OS << " (direct reference binding)";
+ } else if (ReferenceBinding) {
+ OS << " (reference binding)";
+ }
+ PrintedSomething = true;
+ }
+
+ if (Third != ICK_Identity) {
+ if (PrintedSomething) {
+ OS << " -> ";
+ }
+ OS << GetImplicitConversionName(Third);
+ PrintedSomething = true;
+ }
+
+ if (!PrintedSomething) {
+ OS << "No conversions required";
+ }
+}
+
+/// DebugPrint - Print this user-defined conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void UserDefinedConversionSequence::DebugPrint() const {
+ raw_ostream &OS = llvm::errs();
+ if (Before.First || Before.Second || Before.Third) {
+ Before.DebugPrint();
+ OS << " -> ";
+ }
+ if (ConversionFunction)
+ OS << '\'' << *ConversionFunction << '\'';
+ else
+ OS << "aggregate initialization";
+ if (After.First || After.Second || After.Third) {
+ OS << " -> ";
+ After.DebugPrint();
+ }
+}
+
+/// DebugPrint - Print this implicit conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void ImplicitConversionSequence::DebugPrint() const {
+ raw_ostream &OS = llvm::errs();
+ switch (ConversionKind) {
+ case StandardConversion:
+ OS << "Standard conversion: ";
+ Standard.DebugPrint();
+ break;
+ case UserDefinedConversion:
+ OS << "User-defined conversion: ";
+ UserDefined.DebugPrint();
+ break;
+ case EllipsisConversion:
+ OS << "Ellipsis conversion";
+ break;
+ case AmbiguousConversion:
+ OS << "Ambiguous conversion";
+ break;
+ case BadConversion:
+ OS << "Bad conversion";
+ break;
+ }
+
+ OS << "\n";
+}
+
+void AmbiguousConversionSequence::construct() {
+ new (&conversions()) ConversionSet();
+}
+
+void AmbiguousConversionSequence::destruct() {
+ conversions().~ConversionSet();
+}
+
+void
+AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
+ FromTypePtr = O.FromTypePtr;
+ ToTypePtr = O.ToTypePtr;
+ new (&conversions()) ConversionSet(O.conversions());
+}
+
+namespace {
+ // Structure used by OverloadCandidate::DeductionFailureInfo to store
+ // template parameter and template argument information.
+ struct DFIParamWithArguments {
+ TemplateParameter Param;
+ TemplateArgument FirstArg;
+ TemplateArgument SecondArg;
+ };
+}
+
+/// \brief Convert from Sema's representation of template deduction information
+/// to the form used in overload-candidate information.
+OverloadCandidate::DeductionFailureInfo
+static MakeDeductionFailureInfo(ASTContext &Context,
+ Sema::TemplateDeductionResult TDK,
+ TemplateDeductionInfo &Info) {
+ OverloadCandidate::DeductionFailureInfo Result;
+ Result.Result = static_cast<unsigned>(TDK);
+ Result.Data = 0;
+ switch (TDK) {
+ case Sema::TDK_Success:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ break;
+
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_InvalidExplicitArguments:
+ Result.Data = Info.Param.getOpaqueValue();
+ break;
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_Underqualified: {
+ // FIXME: Should allocate from normal heap so that we can free this later.
+ DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
+ Saved->Param = Info.Param;
+ Saved->FirstArg = Info.FirstArg;
+ Saved->SecondArg = Info.SecondArg;
+ Result.Data = Saved;
+ break;
+ }
+
+ case Sema::TDK_SubstitutionFailure:
+ Result.Data = Info.take();
+ break;
+
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+ }
+
+ return Result;
+}
+
+void OverloadCandidate::DeductionFailureInfo::Destroy() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_InvalidExplicitArguments:
+ break;
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_Underqualified:
+ // FIXME: Destroy the data?
+ Data = 0;
+ break;
+
+ case Sema::TDK_SubstitutionFailure:
+ // FIXME: Destroy the template arugment list?
+ Data = 0;
+ break;
+
+ // Unhandled
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+ }
+}
+
+TemplateParameter
+OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_SubstitutionFailure:
+ return TemplateParameter();
+
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_InvalidExplicitArguments:
+ return TemplateParameter::getFromOpaqueValue(Data);
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_Underqualified:
+ return static_cast<DFIParamWithArguments*>(Data)->Param;
+
+ // Unhandled
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+ }
+
+ return TemplateParameter();
+}
+
+TemplateArgumentList *
+OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_InvalidExplicitArguments:
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_Underqualified:
+ return 0;
+
+ case Sema::TDK_SubstitutionFailure:
+ return static_cast<TemplateArgumentList*>(Data);
+
+ // Unhandled
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+ }
+
+ return 0;
+}
+
+const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_InvalidExplicitArguments:
+ case Sema::TDK_SubstitutionFailure:
+ return 0;
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_Underqualified:
+ return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
+
+ // Unhandled
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+ }
+
+ return 0;
+}
+
+const TemplateArgument *
+OverloadCandidate::DeductionFailureInfo::getSecondArg() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_InvalidExplicitArguments:
+ case Sema::TDK_SubstitutionFailure:
+ return 0;
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_Underqualified:
+ return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
+
+ // Unhandled
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+ }
+
+ return 0;
+}
+
+void OverloadCandidateSet::clear() {
+ for (iterator i = begin(), e = end(); i != e; ++i)
+ for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
+ i->Conversions[ii].~ImplicitConversionSequence();
+ NumInlineSequences = 0;
+ Candidates.clear();
+ Functions.clear();
+}
+
+namespace {
+ class UnbridgedCastsSet {
+ struct Entry {
+ Expr **Addr;
+ Expr *Saved;
+ };
+ SmallVector<Entry, 2> Entries;
+
+ public:
+ void save(Sema &S, Expr *&E) {
+ assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
+ Entry entry = { &E, E };
+ Entries.push_back(entry);
+ E = S.stripARCUnbridgedCast(E);
+ }
+
+ void restore() {
+ for (SmallVectorImpl<Entry>::iterator
+ i = Entries.begin(), e = Entries.end(); i != e; ++i)
+ *i->Addr = i->Saved;
+ }
+ };
+}
+
+/// checkPlaceholderForOverload - Do any interesting placeholder-like
+/// preprocessing on the given expression.
+///
+/// \param unbridgedCasts a collection to which to add unbridged casts;
+/// without this, they will be immediately diagnosed as errors
+///
+/// Return true on unrecoverable error.
+static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
+ UnbridgedCastsSet *unbridgedCasts = 0) {
+ if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
+ // We can't handle overloaded expressions here because overload
+ // resolution might reasonably tweak them.
+ if (placeholder->getKind() == BuiltinType::Overload) return false;
+
+ // If the context potentially accepts unbridged ARC casts, strip
+ // the unbridged cast and add it to the collection for later restoration.
+ if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
+ unbridgedCasts) {
+ unbridgedCasts->save(S, E);
+ return false;
+ }
+
+ // Go ahead and check everything else.
+ ExprResult result = S.CheckPlaceholderExpr(E);
+ if (result.isInvalid())
+ return true;
+
+ E = result.take();
+ return false;
+ }
+
+ // Nothing to do.
+ return false;
+}
+
+/// checkArgPlaceholdersForOverload - Check a set of call operands for
+/// placeholders.
+static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
+ unsigned numArgs,
+ UnbridgedCastsSet &unbridged) {
+ for (unsigned i = 0; i != numArgs; ++i)
+ if (checkPlaceholderForOverload(S, args[i], &unbridged))
+ return true;
+
+ return false;
+}
+
+// IsOverload - Determine whether the given New declaration is an
+// overload of the declarations in Old. This routine returns false if
+// New and Old cannot be overloaded, e.g., if New has the same
+// signature as some function in Old (C++ 1.3.10) or if the Old
+// declarations aren't functions (or function templates) at all. When
+// it does return false, MatchedDecl will point to the decl that New
+// cannot be overloaded with. This decl may be a UsingShadowDecl on
+// top of the underlying declaration.
+//
+// Example: Given the following input:
+//
+// void f(int, float); // #1
+// void f(int, int); // #2
+// int f(int, int); // #3
+//
+// When we process #1, there is no previous declaration of "f",
+// so IsOverload will not be used.
+//
+// When we process #2, Old contains only the FunctionDecl for #1. By
+// comparing the parameter types, we see that #1 and #2 are overloaded
+// (since they have different signatures), so this routine returns
+// false; MatchedDecl is unchanged.
+//
+// When we process #3, Old is an overload set containing #1 and #2. We
+// compare the signatures of #3 to #1 (they're overloaded, so we do
+// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
+// identical (return types of functions are not part of the
+// signature), IsOverload returns false and MatchedDecl will be set to
+// point to the FunctionDecl for #2.
+//
+// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
+// into a class by a using declaration. The rules for whether to hide
+// shadow declarations ignore some properties which otherwise figure
+// into a function template's signature.
+Sema::OverloadKind
+Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
+ NamedDecl *&Match, bool NewIsUsingDecl) {
+ for (LookupResult::iterator I = Old.begin(), E = Old.end();
+ I != E; ++I) {
+ NamedDecl *OldD = *I;
+
+ bool OldIsUsingDecl = false;
+ if (isa<UsingShadowDecl>(OldD)) {
+ OldIsUsingDecl = true;
+
+ // We can always introduce two using declarations into the same
+ // context, even if they have identical signatures.
+ if (NewIsUsingDecl) continue;
+
+ OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
+ }
+
+ // If either declaration was introduced by a using declaration,
+ // we'll need to use slightly different rules for matching.
+ // Essentially, these rules are the normal rules, except that
+ // function templates hide function templates with different
+ // return types or template parameter lists.
+ bool UseMemberUsingDeclRules =
+ (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
+
+ if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
+ if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
+ if (UseMemberUsingDeclRules && OldIsUsingDecl) {
+ HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
+ continue;
+ }
+
+ Match = *I;
+ return Ovl_Match;
+ }
+ } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
+ if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
+ if (UseMemberUsingDeclRules && OldIsUsingDecl) {
+ HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
+ continue;
+ }
+
+ Match = *I;
+ return Ovl_Match;
+ }
+ } else if (isa<UsingDecl>(OldD)) {
+ // We can overload with these, which can show up when doing
+ // redeclaration checks for UsingDecls.
+ assert(Old.getLookupKind() == LookupUsingDeclName);
+ } else if (isa<TagDecl>(OldD)) {
+ // We can always overload with tags by hiding them.
+ } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
+ // Optimistically assume that an unresolved using decl will
+ // overload; if it doesn't, we'll have to diagnose during
+ // template instantiation.
+ } else {
+ // (C++ 13p1):
+ // Only function declarations can be overloaded; object and type
+ // declarations cannot be overloaded.
+ Match = *I;
+ return Ovl_NonFunction;
+ }
+ }
+
+ return Ovl_Overload;
+}
+
+bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
+ bool UseUsingDeclRules) {
+ // If both of the functions are extern "C", then they are not
+ // overloads.
+ if (Old->isExternC() && New->isExternC())
+ return false;
+
+ FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
+ FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
+
+ // C++ [temp.fct]p2:
+ // A function template can be overloaded with other function templates
+ // and with normal (non-template) functions.
+ if ((OldTemplate == 0) != (NewTemplate == 0))
+ return true;
+
+ // Is the function New an overload of the function Old?
+ QualType OldQType = Context.getCanonicalType(Old->getType());
+ QualType NewQType = Context.getCanonicalType(New->getType());
+
+ // Compare the signatures (C++ 1.3.10) of the two functions to
+ // determine whether they are overloads. If we find any mismatch
+ // in the signature, they are overloads.
+
+ // If either of these functions is a K&R-style function (no
+ // prototype), then we consider them to have matching signatures.
+ if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
+ isa<FunctionNoProtoType>(NewQType.getTypePtr()))
+ return false;
+
+ const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
+ const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
+
+ // The signature of a function includes the types of its
+ // parameters (C++ 1.3.10), which includes the presence or absence
+ // of the ellipsis; see C++ DR 357).
+ if (OldQType != NewQType &&
+ (OldType->getNumArgs() != NewType->getNumArgs() ||
+ OldType->isVariadic() != NewType->isVariadic() ||
+ !FunctionArgTypesAreEqual(OldType, NewType)))
+ return true;
+
+ // C++ [temp.over.link]p4:
+ // The signature of a function template consists of its function
+ // signature, its return type and its template parameter list. The names
+ // of the template parameters are significant only for establishing the
+ // relationship between the template parameters and the rest of the
+ // signature.
+ //
+ // We check the return type and template parameter lists for function
+ // templates first; the remaining checks follow.
+ //
+ // However, we don't consider either of these when deciding whether
+ // a member introduced by a shadow declaration is hidden.
+ if (!UseUsingDeclRules && NewTemplate &&
+ (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
+ OldTemplate->getTemplateParameters(),
+ false, TPL_TemplateMatch) ||
+ OldType->getResultType() != NewType->getResultType()))
+ return true;
+
+ // If the function is a class member, its signature includes the
+ // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
+ //
+ // As part of this, also check whether one of the member functions
+ // is static, in which case they are not overloads (C++
+ // 13.1p2). While not part of the definition of the signature,
+ // this check is important to determine whether these functions
+ // can be overloaded.
+ CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
+ CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
+ if (OldMethod && NewMethod &&
+ !OldMethod->isStatic() && !NewMethod->isStatic() &&
+ (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
+ OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
+ if (!UseUsingDeclRules &&
+ OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
+ (OldMethod->getRefQualifier() == RQ_None ||
+ NewMethod->getRefQualifier() == RQ_None)) {
+ // C++0x [over.load]p2:
+ // - Member function declarations with the same name and the same
+ // parameter-type-list as well as member function template
+ // declarations with the same name, the same parameter-type-list, and
+ // the same template parameter lists cannot be overloaded if any of
+ // them, but not all, have a ref-qualifier (8.3.5).
+ Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
+ << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
+ Diag(OldMethod->getLocation(), diag::note_previous_declaration);
+ }
+
+ return true;
+ }
+
+ // The signatures match; this is not an overload.
+ return false;
+}
+
+/// \brief Checks availability of the function depending on the current
+/// function context. Inside an unavailable function, unavailability is ignored.
+///
+/// \returns true if \arg FD is unavailable and current context is inside
+/// an available function, false otherwise.
+bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
+ return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
+}
+
+/// \brief Tries a user-defined conversion from From to ToType.
+///
+/// Produces an implicit conversion sequence for when a standard conversion
+/// is not an option. See TryImplicitConversion for more information.
+static ImplicitConversionSequence
+TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool AllowExplicit,
+ bool InOverloadResolution,
+ bool CStyle,
+ bool AllowObjCWritebackConversion) {
+ ImplicitConversionSequence ICS;
+
+ if (SuppressUserConversions) {
+ // We're not in the case above, so there is no conversion that
+ // we can perform.
+ ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
+ return ICS;
+ }
+
+ // Attempt user-defined conversion.
+ OverloadCandidateSet Conversions(From->getExprLoc());
+ OverloadingResult UserDefResult
+ = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
+ AllowExplicit);
+
+ if (UserDefResult == OR_Success) {
+ ICS.setUserDefined();
+ // C++ [over.ics.user]p4:
+ // A conversion of an expression of class type to the same class
+ // type is given Exact Match rank, and a conversion of an
+ // expression of class type to a base class of that type is
+ // given Conversion rank, in spite of the fact that a copy
+ // constructor (i.e., a user-defined conversion function) is
+ // called for those cases.
+ if (CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
+ QualType FromCanon
+ = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
+ QualType ToCanon
+ = S.Context.getCanonicalType(ToType).getUnqualifiedType();
+ if (Constructor->isCopyConstructor() &&
+ (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
+ // Turn this into a "standard" conversion sequence, so that it
+ // gets ranked with standard conversion sequences.
+ ICS.setStandard();
+ ICS.Standard.setAsIdentityConversion();
+ ICS.Standard.setFromType(From->getType());
+ ICS.Standard.setAllToTypes(ToType);
+ ICS.Standard.CopyConstructor = Constructor;
+ if (ToCanon != FromCanon)
+ ICS.Standard.Second = ICK_Derived_To_Base;
+ }
+ }
+
+ // C++ [over.best.ics]p4:
+ // However, when considering the argument of a user-defined
+ // conversion function that is a candidate by 13.3.1.3 when
+ // invoked for the copying of the temporary in the second step
+ // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
+ // 13.3.1.6 in all cases, only standard conversion sequences and
+ // ellipsis conversion sequences are allowed.
+ if (SuppressUserConversions && ICS.isUserDefined()) {
+ ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
+ }
+ } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
+ ICS.setAmbiguous();
+ ICS.Ambiguous.setFromType(From->getType());
+ ICS.Ambiguous.setToType(ToType);
+ for (OverloadCandidateSet::iterator Cand = Conversions.begin();
+ Cand != Conversions.end(); ++Cand)
+ if (Cand->Viable)
+ ICS.Ambiguous.addConversion(Cand->Function);
+ } else {
+ ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
+ }
+
+ return ICS;
+}
+
+/// TryImplicitConversion - Attempt to perform an implicit conversion
+/// from the given expression (Expr) to the given type (ToType). This
+/// function returns an implicit conversion sequence that can be used
+/// to perform the initialization. Given
+///
+/// void f(float f);
+/// void g(int i) { f(i); }
+///
+/// this routine would produce an implicit conversion sequence to
+/// describe the initialization of f from i, which will be a standard
+/// conversion sequence containing an lvalue-to-rvalue conversion (C++
+/// 4.1) followed by a floating-integral conversion (C++ 4.9).
+//
+/// Note that this routine only determines how the conversion can be
+/// performed; it does not actually perform the conversion. As such,
+/// it will not produce any diagnostics if no conversion is available,
+/// but will instead return an implicit conversion sequence of kind
+/// "BadConversion".
+///
+/// If @p SuppressUserConversions, then user-defined conversions are
+/// not permitted.
+/// If @p AllowExplicit, then explicit user-defined conversions are
+/// permitted.
+///
+/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
+/// writeback conversion, which allows __autoreleasing id* parameters to
+/// be initialized with __strong id* or __weak id* arguments.
+static ImplicitConversionSequence
+TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool AllowExplicit,
+ bool InOverloadResolution,
+ bool CStyle,
+ bool AllowObjCWritebackConversion) {
+ ImplicitConversionSequence ICS;
+ if (IsStandardConversion(S, From, ToType, InOverloadResolution,
+ ICS.Standard, CStyle, AllowObjCWritebackConversion)){
+ ICS.setStandard();
+ return ICS;
+ }
+
+ if (!S.getLangOpts().CPlusPlus) {
+ ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
+ return ICS;
+ }
+
+ // C++ [over.ics.user]p4:
+ // A conversion of an expression of class type to the same class
+ // type is given Exact Match rank, and a conversion of an
+ // expression of class type to a base class of that type is
+ // given Conversion rank, in spite of the fact that a copy/move
+ // constructor (i.e., a user-defined conversion function) is
+ // called for those cases.
+ QualType FromType = From->getType();
+ if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
+ (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
+ S.IsDerivedFrom(FromType, ToType))) {
+ ICS.setStandard();
+ ICS.Standard.setAsIdentityConversion();
+ ICS.Standard.setFromType(FromType);
+ ICS.Standard.setAllToTypes(ToType);
+
+ // We don't actually check at this point whether there is a valid
+ // copy/move constructor, since overloading just assumes that it
+ // exists. When we actually perform initialization, we'll find the
+ // appropriate constructor to copy the returned object, if needed.
+ ICS.Standard.CopyConstructor = 0;
+
+ // Determine whether this is considered a derived-to-base conversion.
+ if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
+ ICS.Standard.Second = ICK_Derived_To_Base;
+
+ return ICS;
+ }
+
+ return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
+ AllowExplicit, InOverloadResolution, CStyle,
+ AllowObjCWritebackConversion);
+}
+
+ImplicitConversionSequence
+Sema::TryImplicitConversion(Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool AllowExplicit,
+ bool InOverloadResolution,
+ bool CStyle,
+ bool AllowObjCWritebackConversion) {
+ return clang::TryImplicitConversion(*this, From, ToType,
+ SuppressUserConversions, AllowExplicit,
+ InOverloadResolution, CStyle,
+ AllowObjCWritebackConversion);
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType. Returns the
+/// converted expression. Flavor is the kind of conversion we're
+/// performing, used in the error message. If @p AllowExplicit,
+/// explicit user-defined conversions are permitted.
+ExprResult
+Sema::PerformImplicitConversion(Expr *From, QualType ToType,
+ AssignmentAction Action, bool AllowExplicit) {
+ ImplicitConversionSequence ICS;
+ return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
+}
+
+ExprResult
+Sema::PerformImplicitConversion(Expr *From, QualType ToType,
+ AssignmentAction Action, bool AllowExplicit,
+ ImplicitConversionSequence& ICS) {
+ if (checkPlaceholderForOverload(*this, From))
+ return ExprError();
+
+ // Objective-C ARC: Determine whether we will allow the writeback conversion.
+ bool AllowObjCWritebackConversion
+ = getLangOpts().ObjCAutoRefCount &&
+ (Action == AA_Passing || Action == AA_Sending);
+
+ ICS = clang::TryImplicitConversion(*this, From, ToType,
+ /*SuppressUserConversions=*/false,
+ AllowExplicit,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ AllowObjCWritebackConversion);
+ return PerformImplicitConversion(From, ToType, ICS, Action);
+}
+
+/// \brief Determine whether the conversion from FromType to ToType is a valid
+/// conversion that strips "noreturn" off the nested function type.
+bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
+ QualType &ResultTy) {
+ if (Context.hasSameUnqualifiedType(FromType, ToType))
+ return false;
+
+ // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
+ // where F adds one of the following at most once:
+ // - a pointer
+ // - a member pointer
+ // - a block pointer
+ CanQualType CanTo = Context.getCanonicalType(ToType);
+ CanQualType CanFrom = Context.getCanonicalType(FromType);
+ Type::TypeClass TyClass = CanTo->getTypeClass();
+ if (TyClass != CanFrom->getTypeClass()) return false;
+ if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
+ if (TyClass == Type::Pointer) {
+ CanTo = CanTo.getAs<PointerType>()->getPointeeType();
+ CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
+ } else if (TyClass == Type::BlockPointer) {
+ CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
+ CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
+ } else if (TyClass == Type::MemberPointer) {
+ CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
+ CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
+ } else {
+ return false;
+ }
+
+ TyClass = CanTo->getTypeClass();
+ if (TyClass != CanFrom->getTypeClass()) return false;
+ if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
+ return false;
+ }
+
+ const FunctionType *FromFn = cast<FunctionType>(CanFrom);
+ FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
+ if (!EInfo.getNoReturn()) return false;
+
+ FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
+ assert(QualType(FromFn, 0).isCanonical());
+ if (QualType(FromFn, 0) != CanTo) return false;
+
+ ResultTy = ToType;
+ return true;
+}
+
+/// \brief Determine whether the conversion from FromType to ToType is a valid
+/// vector conversion.
+///
+/// \param ICK Will be set to the vector conversion kind, if this is a vector
+/// conversion.
+static bool IsVectorConversion(ASTContext &Context, QualType FromType,
+ QualType ToType, ImplicitConversionKind &ICK) {
+ // We need at least one of these types to be a vector type to have a vector
+ // conversion.
+ if (!ToType->isVectorType() && !FromType->isVectorType())
+ return false;
+
+ // Identical types require no conversions.
+ if (Context.hasSameUnqualifiedType(FromType, ToType))
+ return false;
+
+ // There are no conversions between extended vector types, only identity.
+ if (ToType->isExtVectorType()) {
+ // There are no conversions between extended vector types other than the
+ // identity conversion.
+ if (FromType->isExtVectorType())
+ return false;
+
+ // Vector splat from any arithmetic type to a vector.
+ if (FromType->isArithmeticType()) {
+ ICK = ICK_Vector_Splat;
+ return true;
+ }
+ }
+
+ // We can perform the conversion between vector types in the following cases:
+ // 1)vector types are equivalent AltiVec and GCC vector types
+ // 2)lax vector conversions are permitted and the vector types are of the
+ // same size
+ if (ToType->isVectorType() && FromType->isVectorType()) {
+ if (Context.areCompatibleVectorTypes(FromType, ToType) ||
+ (Context.getLangOpts().LaxVectorConversions &&
+ (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
+ ICK = ICK_Vector_Conversion;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle);
+
+/// IsStandardConversion - Determines whether there is a standard
+/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
+/// expression From to the type ToType. Standard conversion sequences
+/// only consider non-class types; for conversions that involve class
+/// types, use TryImplicitConversion. If a conversion exists, SCS will
+/// contain the standard conversion sequence required to perform this
+/// conversion and this routine will return true. Otherwise, this
+/// routine will return false and the value of SCS is unspecified.
+static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle,
+ bool AllowObjCWritebackConversion) {
+ QualType FromType = From->getType();
+
+ // Standard conversions (C++ [conv])
+ SCS.setAsIdentityConversion();
+ SCS.DeprecatedStringLiteralToCharPtr = false;
+ SCS.IncompatibleObjC = false;
+ SCS.setFromType(FromType);
+ SCS.CopyConstructor = 0;
+
+ // There are no standard conversions for class types in C++, so
+ // abort early. When overloading in C, however, we do permit
+ if (FromType->isRecordType() || ToType->isRecordType()) {
+ if (S.getLangOpts().CPlusPlus)
+ return false;
+
+ // When we're overloading in C, we allow, as standard conversions,
+ }
+
+ // The first conversion can be an lvalue-to-rvalue conversion,
+ // array-to-pointer conversion, or function-to-pointer conversion
+ // (C++ 4p1).
+
+ if (FromType == S.Context.OverloadTy) {
+ DeclAccessPair AccessPair;
+ if (FunctionDecl *Fn
+ = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
+ AccessPair)) {
+ // We were able to resolve the address of the overloaded function,
+ // so we can convert to the type of that function.
+ FromType = Fn->getType();
+
+ // we can sometimes resolve &foo<int> regardless of ToType, so check
+ // if the type matches (identity) or we are converting to bool
+ if (!S.Context.hasSameUnqualifiedType(
+ S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
+ QualType resultTy;
+ // if the function type matches except for [[noreturn]], it's ok
+ if (!S.IsNoReturnConversion(FromType,
+ S.ExtractUnqualifiedFunctionType(ToType), resultTy))
+ // otherwise, only a boolean conversion is standard
+ if (!ToType->isBooleanType())
+ return false;
+ }
+
+ // Check if the "from" expression is taking the address of an overloaded
+ // function and recompute the FromType accordingly. Take advantage of the
+ // fact that non-static member functions *must* have such an address-of
+ // expression.
+ CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
+ if (Method && !Method->isStatic()) {
+ assert(isa<UnaryOperator>(From->IgnoreParens()) &&
+ "Non-unary operator on non-static member address");
+ assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
+ == UO_AddrOf &&
+ "Non-address-of operator on non-static member address");
+ const Type *ClassType
+ = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
+ FromType = S.Context.getMemberPointerType(FromType, ClassType);
+ } else if (isa<UnaryOperator>(From->IgnoreParens())) {
+ assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
+ UO_AddrOf &&
+ "Non-address-of operator for overloaded function expression");
+ FromType = S.Context.getPointerType(FromType);
+ }
+
+ // Check that we've computed the proper type after overload resolution.
+ assert(S.Context.hasSameType(
+ FromType,
+ S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
+ } else {
+ return false;
+ }
+ }
+ // Lvalue-to-rvalue conversion (C++11 4.1):
+ // A glvalue (3.10) of a non-function, non-array type T can
+ // be converted to a prvalue.
+ bool argIsLValue = From->isGLValue();
+ if (argIsLValue &&
+ !FromType->isFunctionType() && !FromType->isArrayType() &&
+ S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
+ SCS.First = ICK_Lvalue_To_Rvalue;
+
+ // C11 6.3.2.1p2:
+ // ... if the lvalue has atomic type, the value has the non-atomic version
+ // of the type of the lvalue ...
+ if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
+ FromType = Atomic->getValueType();
+
+ // If T is a non-class type, the type of the rvalue is the
+ // cv-unqualified version of T. Otherwise, the type of the rvalue
+ // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
+ // just strip the qualifiers because they don't matter.
+ FromType = FromType.getUnqualifiedType();
+ } else if (FromType->isArrayType()) {
+ // Array-to-pointer conversion (C++ 4.2)
+ SCS.First = ICK_Array_To_Pointer;
+
+ // An lvalue or rvalue of type "array of N T" or "array of unknown
+ // bound of T" can be converted to an rvalue of type "pointer to
+ // T" (C++ 4.2p1).
+ FromType = S.Context.getArrayDecayedType(FromType);
+
+ if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
+ // This conversion is deprecated. (C++ D.4).
+ SCS.DeprecatedStringLiteralToCharPtr = true;
+
+ // For the purpose of ranking in overload resolution
+ // (13.3.3.1.1), this conversion is considered an
+ // array-to-pointer conversion followed by a qualification
+ // conversion (4.4). (C++ 4.2p2)
+ SCS.Second = ICK_Identity;
+ SCS.Third = ICK_Qualification;
+ SCS.QualificationIncludesObjCLifetime = false;
+ SCS.setAllToTypes(FromType);
+ return true;
+ }
+ } else if (FromType->isFunctionType() && argIsLValue) {
+ // Function-to-pointer conversion (C++ 4.3).
+ SCS.First = ICK_Function_To_Pointer;
+
+ // An lvalue of function type T can be converted to an rvalue of
+ // type "pointer to T." The result is a pointer to the
+ // function. (C++ 4.3p1).
+ FromType = S.Context.getPointerType(FromType);
+ } else {
+ // We don't require any conversions for the first step.
+ SCS.First = ICK_Identity;
+ }
+ SCS.setToType(0, FromType);
+
+ // The second conversion can be an integral promotion, floating
+ // point promotion, integral conversion, floating point conversion,
+ // floating-integral conversion, pointer conversion,
+ // pointer-to-member conversion, or boolean conversion (C++ 4p1).
+ // For overloading in C, this can also be a "compatible-type"
+ // conversion.
+ bool IncompatibleObjC = false;
+ ImplicitConversionKind SecondICK = ICK_Identity;
+ if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
+ // The unqualified versions of the types are the same: there's no
+ // conversion to do.
+ SCS.Second = ICK_Identity;
+ } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
+ // Integral promotion (C++ 4.5).
+ SCS.Second = ICK_Integral_Promotion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
+ // Floating point promotion (C++ 4.6).
+ SCS.Second = ICK_Floating_Promotion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (S.IsComplexPromotion(FromType, ToType)) {
+ // Complex promotion (Clang extension)
+ SCS.Second = ICK_Complex_Promotion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (ToType->isBooleanType() &&
+ (FromType->isArithmeticType() ||
+ FromType->isAnyPointerType() ||
+ FromType->isBlockPointerType() ||
+ FromType->isMemberPointerType() ||
+ FromType->isNullPtrType())) {
+ // Boolean conversions (C++ 4.12).
+ SCS.Second = ICK_Boolean_Conversion;
+ FromType = S.Context.BoolTy;
+ } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
+ ToType->isIntegralType(S.Context)) {
+ // Integral conversions (C++ 4.7).
+ SCS.Second = ICK_Integral_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
+ // Complex conversions (C99 6.3.1.6)
+ SCS.Second = ICK_Complex_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
+ (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
+ // Complex-real conversions (C99 6.3.1.7)
+ SCS.Second = ICK_Complex_Real;
+ FromType = ToType.getUnqualifiedType();
+ } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
+ // Floating point conversions (C++ 4.8).
+ SCS.Second = ICK_Floating_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ } else if ((FromType->isRealFloatingType() &&
+ ToType->isIntegralType(S.Context)) ||
+ (FromType->isIntegralOrUnscopedEnumerationType() &&
+ ToType->isRealFloatingType())) {
+ // Floating-integral conversions (C++ 4.9).
+ SCS.Second = ICK_Floating_Integral;
+ FromType = ToType.getUnqualifiedType();
+ } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
+ SCS.Second = ICK_Block_Pointer_Conversion;
+ } else if (AllowObjCWritebackConversion &&
+ S.isObjCWritebackConversion(FromType, ToType, FromType)) {
+ SCS.Second = ICK_Writeback_Conversion;
+ } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
+ FromType, IncompatibleObjC)) {
+ // Pointer conversions (C++ 4.10).
+ SCS.Second = ICK_Pointer_Conversion;
+ SCS.IncompatibleObjC = IncompatibleObjC;
+ FromType = FromType.getUnqualifiedType();
+ } else if (S.IsMemberPointerConversion(From, FromType, ToType,
+ InOverloadResolution, FromType)) {
+ // Pointer to member conversions (4.11).
+ SCS.Second = ICK_Pointer_Member;
+ } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
+ SCS.Second = SecondICK;
+ FromType = ToType.getUnqualifiedType();
+ } else if (!S.getLangOpts().CPlusPlus &&
+ S.Context.typesAreCompatible(ToType, FromType)) {
+ // Compatible conversions (Clang extension for C function overloading)
+ SCS.Second = ICK_Compatible_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
+ // Treat a conversion that strips "noreturn" as an identity conversion.
+ SCS.Second = ICK_NoReturn_Adjustment;
+ } else if (IsTransparentUnionStandardConversion(S, From, ToType,
+ InOverloadResolution,
+ SCS, CStyle)) {
+ SCS.Second = ICK_TransparentUnionConversion;
+ FromType = ToType;
+ } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
+ CStyle)) {
+ // tryAtomicConversion has updated the standard conversion sequence
+ // appropriately.
+ return true;
+ } else {
+ // No second conversion required.
+ SCS.Second = ICK_Identity;
+ }
+ SCS.setToType(1, FromType);
+
+ QualType CanonFrom;
+ QualType CanonTo;
+ // The third conversion can be a qualification conversion (C++ 4p1).
+ bool ObjCLifetimeConversion;
+ if (S.IsQualificationConversion(FromType, ToType, CStyle,
+ ObjCLifetimeConversion)) {
+ SCS.Third = ICK_Qualification;
+ SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
+ FromType = ToType;
+ CanonFrom = S.Context.getCanonicalType(FromType);
+ CanonTo = S.Context.getCanonicalType(ToType);
+ } else {
+ // No conversion required
+ SCS.Third = ICK_Identity;
+
+ // C++ [over.best.ics]p6:
+ // [...] Any difference in top-level cv-qualification is
+ // subsumed by the initialization itself and does not constitute
+ // a conversion. [...]
+ CanonFrom = S.Context.getCanonicalType(FromType);
+ CanonTo = S.Context.getCanonicalType(ToType);
+ if (CanonFrom.getLocalUnqualifiedType()
+ == CanonTo.getLocalUnqualifiedType() &&
+ (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
+ || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
+ || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
+ FromType = ToType;
+ CanonFrom = CanonTo;
+ }
+ }
+ SCS.setToType(2, FromType);
+
+ // If we have not converted the argument type to the parameter type,
+ // this is a bad conversion sequence.
+ if (CanonFrom != CanonTo)
+ return false;
+
+ return true;
+}
+
+static bool
+IsTransparentUnionStandardConversion(Sema &S, Expr* From,
+ QualType &ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle) {
+
+ const RecordType *UT = ToType->getAsUnionType();
+ if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ return false;
+ // The field to initialize within the transparent union.
+ RecordDecl *UD = UT->getDecl();
+ // It's compatible if the expression matches any of the fields.
+ for (RecordDecl::field_iterator it = UD->field_begin(),
+ itend = UD->field_end();
+ it != itend; ++it) {
+ if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
+ CStyle, /*ObjCWritebackConversion=*/false)) {
+ ToType = it->getType();
+ return true;
+ }
+ }
+ return false;
+}
+
+/// IsIntegralPromotion - Determines whether the conversion from the
+/// expression From (whose potentially-adjusted type is FromType) to
+/// ToType is an integral promotion (C++ 4.5). If so, returns true and
+/// sets PromotedType to the promoted type.
+bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
+ const BuiltinType *To = ToType->getAs<BuiltinType>();
+ // All integers are built-in.
+ if (!To) {
+ return false;
+ }
+
+ // An rvalue of type char, signed char, unsigned char, short int, or
+ // unsigned short int can be converted to an rvalue of type int if
+ // int can represent all the values of the source type; otherwise,
+ // the source rvalue can be converted to an rvalue of type unsigned
+ // int (C++ 4.5p1).
+ if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
+ !FromType->isEnumeralType()) {
+ if (// We can promote any signed, promotable integer type to an int
+ (FromType->isSignedIntegerType() ||
+ // We can promote any unsigned integer type whose size is
+ // less than int to an int.
+ (!FromType->isSignedIntegerType() &&
+ Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
+ return To->getKind() == BuiltinType::Int;
+ }
+
+ return To->getKind() == BuiltinType::UInt;
+ }
+
+ // C++0x [conv.prom]p3:
+ // A prvalue of an unscoped enumeration type whose underlying type is not
+ // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
+ // following types that can represent all the values of the enumeration
+ // (i.e., the values in the range bmin to bmax as described in 7.2): int,
+ // unsigned int, long int, unsigned long int, long long int, or unsigned
+ // long long int. If none of the types in that list can represent all the
+ // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
+ // type can be converted to an rvalue a prvalue of the extended integer type
+ // with lowest integer conversion rank (4.13) greater than the rank of long
+ // long in which all the values of the enumeration can be represented. If
+ // there are two such extended types, the signed one is chosen.
+ if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
+ // C++0x 7.2p9: Note that this implicit enum to int conversion is not
+ // provided for a scoped enumeration.
+ if (FromEnumType->getDecl()->isScoped())
+ return false;
+
+ // We have already pre-calculated the promotion type, so this is trivial.
+ if (ToType->isIntegerType() &&
+ !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
+ return Context.hasSameUnqualifiedType(ToType,
+ FromEnumType->getDecl()->getPromotionType());
+ }
+
+ // C++0x [conv.prom]p2:
+ // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
+ // to an rvalue a prvalue of the first of the following types that can
+ // represent all the values of its underlying type: int, unsigned int,
+ // long int, unsigned long int, long long int, or unsigned long long int.
+ // If none of the types in that list can represent all the values of its
+ // underlying type, an rvalue a prvalue of type char16_t, char32_t,
+ // or wchar_t can be converted to an rvalue a prvalue of its underlying
+ // type.
+ if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
+ ToType->isIntegerType()) {
+ // Determine whether the type we're converting from is signed or
+ // unsigned.
+ bool FromIsSigned = FromType->isSignedIntegerType();
+ uint64_t FromSize = Context.getTypeSize(FromType);
+
+ // The types we'll try to promote to, in the appropriate
+ // order. Try each of these types.
+ QualType PromoteTypes[6] = {
+ Context.IntTy, Context.UnsignedIntTy,
+ Context.LongTy, Context.UnsignedLongTy ,
+ Context.LongLongTy, Context.UnsignedLongLongTy
+ };
+ for (int Idx = 0; Idx < 6; ++Idx) {
+ uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
+ if (FromSize < ToSize ||
+ (FromSize == ToSize &&
+ FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
+ // We found the type that we can promote to. If this is the
+ // type we wanted, we have a promotion. Otherwise, no
+ // promotion.
+ return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
+ }
+ }
+ }
+
+ // An rvalue for an integral bit-field (9.6) can be converted to an
+ // rvalue of type int if int can represent all the values of the
+ // bit-field; otherwise, it can be converted to unsigned int if
+ // unsigned int can represent all the values of the bit-field. If
+ // the bit-field is larger yet, no integral promotion applies to
+ // it. If the bit-field has an enumerated type, it is treated as any
+ // other value of that type for promotion purposes (C++ 4.5p3).
+ // FIXME: We should delay checking of bit-fields until we actually perform the
+ // conversion.
+ using llvm::APSInt;
+ if (From)
+ if (FieldDecl *MemberDecl = From->getBitField()) {
+ APSInt BitWidth;
+ if (FromType->isIntegralType(Context) &&
+ MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
+ APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
+ ToSize = Context.getTypeSize(ToType);
+
+ // Are we promoting to an int from a bitfield that fits in an int?
+ if (BitWidth < ToSize ||
+ (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
+ return To->getKind() == BuiltinType::Int;
+ }
+
+ // Are we promoting to an unsigned int from an unsigned bitfield
+ // that fits into an unsigned int?
+ if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
+ return To->getKind() == BuiltinType::UInt;
+ }
+
+ return false;
+ }
+ }
+
+ // An rvalue of type bool can be converted to an rvalue of type int,
+ // with false becoming zero and true becoming one (C++ 4.5p4).
+ if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
+ return true;
+ }
+
+ return false;
+}
+
+/// IsFloatingPointPromotion - Determines whether the conversion from
+/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
+/// returns true and sets PromotedType to the promoted type.
+bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
+ if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
+ if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
+ /// An rvalue of type float can be converted to an rvalue of type
+ /// double. (C++ 4.6p1).
+ if (FromBuiltin->getKind() == BuiltinType::Float &&
+ ToBuiltin->getKind() == BuiltinType::Double)
+ return true;
+
+ // C99 6.3.1.5p1:
+ // When a float is promoted to double or long double, or a
+ // double is promoted to long double [...].
+ if (!getLangOpts().CPlusPlus &&
+ (FromBuiltin->getKind() == BuiltinType::Float ||
+ FromBuiltin->getKind() == BuiltinType::Double) &&
+ (ToBuiltin->getKind() == BuiltinType::LongDouble))
+ return true;
+
+ // Half can be promoted to float.
+ if (FromBuiltin->getKind() == BuiltinType::Half &&
+ ToBuiltin->getKind() == BuiltinType::Float)
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Determine if a conversion is a complex promotion.
+///
+/// A complex promotion is defined as a complex -> complex conversion
+/// where the conversion between the underlying real types is a
+/// floating-point or integral promotion.
+bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
+ const ComplexType *FromComplex = FromType->getAs<ComplexType>();
+ if (!FromComplex)
+ return false;
+
+ const ComplexType *ToComplex = ToType->getAs<ComplexType>();
+ if (!ToComplex)
+ return false;
+
+ return IsFloatingPointPromotion(FromComplex->getElementType(),
+ ToComplex->getElementType()) ||
+ IsIntegralPromotion(0, FromComplex->getElementType(),
+ ToComplex->getElementType());
+}
+
+/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
+/// the pointer type FromPtr to a pointer to type ToPointee, with the
+/// same type qualifiers as FromPtr has on its pointee type. ToType,
+/// if non-empty, will be a pointer to ToType that may or may not have
+/// the right set of qualifiers on its pointee.
+///
+static QualType
+BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
+ QualType ToPointee, QualType ToType,
+ ASTContext &Context,
+ bool StripObjCLifetime = false) {
+ assert((FromPtr->getTypeClass() == Type::Pointer ||
+ FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
+ "Invalid similarly-qualified pointer type");
+
+ /// Conversions to 'id' subsume cv-qualifier conversions.
+ if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
+ return ToType.getUnqualifiedType();
+
+ QualType CanonFromPointee
+ = Context.getCanonicalType(FromPtr->getPointeeType());
+ QualType CanonToPointee = Context.getCanonicalType(ToPointee);
+ Qualifiers Quals = CanonFromPointee.getQualifiers();
+
+ if (StripObjCLifetime)
+ Quals.removeObjCLifetime();
+
+ // Exact qualifier match -> return the pointer type we're converting to.
+ if (CanonToPointee.getLocalQualifiers() == Quals) {
+ // ToType is exactly what we need. Return it.
+ if (!ToType.isNull())
+ return ToType.getUnqualifiedType();
+
+ // Build a pointer to ToPointee. It has the right qualifiers
+ // already.
+ if (isa<ObjCObjectPointerType>(ToType))
+ return Context.getObjCObjectPointerType(ToPointee);
+ return Context.getPointerType(ToPointee);
+ }
+
+ // Just build a canonical type that has the right qualifiers.
+ QualType QualifiedCanonToPointee
+ = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
+
+ if (isa<ObjCObjectPointerType>(ToType))
+ return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
+ return Context.getPointerType(QualifiedCanonToPointee);
+}
+
+static bool isNullPointerConstantForConversion(Expr *Expr,
+ bool InOverloadResolution,
+ ASTContext &Context) {
+ // Handle value-dependent integral null pointer constants correctly.
+ // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
+ if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
+ Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
+ return !InOverloadResolution;
+
+ return Expr->isNullPointerConstant(Context,
+ InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
+ : Expr::NPC_ValueDependentIsNull);
+}
+
+/// IsPointerConversion - Determines whether the conversion of the
+/// expression From, which has the (possibly adjusted) type FromType,
+/// can be converted to the type ToType via a pointer conversion (C++
+/// 4.10). If so, returns true and places the converted type (that
+/// might differ from ToType in its cv-qualifiers at some level) into
+/// ConvertedType.
+///
+/// This routine also supports conversions to and from block pointers
+/// and conversions with Objective-C's 'id', 'id<protocols...>', and
+/// pointers to interfaces. FIXME: Once we've determined the
+/// appropriate overloading rules for Objective-C, we may want to
+/// split the Objective-C checks into a different routine; however,
+/// GCC seems to consider all of these conversions to be pointer
+/// conversions, so for now they live here. IncompatibleObjC will be
+/// set if the conversion is an allowed Objective-C conversion that
+/// should result in a warning.
+bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
+ bool InOverloadResolution,
+ QualType& ConvertedType,
+ bool &IncompatibleObjC) {
+ IncompatibleObjC = false;
+ if (isObjCPointerConversion(FromType, ToType, ConvertedType,
+ IncompatibleObjC))
+ return true;
+
+ // Conversion from a null pointer constant to any Objective-C pointer type.
+ if (ToType->isObjCObjectPointerType() &&
+ isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Blocks: Block pointers can be converted to void*.
+ if (FromType->isBlockPointerType() && ToType->isPointerType() &&
+ ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
+ ConvertedType = ToType;
+ return true;
+ }
+ // Blocks: A null pointer constant can be converted to a block
+ // pointer type.
+ if (ToType->isBlockPointerType() &&
+ isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // If the left-hand-side is nullptr_t, the right side can be a null
+ // pointer constant.
+ if (ToType->isNullPtrType() &&
+ isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ const PointerType* ToTypePtr = ToType->getAs<PointerType>();
+ if (!ToTypePtr)
+ return false;
+
+ // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
+ if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Beyond this point, both types need to be pointers
+ // , including objective-c pointers.
+ QualType ToPointeeType = ToTypePtr->getPointeeType();
+ if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
+ !getLangOpts().ObjCAutoRefCount) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(
+ FromType->getAs<ObjCObjectPointerType>(),
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+ const PointerType *FromTypePtr = FromType->getAs<PointerType>();
+ if (!FromTypePtr)
+ return false;
+
+ QualType FromPointeeType = FromTypePtr->getPointeeType();
+
+ // If the unqualified pointee types are the same, this can't be a
+ // pointer conversion, so don't do all of the work below.
+ if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
+ return false;
+
+ // An rvalue of type "pointer to cv T," where T is an object type,
+ // can be converted to an rvalue of type "pointer to cv void" (C++
+ // 4.10p2).
+ if (FromPointeeType->isIncompleteOrObjectType() &&
+ ToPointeeType->isVoidType()) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context,
+ /*StripObjCLifetime=*/true);
+ return true;
+ }
+
+ // MSVC allows implicit function to void* type conversion.
+ if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
+ ToPointeeType->isVoidType()) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ // When we're overloading in C, we allow a special kind of pointer
+ // conversion for compatible-but-not-identical pointee types.
+ if (!getLangOpts().CPlusPlus &&
+ Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ // C++ [conv.ptr]p3:
+ //
+ // An rvalue of type "pointer to cv D," where D is a class type,
+ // can be converted to an rvalue of type "pointer to cv B," where
+ // B is a base class (clause 10) of D. If B is an inaccessible
+ // (clause 11) or ambiguous (10.2) base class of D, a program that
+ // necessitates this conversion is ill-formed. The result of the
+ // conversion is a pointer to the base class sub-object of the
+ // derived class object. The null pointer value is converted to
+ // the null pointer value of the destination type.
+ //
+ // Note that we do not check for ambiguity or inaccessibility
+ // here. That is handled by CheckPointerConversion.
+ if (getLangOpts().CPlusPlus &&
+ FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
+ !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
+ !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
+ IsDerivedFrom(FromPointeeType, ToPointeeType)) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
+ Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Adopt the given qualifiers for the given type.
+static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
+ Qualifiers TQs = T.getQualifiers();
+
+ // Check whether qualifiers already match.
+ if (TQs == Qs)
+ return T;
+
+ if (Qs.compatiblyIncludes(TQs))
+ return Context.getQualifiedType(T, Qs);
+
+ return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
+}
+
+/// isObjCPointerConversion - Determines whether this is an
+/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
+/// with the same arguments and return values.
+bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
+ QualType& ConvertedType,
+ bool &IncompatibleObjC) {
+ if (!getLangOpts().ObjC1)
+ return false;
+
+ // The set of qualifiers on the type we're converting from.
+ Qualifiers FromQualifiers = FromType.getQualifiers();
+
+ // First, we handle all conversions on ObjC object pointer types.
+ const ObjCObjectPointerType* ToObjCPtr =
+ ToType->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *FromObjCPtr =
+ FromType->getAs<ObjCObjectPointerType>();
+
+ if (ToObjCPtr && FromObjCPtr) {
+ // If the pointee types are the same (ignoring qualifications),
+ // then this is not a pointer conversion.
+ if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
+ FromObjCPtr->getPointeeType()))
+ return false;
+
+ // Check for compatible
+ // Objective C++: We're able to convert between "id" or "Class" and a
+ // pointer to any interface (in both directions).
+ if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
+ ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
+ return true;
+ }
+ // Conversions with Objective-C's id<...>.
+ if ((FromObjCPtr->isObjCQualifiedIdType() ||
+ ToObjCPtr->isObjCQualifiedIdType()) &&
+ Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
+ /*compare=*/false)) {
+ ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
+ return true;
+ }
+ // Objective C++: We're able to convert from a pointer to an
+ // interface to a pointer to a different interface.
+ if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
+ const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
+ const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
+ if (getLangOpts().CPlusPlus && LHS && RHS &&
+ !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
+ FromObjCPtr->getPointeeType()))
+ return false;
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
+ ToObjCPtr->getPointeeType(),
+ ToType, Context);
+ ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
+ return true;
+ }
+
+ if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
+ // Okay: this is some kind of implicit downcast of Objective-C
+ // interfaces, which is permitted. However, we're going to
+ // complain about it.
+ IncompatibleObjC = true;
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
+ ToObjCPtr->getPointeeType(),
+ ToType, Context);
+ ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
+ return true;
+ }
+ }
+ // Beyond this point, both types need to be C pointers or block pointers.
+ QualType ToPointeeType;
+ if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
+ ToPointeeType = ToCPtr->getPointeeType();
+ else if (const BlockPointerType *ToBlockPtr =
+ ToType->getAs<BlockPointerType>()) {
+ // Objective C++: We're able to convert from a pointer to any object
+ // to a block pointer type.
+ if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
+ ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
+ return true;
+ }
+ ToPointeeType = ToBlockPtr->getPointeeType();
+ }
+ else if (FromType->getAs<BlockPointerType>() &&
+ ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
+ // Objective C++: We're able to convert from a block pointer type to a
+ // pointer to any object.
+ ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
+ return true;
+ }
+ else
+ return false;
+
+ QualType FromPointeeType;
+ if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
+ FromPointeeType = FromCPtr->getPointeeType();
+ else if (const BlockPointerType *FromBlockPtr =
+ FromType->getAs<BlockPointerType>())
+ FromPointeeType = FromBlockPtr->getPointeeType();
+ else
+ return false;
+
+ // If we have pointers to pointers, recursively check whether this
+ // is an Objective-C conversion.
+ if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
+ isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
+ IncompatibleObjC)) {
+ // We always complain about this conversion.
+ IncompatibleObjC = true;
+ ConvertedType = Context.getPointerType(ConvertedType);
+ ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
+ return true;
+ }
+ // Allow conversion of pointee being objective-c pointer to another one;
+ // as in I* to id.
+ if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
+ ToPointeeType->getAs<ObjCObjectPointerType>() &&
+ isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
+ IncompatibleObjC)) {
+
+ ConvertedType = Context.getPointerType(ConvertedType);
+ ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
+ return true;
+ }
+
+ // If we have pointers to functions or blocks, check whether the only
+ // differences in the argument and result types are in Objective-C
+ // pointer conversions. If so, we permit the conversion (but
+ // complain about it).
+ const FunctionProtoType *FromFunctionType
+ = FromPointeeType->getAs<FunctionProtoType>();
+ const FunctionProtoType *ToFunctionType
+ = ToPointeeType->getAs<FunctionProtoType>();
+ if (FromFunctionType && ToFunctionType) {
+ // If the function types are exactly the same, this isn't an
+ // Objective-C pointer conversion.
+ if (Context.getCanonicalType(FromPointeeType)
+ == Context.getCanonicalType(ToPointeeType))
+ return false;
+
+ // Perform the quick checks that will tell us whether these
+ // function types are obviously different.
+ if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
+ FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
+ FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
+ return false;
+
+ bool HasObjCConversion = false;
+ if (Context.getCanonicalType(FromFunctionType->getResultType())
+ == Context.getCanonicalType(ToFunctionType->getResultType())) {
+ // Okay, the types match exactly. Nothing to do.
+ } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
+ ToFunctionType->getResultType(),
+ ConvertedType, IncompatibleObjC)) {
+ // Okay, we have an Objective-C pointer conversion.
+ HasObjCConversion = true;
+ } else {
+ // Function types are too different. Abort.
+ return false;
+ }
+
+ // Check argument types.
+ for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
+ ArgIdx != NumArgs; ++ArgIdx) {
+ QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
+ QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
+ if (Context.getCanonicalType(FromArgType)
+ == Context.getCanonicalType(ToArgType)) {
+ // Okay, the types match exactly. Nothing to do.
+ } else if (isObjCPointerConversion(FromArgType, ToArgType,
+ ConvertedType, IncompatibleObjC)) {
+ // Okay, we have an Objective-C pointer conversion.
+ HasObjCConversion = true;
+ } else {
+ // Argument types are too different. Abort.
+ return false;
+ }
+ }
+
+ if (HasObjCConversion) {
+ // We had an Objective-C conversion. Allow this pointer
+ // conversion, but complain about it.
+ ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
+ IncompatibleObjC = true;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// \brief Determine whether this is an Objective-C writeback conversion,
+/// used for parameter passing when performing automatic reference counting.
+///
+/// \param FromType The type we're converting form.
+///
+/// \param ToType The type we're converting to.
+///
+/// \param ConvertedType The type that will be produced after applying
+/// this conversion.
+bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
+ QualType &ConvertedType) {
+ if (!getLangOpts().ObjCAutoRefCount ||
+ Context.hasSameUnqualifiedType(FromType, ToType))
+ return false;
+
+ // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
+ QualType ToPointee;
+ if (const PointerType *ToPointer = ToType->getAs<PointerType>())
+ ToPointee = ToPointer->getPointeeType();
+ else
+ return false;
+
+ Qualifiers ToQuals = ToPointee.getQualifiers();
+ if (!ToPointee->isObjCLifetimeType() ||
+ ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
+ !ToQuals.withoutObjCLifetime().empty())
+ return false;
+
+ // Argument must be a pointer to __strong to __weak.
+ QualType FromPointee;
+ if (const PointerType *FromPointer = FromType->getAs<PointerType>())
+ FromPointee = FromPointer->getPointeeType();
+ else
+ return false;
+
+ Qualifiers FromQuals = FromPointee.getQualifiers();
+ if (!FromPointee->isObjCLifetimeType() ||
+ (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
+ FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
+ return false;
+
+ // Make sure that we have compatible qualifiers.
+ FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
+ if (!ToQuals.compatiblyIncludes(FromQuals))
+ return false;
+
+ // Remove qualifiers from the pointee type we're converting from; they
+ // aren't used in the compatibility check belong, and we'll be adding back
+ // qualifiers (with __autoreleasing) if the compatibility check succeeds.
+ FromPointee = FromPointee.getUnqualifiedType();
+
+ // The unqualified form of the pointee types must be compatible.
+ ToPointee = ToPointee.getUnqualifiedType();
+ bool IncompatibleObjC;
+ if (Context.typesAreCompatible(FromPointee, ToPointee))
+ FromPointee = ToPointee;
+ else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
+ IncompatibleObjC))
+ return false;
+
+ /// \brief Construct the type we're converting to, which is a pointer to
+ /// __autoreleasing pointee.
+ FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
+ ConvertedType = Context.getPointerType(FromPointee);
+ return true;
+}
+
+bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
+ QualType& ConvertedType) {
+ QualType ToPointeeType;
+ if (const BlockPointerType *ToBlockPtr =
+ ToType->getAs<BlockPointerType>())
+ ToPointeeType = ToBlockPtr->getPointeeType();
+ else
+ return false;
+
+ QualType FromPointeeType;
+ if (const BlockPointerType *FromBlockPtr =
+ FromType->getAs<BlockPointerType>())
+ FromPointeeType = FromBlockPtr->getPointeeType();
+ else
+ return false;
+ // We have pointer to blocks, check whether the only
+ // differences in the argument and result types are in Objective-C
+ // pointer conversions. If so, we permit the conversion.
+
+ const FunctionProtoType *FromFunctionType
+ = FromPointeeType->getAs<FunctionProtoType>();
+ const FunctionProtoType *ToFunctionType
+ = ToPointeeType->getAs<FunctionProtoType>();
+
+ if (!FromFunctionType || !ToFunctionType)
+ return false;
+
+ if (Context.hasSameType(FromPointeeType, ToPointeeType))
+ return true;
+
+ // Perform the quick checks that will tell us whether these
+ // function types are obviously different.
+ if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
+ FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
+ return false;
+
+ FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
+ FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
+ if (FromEInfo != ToEInfo)
+ return false;
+
+ bool IncompatibleObjC = false;
+ if (Context.hasSameType(FromFunctionType->getResultType(),
+ ToFunctionType->getResultType())) {
+ // Okay, the types match exactly. Nothing to do.
+ } else {
+ QualType RHS = FromFunctionType->getResultType();
+ QualType LHS = ToFunctionType->getResultType();
+ if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
+ !RHS.hasQualifiers() && LHS.hasQualifiers())
+ LHS = LHS.getUnqualifiedType();
+
+ if (Context.hasSameType(RHS,LHS)) {
+ // OK exact match.
+ } else if (isObjCPointerConversion(RHS, LHS,
+ ConvertedType, IncompatibleObjC)) {
+ if (IncompatibleObjC)
+ return false;
+ // Okay, we have an Objective-C pointer conversion.
+ }
+ else
+ return false;
+ }
+
+ // Check argument types.
+ for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
+ ArgIdx != NumArgs; ++ArgIdx) {
+ IncompatibleObjC = false;
+ QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
+ QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
+ if (Context.hasSameType(FromArgType, ToArgType)) {
+ // Okay, the types match exactly. Nothing to do.
+ } else if (isObjCPointerConversion(ToArgType, FromArgType,
+ ConvertedType, IncompatibleObjC)) {
+ if (IncompatibleObjC)
+ return false;
+ // Okay, we have an Objective-C pointer conversion.
+ } else
+ // Argument types are too different. Abort.
+ return false;
+ }
+ if (LangOpts.ObjCAutoRefCount &&
+ !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
+ ToFunctionType))
+ return false;
+
+ ConvertedType = ToType;
+ return true;
+}
+
+enum {
+ ft_default,
+ ft_different_class,
+ ft_parameter_arity,
+ ft_parameter_mismatch,
+ ft_return_type,
+ ft_qualifer_mismatch
+};
+
+/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
+/// function types. Catches different number of parameter, mismatch in
+/// parameter types, and different return types.
+void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
+ QualType FromType, QualType ToType) {
+ // If either type is not valid, include no extra info.
+ if (FromType.isNull() || ToType.isNull()) {
+ PDiag << ft_default;
+ return;
+ }
+
+ // Get the function type from the pointers.
+ if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
+ const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
+ *ToMember = ToType->getAs<MemberPointerType>();
+ if (FromMember->getClass() != ToMember->getClass()) {
+ PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
+ << QualType(FromMember->getClass(), 0);
+ return;
+ }
+ FromType = FromMember->getPointeeType();
+ ToType = ToMember->getPointeeType();
+ }
+
+ if (FromType->isPointerType())
+ FromType = FromType->getPointeeType();
+ if (ToType->isPointerType())
+ ToType = ToType->getPointeeType();
+
+ // Remove references.
+ FromType = FromType.getNonReferenceType();
+ ToType = ToType.getNonReferenceType();
+
+ // Don't print extra info for non-specialized template functions.
+ if (FromType->isInstantiationDependentType() &&
+ !FromType->getAs<TemplateSpecializationType>()) {
+ PDiag << ft_default;
+ return;
+ }
+
+ // No extra info for same types.
+ if (Context.hasSameType(FromType, ToType)) {
+ PDiag << ft_default;
+ return;
+ }
+
+ const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
+ *ToFunction = ToType->getAs<FunctionProtoType>();
+
+ // Both types need to be function types.
+ if (!FromFunction || !ToFunction) {
+ PDiag << ft_default;
+ return;
+ }
+
+ if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
+ PDiag << ft_parameter_arity << ToFunction->getNumArgs()
+ << FromFunction->getNumArgs();
+ return;
+ }
+
+ // Handle different parameter types.
+ unsigned ArgPos;
+ if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
+ PDiag << ft_parameter_mismatch << ArgPos + 1
+ << ToFunction->getArgType(ArgPos)
+ << FromFunction->getArgType(ArgPos);
+ return;
+ }
+
+ // Handle different return type.
+ if (!Context.hasSameType(FromFunction->getResultType(),
+ ToFunction->getResultType())) {
+ PDiag << ft_return_type << ToFunction->getResultType()
+ << FromFunction->getResultType();
+ return;
+ }
+
+ unsigned FromQuals = FromFunction->getTypeQuals(),
+ ToQuals = ToFunction->getTypeQuals();
+ if (FromQuals != ToQuals) {
+ PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
+ return;
+ }
+
+ // Unable to find a difference, so add no extra info.
+ PDiag << ft_default;
+}
+
+/// FunctionArgTypesAreEqual - This routine checks two function proto types
+/// for equality of their argument types. Caller has already checked that
+/// they have same number of arguments. This routine assumes that Objective-C
+/// pointer types which only differ in their protocol qualifiers are equal.
+/// If the parameters are different, ArgPos will have the the parameter index
+/// of the first different parameter.
+bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
+ const FunctionProtoType *NewType,
+ unsigned *ArgPos) {
+ if (!getLangOpts().ObjC1) {
+ for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
+ N = NewType->arg_type_begin(),
+ E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
+ if (!Context.hasSameType(*O, *N)) {
+ if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
+ return false;
+ }
+ }
+ return true;
+ }
+
+ for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
+ N = NewType->arg_type_begin(),
+ E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
+ QualType ToType = (*O);
+ QualType FromType = (*N);
+ if (!Context.hasSameType(ToType, FromType)) {
+ if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
+ if (const PointerType *PTFr = FromType->getAs<PointerType>())
+ if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
+ PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
+ (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
+ PTFr->getPointeeType()->isObjCQualifiedClassType()))
+ continue;
+ }
+ else if (const ObjCObjectPointerType *PTTo =
+ ToType->getAs<ObjCObjectPointerType>()) {
+ if (const ObjCObjectPointerType *PTFr =
+ FromType->getAs<ObjCObjectPointerType>())
+ if (Context.hasSameUnqualifiedType(
+ PTTo->getObjectType()->getBaseType(),
+ PTFr->getObjectType()->getBaseType()))
+ continue;
+ }
+ if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
+ return false;
+ }
+ }
+ return true;
+}
+
+/// CheckPointerConversion - Check the pointer conversion from the
+/// expression From to the type ToType. This routine checks for
+/// ambiguous or inaccessible derived-to-base pointer
+/// conversions for which IsPointerConversion has already returned
+/// true. It returns true and produces a diagnostic if there was an
+/// error, or returns false otherwise.
+bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
+ CastKind &Kind,
+ CXXCastPath& BasePath,
+ bool IgnoreBaseAccess) {
+ QualType FromType = From->getType();
+ bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
+
+ Kind = CK_BitCast;
+
+ if (!IsCStyleOrFunctionalCast &&
+ Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
+ From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
+ DiagRuntimeBehavior(From->getExprLoc(), From,
+ PDiag(diag::warn_impcast_bool_to_null_pointer)
+ << ToType << From->getSourceRange());
+
+ if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
+ if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
+ QualType FromPointeeType = FromPtrType->getPointeeType(),
+ ToPointeeType = ToPtrType->getPointeeType();
+
+ if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
+ !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
+ // We must have a derived-to-base conversion. Check an
+ // ambiguous or inaccessible conversion.
+ if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
+ From->getExprLoc(),
+ From->getSourceRange(), &BasePath,
+ IgnoreBaseAccess))
+ return true;
+
+ // The conversion was successful.
+ Kind = CK_DerivedToBase;
+ }
+ }
+ } else if (const ObjCObjectPointerType *ToPtrType =
+ ToType->getAs<ObjCObjectPointerType>()) {
+ if (const ObjCObjectPointerType *FromPtrType =
+ FromType->getAs<ObjCObjectPointerType>()) {
+ // Objective-C++ conversions are always okay.
+ // FIXME: We should have a different class of conversions for the
+ // Objective-C++ implicit conversions.
+ if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
+ return false;
+ } else if (FromType->isBlockPointerType()) {
+ Kind = CK_BlockPointerToObjCPointerCast;
+ } else {
+ Kind = CK_CPointerToObjCPointerCast;
+ }
+ } else if (ToType->isBlockPointerType()) {
+ if (!FromType->isBlockPointerType())
+ Kind = CK_AnyPointerToBlockPointerCast;
+ }
+
+ // We shouldn't fall into this case unless it's valid for other
+ // reasons.
+ if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
+ Kind = CK_NullToPointer;
+
+ return false;
+}
+
+/// IsMemberPointerConversion - Determines whether the conversion of the
+/// expression From, which has the (possibly adjusted) type FromType, can be
+/// converted to the type ToType via a member pointer conversion (C++ 4.11).
+/// If so, returns true and places the converted type (that might differ from
+/// ToType in its cv-qualifiers at some level) into ConvertedType.
+bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
+ QualType ToType,
+ bool InOverloadResolution,
+ QualType &ConvertedType) {
+ const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
+ if (!ToTypePtr)
+ return false;
+
+ // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
+ if (From->isNullPointerConstant(Context,
+ InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
+ : Expr::NPC_ValueDependentIsNull)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Otherwise, both types have to be member pointers.
+ const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
+ if (!FromTypePtr)
+ return false;
+
+ // A pointer to member of B can be converted to a pointer to member of D,
+ // where D is derived from B (C++ 4.11p2).
+ QualType FromClass(FromTypePtr->getClass(), 0);
+ QualType ToClass(ToTypePtr->getClass(), 0);
+
+ if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
+ !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
+ IsDerivedFrom(ToClass, FromClass)) {
+ ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
+ ToClass.getTypePtr());
+ return true;
+ }
+
+ return false;
+}
+
+/// CheckMemberPointerConversion - Check the member pointer conversion from the
+/// expression From to the type ToType. This routine checks for ambiguous or
+/// virtual or inaccessible base-to-derived member pointer conversions
+/// for which IsMemberPointerConversion has already returned true. It returns
+/// true and produces a diagnostic if there was an error, or returns false
+/// otherwise.
+bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
+ CastKind &Kind,
+ CXXCastPath &BasePath,
+ bool IgnoreBaseAccess) {
+ QualType FromType = From->getType();
+ const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
+ if (!FromPtrType) {
+ // This must be a null pointer to member pointer conversion
+ assert(From->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull) &&
+ "Expr must be null pointer constant!");
+ Kind = CK_NullToMemberPointer;
+ return false;
+ }
+
+ const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
+ assert(ToPtrType && "No member pointer cast has a target type "
+ "that is not a member pointer.");
+
+ QualType FromClass = QualType(FromPtrType->getClass(), 0);
+ QualType ToClass = QualType(ToPtrType->getClass(), 0);
+
+ // FIXME: What about dependent types?
+ assert(FromClass->isRecordType() && "Pointer into non-class.");
+ assert(ToClass->isRecordType() && "Pointer into non-class.");
+
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/true);
+ bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
+ assert(DerivationOkay &&
+ "Should not have been called if derivation isn't OK.");
+ (void)DerivationOkay;
+
+ if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
+ getUnqualifiedType())) {
+ std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
+ Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
+ << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
+ return true;
+ }
+
+ if (const RecordType *VBase = Paths.getDetectedVirtual()) {
+ Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
+ << FromClass << ToClass << QualType(VBase, 0)
+ << From->getSourceRange();
+ return true;
+ }
+
+ if (!IgnoreBaseAccess)
+ CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
+ Paths.front(),
+ diag::err_downcast_from_inaccessible_base);
+
+ // Must be a base to derived member conversion.
+ BuildBasePathArray(Paths, BasePath);
+ Kind = CK_BaseToDerivedMemberPointer;
+ return false;
+}
+
+/// IsQualificationConversion - Determines whether the conversion from
+/// an rvalue of type FromType to ToType is a qualification conversion
+/// (C++ 4.4).
+///
+/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
+/// when the qualification conversion involves a change in the Objective-C
+/// object lifetime.
+bool
+Sema::IsQualificationConversion(QualType FromType, QualType ToType,
+ bool CStyle, bool &ObjCLifetimeConversion) {
+ FromType = Context.getCanonicalType(FromType);
+ ToType = Context.getCanonicalType(ToType);
+ ObjCLifetimeConversion = false;
+
+ // If FromType and ToType are the same type, this is not a
+ // qualification conversion.
+ if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
+ return false;
+
+ // (C++ 4.4p4):
+ // A conversion can add cv-qualifiers at levels other than the first
+ // in multi-level pointers, subject to the following rules: [...]
+ bool PreviousToQualsIncludeConst = true;
+ bool UnwrappedAnyPointer = false;
+ while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
+ // Within each iteration of the loop, we check the qualifiers to
+ // determine if this still looks like a qualification
+ // conversion. Then, if all is well, we unwrap one more level of
+ // pointers or pointers-to-members and do it all again
+ // until there are no more pointers or pointers-to-members left to
+ // unwrap.
+ UnwrappedAnyPointer = true;
+
+ Qualifiers FromQuals = FromType.getQualifiers();
+ Qualifiers ToQuals = ToType.getQualifiers();
+
+ // Objective-C ARC:
+ // Check Objective-C lifetime conversions.
+ if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
+ UnwrappedAnyPointer) {
+ if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
+ ObjCLifetimeConversion = true;
+ FromQuals.removeObjCLifetime();
+ ToQuals.removeObjCLifetime();
+ } else {
+ // Qualification conversions cannot cast between different
+ // Objective-C lifetime qualifiers.
+ return false;
+ }
+ }
+
+ // Allow addition/removal of GC attributes but not changing GC attributes.
+ if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
+ (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
+ FromQuals.removeObjCGCAttr();
+ ToQuals.removeObjCGCAttr();
+ }
+
+ // -- for every j > 0, if const is in cv 1,j then const is in cv
+ // 2,j, and similarly for volatile.
+ if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
+ return false;
+
+ // -- if the cv 1,j and cv 2,j are different, then const is in
+ // every cv for 0 < k < j.
+ if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
+ && !PreviousToQualsIncludeConst)
+ return false;
+
+ // Keep track of whether all prior cv-qualifiers in the "to" type
+ // include const.
+ PreviousToQualsIncludeConst
+ = PreviousToQualsIncludeConst && ToQuals.hasConst();
+ }
+
+ // We are left with FromType and ToType being the pointee types
+ // after unwrapping the original FromType and ToType the same number
+ // of types. If we unwrapped any pointers, and if FromType and
+ // ToType have the same unqualified type (since we checked
+ // qualifiers above), then this is a qualification conversion.
+ return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
+}
+
+/// \brief - Determine whether this is a conversion from a scalar type to an
+/// atomic type.
+///
+/// If successful, updates \c SCS's second and third steps in the conversion
+/// sequence to finish the conversion.
+static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle) {
+ const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
+ if (!ToAtomic)
+ return false;
+
+ StandardConversionSequence InnerSCS;
+ if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
+ InOverloadResolution, InnerSCS,
+ CStyle, /*AllowObjCWritebackConversion=*/false))
+ return false;
+
+ SCS.Second = InnerSCS.Second;
+ SCS.setToType(1, InnerSCS.getToType(1));
+ SCS.Third = InnerSCS.Third;
+ SCS.QualificationIncludesObjCLifetime
+ = InnerSCS.QualificationIncludesObjCLifetime;
+ SCS.setToType(2, InnerSCS.getToType(2));
+ return true;
+}
+
+static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
+ CXXConstructorDecl *Constructor,
+ QualType Type) {
+ const FunctionProtoType *CtorType =
+ Constructor->getType()->getAs<FunctionProtoType>();
+ if (CtorType->getNumArgs() > 0) {
+ QualType FirstArg = CtorType->getArgType(0);
+ if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
+ return true;
+ }
+ return false;
+}
+
+static OverloadingResult
+IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
+ CXXRecordDecl *To,
+ UserDefinedConversionSequence &User,
+ OverloadCandidateSet &CandidateSet,
+ bool AllowExplicit) {
+ DeclContext::lookup_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd) = S.LookupConstructors(To);
+ Con != ConEnd; ++Con) {
+ NamedDecl *D = *Con;
+ DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
+
+ // Find the constructor (which may be a template).
+ CXXConstructorDecl *Constructor = 0;
+ FunctionTemplateDecl *ConstructorTmpl
+ = dyn_cast<FunctionTemplateDecl>(D);
+ if (ConstructorTmpl)
+ Constructor
+ = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
+ else
+ Constructor = cast<CXXConstructorDecl>(D);
+
+ bool Usable = !Constructor->isInvalidDecl() &&
+ S.isInitListConstructor(Constructor) &&
+ (AllowExplicit || !Constructor->isExplicit());
+ if (Usable) {
+ // If the first argument is (a reference to) the target type,
+ // suppress conversions.
+ bool SuppressUserConversions =
+ isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
+ if (ConstructorTmpl)
+ S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
+ /*ExplicitArgs*/ 0,
+ From, CandidateSet,
+ SuppressUserConversions);
+ else
+ S.AddOverloadCandidate(Constructor, FoundDecl,
+ From, CandidateSet,
+ SuppressUserConversions);
+ }
+ }
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
+ case OR_Success: {
+ // Record the standard conversion we used and the conversion function.
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
+ S.MarkFunctionReferenced(From->getLocStart(), Constructor);
+
+ QualType ThisType = Constructor->getThisType(S.Context);
+ // Initializer lists don't have conversions as such.
+ User.Before.setAsIdentityConversion();
+ User.HadMultipleCandidates = HadMultipleCandidates;
+ User.ConversionFunction = Constructor;
+ User.FoundConversionFunction = Best->FoundDecl;
+ User.After.setAsIdentityConversion();
+ User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
+ User.After.setAllToTypes(ToType);
+ return OR_Success;
+ }
+
+ case OR_No_Viable_Function:
+ return OR_No_Viable_Function;
+ case OR_Deleted:
+ return OR_Deleted;
+ case OR_Ambiguous:
+ return OR_Ambiguous;
+ }
+
+ llvm_unreachable("Invalid OverloadResult!");
+}
+
+/// Determines whether there is a user-defined conversion sequence
+/// (C++ [over.ics.user]) that converts expression From to the type
+/// ToType. If such a conversion exists, User will contain the
+/// user-defined conversion sequence that performs such a conversion
+/// and this routine will return true. Otherwise, this routine returns
+/// false and User is unspecified.
+///
+/// \param AllowExplicit true if the conversion should consider C++0x
+/// "explicit" conversion functions as well as non-explicit conversion
+/// functions (C++0x [class.conv.fct]p2).
+static OverloadingResult
+IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
+ UserDefinedConversionSequence &User,
+ OverloadCandidateSet &CandidateSet,
+ bool AllowExplicit) {
+ // Whether we will only visit constructors.
+ bool ConstructorsOnly = false;
+
+ // If the type we are conversion to is a class type, enumerate its
+ // constructors.
+ if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
+ // C++ [over.match.ctor]p1:
+ // When objects of class type are direct-initialized (8.5), or
+ // copy-initialized from an expression of the same or a
+ // derived class type (8.5), overload resolution selects the
+ // constructor. [...] For copy-initialization, the candidate
+ // functions are all the converting constructors (12.3.1) of
+ // that class. The argument list is the expression-list within
+ // the parentheses of the initializer.
+ if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
+ (From->getType()->getAs<RecordType>() &&
+ S.IsDerivedFrom(From->getType(), ToType)))
+ ConstructorsOnly = true;
+
+ S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag());
+ // RequireCompleteType may have returned true due to some invalid decl
+ // during template instantiation, but ToType may be complete enough now
+ // to try to recover.
+ if (ToType->isIncompleteType()) {
+ // We're not going to find any constructors.
+ } else if (CXXRecordDecl *ToRecordDecl
+ = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
+
+ Expr **Args = &From;
+ unsigned NumArgs = 1;
+ bool ListInitializing = false;
+ if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
+ // But first, see if there is an init-list-contructor that will work.
+ OverloadingResult Result = IsInitializerListConstructorConversion(
+ S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
+ if (Result != OR_No_Viable_Function)
+ return Result;
+ // Never mind.
+ CandidateSet.clear();
+
+ // If we're list-initializing, we pass the individual elements as
+ // arguments, not the entire list.
+ Args = InitList->getInits();
+ NumArgs = InitList->getNumInits();
+ ListInitializing = true;
+ }
+
+ DeclContext::lookup_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
+ Con != ConEnd; ++Con) {
+ NamedDecl *D = *Con;
+ DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
+
+ // Find the constructor (which may be a template).
+ CXXConstructorDecl *Constructor = 0;
+ FunctionTemplateDecl *ConstructorTmpl
+ = dyn_cast<FunctionTemplateDecl>(D);
+ if (ConstructorTmpl)
+ Constructor
+ = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
+ else
+ Constructor = cast<CXXConstructorDecl>(D);
+
+ bool Usable = !Constructor->isInvalidDecl();
+ if (ListInitializing)
+ Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
+ else
+ Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
+ if (Usable) {
+ bool SuppressUserConversions = !ConstructorsOnly;
+ if (SuppressUserConversions && ListInitializing) {
+ SuppressUserConversions = false;
+ if (NumArgs == 1) {
+ // If the first argument is (a reference to) the target type,
+ // suppress conversions.
+ SuppressUserConversions = isFirstArgumentCompatibleWithType(
+ S.Context, Constructor, ToType);
+ }
+ }
+ if (ConstructorTmpl)
+ S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
+ /*ExplicitArgs*/ 0,
+ llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet, SuppressUserConversions);
+ else
+ // Allow one user-defined conversion when user specifies a
+ // From->ToType conversion via an static cast (c-style, etc).
+ S.AddOverloadCandidate(Constructor, FoundDecl,
+ llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet, SuppressUserConversions);
+ }
+ }
+ }
+ }
+
+ // Enumerate conversion functions, if we're allowed to.
+ if (ConstructorsOnly || isa<InitListExpr>(From)) {
+ } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
+ S.PDiag(0) << From->getSourceRange())) {
+ // No conversion functions from incomplete types.
+ } else if (const RecordType *FromRecordType
+ = From->getType()->getAs<RecordType>()) {
+ if (CXXRecordDecl *FromRecordDecl
+ = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
+ // Add all of the conversion functions as candidates.
+ const UnresolvedSetImpl *Conversions
+ = FromRecordDecl->getVisibleConversionFunctions();
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ DeclAccessPair FoundDecl = I.getPair();
+ NamedDecl *D = FoundDecl.getDecl();
+ CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ CXXConversionDecl *Conv;
+ FunctionTemplateDecl *ConvTemplate;
+ if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
+ Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
+ else
+ Conv = cast<CXXConversionDecl>(D);
+
+ if (AllowExplicit || !Conv->isExplicit()) {
+ if (ConvTemplate)
+ S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
+ ActingContext, From, ToType,
+ CandidateSet);
+ else
+ S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
+ From, ToType, CandidateSet);
+ }
+ }
+ }
+ }
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
+ case OR_Success:
+ // Record the standard conversion we used and the conversion function.
+ if (CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(Best->Function)) {
+ S.MarkFunctionReferenced(From->getLocStart(), Constructor);
+
+ // C++ [over.ics.user]p1:
+ // If the user-defined conversion is specified by a
+ // constructor (12.3.1), the initial standard conversion
+ // sequence converts the source type to the type required by
+ // the argument of the constructor.
+ //
+ QualType ThisType = Constructor->getThisType(S.Context);
+ if (isa<InitListExpr>(From)) {
+ // Initializer lists don't have conversions as such.
+ User.Before.setAsIdentityConversion();
+ } else {
+ if (Best->Conversions[0].isEllipsis())
+ User.EllipsisConversion = true;
+ else {
+ User.Before = Best->Conversions[0].Standard;
+ User.EllipsisConversion = false;
+ }
+ }
+ User.HadMultipleCandidates = HadMultipleCandidates;
+ User.ConversionFunction = Constructor;
+ User.FoundConversionFunction = Best->FoundDecl;
+ User.After.setAsIdentityConversion();
+ User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
+ User.After.setAllToTypes(ToType);
+ return OR_Success;
+ }
+ if (CXXConversionDecl *Conversion
+ = dyn_cast<CXXConversionDecl>(Best->Function)) {
+ S.MarkFunctionReferenced(From->getLocStart(), Conversion);
+
+ // C++ [over.ics.user]p1:
+ //
+ // [...] If the user-defined conversion is specified by a
+ // conversion function (12.3.2), the initial standard
+ // conversion sequence converts the source type to the
+ // implicit object parameter of the conversion function.
+ User.Before = Best->Conversions[0].Standard;
+ User.HadMultipleCandidates = HadMultipleCandidates;
+ User.ConversionFunction = Conversion;
+ User.FoundConversionFunction = Best->FoundDecl;
+ User.EllipsisConversion = false;
+
+ // C++ [over.ics.user]p2:
+ // The second standard conversion sequence converts the
+ // result of the user-defined conversion to the target type
+ // for the sequence. Since an implicit conversion sequence
+ // is an initialization, the special rules for
+ // initialization by user-defined conversion apply when
+ // selecting the best user-defined conversion for a
+ // user-defined conversion sequence (see 13.3.3 and
+ // 13.3.3.1).
+ User.After = Best->FinalConversion;
+ return OR_Success;
+ }
+ llvm_unreachable("Not a constructor or conversion function?");
+
+ case OR_No_Viable_Function:
+ return OR_No_Viable_Function;
+ case OR_Deleted:
+ // No conversion here! We're done.
+ return OR_Deleted;
+
+ case OR_Ambiguous:
+ return OR_Ambiguous;
+ }
+
+ llvm_unreachable("Invalid OverloadResult!");
+}
+
+bool
+Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
+ ImplicitConversionSequence ICS;
+ OverloadCandidateSet CandidateSet(From->getExprLoc());
+ OverloadingResult OvResult =
+ IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
+ CandidateSet, false);
+ if (OvResult == OR_Ambiguous)
+ Diag(From->getLocStart(),
+ diag::err_typecheck_ambiguous_condition)
+ << From->getType() << ToType << From->getSourceRange();
+ else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
+ Diag(From->getLocStart(),
+ diag::err_typecheck_nonviable_condition)
+ << From->getType() << ToType << From->getSourceRange();
+ else
+ return false;
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
+ return true;
+}
+
+/// \brief Compare the user-defined conversion functions or constructors
+/// of two user-defined conversion sequences to determine whether any ordering
+/// is possible.
+static ImplicitConversionSequence::CompareKind
+compareConversionFunctions(Sema &S,
+ FunctionDecl *Function1,
+ FunctionDecl *Function2) {
+ if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus0x)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ // Objective-C++:
+ // If both conversion functions are implicitly-declared conversions from
+ // a lambda closure type to a function pointer and a block pointer,
+ // respectively, always prefer the conversion to a function pointer,
+ // because the function pointer is more lightweight and is more likely
+ // to keep code working.
+ CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
+ if (!Conv1)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
+ if (!Conv2)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
+ bool Block1 = Conv1->getConversionType()->isBlockPointerType();
+ bool Block2 = Conv2->getConversionType()->isBlockPointerType();
+ if (Block1 != Block2)
+ return Block1? ImplicitConversionSequence::Worse
+ : ImplicitConversionSequence::Better;
+ }
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// CompareImplicitConversionSequences - Compare two implicit
+/// conversion sequences to determine whether one is better than the
+/// other or if they are indistinguishable (C++ 13.3.3.2).
+static ImplicitConversionSequence::CompareKind
+CompareImplicitConversionSequences(Sema &S,
+ const ImplicitConversionSequence& ICS1,
+ const ImplicitConversionSequence& ICS2)
+{
+ // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
+ // conversion sequences (as defined in 13.3.3.1)
+ // -- a standard conversion sequence (13.3.3.1.1) is a better
+ // conversion sequence than a user-defined conversion sequence or
+ // an ellipsis conversion sequence, and
+ // -- a user-defined conversion sequence (13.3.3.1.2) is a better
+ // conversion sequence than an ellipsis conversion sequence
+ // (13.3.3.1.3).
+ //
+ // C++0x [over.best.ics]p10:
+ // For the purpose of ranking implicit conversion sequences as
+ // described in 13.3.3.2, the ambiguous conversion sequence is
+ // treated as a user-defined sequence that is indistinguishable
+ // from any other user-defined conversion sequence.
+ if (ICS1.getKindRank() < ICS2.getKindRank())
+ return ImplicitConversionSequence::Better;
+ if (ICS2.getKindRank() < ICS1.getKindRank())
+ return ImplicitConversionSequence::Worse;
+
+ // The following checks require both conversion sequences to be of
+ // the same kind.
+ if (ICS1.getKind() != ICS2.getKind())
+ return ImplicitConversionSequence::Indistinguishable;
+
+ ImplicitConversionSequence::CompareKind Result =
+ ImplicitConversionSequence::Indistinguishable;
+
+ // Two implicit conversion sequences of the same form are
+ // indistinguishable conversion sequences unless one of the
+ // following rules apply: (C++ 13.3.3.2p3):
+ if (ICS1.isStandard())
+ Result = CompareStandardConversionSequences(S,
+ ICS1.Standard, ICS2.Standard);
+ else if (ICS1.isUserDefined()) {
+ // User-defined conversion sequence U1 is a better conversion
+ // sequence than another user-defined conversion sequence U2 if
+ // they contain the same user-defined conversion function or
+ // constructor and if the second standard conversion sequence of
+ // U1 is better than the second standard conversion sequence of
+ // U2 (C++ 13.3.3.2p3).
+ if (ICS1.UserDefined.ConversionFunction ==
+ ICS2.UserDefined.ConversionFunction)
+ Result = CompareStandardConversionSequences(S,
+ ICS1.UserDefined.After,
+ ICS2.UserDefined.After);
+ else
+ Result = compareConversionFunctions(S,
+ ICS1.UserDefined.ConversionFunction,
+ ICS2.UserDefined.ConversionFunction);
+ }
+
+ // List-initialization sequence L1 is a better conversion sequence than
+ // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
+ // for some X and L2 does not.
+ if (Result == ImplicitConversionSequence::Indistinguishable &&
+ !ICS1.isBad() &&
+ ICS1.isListInitializationSequence() &&
+ ICS2.isListInitializationSequence()) {
+ if (ICS1.isStdInitializerListElement() &&
+ !ICS2.isStdInitializerListElement())
+ return ImplicitConversionSequence::Better;
+ if (!ICS1.isStdInitializerListElement() &&
+ ICS2.isStdInitializerListElement())
+ return ImplicitConversionSequence::Worse;
+ }
+
+ return Result;
+}
+
+static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
+ while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
+ Qualifiers Quals;
+ T1 = Context.getUnqualifiedArrayType(T1, Quals);
+ T2 = Context.getUnqualifiedArrayType(T2, Quals);
+ }
+
+ return Context.hasSameUnqualifiedType(T1, T2);
+}
+
+// Per 13.3.3.2p3, compare the given standard conversion sequences to
+// determine if one is a proper subset of the other.
+static ImplicitConversionSequence::CompareKind
+compareStandardConversionSubsets(ASTContext &Context,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2) {
+ ImplicitConversionSequence::CompareKind Result
+ = ImplicitConversionSequence::Indistinguishable;
+
+ // the identity conversion sequence is considered to be a subsequence of
+ // any non-identity conversion sequence
+ if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
+ return ImplicitConversionSequence::Better;
+ else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
+ return ImplicitConversionSequence::Worse;
+
+ if (SCS1.Second != SCS2.Second) {
+ if (SCS1.Second == ICK_Identity)
+ Result = ImplicitConversionSequence::Better;
+ else if (SCS2.Second == ICK_Identity)
+ Result = ImplicitConversionSequence::Worse;
+ else
+ return ImplicitConversionSequence::Indistinguishable;
+ } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
+ return ImplicitConversionSequence::Indistinguishable;
+
+ if (SCS1.Third == SCS2.Third) {
+ return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
+ : ImplicitConversionSequence::Indistinguishable;
+ }
+
+ if (SCS1.Third == ICK_Identity)
+ return Result == ImplicitConversionSequence::Worse
+ ? ImplicitConversionSequence::Indistinguishable
+ : ImplicitConversionSequence::Better;
+
+ if (SCS2.Third == ICK_Identity)
+ return Result == ImplicitConversionSequence::Better
+ ? ImplicitConversionSequence::Indistinguishable
+ : ImplicitConversionSequence::Worse;
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// \brief Determine whether one of the given reference bindings is better
+/// than the other based on what kind of bindings they are.
+static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
+ const StandardConversionSequence &SCS2) {
+ // C++0x [over.ics.rank]p3b4:
+ // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
+ // implicit object parameter of a non-static member function declared
+ // without a ref-qualifier, and *either* S1 binds an rvalue reference
+ // to an rvalue and S2 binds an lvalue reference *or S1 binds an
+ // lvalue reference to a function lvalue and S2 binds an rvalue
+ // reference*.
+ //
+ // FIXME: Rvalue references. We're going rogue with the above edits,
+ // because the semantics in the current C++0x working paper (N3225 at the
+ // time of this writing) break the standard definition of std::forward
+ // and std::reference_wrapper when dealing with references to functions.
+ // Proposed wording changes submitted to CWG for consideration.
+ if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
+ SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
+ return false;
+
+ return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
+ SCS2.IsLvalueReference) ||
+ (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
+ !SCS2.IsLvalueReference);
+}
+
+/// CompareStandardConversionSequences - Compare two standard
+/// conversion sequences to determine whether one is better than the
+/// other or if they are indistinguishable (C++ 13.3.3.2p3).
+static ImplicitConversionSequence::CompareKind
+CompareStandardConversionSequences(Sema &S,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2)
+{
+ // Standard conversion sequence S1 is a better conversion sequence
+ // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
+
+ // -- S1 is a proper subsequence of S2 (comparing the conversion
+ // sequences in the canonical form defined by 13.3.3.1.1,
+ // excluding any Lvalue Transformation; the identity conversion
+ // sequence is considered to be a subsequence of any
+ // non-identity conversion sequence) or, if not that,
+ if (ImplicitConversionSequence::CompareKind CK
+ = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
+ return CK;
+
+ // -- the rank of S1 is better than the rank of S2 (by the rules
+ // defined below), or, if not that,
+ ImplicitConversionRank Rank1 = SCS1.getRank();
+ ImplicitConversionRank Rank2 = SCS2.getRank();
+ if (Rank1 < Rank2)
+ return ImplicitConversionSequence::Better;
+ else if (Rank2 < Rank1)
+ return ImplicitConversionSequence::Worse;
+
+ // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
+ // are indistinguishable unless one of the following rules
+ // applies:
+
+ // A conversion that is not a conversion of a pointer, or
+ // pointer to member, to bool is better than another conversion
+ // that is such a conversion.
+ if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
+ return SCS2.isPointerConversionToBool()
+ ? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+
+ // C++ [over.ics.rank]p4b2:
+ //
+ // If class B is derived directly or indirectly from class A,
+ // conversion of B* to A* is better than conversion of B* to
+ // void*, and conversion of A* to void* is better than conversion
+ // of B* to void*.
+ bool SCS1ConvertsToVoid
+ = SCS1.isPointerConversionToVoidPointer(S.Context);
+ bool SCS2ConvertsToVoid
+ = SCS2.isPointerConversionToVoidPointer(S.Context);
+ if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
+ // Exactly one of the conversion sequences is a conversion to
+ // a void pointer; it's the worse conversion.
+ return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+ } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
+ // Neither conversion sequence converts to a void pointer; compare
+ // their derived-to-base conversions.
+ if (ImplicitConversionSequence::CompareKind DerivedCK
+ = CompareDerivedToBaseConversions(S, SCS1, SCS2))
+ return DerivedCK;
+ } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
+ !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
+ // Both conversion sequences are conversions to void
+ // pointers. Compare the source types to determine if there's an
+ // inheritance relationship in their sources.
+ QualType FromType1 = SCS1.getFromType();
+ QualType FromType2 = SCS2.getFromType();
+
+ // Adjust the types we're converting from via the array-to-pointer
+ // conversion, if we need to.
+ if (SCS1.First == ICK_Array_To_Pointer)
+ FromType1 = S.Context.getArrayDecayedType(FromType1);
+ if (SCS2.First == ICK_Array_To_Pointer)
+ FromType2 = S.Context.getArrayDecayedType(FromType2);
+
+ QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
+ QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
+
+ if (S.IsDerivedFrom(FromPointee2, FromPointee1))
+ return ImplicitConversionSequence::Better;
+ else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
+ return ImplicitConversionSequence::Worse;
+
+ // Objective-C++: If one interface is more specific than the
+ // other, it is the better one.
+ const ObjCObjectPointerType* FromObjCPtr1
+ = FromType1->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType* FromObjCPtr2
+ = FromType2->getAs<ObjCObjectPointerType>();
+ if (FromObjCPtr1 && FromObjCPtr2) {
+ bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
+ FromObjCPtr2);
+ bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
+ FromObjCPtr1);
+ if (AssignLeft != AssignRight) {
+ return AssignLeft? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+ }
+ }
+ }
+
+ // Compare based on qualification conversions (C++ 13.3.3.2p3,
+ // bullet 3).
+ if (ImplicitConversionSequence::CompareKind QualCK
+ = CompareQualificationConversions(S, SCS1, SCS2))
+ return QualCK;
+
+ if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
+ // Check for a better reference binding based on the kind of bindings.
+ if (isBetterReferenceBindingKind(SCS1, SCS2))
+ return ImplicitConversionSequence::Better;
+ else if (isBetterReferenceBindingKind(SCS2, SCS1))
+ return ImplicitConversionSequence::Worse;
+
+ // C++ [over.ics.rank]p3b4:
+ // -- S1 and S2 are reference bindings (8.5.3), and the types to
+ // which the references refer are the same type except for
+ // top-level cv-qualifiers, and the type to which the reference
+ // initialized by S2 refers is more cv-qualified than the type
+ // to which the reference initialized by S1 refers.
+ QualType T1 = SCS1.getToType(2);
+ QualType T2 = SCS2.getToType(2);
+ T1 = S.Context.getCanonicalType(T1);
+ T2 = S.Context.getCanonicalType(T2);
+ Qualifiers T1Quals, T2Quals;
+ QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
+ QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
+ if (UnqualT1 == UnqualT2) {
+ // Objective-C++ ARC: If the references refer to objects with different
+ // lifetimes, prefer bindings that don't change lifetime.
+ if (SCS1.ObjCLifetimeConversionBinding !=
+ SCS2.ObjCLifetimeConversionBinding) {
+ return SCS1.ObjCLifetimeConversionBinding
+ ? ImplicitConversionSequence::Worse
+ : ImplicitConversionSequence::Better;
+ }
+
+ // If the type is an array type, promote the element qualifiers to the
+ // type for comparison.
+ if (isa<ArrayType>(T1) && T1Quals)
+ T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
+ if (isa<ArrayType>(T2) && T2Quals)
+ T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
+ if (T2.isMoreQualifiedThan(T1))
+ return ImplicitConversionSequence::Better;
+ else if (T1.isMoreQualifiedThan(T2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ // In Microsoft mode, prefer an integral conversion to a
+ // floating-to-integral conversion if the integral conversion
+ // is between types of the same size.
+ // For example:
+ // void f(float);
+ // void f(int);
+ // int main {
+ // long a;
+ // f(a);
+ // }
+ // Here, MSVC will call f(int) instead of generating a compile error
+ // as clang will do in standard mode.
+ if (S.getLangOpts().MicrosoftMode &&
+ SCS1.Second == ICK_Integral_Conversion &&
+ SCS2.Second == ICK_Floating_Integral &&
+ S.Context.getTypeSize(SCS1.getFromType()) ==
+ S.Context.getTypeSize(SCS1.getToType(2)))
+ return ImplicitConversionSequence::Better;
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// CompareQualificationConversions - Compares two standard conversion
+/// sequences to determine whether they can be ranked based on their
+/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
+ImplicitConversionSequence::CompareKind
+CompareQualificationConversions(Sema &S,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2) {
+ // C++ 13.3.3.2p3:
+ // -- S1 and S2 differ only in their qualification conversion and
+ // yield similar types T1 and T2 (C++ 4.4), respectively, and the
+ // cv-qualification signature of type T1 is a proper subset of
+ // the cv-qualification signature of type T2, and S1 is not the
+ // deprecated string literal array-to-pointer conversion (4.2).
+ if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
+ SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ // FIXME: the example in the standard doesn't use a qualification
+ // conversion (!)
+ QualType T1 = SCS1.getToType(2);
+ QualType T2 = SCS2.getToType(2);
+ T1 = S.Context.getCanonicalType(T1);
+ T2 = S.Context.getCanonicalType(T2);
+ Qualifiers T1Quals, T2Quals;
+ QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
+ QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
+
+ // If the types are the same, we won't learn anything by unwrapped
+ // them.
+ if (UnqualT1 == UnqualT2)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ // If the type is an array type, promote the element qualifiers to the type
+ // for comparison.
+ if (isa<ArrayType>(T1) && T1Quals)
+ T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
+ if (isa<ArrayType>(T2) && T2Quals)
+ T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
+
+ ImplicitConversionSequence::CompareKind Result
+ = ImplicitConversionSequence::Indistinguishable;
+
+ // Objective-C++ ARC:
+ // Prefer qualification conversions not involving a change in lifetime
+ // to qualification conversions that do not change lifetime.
+ if (SCS1.QualificationIncludesObjCLifetime !=
+ SCS2.QualificationIncludesObjCLifetime) {
+ Result = SCS1.QualificationIncludesObjCLifetime
+ ? ImplicitConversionSequence::Worse
+ : ImplicitConversionSequence::Better;
+ }
+
+ while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
+ // Within each iteration of the loop, we check the qualifiers to
+ // determine if this still looks like a qualification
+ // conversion. Then, if all is well, we unwrap one more level of
+ // pointers or pointers-to-members and do it all again
+ // until there are no more pointers or pointers-to-members left
+ // to unwrap. This essentially mimics what
+ // IsQualificationConversion does, but here we're checking for a
+ // strict subset of qualifiers.
+ if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
+ // The qualifiers are the same, so this doesn't tell us anything
+ // about how the sequences rank.
+ ;
+ else if (T2.isMoreQualifiedThan(T1)) {
+ // T1 has fewer qualifiers, so it could be the better sequence.
+ if (Result == ImplicitConversionSequence::Worse)
+ // Neither has qualifiers that are a subset of the other's
+ // qualifiers.
+ return ImplicitConversionSequence::Indistinguishable;
+
+ Result = ImplicitConversionSequence::Better;
+ } else if (T1.isMoreQualifiedThan(T2)) {
+ // T2 has fewer qualifiers, so it could be the better sequence.
+ if (Result == ImplicitConversionSequence::Better)
+ // Neither has qualifiers that are a subset of the other's
+ // qualifiers.
+ return ImplicitConversionSequence::Indistinguishable;
+
+ Result = ImplicitConversionSequence::Worse;
+ } else {
+ // Qualifiers are disjoint.
+ return ImplicitConversionSequence::Indistinguishable;
+ }
+
+ // If the types after this point are equivalent, we're done.
+ if (S.Context.hasSameUnqualifiedType(T1, T2))
+ break;
+ }
+
+ // Check that the winning standard conversion sequence isn't using
+ // the deprecated string literal array to pointer conversion.
+ switch (Result) {
+ case ImplicitConversionSequence::Better:
+ if (SCS1.DeprecatedStringLiteralToCharPtr)
+ Result = ImplicitConversionSequence::Indistinguishable;
+ break;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ break;
+
+ case ImplicitConversionSequence::Worse:
+ if (SCS2.DeprecatedStringLiteralToCharPtr)
+ Result = ImplicitConversionSequence::Indistinguishable;
+ break;
+ }
+
+ return Result;
+}
+
+/// CompareDerivedToBaseConversions - Compares two standard conversion
+/// sequences to determine whether they can be ranked based on their
+/// various kinds of derived-to-base conversions (C++
+/// [over.ics.rank]p4b3). As part of these checks, we also look at
+/// conversions between Objective-C interface types.
+ImplicitConversionSequence::CompareKind
+CompareDerivedToBaseConversions(Sema &S,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2) {
+ QualType FromType1 = SCS1.getFromType();
+ QualType ToType1 = SCS1.getToType(1);
+ QualType FromType2 = SCS2.getFromType();
+ QualType ToType2 = SCS2.getToType(1);
+
+ // Adjust the types we're converting from via the array-to-pointer
+ // conversion, if we need to.
+ if (SCS1.First == ICK_Array_To_Pointer)
+ FromType1 = S.Context.getArrayDecayedType(FromType1);
+ if (SCS2.First == ICK_Array_To_Pointer)
+ FromType2 = S.Context.getArrayDecayedType(FromType2);
+
+ // Canonicalize all of the types.
+ FromType1 = S.Context.getCanonicalType(FromType1);
+ ToType1 = S.Context.getCanonicalType(ToType1);
+ FromType2 = S.Context.getCanonicalType(FromType2);
+ ToType2 = S.Context.getCanonicalType(ToType2);
+
+ // C++ [over.ics.rank]p4b3:
+ //
+ // If class B is derived directly or indirectly from class A and
+ // class C is derived directly or indirectly from B,
+ //
+ // Compare based on pointer conversions.
+ if (SCS1.Second == ICK_Pointer_Conversion &&
+ SCS2.Second == ICK_Pointer_Conversion &&
+ /*FIXME: Remove if Objective-C id conversions get their own rank*/
+ FromType1->isPointerType() && FromType2->isPointerType() &&
+ ToType1->isPointerType() && ToType2->isPointerType()) {
+ QualType FromPointee1
+ = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+ QualType ToPointee1
+ = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+ QualType FromPointee2
+ = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+ QualType ToPointee2
+ = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+
+ // -- conversion of C* to B* is better than conversion of C* to A*,
+ if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
+ if (S.IsDerivedFrom(ToPointee1, ToPointee2))
+ return ImplicitConversionSequence::Better;
+ else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
+ return ImplicitConversionSequence::Worse;
+ }
+
+ // -- conversion of B* to A* is better than conversion of C* to A*,
+ if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
+ if (S.IsDerivedFrom(FromPointee2, FromPointee1))
+ return ImplicitConversionSequence::Better;
+ else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
+ return ImplicitConversionSequence::Worse;
+ }
+ } else if (SCS1.Second == ICK_Pointer_Conversion &&
+ SCS2.Second == ICK_Pointer_Conversion) {
+ const ObjCObjectPointerType *FromPtr1
+ = FromType1->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *FromPtr2
+ = FromType2->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *ToPtr1
+ = ToType1->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *ToPtr2
+ = ToType2->getAs<ObjCObjectPointerType>();
+
+ if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
+ // Apply the same conversion ranking rules for Objective-C pointer types
+ // that we do for C++ pointers to class types. However, we employ the
+ // Objective-C pseudo-subtyping relationship used for assignment of
+ // Objective-C pointer types.
+ bool FromAssignLeft
+ = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
+ bool FromAssignRight
+ = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
+ bool ToAssignLeft
+ = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
+ bool ToAssignRight
+ = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
+
+ // A conversion to an a non-id object pointer type or qualified 'id'
+ // type is better than a conversion to 'id'.
+ if (ToPtr1->isObjCIdType() &&
+ (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
+ return ImplicitConversionSequence::Worse;
+ if (ToPtr2->isObjCIdType() &&
+ (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
+ return ImplicitConversionSequence::Better;
+
+ // A conversion to a non-id object pointer type is better than a
+ // conversion to a qualified 'id' type
+ if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
+ return ImplicitConversionSequence::Worse;
+ if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
+ return ImplicitConversionSequence::Better;
+
+ // A conversion to an a non-Class object pointer type or qualified 'Class'
+ // type is better than a conversion to 'Class'.
+ if (ToPtr1->isObjCClassType() &&
+ (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
+ return ImplicitConversionSequence::Worse;
+ if (ToPtr2->isObjCClassType() &&
+ (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
+ return ImplicitConversionSequence::Better;
+
+ // A conversion to a non-Class object pointer type is better than a
+ // conversion to a qualified 'Class' type.
+ if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
+ return ImplicitConversionSequence::Worse;
+ if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
+ return ImplicitConversionSequence::Better;
+
+ // -- "conversion of C* to B* is better than conversion of C* to A*,"
+ if (S.Context.hasSameType(FromType1, FromType2) &&
+ !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
+ (ToAssignLeft != ToAssignRight))
+ return ToAssignLeft? ImplicitConversionSequence::Worse
+ : ImplicitConversionSequence::Better;
+
+ // -- "conversion of B* to A* is better than conversion of C* to A*,"
+ if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
+ (FromAssignLeft != FromAssignRight))
+ return FromAssignLeft? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+ }
+ }
+
+ // Ranking of member-pointer types.
+ if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
+ FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
+ ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
+ const MemberPointerType * FromMemPointer1 =
+ FromType1->getAs<MemberPointerType>();
+ const MemberPointerType * ToMemPointer1 =
+ ToType1->getAs<MemberPointerType>();
+ const MemberPointerType * FromMemPointer2 =
+ FromType2->getAs<MemberPointerType>();
+ const MemberPointerType * ToMemPointer2 =
+ ToType2->getAs<MemberPointerType>();
+ const Type *FromPointeeType1 = FromMemPointer1->getClass();
+ const Type *ToPointeeType1 = ToMemPointer1->getClass();
+ const Type *FromPointeeType2 = FromMemPointer2->getClass();
+ const Type *ToPointeeType2 = ToMemPointer2->getClass();
+ QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
+ QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
+ QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
+ QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
+ // conversion of A::* to B::* is better than conversion of A::* to C::*,
+ if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
+ if (S.IsDerivedFrom(ToPointee1, ToPointee2))
+ return ImplicitConversionSequence::Worse;
+ else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
+ return ImplicitConversionSequence::Better;
+ }
+ // conversion of B::* to C::* is better than conversion of A::* to C::*
+ if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
+ if (S.IsDerivedFrom(FromPointee1, FromPointee2))
+ return ImplicitConversionSequence::Better;
+ else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ if (SCS1.Second == ICK_Derived_To_Base) {
+ // -- conversion of C to B is better than conversion of C to A,
+ // -- binding of an expression of type C to a reference of type
+ // B& is better than binding an expression of type C to a
+ // reference of type A&,
+ if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
+ !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
+ if (S.IsDerivedFrom(ToType1, ToType2))
+ return ImplicitConversionSequence::Better;
+ else if (S.IsDerivedFrom(ToType2, ToType1))
+ return ImplicitConversionSequence::Worse;
+ }
+
+ // -- conversion of B to A is better than conversion of C to A.
+ // -- binding of an expression of type B to a reference of type
+ // A& is better than binding an expression of type C to a
+ // reference of type A&,
+ if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
+ S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
+ if (S.IsDerivedFrom(FromType2, FromType1))
+ return ImplicitConversionSequence::Better;
+ else if (S.IsDerivedFrom(FromType1, FromType2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// CompareReferenceRelationship - Compare the two types T1 and T2 to
+/// determine whether they are reference-related,
+/// reference-compatible, reference-compatible with added
+/// qualification, or incompatible, for use in C++ initialization by
+/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
+/// type, and the first type (T1) is the pointee type of the reference
+/// type being initialized.
+Sema::ReferenceCompareResult
+Sema::CompareReferenceRelationship(SourceLocation Loc,
+ QualType OrigT1, QualType OrigT2,
+ bool &DerivedToBase,
+ bool &ObjCConversion,
+ bool &ObjCLifetimeConversion) {
+ assert(!OrigT1->isReferenceType() &&
+ "T1 must be the pointee type of the reference type");
+ assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
+
+ QualType T1 = Context.getCanonicalType(OrigT1);
+ QualType T2 = Context.getCanonicalType(OrigT2);
+ Qualifiers T1Quals, T2Quals;
+ QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
+ QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
+
+ // C++ [dcl.init.ref]p4:
+ // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
+ // reference-related to "cv2 T2" if T1 is the same type as T2, or
+ // T1 is a base class of T2.
+ DerivedToBase = false;
+ ObjCConversion = false;
+ ObjCLifetimeConversion = false;
+ if (UnqualT1 == UnqualT2) {
+ // Nothing to do.
+ } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
+ IsDerivedFrom(UnqualT2, UnqualT1))
+ DerivedToBase = true;
+ else if (UnqualT1->isObjCObjectOrInterfaceType() &&
+ UnqualT2->isObjCObjectOrInterfaceType() &&
+ Context.canBindObjCObjectType(UnqualT1, UnqualT2))
+ ObjCConversion = true;
+ else
+ return Ref_Incompatible;
+
+ // At this point, we know that T1 and T2 are reference-related (at
+ // least).
+
+ // If the type is an array type, promote the element qualifiers to the type
+ // for comparison.
+ if (isa<ArrayType>(T1) && T1Quals)
+ T1 = Context.getQualifiedType(UnqualT1, T1Quals);
+ if (isa<ArrayType>(T2) && T2Quals)
+ T2 = Context.getQualifiedType(UnqualT2, T2Quals);
+
+ // C++ [dcl.init.ref]p4:
+ // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
+ // reference-related to T2 and cv1 is the same cv-qualification
+ // as, or greater cv-qualification than, cv2. For purposes of
+ // overload resolution, cases for which cv1 is greater
+ // cv-qualification than cv2 are identified as
+ // reference-compatible with added qualification (see 13.3.3.2).
+ //
+ // Note that we also require equivalence of Objective-C GC and address-space
+ // qualifiers when performing these computations, so that e.g., an int in
+ // address space 1 is not reference-compatible with an int in address
+ // space 2.
+ if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
+ T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
+ T1Quals.removeObjCLifetime();
+ T2Quals.removeObjCLifetime();
+ ObjCLifetimeConversion = true;
+ }
+
+ if (T1Quals == T2Quals)
+ return Ref_Compatible;
+ else if (T1Quals.compatiblyIncludes(T2Quals))
+ return Ref_Compatible_With_Added_Qualification;
+ else
+ return Ref_Related;
+}
+
+/// \brief Look for a user-defined conversion to an value reference-compatible
+/// with DeclType. Return true if something definite is found.
+static bool
+FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
+ QualType DeclType, SourceLocation DeclLoc,
+ Expr *Init, QualType T2, bool AllowRvalues,
+ bool AllowExplicit) {
+ assert(T2->isRecordType() && "Can only find conversions of record types.");
+ CXXRecordDecl *T2RecordDecl
+ = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
+
+ OverloadCandidateSet CandidateSet(DeclLoc);
+ const UnresolvedSetImpl *Conversions
+ = T2RecordDecl->getVisibleConversionFunctions();
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ NamedDecl *D = *I;
+ CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ FunctionTemplateDecl *ConvTemplate
+ = dyn_cast<FunctionTemplateDecl>(D);
+ CXXConversionDecl *Conv;
+ if (ConvTemplate)
+ Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
+ else
+ Conv = cast<CXXConversionDecl>(D);
+
+ // If this is an explicit conversion, and we're not allowed to consider
+ // explicit conversions, skip it.
+ if (!AllowExplicit && Conv->isExplicit())
+ continue;
+
+ if (AllowRvalues) {
+ bool DerivedToBase = false;
+ bool ObjCConversion = false;
+ bool ObjCLifetimeConversion = false;
+
+ // If we are initializing an rvalue reference, don't permit conversion
+ // functions that return lvalues.
+ if (!ConvTemplate && DeclType->isRValueReferenceType()) {
+ const ReferenceType *RefType
+ = Conv->getConversionType()->getAs<LValueReferenceType>();
+ if (RefType && !RefType->getPointeeType()->isFunctionType())
+ continue;
+ }
+
+ if (!ConvTemplate &&
+ S.CompareReferenceRelationship(
+ DeclLoc,
+ Conv->getConversionType().getNonReferenceType()
+ .getUnqualifiedType(),
+ DeclType.getNonReferenceType().getUnqualifiedType(),
+ DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
+ Sema::Ref_Incompatible)
+ continue;
+ } else {
+ // If the conversion function doesn't return a reference type,
+ // it can't be considered for this conversion. An rvalue reference
+ // is only acceptable if its referencee is a function type.
+
+ const ReferenceType *RefType =
+ Conv->getConversionType()->getAs<ReferenceType>();
+ if (!RefType ||
+ (!RefType->isLValueReferenceType() &&
+ !RefType->getPointeeType()->isFunctionType()))
+ continue;
+ }
+
+ if (ConvTemplate)
+ S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
+ Init, DeclType, CandidateSet);
+ else
+ S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
+ DeclType, CandidateSet);
+ }
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
+ case OR_Success:
+ // C++ [over.ics.ref]p1:
+ //
+ // [...] If the parameter binds directly to the result of
+ // applying a conversion function to the argument
+ // expression, the implicit conversion sequence is a
+ // user-defined conversion sequence (13.3.3.1.2), with the
+ // second standard conversion sequence either an identity
+ // conversion or, if the conversion function returns an
+ // entity of a type that is a derived class of the parameter
+ // type, a derived-to-base Conversion.
+ if (!Best->FinalConversion.DirectBinding)
+ return false;
+
+ if (Best->Function)
+ S.MarkFunctionReferenced(DeclLoc, Best->Function);
+ ICS.setUserDefined();
+ ICS.UserDefined.Before = Best->Conversions[0].Standard;
+ ICS.UserDefined.After = Best->FinalConversion;
+ ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
+ ICS.UserDefined.ConversionFunction = Best->Function;
+ ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
+ ICS.UserDefined.EllipsisConversion = false;
+ assert(ICS.UserDefined.After.ReferenceBinding &&
+ ICS.UserDefined.After.DirectBinding &&
+ "Expected a direct reference binding!");
+ return true;
+
+ case OR_Ambiguous:
+ ICS.setAmbiguous();
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
+ Cand != CandidateSet.end(); ++Cand)
+ if (Cand->Viable)
+ ICS.Ambiguous.addConversion(Cand->Function);
+ return true;
+
+ case OR_No_Viable_Function:
+ case OR_Deleted:
+ // There was no suitable conversion, or we found a deleted
+ // conversion; continue with other checks.
+ return false;
+ }
+
+ llvm_unreachable("Invalid OverloadResult!");
+}
+
+/// \brief Compute an implicit conversion sequence for reference
+/// initialization.
+static ImplicitConversionSequence
+TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
+ SourceLocation DeclLoc,
+ bool SuppressUserConversions,
+ bool AllowExplicit) {
+ assert(DeclType->isReferenceType() && "Reference init needs a reference");
+
+ // Most paths end in a failed conversion.
+ ImplicitConversionSequence ICS;
+ ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
+
+ QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
+ QualType T2 = Init->getType();
+
+ // If the initializer is the address of an overloaded function, try
+ // to resolve the overloaded function. If all goes well, T2 is the
+ // type of the resulting function.
+ if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
+ DeclAccessPair Found;
+ if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
+ false, Found))
+ T2 = Fn->getType();
+ }
+
+ // Compute some basic properties of the types and the initializer.
+ bool isRValRef = DeclType->isRValueReferenceType();
+ bool DerivedToBase = false;
+ bool ObjCConversion = false;
+ bool ObjCLifetimeConversion = false;
+ Expr::Classification InitCategory = Init->Classify(S.Context);
+ Sema::ReferenceCompareResult RefRelationship
+ = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
+ ObjCConversion, ObjCLifetimeConversion);
+
+
+ // C++0x [dcl.init.ref]p5:
+ // A reference to type "cv1 T1" is initialized by an expression
+ // of type "cv2 T2" as follows:
+
+ // -- If reference is an lvalue reference and the initializer expression
+ if (!isRValRef) {
+ // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
+ // reference-compatible with "cv2 T2," or
+ //
+ // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
+ if (InitCategory.isLValue() &&
+ RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
+ // C++ [over.ics.ref]p1:
+ // When a parameter of reference type binds directly (8.5.3)
+ // to an argument expression, the implicit conversion sequence
+ // is the identity conversion, unless the argument expression
+ // has a type that is a derived class of the parameter type,
+ // in which case the implicit conversion sequence is a
+ // derived-to-base Conversion (13.3.3.1).
+ ICS.setStandard();
+ ICS.Standard.First = ICK_Identity;
+ ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
+ : ObjCConversion? ICK_Compatible_Conversion
+ : ICK_Identity;
+ ICS.Standard.Third = ICK_Identity;
+ ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
+ ICS.Standard.setToType(0, T2);
+ ICS.Standard.setToType(1, T1);
+ ICS.Standard.setToType(2, T1);
+ ICS.Standard.ReferenceBinding = true;
+ ICS.Standard.DirectBinding = true;
+ ICS.Standard.IsLvalueReference = !isRValRef;
+ ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
+ ICS.Standard.BindsToRvalue = false;
+ ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
+ ICS.Standard.CopyConstructor = 0;
+
+ // Nothing more to do: the inaccessibility/ambiguity check for
+ // derived-to-base conversions is suppressed when we're
+ // computing the implicit conversion sequence (C++
+ // [over.best.ics]p2).
+ return ICS;
+ }
+
+ // -- has a class type (i.e., T2 is a class type), where T1 is
+ // not reference-related to T2, and can be implicitly
+ // converted to an lvalue of type "cv3 T3," where "cv1 T1"
+ // is reference-compatible with "cv3 T3" 92) (this
+ // conversion is selected by enumerating the applicable
+ // conversion functions (13.3.1.6) and choosing the best
+ // one through overload resolution (13.3)),
+ if (!SuppressUserConversions && T2->isRecordType() &&
+ !S.RequireCompleteType(DeclLoc, T2, 0) &&
+ RefRelationship == Sema::Ref_Incompatible) {
+ if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
+ Init, T2, /*AllowRvalues=*/false,
+ AllowExplicit))
+ return ICS;
+ }
+ }
+
+ // -- Otherwise, the reference shall be an lvalue reference to a
+ // non-volatile const type (i.e., cv1 shall be const), or the reference
+ // shall be an rvalue reference.
+ //
+ // We actually handle one oddity of C++ [over.ics.ref] at this
+ // point, which is that, due to p2 (which short-circuits reference
+ // binding by only attempting a simple conversion for non-direct
+ // bindings) and p3's strange wording, we allow a const volatile
+ // reference to bind to an rvalue. Hence the check for the presence
+ // of "const" rather than checking for "const" being the only
+ // qualifier.
+ // This is also the point where rvalue references and lvalue inits no longer
+ // go together.
+ if (!isRValRef && !T1.isConstQualified())
+ return ICS;
+
+ // -- If the initializer expression
+ //
+ // -- is an xvalue, class prvalue, array prvalue or function
+ // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
+ if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
+ (InitCategory.isXValue() ||
+ (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
+ (InitCategory.isLValue() && T2->isFunctionType()))) {
+ ICS.setStandard();
+ ICS.Standard.First = ICK_Identity;
+ ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
+ : ObjCConversion? ICK_Compatible_Conversion
+ : ICK_Identity;
+ ICS.Standard.Third = ICK_Identity;
+ ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
+ ICS.Standard.setToType(0, T2);
+ ICS.Standard.setToType(1, T1);
+ ICS.Standard.setToType(2, T1);
+ ICS.Standard.ReferenceBinding = true;
+ // In C++0x, this is always a direct binding. In C++98/03, it's a direct
+ // binding unless we're binding to a class prvalue.
+ // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
+ // allow the use of rvalue references in C++98/03 for the benefit of
+ // standard library implementors; therefore, we need the xvalue check here.
+ ICS.Standard.DirectBinding =
+ S.getLangOpts().CPlusPlus0x ||
+ (InitCategory.isPRValue() && !T2->isRecordType());
+ ICS.Standard.IsLvalueReference = !isRValRef;
+ ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
+ ICS.Standard.BindsToRvalue = InitCategory.isRValue();
+ ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
+ ICS.Standard.CopyConstructor = 0;
+ return ICS;
+ }
+
+ // -- has a class type (i.e., T2 is a class type), where T1 is not
+ // reference-related to T2, and can be implicitly converted to
+ // an xvalue, class prvalue, or function lvalue of type
+ // "cv3 T3", where "cv1 T1" is reference-compatible with
+ // "cv3 T3",
+ //
+ // then the reference is bound to the value of the initializer
+ // expression in the first case and to the result of the conversion
+ // in the second case (or, in either case, to an appropriate base
+ // class subobject).
+ if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
+ T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
+ FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
+ Init, T2, /*AllowRvalues=*/true,
+ AllowExplicit)) {
+ // In the second case, if the reference is an rvalue reference
+ // and the second standard conversion sequence of the
+ // user-defined conversion sequence includes an lvalue-to-rvalue
+ // conversion, the program is ill-formed.
+ if (ICS.isUserDefined() && isRValRef &&
+ ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
+ ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
+
+ return ICS;
+ }
+
+ // -- Otherwise, a temporary of type "cv1 T1" is created and
+ // initialized from the initializer expression using the
+ // rules for a non-reference copy initialization (8.5). The
+ // reference is then bound to the temporary. If T1 is
+ // reference-related to T2, cv1 must be the same
+ // cv-qualification as, or greater cv-qualification than,
+ // cv2; otherwise, the program is ill-formed.
+ if (RefRelationship == Sema::Ref_Related) {
+ // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
+ // we would be reference-compatible or reference-compatible with
+ // added qualification. But that wasn't the case, so the reference
+ // initialization fails.
+ //
+ // Note that we only want to check address spaces and cvr-qualifiers here.
+ // ObjC GC and lifetime qualifiers aren't important.
+ Qualifiers T1Quals = T1.getQualifiers();
+ Qualifiers T2Quals = T2.getQualifiers();
+ T1Quals.removeObjCGCAttr();
+ T1Quals.removeObjCLifetime();
+ T2Quals.removeObjCGCAttr();
+ T2Quals.removeObjCLifetime();
+ if (!T1Quals.compatiblyIncludes(T2Quals))
+ return ICS;
+ }
+
+ // If at least one of the types is a class type, the types are not
+ // related, and we aren't allowed any user conversions, the
+ // reference binding fails. This case is important for breaking
+ // recursion, since TryImplicitConversion below will attempt to
+ // create a temporary through the use of a copy constructor.
+ if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
+ (T1->isRecordType() || T2->isRecordType()))
+ return ICS;
+
+ // If T1 is reference-related to T2 and the reference is an rvalue
+ // reference, the initializer expression shall not be an lvalue.
+ if (RefRelationship >= Sema::Ref_Related &&
+ isRValRef && Init->Classify(S.Context).isLValue())
+ return ICS;
+
+ // C++ [over.ics.ref]p2:
+ // When a parameter of reference type is not bound directly to
+ // an argument expression, the conversion sequence is the one
+ // required to convert the argument expression to the
+ // underlying type of the reference according to
+ // 13.3.3.1. Conceptually, this conversion sequence corresponds
+ // to copy-initializing a temporary of the underlying type with
+ // the argument expression. Any difference in top-level
+ // cv-qualification is subsumed by the initialization itself
+ // and does not constitute a conversion.
+ ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
+ /*AllowExplicit=*/false,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ /*AllowObjCWritebackConversion=*/false);
+
+ // Of course, that's still a reference binding.
+ if (ICS.isStandard()) {
+ ICS.Standard.ReferenceBinding = true;
+ ICS.Standard.IsLvalueReference = !isRValRef;
+ ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
+ ICS.Standard.BindsToRvalue = true;
+ ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ ICS.Standard.ObjCLifetimeConversionBinding = false;
+ } else if (ICS.isUserDefined()) {
+ // Don't allow rvalue references to bind to lvalues.
+ if (DeclType->isRValueReferenceType()) {
+ if (const ReferenceType *RefType
+ = ICS.UserDefined.ConversionFunction->getResultType()
+ ->getAs<LValueReferenceType>()) {
+ if (!RefType->getPointeeType()->isFunctionType()) {
+ ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
+ DeclType);
+ return ICS;
+ }
+ }
+ }
+
+ ICS.UserDefined.After.ReferenceBinding = true;
+ ICS.UserDefined.After.IsLvalueReference = !isRValRef;
+ ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
+ ICS.UserDefined.After.BindsToRvalue = true;
+ ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
+ }
+
+ return ICS;
+}
+
+static ImplicitConversionSequence
+TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool InOverloadResolution,
+ bool AllowObjCWritebackConversion,
+ bool AllowExplicit = false);
+
+/// TryListConversion - Try to copy-initialize a value of type ToType from the
+/// initializer list From.
+static ImplicitConversionSequence
+TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool InOverloadResolution,
+ bool AllowObjCWritebackConversion) {
+ // C++11 [over.ics.list]p1:
+ // When an argument is an initializer list, it is not an expression and
+ // special rules apply for converting it to a parameter type.
+
+ ImplicitConversionSequence Result;
+ Result.setBad(BadConversionSequence::no_conversion, From, ToType);
+ Result.setListInitializationSequence();
+
+ // We need a complete type for what follows. Incomplete types can never be
+ // initialized from init lists.
+ if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag()))
+ return Result;
+
+ // C++11 [over.ics.list]p2:
+ // If the parameter type is std::initializer_list<X> or "array of X" and
+ // all the elements can be implicitly converted to X, the implicit
+ // conversion sequence is the worst conversion necessary to convert an
+ // element of the list to X.
+ bool toStdInitializerList = false;
+ QualType X;
+ if (ToType->isArrayType())
+ X = S.Context.getBaseElementType(ToType);
+ else
+ toStdInitializerList = S.isStdInitializerList(ToType, &X);
+ if (!X.isNull()) {
+ for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
+ Expr *Init = From->getInit(i);
+ ImplicitConversionSequence ICS =
+ TryCopyInitialization(S, Init, X, SuppressUserConversions,
+ InOverloadResolution,
+ AllowObjCWritebackConversion);
+ // If a single element isn't convertible, fail.
+ if (ICS.isBad()) {
+ Result = ICS;
+ break;
+ }
+ // Otherwise, look for the worst conversion.
+ if (Result.isBad() ||
+ CompareImplicitConversionSequences(S, ICS, Result) ==
+ ImplicitConversionSequence::Worse)
+ Result = ICS;
+ }
+
+ // For an empty list, we won't have computed any conversion sequence.
+ // Introduce the identity conversion sequence.
+ if (From->getNumInits() == 0) {
+ Result.setStandard();
+ Result.Standard.setAsIdentityConversion();
+ Result.Standard.setFromType(ToType);
+ Result.Standard.setAllToTypes(ToType);
+ }
+
+ Result.setListInitializationSequence();
+ Result.setStdInitializerListElement(toStdInitializerList);
+ return Result;
+ }
+
+ // C++11 [over.ics.list]p3:
+ // Otherwise, if the parameter is a non-aggregate class X and overload
+ // resolution chooses a single best constructor [...] the implicit
+ // conversion sequence is a user-defined conversion sequence. If multiple
+ // constructors are viable but none is better than the others, the
+ // implicit conversion sequence is a user-defined conversion sequence.
+ if (ToType->isRecordType() && !ToType->isAggregateType()) {
+ // This function can deal with initializer lists.
+ Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
+ /*AllowExplicit=*/false,
+ InOverloadResolution, /*CStyle=*/false,
+ AllowObjCWritebackConversion);
+ Result.setListInitializationSequence();
+ return Result;
+ }
+
+ // C++11 [over.ics.list]p4:
+ // Otherwise, if the parameter has an aggregate type which can be
+ // initialized from the initializer list [...] the implicit conversion
+ // sequence is a user-defined conversion sequence.
+ if (ToType->isAggregateType()) {
+ // Type is an aggregate, argument is an init list. At this point it comes
+ // down to checking whether the initialization works.
+ // FIXME: Find out whether this parameter is consumed or not.
+ InitializedEntity Entity =
+ InitializedEntity::InitializeParameter(S.Context, ToType,
+ /*Consumed=*/false);
+ if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
+ Result.setUserDefined();
+ Result.UserDefined.Before.setAsIdentityConversion();
+ // Initializer lists don't have a type.
+ Result.UserDefined.Before.setFromType(QualType());
+ Result.UserDefined.Before.setAllToTypes(QualType());
+
+ Result.UserDefined.After.setAsIdentityConversion();
+ Result.UserDefined.After.setFromType(ToType);
+ Result.UserDefined.After.setAllToTypes(ToType);
+ Result.UserDefined.ConversionFunction = 0;
+ }
+ return Result;
+ }
+
+ // C++11 [over.ics.list]p5:
+ // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
+ if (ToType->isReferenceType()) {
+ // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
+ // mention initializer lists in any way. So we go by what list-
+ // initialization would do and try to extrapolate from that.
+
+ QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
+
+ // If the initializer list has a single element that is reference-related
+ // to the parameter type, we initialize the reference from that.
+ if (From->getNumInits() == 1) {
+ Expr *Init = From->getInit(0);
+
+ QualType T2 = Init->getType();
+
+ // If the initializer is the address of an overloaded function, try
+ // to resolve the overloaded function. If all goes well, T2 is the
+ // type of the resulting function.
+ if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
+ DeclAccessPair Found;
+ if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
+ Init, ToType, false, Found))
+ T2 = Fn->getType();
+ }
+
+ // Compute some basic properties of the types and the initializer.
+ bool dummy1 = false;
+ bool dummy2 = false;
+ bool dummy3 = false;
+ Sema::ReferenceCompareResult RefRelationship
+ = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
+ dummy2, dummy3);
+
+ if (RefRelationship >= Sema::Ref_Related)
+ return TryReferenceInit(S, Init, ToType,
+ /*FIXME:*/From->getLocStart(),
+ SuppressUserConversions,
+ /*AllowExplicit=*/false);
+ }
+
+ // Otherwise, we bind the reference to a temporary created from the
+ // initializer list.
+ Result = TryListConversion(S, From, T1, SuppressUserConversions,
+ InOverloadResolution,
+ AllowObjCWritebackConversion);
+ if (Result.isFailure())
+ return Result;
+ assert(!Result.isEllipsis() &&
+ "Sub-initialization cannot result in ellipsis conversion.");
+
+ // Can we even bind to a temporary?
+ if (ToType->isRValueReferenceType() ||
+ (T1.isConstQualified() && !T1.isVolatileQualified())) {
+ StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
+ Result.UserDefined.After;
+ SCS.ReferenceBinding = true;
+ SCS.IsLvalueReference = ToType->isLValueReferenceType();
+ SCS.BindsToRvalue = true;
+ SCS.BindsToFunctionLvalue = false;
+ SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ SCS.ObjCLifetimeConversionBinding = false;
+ } else
+ Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
+ From, ToType);
+ return Result;
+ }
+
+ // C++11 [over.ics.list]p6:
+ // Otherwise, if the parameter type is not a class:
+ if (!ToType->isRecordType()) {
+ // - if the initializer list has one element, the implicit conversion
+ // sequence is the one required to convert the element to the
+ // parameter type.
+ unsigned NumInits = From->getNumInits();
+ if (NumInits == 1)
+ Result = TryCopyInitialization(S, From->getInit(0), ToType,
+ SuppressUserConversions,
+ InOverloadResolution,
+ AllowObjCWritebackConversion);
+ // - if the initializer list has no elements, the implicit conversion
+ // sequence is the identity conversion.
+ else if (NumInits == 0) {
+ Result.setStandard();
+ Result.Standard.setAsIdentityConversion();
+ Result.Standard.setFromType(ToType);
+ Result.Standard.setAllToTypes(ToType);
+ }
+ Result.setListInitializationSequence();
+ return Result;
+ }
+
+ // C++11 [over.ics.list]p7:
+ // In all cases other than those enumerated above, no conversion is possible
+ return Result;
+}
+
+/// TryCopyInitialization - Try to copy-initialize a value of type
+/// ToType from the expression From. Return the implicit conversion
+/// sequence required to pass this argument, which may be a bad
+/// conversion sequence (meaning that the argument cannot be passed to
+/// a parameter of this type). If @p SuppressUserConversions, then we
+/// do not permit any user-defined conversion sequences.
+static ImplicitConversionSequence
+TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool InOverloadResolution,
+ bool AllowObjCWritebackConversion,
+ bool AllowExplicit) {
+ if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
+ return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
+ InOverloadResolution,AllowObjCWritebackConversion);
+
+ if (ToType->isReferenceType())
+ return TryReferenceInit(S, From, ToType,
+ /*FIXME:*/From->getLocStart(),
+ SuppressUserConversions,
+ AllowExplicit);
+
+ return TryImplicitConversion(S, From, ToType,
+ SuppressUserConversions,
+ /*AllowExplicit=*/false,
+ InOverloadResolution,
+ /*CStyle=*/false,
+ AllowObjCWritebackConversion);
+}
+
+static bool TryCopyInitialization(const CanQualType FromQTy,
+ const CanQualType ToQTy,
+ Sema &S,
+ SourceLocation Loc,
+ ExprValueKind FromVK) {
+ OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
+ ImplicitConversionSequence ICS =
+ TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
+
+ return !ICS.isBad();
+}
+
+/// TryObjectArgumentInitialization - Try to initialize the object
+/// parameter of the given member function (@c Method) from the
+/// expression @p From.
+static ImplicitConversionSequence
+TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
+ Expr::Classification FromClassification,
+ CXXMethodDecl *Method,
+ CXXRecordDecl *ActingContext) {
+ QualType ClassType = S.Context.getTypeDeclType(ActingContext);
+ // [class.dtor]p2: A destructor can be invoked for a const, volatile or
+ // const volatile object.
+ unsigned Quals = isa<CXXDestructorDecl>(Method) ?
+ Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
+ QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals);
+
+ // Set up the conversion sequence as a "bad" conversion, to allow us
+ // to exit early.
+ ImplicitConversionSequence ICS;
+
+ // We need to have an object of class type.
+ QualType FromType = OrigFromType;
+ if (const PointerType *PT = FromType->getAs<PointerType>()) {
+ FromType = PT->getPointeeType();
+
+ // When we had a pointer, it's implicitly dereferenced, so we
+ // better have an lvalue.
+ assert(FromClassification.isLValue());
+ }
+
+ assert(FromType->isRecordType());
+
+ // C++0x [over.match.funcs]p4:
+ // For non-static member functions, the type of the implicit object
+ // parameter is
+ //
+ // - "lvalue reference to cv X" for functions declared without a
+ // ref-qualifier or with the & ref-qualifier
+ // - "rvalue reference to cv X" for functions declared with the &&
+ // ref-qualifier
+ //
+ // where X is the class of which the function is a member and cv is the
+ // cv-qualification on the member function declaration.
+ //
+ // However, when finding an implicit conversion sequence for the argument, we
+ // are not allowed to create temporaries or perform user-defined conversions
+ // (C++ [over.match.funcs]p5). We perform a simplified version of
+ // reference binding here, that allows class rvalues to bind to
+ // non-constant references.
+
+ // First check the qualifiers.
+ QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
+ if (ImplicitParamType.getCVRQualifiers()
+ != FromTypeCanon.getLocalCVRQualifiers() &&
+ !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
+ ICS.setBad(BadConversionSequence::bad_qualifiers,
+ OrigFromType, ImplicitParamType);
+ return ICS;
+ }
+
+ // Check that we have either the same type or a derived type. It
+ // affects the conversion rank.
+ QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
+ ImplicitConversionKind SecondKind;
+ if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
+ SecondKind = ICK_Identity;
+ } else if (S.IsDerivedFrom(FromType, ClassType))
+ SecondKind = ICK_Derived_To_Base;
+ else {
+ ICS.setBad(BadConversionSequence::unrelated_class,
+ FromType, ImplicitParamType);
+ return ICS;
+ }
+
+ // Check the ref-qualifier.
+ switch (Method->getRefQualifier()) {
+ case RQ_None:
+ // Do nothing; we don't care about lvalueness or rvalueness.
+ break;
+
+ case RQ_LValue:
+ if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
+ // non-const lvalue reference cannot bind to an rvalue
+ ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
+ ImplicitParamType);
+ return ICS;
+ }
+ break;
+
+ case RQ_RValue:
+ if (!FromClassification.isRValue()) {
+ // rvalue reference cannot bind to an lvalue
+ ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
+ ImplicitParamType);
+ return ICS;
+ }
+ break;
+ }
+
+ // Success. Mark this as a reference binding.
+ ICS.setStandard();
+ ICS.Standard.setAsIdentityConversion();
+ ICS.Standard.Second = SecondKind;
+ ICS.Standard.setFromType(FromType);
+ ICS.Standard.setAllToTypes(ImplicitParamType);
+ ICS.Standard.ReferenceBinding = true;
+ ICS.Standard.DirectBinding = true;
+ ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
+ ICS.Standard.BindsToFunctionLvalue = false;
+ ICS.Standard.BindsToRvalue = FromClassification.isRValue();
+ ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
+ = (Method->getRefQualifier() == RQ_None);
+ return ICS;
+}
+
+/// PerformObjectArgumentInitialization - Perform initialization of
+/// the implicit object parameter for the given Method with the given
+/// expression.
+ExprResult
+Sema::PerformObjectArgumentInitialization(Expr *From,
+ NestedNameSpecifier *Qualifier,
+ NamedDecl *FoundDecl,
+ CXXMethodDecl *Method) {
+ QualType FromRecordType, DestType;
+ QualType ImplicitParamRecordType =
+ Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
+
+ Expr::Classification FromClassification;
+ if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
+ FromRecordType = PT->getPointeeType();
+ DestType = Method->getThisType(Context);
+ FromClassification = Expr::Classification::makeSimpleLValue();
+ } else {
+ FromRecordType = From->getType();
+ DestType = ImplicitParamRecordType;
+ FromClassification = From->Classify(Context);
+ }
+
+ // Note that we always use the true parent context when performing
+ // the actual argument initialization.
+ ImplicitConversionSequence ICS
+ = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
+ Method, Method->getParent());
+ if (ICS.isBad()) {
+ if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
+ Qualifiers FromQs = FromRecordType.getQualifiers();
+ Qualifiers ToQs = DestType.getQualifiers();
+ unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
+ if (CVR) {
+ Diag(From->getLocStart(),
+ diag::err_member_function_call_bad_cvr)
+ << Method->getDeclName() << FromRecordType << (CVR - 1)
+ << From->getSourceRange();
+ Diag(Method->getLocation(), diag::note_previous_decl)
+ << Method->getDeclName();
+ return ExprError();
+ }
+ }
+
+ return Diag(From->getLocStart(),
+ diag::err_implicit_object_parameter_init)
+ << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
+ }
+
+ if (ICS.Standard.Second == ICK_Derived_To_Base) {
+ ExprResult FromRes =
+ PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
+ if (FromRes.isInvalid())
+ return ExprError();
+ From = FromRes.take();
+ }
+
+ if (!Context.hasSameType(From->getType(), DestType))
+ From = ImpCastExprToType(From, DestType, CK_NoOp,
+ From->getValueKind()).take();
+ return Owned(From);
+}
+
+/// TryContextuallyConvertToBool - Attempt to contextually convert the
+/// expression From to bool (C++0x [conv]p3).
+static ImplicitConversionSequence
+TryContextuallyConvertToBool(Sema &S, Expr *From) {
+ // FIXME: This is pretty broken.
+ return TryImplicitConversion(S, From, S.Context.BoolTy,
+ // FIXME: Are these flags correct?
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/true,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ /*AllowObjCWritebackConversion=*/false);
+}
+
+/// PerformContextuallyConvertToBool - Perform a contextual conversion
+/// of the expression From to bool (C++0x [conv]p3).
+ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
+ if (checkPlaceholderForOverload(*this, From))
+ return ExprError();
+
+ ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
+ if (!ICS.isBad())
+ return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
+
+ if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
+ return Diag(From->getLocStart(),
+ diag::err_typecheck_bool_condition)
+ << From->getType() << From->getSourceRange();
+ return ExprError();
+}
+
+/// Check that the specified conversion is permitted in a converted constant
+/// expression, according to C++11 [expr.const]p3. Return true if the conversion
+/// is acceptable.
+static bool CheckConvertedConstantConversions(Sema &S,
+ StandardConversionSequence &SCS) {
+ // Since we know that the target type is an integral or unscoped enumeration
+ // type, most conversion kinds are impossible. All possible First and Third
+ // conversions are fine.
+ switch (SCS.Second) {
+ case ICK_Identity:
+ case ICK_Integral_Promotion:
+ case ICK_Integral_Conversion:
+ return true;
+
+ case ICK_Boolean_Conversion:
+ // Conversion from an integral or unscoped enumeration type to bool is
+ // classified as ICK_Boolean_Conversion, but it's also an integral
+ // conversion, so it's permitted in a converted constant expression.
+ return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
+ SCS.getToType(2)->isBooleanType();
+
+ case ICK_Floating_Integral:
+ case ICK_Complex_Real:
+ return false;
+
+ case ICK_Lvalue_To_Rvalue:
+ case ICK_Array_To_Pointer:
+ case ICK_Function_To_Pointer:
+ case ICK_NoReturn_Adjustment:
+ case ICK_Qualification:
+ case ICK_Compatible_Conversion:
+ case ICK_Vector_Conversion:
+ case ICK_Vector_Splat:
+ case ICK_Derived_To_Base:
+ case ICK_Pointer_Conversion:
+ case ICK_Pointer_Member:
+ case ICK_Block_Pointer_Conversion:
+ case ICK_Writeback_Conversion:
+ case ICK_Floating_Promotion:
+ case ICK_Complex_Promotion:
+ case ICK_Complex_Conversion:
+ case ICK_Floating_Conversion:
+ case ICK_TransparentUnionConversion:
+ llvm_unreachable("unexpected second conversion kind");
+
+ case ICK_Num_Conversion_Kinds:
+ break;
+ }
+
+ llvm_unreachable("unknown conversion kind");
+}
+
+/// CheckConvertedConstantExpression - Check that the expression From is a
+/// converted constant expression of type T, perform the conversion and produce
+/// the converted expression, per C++11 [expr.const]p3.
+ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
+ llvm::APSInt &Value,
+ CCEKind CCE) {
+ assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11");
+ assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
+
+ if (checkPlaceholderForOverload(*this, From))
+ return ExprError();
+
+ // C++11 [expr.const]p3 with proposed wording fixes:
+ // A converted constant expression of type T is a core constant expression,
+ // implicitly converted to a prvalue of type T, where the converted
+ // expression is a literal constant expression and the implicit conversion
+ // sequence contains only user-defined conversions, lvalue-to-rvalue
+ // conversions, integral promotions, and integral conversions other than
+ // narrowing conversions.
+ ImplicitConversionSequence ICS =
+ TryImplicitConversion(From, T,
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ /*AllowObjcWritebackConversion=*/false);
+ StandardConversionSequence *SCS = 0;
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::StandardConversion:
+ if (!CheckConvertedConstantConversions(*this, ICS.Standard))
+ return Diag(From->getLocStart(),
+ diag::err_typecheck_converted_constant_expression_disallowed)
+ << From->getType() << From->getSourceRange() << T;
+ SCS = &ICS.Standard;
+ break;
+ case ImplicitConversionSequence::UserDefinedConversion:
+ // We are converting from class type to an integral or enumeration type, so
+ // the Before sequence must be trivial.
+ if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
+ return Diag(From->getLocStart(),
+ diag::err_typecheck_converted_constant_expression_disallowed)
+ << From->getType() << From->getSourceRange() << T;
+ SCS = &ICS.UserDefined.After;
+ break;
+ case ImplicitConversionSequence::AmbiguousConversion:
+ case ImplicitConversionSequence::BadConversion:
+ if (!DiagnoseMultipleUserDefinedConversion(From, T))
+ return Diag(From->getLocStart(),
+ diag::err_typecheck_converted_constant_expression)
+ << From->getType() << From->getSourceRange() << T;
+ return ExprError();
+
+ case ImplicitConversionSequence::EllipsisConversion:
+ llvm_unreachable("ellipsis conversion in converted constant expression");
+ }
+
+ ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
+ if (Result.isInvalid())
+ return Result;
+
+ // Check for a narrowing implicit conversion.
+ APValue PreNarrowingValue;
+ QualType PreNarrowingType;
+ switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
+ PreNarrowingType)) {
+ case NK_Variable_Narrowing:
+ // Implicit conversion to a narrower type, and the value is not a constant
+ // expression. We'll diagnose this in a moment.
+ case NK_Not_Narrowing:
+ break;
+
+ case NK_Constant_Narrowing:
+ Diag(From->getLocStart(),
+ isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
+ diag::err_cce_narrowing)
+ << CCE << /*Constant*/1
+ << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
+ break;
+
+ case NK_Type_Narrowing:
+ Diag(From->getLocStart(),
+ isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
+ diag::err_cce_narrowing)
+ << CCE << /*Constant*/0 << From->getType() << T;
+ break;
+ }
+
+ // Check the expression is a constant expression.
+ llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
+ Expr::EvalResult Eval;
+ Eval.Diag = &Notes;
+
+ if (!Result.get()->EvaluateAsRValue(Eval, Context)) {
+ // The expression can't be folded, so we can't keep it at this position in
+ // the AST.
+ Result = ExprError();
+ } else {
+ Value = Eval.Val.getInt();
+
+ if (Notes.empty()) {
+ // It's a constant expression.
+ return Result;
+ }
+ }
+
+ // It's not a constant expression. Produce an appropriate diagnostic.
+ if (Notes.size() == 1 &&
+ Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
+ Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
+ else {
+ Diag(From->getLocStart(), diag::err_expr_not_cce)
+ << CCE << From->getSourceRange();
+ for (unsigned I = 0; I < Notes.size(); ++I)
+ Diag(Notes[I].first, Notes[I].second);
+ }
+ return Result;
+}
+
+/// dropPointerConversions - If the given standard conversion sequence
+/// involves any pointer conversions, remove them. This may change
+/// the result type of the conversion sequence.
+static void dropPointerConversion(StandardConversionSequence &SCS) {
+ if (SCS.Second == ICK_Pointer_Conversion) {
+ SCS.Second = ICK_Identity;
+ SCS.Third = ICK_Identity;
+ SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
+ }
+}
+
+/// TryContextuallyConvertToObjCPointer - Attempt to contextually
+/// convert the expression From to an Objective-C pointer type.
+static ImplicitConversionSequence
+TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
+ // Do an implicit conversion to 'id'.
+ QualType Ty = S.Context.getObjCIdType();
+ ImplicitConversionSequence ICS
+ = TryImplicitConversion(S, From, Ty,
+ // FIXME: Are these flags correct?
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/true,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ /*AllowObjCWritebackConversion=*/false);
+
+ // Strip off any final conversions to 'id'.
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::BadConversion:
+ case ImplicitConversionSequence::AmbiguousConversion:
+ case ImplicitConversionSequence::EllipsisConversion:
+ break;
+
+ case ImplicitConversionSequence::UserDefinedConversion:
+ dropPointerConversion(ICS.UserDefined.After);
+ break;
+
+ case ImplicitConversionSequence::StandardConversion:
+ dropPointerConversion(ICS.Standard);
+ break;
+ }
+
+ return ICS;
+}
+
+/// PerformContextuallyConvertToObjCPointer - Perform a contextual
+/// conversion of the expression From to an Objective-C pointer type.
+ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
+ if (checkPlaceholderForOverload(*this, From))
+ return ExprError();
+
+ QualType Ty = Context.getObjCIdType();
+ ImplicitConversionSequence ICS =
+ TryContextuallyConvertToObjCPointer(*this, From);
+ if (!ICS.isBad())
+ return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
+ return ExprError();
+}
+
+/// Determine whether the provided type is an integral type, or an enumeration
+/// type of a permitted flavor.
+static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) {
+ return AllowScopedEnum ? T->isIntegralOrEnumerationType()
+ : T->isIntegralOrUnscopedEnumerationType();
+}
+
+/// \brief Attempt to convert the given expression to an integral or
+/// enumeration type.
+///
+/// This routine will attempt to convert an expression of class type to an
+/// integral or enumeration type, if that class type only has a single
+/// conversion to an integral or enumeration type.
+///
+/// \param Loc The source location of the construct that requires the
+/// conversion.
+///
+/// \param FromE The expression we're converting from.
+///
+/// \param NotIntDiag The diagnostic to be emitted if the expression does not
+/// have integral or enumeration type.
+///
+/// \param IncompleteDiag The diagnostic to be emitted if the expression has
+/// incomplete class type.
+///
+/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
+/// explicit conversion function (because no implicit conversion functions
+/// were available). This is a recovery mode.
+///
+/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
+/// showing which conversion was picked.
+///
+/// \param AmbigDiag The diagnostic to be emitted if there is more than one
+/// conversion function that could convert to integral or enumeration type.
+///
+/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
+/// usable conversion function.
+///
+/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
+/// function, which may be an extension in this case.
+///
+/// \param AllowScopedEnumerations Specifies whether conversions to scoped
+/// enumerations should be considered.
+///
+/// \returns The expression, converted to an integral or enumeration type if
+/// successful.
+ExprResult
+Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
+ const PartialDiagnostic &NotIntDiag,
+ const PartialDiagnostic &IncompleteDiag,
+ const PartialDiagnostic &ExplicitConvDiag,
+ const PartialDiagnostic &ExplicitConvNote,
+ const PartialDiagnostic &AmbigDiag,
+ const PartialDiagnostic &AmbigNote,
+ const PartialDiagnostic &ConvDiag,
+ bool AllowScopedEnumerations) {
+ // We can't perform any more checking for type-dependent expressions.
+ if (From->isTypeDependent())
+ return Owned(From);
+
+ // Process placeholders immediately.
+ if (From->hasPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(From);
+ if (result.isInvalid()) return result;
+ From = result.take();
+ }
+
+ // If the expression already has integral or enumeration type, we're golden.
+ QualType T = From->getType();
+ if (isIntegralOrEnumerationType(T, AllowScopedEnumerations))
+ return DefaultLvalueConversion(From);
+
+ // FIXME: Check for missing '()' if T is a function type?
+
+ // If we don't have a class type in C++, there's no way we can get an
+ // expression of integral or enumeration type.
+ const RecordType *RecordTy = T->getAs<RecordType>();
+ if (!RecordTy || !getLangOpts().CPlusPlus) {
+ if (NotIntDiag.getDiagID())
+ Diag(Loc, NotIntDiag) << T << From->getSourceRange();
+ return Owned(From);
+ }
+
+ // We must have a complete class type.
+ if (RequireCompleteType(Loc, T, IncompleteDiag))
+ return Owned(From);
+
+ // Look for a conversion to an integral or enumeration type.
+ UnresolvedSet<4> ViableConversions;
+ UnresolvedSet<4> ExplicitConversions;
+ const UnresolvedSetImpl *Conversions
+ = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
+
+ bool HadMultipleCandidates = (Conversions->size() > 1);
+
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end();
+ I != E;
+ ++I) {
+ if (CXXConversionDecl *Conversion
+ = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) {
+ if (isIntegralOrEnumerationType(
+ Conversion->getConversionType().getNonReferenceType(),
+ AllowScopedEnumerations)) {
+ if (Conversion->isExplicit())
+ ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
+ else
+ ViableConversions.addDecl(I.getDecl(), I.getAccess());
+ }
+ }
+ }
+
+ switch (ViableConversions.size()) {
+ case 0:
+ if (ExplicitConversions.size() == 1 && ExplicitConvDiag.getDiagID()) {
+ DeclAccessPair Found = ExplicitConversions[0];
+ CXXConversionDecl *Conversion
+ = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
+
+ // The user probably meant to invoke the given explicit
+ // conversion; use it.
+ QualType ConvTy
+ = Conversion->getConversionType().getNonReferenceType();
+ std::string TypeStr;
+ ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
+
+ Diag(Loc, ExplicitConvDiag)
+ << T << ConvTy
+ << FixItHint::CreateInsertion(From->getLocStart(),
+ "static_cast<" + TypeStr + ">(")
+ << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
+ ")");
+ Diag(Conversion->getLocation(), ExplicitConvNote)
+ << ConvTy->isEnumeralType() << ConvTy;
+
+ // If we aren't in a SFINAE context, build a call to the
+ // explicit conversion function.
+ if (isSFINAEContext())
+ return ExprError();
+
+ CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
+ ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
+ HadMultipleCandidates);
+ if (Result.isInvalid())
+ return ExprError();
+ // Record usage of conversion in an implicit cast.
+ From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
+ CK_UserDefinedConversion,
+ Result.get(), 0,
+ Result.get()->getValueKind());
+ }
+
+ // We'll complain below about a non-integral condition type.
+ break;
+
+ case 1: {
+ // Apply this conversion.
+ DeclAccessPair Found = ViableConversions[0];
+ CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
+
+ CXXConversionDecl *Conversion
+ = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
+ QualType ConvTy
+ = Conversion->getConversionType().getNonReferenceType();
+ if (ConvDiag.getDiagID()) {
+ if (isSFINAEContext())
+ return ExprError();
+
+ Diag(Loc, ConvDiag)
+ << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
+ }
+
+ ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
+ HadMultipleCandidates);
+ if (Result.isInvalid())
+ return ExprError();
+ // Record usage of conversion in an implicit cast.
+ From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
+ CK_UserDefinedConversion,
+ Result.get(), 0,
+ Result.get()->getValueKind());
+ break;
+ }
+
+ default:
+ if (!AmbigDiag.getDiagID())
+ return Owned(From);
+
+ Diag(Loc, AmbigDiag)
+ << T << From->getSourceRange();
+ for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
+ CXXConversionDecl *Conv
+ = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
+ QualType ConvTy = Conv->getConversionType().getNonReferenceType();
+ Diag(Conv->getLocation(), AmbigNote)
+ << ConvTy->isEnumeralType() << ConvTy;
+ }
+ return Owned(From);
+ }
+
+ if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) &&
+ NotIntDiag.getDiagID())
+ Diag(Loc, NotIntDiag) << From->getType() << From->getSourceRange();
+
+ return DefaultLvalueConversion(From);
+}
+
+/// AddOverloadCandidate - Adds the given function to the set of
+/// candidate functions, using the given function call arguments. If
+/// @p SuppressUserConversions, then don't allow user-defined
+/// conversions via constructors or conversion operators.
+///
+/// \para PartialOverloading true if we are performing "partial" overloading
+/// based on an incomplete set of function arguments. This feature is used by
+/// code completion.
+void
+Sema::AddOverloadCandidate(FunctionDecl *Function,
+ DeclAccessPair FoundDecl,
+ llvm::ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions,
+ bool PartialOverloading,
+ bool AllowExplicit) {
+ const FunctionProtoType* Proto
+ = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
+ assert(Proto && "Functions without a prototype cannot be overloaded");
+ assert(!Function->getDescribedFunctionTemplate() &&
+ "Use AddTemplateOverloadCandidate for function templates");
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
+ if (!isa<CXXConstructorDecl>(Method)) {
+ // If we get here, it's because we're calling a member function
+ // that is named without a member access expression (e.g.,
+ // "this->f") that was either written explicitly or created
+ // implicitly. This can happen with a qualified call to a member
+ // function, e.g., X::f(). We use an empty type for the implied
+ // object argument (C++ [over.call.func]p3), and the acting context
+ // is irrelevant.
+ AddMethodCandidate(Method, FoundDecl, Method->getParent(),
+ QualType(), Expr::Classification::makeSimpleLValue(),
+ Args, CandidateSet, SuppressUserConversions);
+ return;
+ }
+ // We treat a constructor like a non-member function, since its object
+ // argument doesn't participate in overload resolution.
+ }
+
+ if (!CandidateSet.isNewCandidate(Function))
+ return;
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
+ // C++ [class.copy]p3:
+ // A member function template is never instantiated to perform the copy
+ // of a class object to an object of its class type.
+ QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
+ if (Args.size() == 1 &&
+ Constructor->isSpecializationCopyingObject() &&
+ (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
+ IsDerivedFrom(Args[0]->getType(), ClassType)))
+ return;
+ }
+
+ // Add this candidate
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = Function;
+ Candidate.Viable = true;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.ExplicitCallArguments = Args.size();
+
+ unsigned NumArgsInProto = Proto->getNumArgs();
+
+ // (C++ 13.3.2p2): A candidate function having fewer than m
+ // parameters is viable only if it has an ellipsis in its parameter
+ // list (8.3.5).
+ if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
+ !Proto->isVariadic()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_many_arguments;
+ return;
+ }
+
+ // (C++ 13.3.2p2): A candidate function having more than m parameters
+ // is viable only if the (m+1)st parameter has a default argument
+ // (8.3.6). For the purposes of overload resolution, the
+ // parameter list is truncated on the right, so that there are
+ // exactly m parameters.
+ unsigned MinRequiredArgs = Function->getMinRequiredArguments();
+ if (Args.size() < MinRequiredArgs && !PartialOverloading) {
+ // Not enough arguments.
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_few_arguments;
+ return;
+ }
+
+ // (CUDA B.1): Check for invalid calls between targets.
+ if (getLangOpts().CUDA)
+ if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
+ if (CheckCUDATarget(Caller, Function)) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_target;
+ return;
+ }
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
+ if (ArgIdx < NumArgsInProto) {
+ // (C++ 13.3.2p3): for F to be a viable function, there shall
+ // exist for each argument an implicit conversion sequence
+ // (13.3.3.1) that converts that argument to the corresponding
+ // parameter of F.
+ QualType ParamType = Proto->getArgType(ArgIdx);
+ Candidate.Conversions[ArgIdx]
+ = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
+ SuppressUserConversions,
+ /*InOverloadResolution=*/true,
+ /*AllowObjCWritebackConversion=*/
+ getLangOpts().ObjCAutoRefCount,
+ AllowExplicit);
+ if (Candidate.Conversions[ArgIdx].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ break;
+ }
+ } else {
+ // (C++ 13.3.2p2): For the purposes of overload resolution, any
+ // argument for which there is no corresponding parameter is
+ // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
+ Candidate.Conversions[ArgIdx].setEllipsis();
+ }
+ }
+}
+
+/// \brief Add all of the function declarations in the given function set to
+/// the overload canddiate set.
+void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
+ llvm::ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions,
+ TemplateArgumentListInfo *ExplicitTemplateArgs) {
+ for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
+ NamedDecl *D = F.getDecl()->getUnderlyingDecl();
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
+ AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
+ cast<CXXMethodDecl>(FD)->getParent(),
+ Args[0]->getType(), Args[0]->Classify(Context),
+ Args.slice(1), CandidateSet,
+ SuppressUserConversions);
+ else
+ AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
+ SuppressUserConversions);
+ } else {
+ FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
+ if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
+ !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
+ AddMethodTemplateCandidate(FunTmpl, F.getPair(),
+ cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
+ ExplicitTemplateArgs,
+ Args[0]->getType(),
+ Args[0]->Classify(Context), Args.slice(1),
+ CandidateSet, SuppressUserConversions);
+ else
+ AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
+ ExplicitTemplateArgs, Args,
+ CandidateSet, SuppressUserConversions);
+ }
+ }
+}
+
+/// AddMethodCandidate - Adds a named decl (which is some kind of
+/// method) as a method candidate to the given overload set.
+void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
+ QualType ObjectType,
+ Expr::Classification ObjectClassification,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions) {
+ NamedDecl *Decl = FoundDecl.getDecl();
+ CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
+
+ if (isa<UsingShadowDecl>(Decl))
+ Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
+
+ if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
+ assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
+ "Expected a member function template");
+ AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
+ /*ExplicitArgs*/ 0,
+ ObjectType, ObjectClassification,
+ llvm::makeArrayRef(Args, NumArgs), CandidateSet,
+ SuppressUserConversions);
+ } else {
+ AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
+ ObjectType, ObjectClassification,
+ llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet, SuppressUserConversions);
+ }
+}
+
+/// AddMethodCandidate - Adds the given C++ member function to the set
+/// of candidate functions, using the given function call arguments
+/// and the object argument (@c Object). For example, in a call
+/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
+/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
+/// allow user-defined conversions via constructors or conversion
+/// operators.
+void
+Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingContext, QualType ObjectType,
+ Expr::Classification ObjectClassification,
+ llvm::ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions) {
+ const FunctionProtoType* Proto
+ = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
+ assert(Proto && "Methods without a prototype cannot be overloaded");
+ assert(!isa<CXXConstructorDecl>(Method) &&
+ "Use AddOverloadCandidate for constructors");
+
+ if (!CandidateSet.isNewCandidate(Method))
+ return;
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+
+ // Add this candidate
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = Method;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.ExplicitCallArguments = Args.size();
+
+ unsigned NumArgsInProto = Proto->getNumArgs();
+
+ // (C++ 13.3.2p2): A candidate function having fewer than m
+ // parameters is viable only if it has an ellipsis in its parameter
+ // list (8.3.5).
+ if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_many_arguments;
+ return;
+ }
+
+ // (C++ 13.3.2p2): A candidate function having more than m parameters
+ // is viable only if the (m+1)st parameter has a default argument
+ // (8.3.6). For the purposes of overload resolution, the
+ // parameter list is truncated on the right, so that there are
+ // exactly m parameters.
+ unsigned MinRequiredArgs = Method->getMinRequiredArguments();
+ if (Args.size() < MinRequiredArgs) {
+ // Not enough arguments.
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_few_arguments;
+ return;
+ }
+
+ Candidate.Viable = true;
+
+ if (Method->isStatic() || ObjectType.isNull())
+ // The implicit object argument is ignored.
+ Candidate.IgnoreObjectArgument = true;
+ else {
+ // Determine the implicit conversion sequence for the object
+ // parameter.
+ Candidate.Conversions[0]
+ = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
+ Method, ActingContext);
+ if (Candidate.Conversions[0].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ return;
+ }
+ }
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
+ if (ArgIdx < NumArgsInProto) {
+ // (C++ 13.3.2p3): for F to be a viable function, there shall
+ // exist for each argument an implicit conversion sequence
+ // (13.3.3.1) that converts that argument to the corresponding
+ // parameter of F.
+ QualType ParamType = Proto->getArgType(ArgIdx);
+ Candidate.Conversions[ArgIdx + 1]
+ = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
+ SuppressUserConversions,
+ /*InOverloadResolution=*/true,
+ /*AllowObjCWritebackConversion=*/
+ getLangOpts().ObjCAutoRefCount);
+ if (Candidate.Conversions[ArgIdx + 1].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ break;
+ }
+ } else {
+ // (C++ 13.3.2p2): For the purposes of overload resolution, any
+ // argument for which there is no corresponding parameter is
+ // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
+ Candidate.Conversions[ArgIdx + 1].setEllipsis();
+ }
+ }
+}
+
+/// \brief Add a C++ member function template as a candidate to the candidate
+/// set, using template argument deduction to produce an appropriate member
+/// function template specialization.
+void
+Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
+ DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingContext,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ QualType ObjectType,
+ Expr::Classification ObjectClassification,
+ llvm::ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions) {
+ if (!CandidateSet.isNewCandidate(MethodTmpl))
+ return;
+
+ // C++ [over.match.funcs]p7:
+ // In each case where a candidate is a function template, candidate
+ // function template specializations are generated using template argument
+ // deduction (14.8.3, 14.8.2). Those candidates are then handled as
+ // candidate functions in the usual way.113) A given name can refer to one
+ // or more function templates and also to a set of overloaded non-template
+ // functions. In such a case, the candidate functions generated from each
+ // function template are combined with the set of non-template candidate
+ // functions.
+ TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
+ FunctionDecl *Specialization = 0;
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
+ Specialization, Info)) {
+ OverloadCandidate &Candidate = CandidateSet.addCandidate();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = MethodTmpl->getTemplatedDecl();
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_deduction;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.ExplicitCallArguments = Args.size();
+ Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
+ Info);
+ return;
+ }
+
+ // Add the function template specialization produced by template argument
+ // deduction as a candidate.
+ assert(Specialization && "Missing member function template specialization?");
+ assert(isa<CXXMethodDecl>(Specialization) &&
+ "Specialization is not a member function?");
+ AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
+ ActingContext, ObjectType, ObjectClassification, Args,
+ CandidateSet, SuppressUserConversions);
+}
+
+/// \brief Add a C++ function template specialization as a candidate
+/// in the candidate set, using template argument deduction to produce
+/// an appropriate function template specialization.
+void
+Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
+ DeclAccessPair FoundDecl,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ llvm::ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions) {
+ if (!CandidateSet.isNewCandidate(FunctionTemplate))
+ return;
+
+ // C++ [over.match.funcs]p7:
+ // In each case where a candidate is a function template, candidate
+ // function template specializations are generated using template argument
+ // deduction (14.8.3, 14.8.2). Those candidates are then handled as
+ // candidate functions in the usual way.113) A given name can refer to one
+ // or more function templates and also to a set of overloaded non-template
+ // functions. In such a case, the candidate functions generated from each
+ // function template are combined with the set of non-template candidate
+ // functions.
+ TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
+ FunctionDecl *Specialization = 0;
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
+ Specialization, Info)) {
+ OverloadCandidate &Candidate = CandidateSet.addCandidate();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = FunctionTemplate->getTemplatedDecl();
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_deduction;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.ExplicitCallArguments = Args.size();
+ Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
+ Info);
+ return;
+ }
+
+ // Add the function template specialization produced by template argument
+ // deduction as a candidate.
+ assert(Specialization && "Missing function template specialization?");
+ AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
+ SuppressUserConversions);
+}
+
+/// AddConversionCandidate - Add a C++ conversion function as a
+/// candidate in the candidate set (C++ [over.match.conv],
+/// C++ [over.match.copy]). From is the expression we're converting from,
+/// and ToType is the type that we're eventually trying to convert to
+/// (which may or may not be the same type as the type that the
+/// conversion function produces).
+void
+Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
+ DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingContext,
+ Expr *From, QualType ToType,
+ OverloadCandidateSet& CandidateSet) {
+ assert(!Conversion->getDescribedFunctionTemplate() &&
+ "Conversion function templates use AddTemplateConversionCandidate");
+ QualType ConvType = Conversion->getConversionType().getNonReferenceType();
+ if (!CandidateSet.isNewCandidate(Conversion))
+ return;
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+
+ // Add this candidate
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = Conversion;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.FinalConversion.setAsIdentityConversion();
+ Candidate.FinalConversion.setFromType(ConvType);
+ Candidate.FinalConversion.setAllToTypes(ToType);
+ Candidate.Viable = true;
+ Candidate.ExplicitCallArguments = 1;
+
+ // C++ [over.match.funcs]p4:
+ // For conversion functions, the function is considered to be a member of
+ // the class of the implicit implied object argument for the purpose of
+ // defining the type of the implicit object parameter.
+ //
+ // Determine the implicit conversion sequence for the implicit
+ // object parameter.
+ QualType ImplicitParamType = From->getType();
+ if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
+ ImplicitParamType = FromPtrType->getPointeeType();
+ CXXRecordDecl *ConversionContext
+ = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
+
+ Candidate.Conversions[0]
+ = TryObjectArgumentInitialization(*this, From->getType(),
+ From->Classify(Context),
+ Conversion, ConversionContext);
+
+ if (Candidate.Conversions[0].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ return;
+ }
+
+ // We won't go through a user-define type conversion function to convert a
+ // derived to base as such conversions are given Conversion Rank. They only
+ // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
+ QualType FromCanon
+ = Context.getCanonicalType(From->getType().getUnqualifiedType());
+ QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
+ if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_trivial_conversion;
+ return;
+ }
+
+ // To determine what the conversion from the result of calling the
+ // conversion function to the type we're eventually trying to
+ // convert to (ToType), we need to synthesize a call to the
+ // conversion function and attempt copy initialization from it. This
+ // makes sure that we get the right semantics with respect to
+ // lvalues/rvalues and the type. Fortunately, we can allocate this
+ // call on the stack and we don't need its arguments to be
+ // well-formed.
+ DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
+ VK_LValue, From->getLocStart());
+ ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
+ Context.getPointerType(Conversion->getType()),
+ CK_FunctionToPointerDecay,
+ &ConversionRef, VK_RValue);
+
+ QualType ConversionType = Conversion->getConversionType();
+ if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_final_conversion;
+ return;
+ }
+
+ ExprValueKind VK = Expr::getValueKindForType(ConversionType);
+
+ // Note that it is safe to allocate CallExpr on the stack here because
+ // there are 0 arguments (i.e., nothing is allocated using ASTContext's
+ // allocator).
+ QualType CallResultType = ConversionType.getNonLValueExprType(Context);
+ CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
+ From->getLocStart());
+ ImplicitConversionSequence ICS =
+ TryCopyInitialization(*this, &Call, ToType,
+ /*SuppressUserConversions=*/true,
+ /*InOverloadResolution=*/false,
+ /*AllowObjCWritebackConversion=*/false);
+
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::StandardConversion:
+ Candidate.FinalConversion = ICS.Standard;
+
+ // C++ [over.ics.user]p3:
+ // If the user-defined conversion is specified by a specialization of a
+ // conversion function template, the second standard conversion sequence
+ // shall have exact match rank.
+ if (Conversion->getPrimaryTemplate() &&
+ GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
+ }
+
+ // C++0x [dcl.init.ref]p5:
+ // In the second case, if the reference is an rvalue reference and
+ // the second standard conversion sequence of the user-defined
+ // conversion sequence includes an lvalue-to-rvalue conversion, the
+ // program is ill-formed.
+ if (ToType->isRValueReferenceType() &&
+ ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_final_conversion;
+ }
+ break;
+
+ case ImplicitConversionSequence::BadConversion:
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_final_conversion;
+ break;
+
+ default:
+ llvm_unreachable(
+ "Can only end up with a standard conversion sequence or failure");
+ }
+}
+
+/// \brief Adds a conversion function template specialization
+/// candidate to the overload set, using template argument deduction
+/// to deduce the template arguments of the conversion function
+/// template from the type that we are converting to (C++
+/// [temp.deduct.conv]).
+void
+Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
+ DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingDC,
+ Expr *From, QualType ToType,
+ OverloadCandidateSet &CandidateSet) {
+ assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
+ "Only conversion function templates permitted here");
+
+ if (!CandidateSet.isNewCandidate(FunctionTemplate))
+ return;
+
+ TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
+ CXXConversionDecl *Specialization = 0;
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(FunctionTemplate, ToType,
+ Specialization, Info)) {
+ OverloadCandidate &Candidate = CandidateSet.addCandidate();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = FunctionTemplate->getTemplatedDecl();
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_deduction;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.ExplicitCallArguments = 1;
+ Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
+ Info);
+ return;
+ }
+
+ // Add the conversion function template specialization produced by
+ // template argument deduction as a candidate.
+ assert(Specialization && "Missing function template specialization?");
+ AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
+ CandidateSet);
+}
+
+/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
+/// converts the given @c Object to a function pointer via the
+/// conversion function @c Conversion, and then attempts to call it
+/// with the given arguments (C++ [over.call.object]p2-4). Proto is
+/// the type of function that we'll eventually be calling.
+void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
+ DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingContext,
+ const FunctionProtoType *Proto,
+ Expr *Object,
+ llvm::ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet) {
+ if (!CandidateSet.isNewCandidate(Conversion))
+ return;
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = 0;
+ Candidate.Surrogate = Conversion;
+ Candidate.Viable = true;
+ Candidate.IsSurrogate = true;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.ExplicitCallArguments = Args.size();
+
+ // Determine the implicit conversion sequence for the implicit
+ // object parameter.
+ ImplicitConversionSequence ObjectInit
+ = TryObjectArgumentInitialization(*this, Object->getType(),
+ Object->Classify(Context),
+ Conversion, ActingContext);
+ if (ObjectInit.isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ Candidate.Conversions[0] = ObjectInit;
+ return;
+ }
+
+ // The first conversion is actually a user-defined conversion whose
+ // first conversion is ObjectInit's standard conversion (which is
+ // effectively a reference binding). Record it as such.
+ Candidate.Conversions[0].setUserDefined();
+ Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
+ Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
+ Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
+ Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
+ Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
+ Candidate.Conversions[0].UserDefined.After
+ = Candidate.Conversions[0].UserDefined.Before;
+ Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
+
+ // Find the
+ unsigned NumArgsInProto = Proto->getNumArgs();
+
+ // (C++ 13.3.2p2): A candidate function having fewer than m
+ // parameters is viable only if it has an ellipsis in its parameter
+ // list (8.3.5).
+ if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_many_arguments;
+ return;
+ }
+
+ // Function types don't have any default arguments, so just check if
+ // we have enough arguments.
+ if (Args.size() < NumArgsInProto) {
+ // Not enough arguments.
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_few_arguments;
+ return;
+ }
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
+ if (ArgIdx < NumArgsInProto) {
+ // (C++ 13.3.2p3): for F to be a viable function, there shall
+ // exist for each argument an implicit conversion sequence
+ // (13.3.3.1) that converts that argument to the corresponding
+ // parameter of F.
+ QualType ParamType = Proto->getArgType(ArgIdx);
+ Candidate.Conversions[ArgIdx + 1]
+ = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
+ /*SuppressUserConversions=*/false,
+ /*InOverloadResolution=*/false,
+ /*AllowObjCWritebackConversion=*/
+ getLangOpts().ObjCAutoRefCount);
+ if (Candidate.Conversions[ArgIdx + 1].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ break;
+ }
+ } else {
+ // (C++ 13.3.2p2): For the purposes of overload resolution, any
+ // argument for which there is no corresponding parameter is
+ // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
+ Candidate.Conversions[ArgIdx + 1].setEllipsis();
+ }
+ }
+}
+
+/// \brief Add overload candidates for overloaded operators that are
+/// member functions.
+///
+/// Add the overloaded operator candidates that are member functions
+/// for the operator Op that was used in an operator expression such
+/// as "x Op y". , Args/NumArgs provides the operator arguments, and
+/// CandidateSet will store the added overload candidates. (C++
+/// [over.match.oper]).
+void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
+ SourceLocation OpLoc,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ SourceRange OpRange) {
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+
+ // C++ [over.match.oper]p3:
+ // For a unary operator @ with an operand of a type whose
+ // cv-unqualified version is T1, and for a binary operator @ with
+ // a left operand of a type whose cv-unqualified version is T1 and
+ // a right operand of a type whose cv-unqualified version is T2,
+ // three sets of candidate functions, designated member
+ // candidates, non-member candidates and built-in candidates, are
+ // constructed as follows:
+ QualType T1 = Args[0]->getType();
+
+ // -- If T1 is a class type, the set of member candidates is the
+ // result of the qualified lookup of T1::operator@
+ // (13.3.1.1.1); otherwise, the set of member candidates is
+ // empty.
+ if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
+ // Complete the type if it can be completed. Otherwise, we're done.
+ if (RequireCompleteType(OpLoc, T1, PDiag()))
+ return;
+
+ LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
+ LookupQualifiedName(Operators, T1Rec->getDecl());
+ Operators.suppressDiagnostics();
+
+ for (LookupResult::iterator Oper = Operators.begin(),
+ OperEnd = Operators.end();
+ Oper != OperEnd;
+ ++Oper)
+ AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
+ Args[0]->Classify(Context), Args + 1, NumArgs - 1,
+ CandidateSet,
+ /* SuppressUserConversions = */ false);
+ }
+}
+
+/// AddBuiltinCandidate - Add a candidate for a built-in
+/// operator. ResultTy and ParamTys are the result and parameter types
+/// of the built-in candidate, respectively. Args and NumArgs are the
+/// arguments being passed to the candidate. IsAssignmentOperator
+/// should be true when this built-in candidate is an assignment
+/// operator. NumContextualBoolArguments is the number of arguments
+/// (at the beginning of the argument list) that will be contextually
+/// converted to bool.
+void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool IsAssignmentOperator,
+ unsigned NumContextualBoolArguments) {
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+
+ // Add this candidate
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
+ Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
+ Candidate.Function = 0;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.BuiltinTypes.ResultTy = ResultTy;
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
+ Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ Candidate.Viable = true;
+ Candidate.ExplicitCallArguments = NumArgs;
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ // C++ [over.match.oper]p4:
+ // For the built-in assignment operators, conversions of the
+ // left operand are restricted as follows:
+ // -- no temporaries are introduced to hold the left operand, and
+ // -- no user-defined conversions are applied to the left
+ // operand to achieve a type match with the left-most
+ // parameter of a built-in candidate.
+ //
+ // We block these conversions by turning off user-defined
+ // conversions, since that is the only way that initialization of
+ // a reference to a non-class type can occur from something that
+ // is not of the same type.
+ if (ArgIdx < NumContextualBoolArguments) {
+ assert(ParamTys[ArgIdx] == Context.BoolTy &&
+ "Contextual conversion to bool requires bool type");
+ Candidate.Conversions[ArgIdx]
+ = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
+ } else {
+ Candidate.Conversions[ArgIdx]
+ = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
+ ArgIdx == 0 && IsAssignmentOperator,
+ /*InOverloadResolution=*/false,
+ /*AllowObjCWritebackConversion=*/
+ getLangOpts().ObjCAutoRefCount);
+ }
+ if (Candidate.Conversions[ArgIdx].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ break;
+ }
+ }
+}
+
+/// BuiltinCandidateTypeSet - A set of types that will be used for the
+/// candidate operator functions for built-in operators (C++
+/// [over.built]). The types are separated into pointer types and
+/// enumeration types.
+class BuiltinCandidateTypeSet {
+ /// TypeSet - A set of types.
+ typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
+
+ /// PointerTypes - The set of pointer types that will be used in the
+ /// built-in candidates.
+ TypeSet PointerTypes;
+
+ /// MemberPointerTypes - The set of member pointer types that will be
+ /// used in the built-in candidates.
+ TypeSet MemberPointerTypes;
+
+ /// EnumerationTypes - The set of enumeration types that will be
+ /// used in the built-in candidates.
+ TypeSet EnumerationTypes;
+
+ /// \brief The set of vector types that will be used in the built-in
+ /// candidates.
+ TypeSet VectorTypes;
+
+ /// \brief A flag indicating non-record types are viable candidates
+ bool HasNonRecordTypes;
+
+ /// \brief A flag indicating whether either arithmetic or enumeration types
+ /// were present in the candidate set.
+ bool HasArithmeticOrEnumeralTypes;
+
+ /// \brief A flag indicating whether the nullptr type was present in the
+ /// candidate set.
+ bool HasNullPtrType;
+
+ /// Sema - The semantic analysis instance where we are building the
+ /// candidate type set.
+ Sema &SemaRef;
+
+ /// Context - The AST context in which we will build the type sets.
+ ASTContext &Context;
+
+ bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
+ const Qualifiers &VisibleQuals);
+ bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
+
+public:
+ /// iterator - Iterates through the types that are part of the set.
+ typedef TypeSet::iterator iterator;
+
+ BuiltinCandidateTypeSet(Sema &SemaRef)
+ : HasNonRecordTypes(false),
+ HasArithmeticOrEnumeralTypes(false),
+ HasNullPtrType(false),
+ SemaRef(SemaRef),
+ Context(SemaRef.Context) { }
+
+ void AddTypesConvertedFrom(QualType Ty,
+ SourceLocation Loc,
+ bool AllowUserConversions,
+ bool AllowExplicitConversions,
+ const Qualifiers &VisibleTypeConversionsQuals);
+
+ /// pointer_begin - First pointer type found;
+ iterator pointer_begin() { return PointerTypes.begin(); }
+
+ /// pointer_end - Past the last pointer type found;
+ iterator pointer_end() { return PointerTypes.end(); }
+
+ /// member_pointer_begin - First member pointer type found;
+ iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
+
+ /// member_pointer_end - Past the last member pointer type found;
+ iterator member_pointer_end() { return MemberPointerTypes.end(); }
+
+ /// enumeration_begin - First enumeration type found;
+ iterator enumeration_begin() { return EnumerationTypes.begin(); }
+
+ /// enumeration_end - Past the last enumeration type found;
+ iterator enumeration_end() { return EnumerationTypes.end(); }
+
+ iterator vector_begin() { return VectorTypes.begin(); }
+ iterator vector_end() { return VectorTypes.end(); }
+
+ bool hasNonRecordTypes() { return HasNonRecordTypes; }
+ bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
+ bool hasNullPtrType() const { return HasNullPtrType; }
+};
+
+/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
+/// the set of pointer types along with any more-qualified variants of
+/// that type. For example, if @p Ty is "int const *", this routine
+/// will add "int const *", "int const volatile *", "int const
+/// restrict *", and "int const volatile restrict *" to the set of
+/// pointer types. Returns true if the add of @p Ty itself succeeded,
+/// false otherwise.
+///
+/// FIXME: what to do about extended qualifiers?
+bool
+BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
+ const Qualifiers &VisibleQuals) {
+
+ // Insert this type.
+ if (!PointerTypes.insert(Ty))
+ return false;
+
+ QualType PointeeTy;
+ const PointerType *PointerTy = Ty->getAs<PointerType>();
+ bool buildObjCPtr = false;
+ if (!PointerTy) {
+ if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
+ PointeeTy = PTy->getPointeeType();
+ buildObjCPtr = true;
+ }
+ else
+ llvm_unreachable("type was not a pointer type!");
+ }
+ else
+ PointeeTy = PointerTy->getPointeeType();
+
+ // Don't add qualified variants of arrays. For one, they're not allowed
+ // (the qualifier would sink to the element type), and for another, the
+ // only overload situation where it matters is subscript or pointer +- int,
+ // and those shouldn't have qualifier variants anyway.
+ if (PointeeTy->isArrayType())
+ return true;
+ unsigned BaseCVR = PointeeTy.getCVRQualifiers();
+ if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
+ BaseCVR = Array->getElementType().getCVRQualifiers();
+ bool hasVolatile = VisibleQuals.hasVolatile();
+ bool hasRestrict = VisibleQuals.hasRestrict();
+
+ // Iterate through all strict supersets of BaseCVR.
+ for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
+ if ((CVR | BaseCVR) != CVR) continue;
+ // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
+ // in the types.
+ if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
+ if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
+ QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
+ if (!buildObjCPtr)
+ PointerTypes.insert(Context.getPointerType(QPointeeTy));
+ else
+ PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
+ }
+
+ return true;
+}
+
+/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
+/// to the set of pointer types along with any more-qualified variants of
+/// that type. For example, if @p Ty is "int const *", this routine
+/// will add "int const *", "int const volatile *", "int const
+/// restrict *", and "int const volatile restrict *" to the set of
+/// pointer types. Returns true if the add of @p Ty itself succeeded,
+/// false otherwise.
+///
+/// FIXME: what to do about extended qualifiers?
+bool
+BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
+ QualType Ty) {
+ // Insert this type.
+ if (!MemberPointerTypes.insert(Ty))
+ return false;
+
+ const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
+ assert(PointerTy && "type was not a member pointer type!");
+
+ QualType PointeeTy = PointerTy->getPointeeType();
+ // Don't add qualified variants of arrays. For one, they're not allowed
+ // (the qualifier would sink to the element type), and for another, the
+ // only overload situation where it matters is subscript or pointer +- int,
+ // and those shouldn't have qualifier variants anyway.
+ if (PointeeTy->isArrayType())
+ return true;
+ const Type *ClassTy = PointerTy->getClass();
+
+ // Iterate through all strict supersets of the pointee type's CVR
+ // qualifiers.
+ unsigned BaseCVR = PointeeTy.getCVRQualifiers();
+ for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
+ if ((CVR | BaseCVR) != CVR) continue;
+
+ QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
+ MemberPointerTypes.insert(
+ Context.getMemberPointerType(QPointeeTy, ClassTy));
+ }
+
+ return true;
+}
+
+/// AddTypesConvertedFrom - Add each of the types to which the type @p
+/// Ty can be implicit converted to the given set of @p Types. We're
+/// primarily interested in pointer types and enumeration types. We also
+/// take member pointer types, for the conditional operator.
+/// AllowUserConversions is true if we should look at the conversion
+/// functions of a class type, and AllowExplicitConversions if we
+/// should also include the explicit conversion functions of a class
+/// type.
+void
+BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
+ SourceLocation Loc,
+ bool AllowUserConversions,
+ bool AllowExplicitConversions,
+ const Qualifiers &VisibleQuals) {
+ // Only deal with canonical types.
+ Ty = Context.getCanonicalType(Ty);
+
+ // Look through reference types; they aren't part of the type of an
+ // expression for the purposes of conversions.
+ if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
+ Ty = RefTy->getPointeeType();
+
+ // If we're dealing with an array type, decay to the pointer.
+ if (Ty->isArrayType())
+ Ty = SemaRef.Context.getArrayDecayedType(Ty);
+
+ // Otherwise, we don't care about qualifiers on the type.
+ Ty = Ty.getLocalUnqualifiedType();
+
+ // Flag if we ever add a non-record type.
+ const RecordType *TyRec = Ty->getAs<RecordType>();
+ HasNonRecordTypes = HasNonRecordTypes || !TyRec;
+
+ // Flag if we encounter an arithmetic type.
+ HasArithmeticOrEnumeralTypes =
+ HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
+
+ if (Ty->isObjCIdType() || Ty->isObjCClassType())
+ PointerTypes.insert(Ty);
+ else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
+ // Insert our type, and its more-qualified variants, into the set
+ // of types.
+ if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
+ return;
+ } else if (Ty->isMemberPointerType()) {
+ // Member pointers are far easier, since the pointee can't be converted.
+ if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
+ return;
+ } else if (Ty->isEnumeralType()) {
+ HasArithmeticOrEnumeralTypes = true;
+ EnumerationTypes.insert(Ty);
+ } else if (Ty->isVectorType()) {
+ // We treat vector types as arithmetic types in many contexts as an
+ // extension.
+ HasArithmeticOrEnumeralTypes = true;
+ VectorTypes.insert(Ty);
+ } else if (Ty->isNullPtrType()) {
+ HasNullPtrType = true;
+ } else if (AllowUserConversions && TyRec) {
+ // No conversion functions in incomplete types.
+ if (SemaRef.RequireCompleteType(Loc, Ty, 0))
+ return;
+
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
+ const UnresolvedSetImpl *Conversions
+ = ClassDecl->getVisibleConversionFunctions();
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ NamedDecl *D = I.getDecl();
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ // Skip conversion function templates; they don't tell us anything
+ // about which builtin types we can convert to.
+ if (isa<FunctionTemplateDecl>(D))
+ continue;
+
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
+ if (AllowExplicitConversions || !Conv->isExplicit()) {
+ AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
+ VisibleQuals);
+ }
+ }
+ }
+}
+
+/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
+/// the volatile- and non-volatile-qualified assignment operators for the
+/// given type to the candidate set.
+static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
+ QualType T,
+ Expr **Args,
+ unsigned NumArgs,
+ OverloadCandidateSet &CandidateSet) {
+ QualType ParamTypes[2];
+
+ // T& operator=(T&, T)
+ ParamTypes[0] = S.Context.getLValueReferenceType(T);
+ ParamTypes[1] = T;
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssignmentOperator=*/true);
+
+ if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
+ // volatile T& operator=(volatile T&, T)
+ ParamTypes[0]
+ = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
+ ParamTypes[1] = T;
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssignmentOperator=*/true);
+ }
+}
+
+/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
+/// if any, found in visible type conversion functions found in ArgExpr's type.
+static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
+ Qualifiers VRQuals;
+ const RecordType *TyRec;
+ if (const MemberPointerType *RHSMPType =
+ ArgExpr->getType()->getAs<MemberPointerType>())
+ TyRec = RHSMPType->getClass()->getAs<RecordType>();
+ else
+ TyRec = ArgExpr->getType()->getAs<RecordType>();
+ if (!TyRec) {
+ // Just to be safe, assume the worst case.
+ VRQuals.addVolatile();
+ VRQuals.addRestrict();
+ return VRQuals;
+ }
+
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
+ if (!ClassDecl->hasDefinition())
+ return VRQuals;
+
+ const UnresolvedSetImpl *Conversions =
+ ClassDecl->getVisibleConversionFunctions();
+
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ NamedDecl *D = I.getDecl();
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+ if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
+ QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
+ if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
+ CanTy = ResTypeRef->getPointeeType();
+ // Need to go down the pointer/mempointer chain and add qualifiers
+ // as see them.
+ bool done = false;
+ while (!done) {
+ if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
+ CanTy = ResTypePtr->getPointeeType();
+ else if (const MemberPointerType *ResTypeMPtr =
+ CanTy->getAs<MemberPointerType>())
+ CanTy = ResTypeMPtr->getPointeeType();
+ else
+ done = true;
+ if (CanTy.isVolatileQualified())
+ VRQuals.addVolatile();
+ if (CanTy.isRestrictQualified())
+ VRQuals.addRestrict();
+ if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
+ return VRQuals;
+ }
+ }
+ }
+ return VRQuals;
+}
+
+namespace {
+
+/// \brief Helper class to manage the addition of builtin operator overload
+/// candidates. It provides shared state and utility methods used throughout
+/// the process, as well as a helper method to add each group of builtin
+/// operator overloads from the standard to a candidate set.
+class BuiltinOperatorOverloadBuilder {
+ // Common instance state available to all overload candidate addition methods.
+ Sema &S;
+ Expr **Args;
+ unsigned NumArgs;
+ Qualifiers VisibleTypeConversionsQuals;
+ bool HasArithmeticOrEnumeralCandidateType;
+ SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
+ OverloadCandidateSet &CandidateSet;
+
+ // Define some constants used to index and iterate over the arithemetic types
+ // provided via the getArithmeticType() method below.
+ // The "promoted arithmetic types" are the arithmetic
+ // types are that preserved by promotion (C++ [over.built]p2).
+ static const unsigned FirstIntegralType = 3;
+ static const unsigned LastIntegralType = 18;
+ static const unsigned FirstPromotedIntegralType = 3,
+ LastPromotedIntegralType = 9;
+ static const unsigned FirstPromotedArithmeticType = 0,
+ LastPromotedArithmeticType = 9;
+ static const unsigned NumArithmeticTypes = 18;
+
+ /// \brief Get the canonical type for a given arithmetic type index.
+ CanQualType getArithmeticType(unsigned index) {
+ assert(index < NumArithmeticTypes);
+ static CanQualType ASTContext::* const
+ ArithmeticTypes[NumArithmeticTypes] = {
+ // Start of promoted types.
+ &ASTContext::FloatTy,
+ &ASTContext::DoubleTy,
+ &ASTContext::LongDoubleTy,
+
+ // Start of integral types.
+ &ASTContext::IntTy,
+ &ASTContext::LongTy,
+ &ASTContext::LongLongTy,
+ &ASTContext::UnsignedIntTy,
+ &ASTContext::UnsignedLongTy,
+ &ASTContext::UnsignedLongLongTy,
+ // End of promoted types.
+
+ &ASTContext::BoolTy,
+ &ASTContext::CharTy,
+ &ASTContext::WCharTy,
+ &ASTContext::Char16Ty,
+ &ASTContext::Char32Ty,
+ &ASTContext::SignedCharTy,
+ &ASTContext::ShortTy,
+ &ASTContext::UnsignedCharTy,
+ &ASTContext::UnsignedShortTy,
+ // End of integral types.
+ // FIXME: What about complex?
+ };
+ return S.Context.*ArithmeticTypes[index];
+ }
+
+ /// \brief Gets the canonical type resulting from the usual arithemetic
+ /// converions for the given arithmetic types.
+ CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
+ // Accelerator table for performing the usual arithmetic conversions.
+ // The rules are basically:
+ // - if either is floating-point, use the wider floating-point
+ // - if same signedness, use the higher rank
+ // - if same size, use unsigned of the higher rank
+ // - use the larger type
+ // These rules, together with the axiom that higher ranks are
+ // never smaller, are sufficient to precompute all of these results
+ // *except* when dealing with signed types of higher rank.
+ // (we could precompute SLL x UI for all known platforms, but it's
+ // better not to make any assumptions).
+ enum PromotedType {
+ Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1
+ };
+ static PromotedType ConversionsTable[LastPromotedArithmeticType]
+ [LastPromotedArithmeticType] = {
+ /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt },
+ /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl },
+ /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
+ /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL },
+ /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL },
+ /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL },
+ /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL },
+ /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL },
+ /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL },
+ };
+
+ assert(L < LastPromotedArithmeticType);
+ assert(R < LastPromotedArithmeticType);
+ int Idx = ConversionsTable[L][R];
+
+ // Fast path: the table gives us a concrete answer.
+ if (Idx != Dep) return getArithmeticType(Idx);
+
+ // Slow path: we need to compare widths.
+ // An invariant is that the signed type has higher rank.
+ CanQualType LT = getArithmeticType(L),
+ RT = getArithmeticType(R);
+ unsigned LW = S.Context.getIntWidth(LT),
+ RW = S.Context.getIntWidth(RT);
+
+ // If they're different widths, use the signed type.
+ if (LW > RW) return LT;
+ else if (LW < RW) return RT;
+
+ // Otherwise, use the unsigned type of the signed type's rank.
+ if (L == SL || R == SL) return S.Context.UnsignedLongTy;
+ assert(L == SLL || R == SLL);
+ return S.Context.UnsignedLongLongTy;
+ }
+
+ /// \brief Helper method to factor out the common pattern of adding overloads
+ /// for '++' and '--' builtin operators.
+ void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
+ bool HasVolatile) {
+ QualType ParamTypes[2] = {
+ S.Context.getLValueReferenceType(CandidateTy),
+ S.Context.IntTy
+ };
+
+ // Non-volatile version.
+ if (NumArgs == 1)
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
+ else
+ S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
+
+ // Use a heuristic to reduce number of builtin candidates in the set:
+ // add volatile version only if there are conversions to a volatile type.
+ if (HasVolatile) {
+ ParamTypes[0] =
+ S.Context.getLValueReferenceType(
+ S.Context.getVolatileType(CandidateTy));
+ if (NumArgs == 1)
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
+ else
+ S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
+ }
+ }
+
+public:
+ BuiltinOperatorOverloadBuilder(
+ Sema &S, Expr **Args, unsigned NumArgs,
+ Qualifiers VisibleTypeConversionsQuals,
+ bool HasArithmeticOrEnumeralCandidateType,
+ SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
+ OverloadCandidateSet &CandidateSet)
+ : S(S), Args(Args), NumArgs(NumArgs),
+ VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
+ HasArithmeticOrEnumeralCandidateType(
+ HasArithmeticOrEnumeralCandidateType),
+ CandidateTypes(CandidateTypes),
+ CandidateSet(CandidateSet) {
+ // Validate some of our static helper constants in debug builds.
+ assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
+ "Invalid first promoted integral type");
+ assert(getArithmeticType(LastPromotedIntegralType - 1)
+ == S.Context.UnsignedLongLongTy &&
+ "Invalid last promoted integral type");
+ assert(getArithmeticType(FirstPromotedArithmeticType)
+ == S.Context.FloatTy &&
+ "Invalid first promoted arithmetic type");
+ assert(getArithmeticType(LastPromotedArithmeticType - 1)
+ == S.Context.UnsignedLongLongTy &&
+ "Invalid last promoted arithmetic type");
+ }
+
+ // C++ [over.built]p3:
+ //
+ // For every pair (T, VQ), where T is an arithmetic type, and VQ
+ // is either volatile or empty, there exist candidate operator
+ // functions of the form
+ //
+ // VQ T& operator++(VQ T&);
+ // T operator++(VQ T&, int);
+ //
+ // C++ [over.built]p4:
+ //
+ // For every pair (T, VQ), where T is an arithmetic type other
+ // than bool, and VQ is either volatile or empty, there exist
+ // candidate operator functions of the form
+ //
+ // VQ T& operator--(VQ T&);
+ // T operator--(VQ T&, int);
+ void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
+ Arith < NumArithmeticTypes; ++Arith) {
+ addPlusPlusMinusMinusStyleOverloads(
+ getArithmeticType(Arith),
+ VisibleTypeConversionsQuals.hasVolatile());
+ }
+ }
+
+ // C++ [over.built]p5:
+ //
+ // For every pair (T, VQ), where T is a cv-qualified or
+ // cv-unqualified object type, and VQ is either volatile or
+ // empty, there exist candidate operator functions of the form
+ //
+ // T*VQ& operator++(T*VQ&);
+ // T*VQ& operator--(T*VQ&);
+ // T* operator++(T*VQ&, int);
+ // T* operator--(T*VQ&, int);
+ void addPlusPlusMinusMinusPointerOverloads() {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[0].pointer_begin(),
+ PtrEnd = CandidateTypes[0].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ // Skip pointer types that aren't pointers to object types.
+ if (!(*Ptr)->getPointeeType()->isObjectType())
+ continue;
+
+ addPlusPlusMinusMinusStyleOverloads(*Ptr,
+ (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
+ VisibleTypeConversionsQuals.hasVolatile()));
+ }
+ }
+
+ // C++ [over.built]p6:
+ // For every cv-qualified or cv-unqualified object type T, there
+ // exist candidate operator functions of the form
+ //
+ // T& operator*(T*);
+ //
+ // C++ [over.built]p7:
+ // For every function type T that does not have cv-qualifiers or a
+ // ref-qualifier, there exist candidate operator functions of the form
+ // T& operator*(T*);
+ void addUnaryStarPointerOverloads() {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[0].pointer_begin(),
+ PtrEnd = CandidateTypes[0].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ QualType ParamTy = *Ptr;
+ QualType PointeeTy = ParamTy->getPointeeType();
+ if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
+ continue;
+
+ if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
+ if (Proto->getTypeQuals() || Proto->getRefQualifier())
+ continue;
+
+ S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
+ &ParamTy, Args, 1, CandidateSet);
+ }
+ }
+
+ // C++ [over.built]p9:
+ // For every promoted arithmetic type T, there exist candidate
+ // operator functions of the form
+ //
+ // T operator+(T);
+ // T operator-(T);
+ void addUnaryPlusOrMinusArithmeticOverloads() {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Arith = FirstPromotedArithmeticType;
+ Arith < LastPromotedArithmeticType; ++Arith) {
+ QualType ArithTy = getArithmeticType(Arith);
+ S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
+ }
+
+ // Extension: We also add these operators for vector types.
+ for (BuiltinCandidateTypeSet::iterator
+ Vec = CandidateTypes[0].vector_begin(),
+ VecEnd = CandidateTypes[0].vector_end();
+ Vec != VecEnd; ++Vec) {
+ QualType VecTy = *Vec;
+ S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
+ }
+ }
+
+ // C++ [over.built]p8:
+ // For every type T, there exist candidate operator functions of
+ // the form
+ //
+ // T* operator+(T*);
+ void addUnaryPlusPointerOverloads() {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[0].pointer_begin(),
+ PtrEnd = CandidateTypes[0].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ QualType ParamTy = *Ptr;
+ S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
+ }
+ }
+
+ // C++ [over.built]p10:
+ // For every promoted integral type T, there exist candidate
+ // operator functions of the form
+ //
+ // T operator~(T);
+ void addUnaryTildePromotedIntegralOverloads() {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Int = FirstPromotedIntegralType;
+ Int < LastPromotedIntegralType; ++Int) {
+ QualType IntTy = getArithmeticType(Int);
+ S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
+ }
+
+ // Extension: We also add this operator for vector types.
+ for (BuiltinCandidateTypeSet::iterator
+ Vec = CandidateTypes[0].vector_begin(),
+ VecEnd = CandidateTypes[0].vector_end();
+ Vec != VecEnd; ++Vec) {
+ QualType VecTy = *Vec;
+ S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
+ }
+ }
+
+ // C++ [over.match.oper]p16:
+ // For every pointer to member type T, there exist candidate operator
+ // functions of the form
+ //
+ // bool operator==(T,T);
+ // bool operator!=(T,T);
+ void addEqualEqualOrNotEqualMemberPointerOverloads() {
+ /// Set of (canonical) types that we've already handled.
+ llvm::SmallPtrSet<QualType, 8> AddedTypes;
+
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ for (BuiltinCandidateTypeSet::iterator
+ MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
+ MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
+ MemPtr != MemPtrEnd;
+ ++MemPtr) {
+ // Don't add the same builtin candidate twice.
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
+ continue;
+
+ QualType ParamTypes[2] = { *MemPtr, *MemPtr };
+ S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
+ CandidateSet);
+ }
+ }
+ }
+
+ // C++ [over.built]p15:
+ //
+ // For every T, where T is an enumeration type, a pointer type, or
+ // std::nullptr_t, there exist candidate operator functions of the form
+ //
+ // bool operator<(T, T);
+ // bool operator>(T, T);
+ // bool operator<=(T, T);
+ // bool operator>=(T, T);
+ // bool operator==(T, T);
+ // bool operator!=(T, T);
+ void addRelationalPointerOrEnumeralOverloads() {
+ // C++ [over.built]p1:
+ // If there is a user-written candidate with the same name and parameter
+ // types as a built-in candidate operator function, the built-in operator
+ // function is hidden and is not included in the set of candidate
+ // functions.
+ //
+ // The text is actually in a note, but if we don't implement it then we end
+ // up with ambiguities when the user provides an overloaded operator for
+ // an enumeration type. Note that only enumeration types have this problem,
+ // so we track which enumeration types we've seen operators for. Also, the
+ // only other overloaded operator with enumeration argumenst, operator=,
+ // cannot be overloaded for enumeration types, so this is the only place
+ // where we must suppress candidates like this.
+ llvm::DenseSet<std::pair<CanQualType, CanQualType> >
+ UserDefinedBinaryOperators;
+
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ if (CandidateTypes[ArgIdx].enumeration_begin() !=
+ CandidateTypes[ArgIdx].enumeration_end()) {
+ for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
+ CEnd = CandidateSet.end();
+ C != CEnd; ++C) {
+ if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
+ continue;
+
+ QualType FirstParamType =
+ C->Function->getParamDecl(0)->getType().getUnqualifiedType();
+ QualType SecondParamType =
+ C->Function->getParamDecl(1)->getType().getUnqualifiedType();
+
+ // Skip if either parameter isn't of enumeral type.
+ if (!FirstParamType->isEnumeralType() ||
+ !SecondParamType->isEnumeralType())
+ continue;
+
+ // Add this operator to the set of known user-defined operators.
+ UserDefinedBinaryOperators.insert(
+ std::make_pair(S.Context.getCanonicalType(FirstParamType),
+ S.Context.getCanonicalType(SecondParamType)));
+ }
+ }
+ }
+
+ /// Set of (canonical) types that we've already handled.
+ llvm::SmallPtrSet<QualType, 8> AddedTypes;
+
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[ArgIdx].pointer_begin(),
+ PtrEnd = CandidateTypes[ArgIdx].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ // Don't add the same builtin candidate twice.
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
+ continue;
+
+ QualType ParamTypes[2] = { *Ptr, *Ptr };
+ S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
+ CandidateSet);
+ }
+ for (BuiltinCandidateTypeSet::iterator
+ Enum = CandidateTypes[ArgIdx].enumeration_begin(),
+ EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
+ Enum != EnumEnd; ++Enum) {
+ CanQualType CanonType = S.Context.getCanonicalType(*Enum);
+
+ // Don't add the same builtin candidate twice, or if a user defined
+ // candidate exists.
+ if (!AddedTypes.insert(CanonType) ||
+ UserDefinedBinaryOperators.count(std::make_pair(CanonType,
+ CanonType)))
+ continue;
+
+ QualType ParamTypes[2] = { *Enum, *Enum };
+ S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
+ CandidateSet);
+ }
+
+ if (CandidateTypes[ArgIdx].hasNullPtrType()) {
+ CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
+ if (AddedTypes.insert(NullPtrTy) &&
+ !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
+ NullPtrTy))) {
+ QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
+ S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
+ CandidateSet);
+ }
+ }
+ }
+ }
+
+ // C++ [over.built]p13:
+ //
+ // For every cv-qualified or cv-unqualified object type T
+ // there exist candidate operator functions of the form
+ //
+ // T* operator+(T*, ptrdiff_t);
+ // T& operator[](T*, ptrdiff_t); [BELOW]
+ // T* operator-(T*, ptrdiff_t);
+ // T* operator+(ptrdiff_t, T*);
+ // T& operator[](ptrdiff_t, T*); [BELOW]
+ //
+ // C++ [over.built]p14:
+ //
+ // For every T, where T is a pointer to object type, there
+ // exist candidate operator functions of the form
+ //
+ // ptrdiff_t operator-(T, T);
+ void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
+ /// Set of (canonical) types that we've already handled.
+ llvm::SmallPtrSet<QualType, 8> AddedTypes;
+
+ for (int Arg = 0; Arg < 2; ++Arg) {
+ QualType AsymetricParamTypes[2] = {
+ S.Context.getPointerDiffType(),
+ S.Context.getPointerDiffType(),
+ };
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[Arg].pointer_begin(),
+ PtrEnd = CandidateTypes[Arg].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ QualType PointeeTy = (*Ptr)->getPointeeType();
+ if (!PointeeTy->isObjectType())
+ continue;
+
+ AsymetricParamTypes[Arg] = *Ptr;
+ if (Arg == 0 || Op == OO_Plus) {
+ // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
+ // T* operator+(ptrdiff_t, T*);
+ S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
+ CandidateSet);
+ }
+ if (Op == OO_Minus) {
+ // ptrdiff_t operator-(T, T);
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
+ continue;
+
+ QualType ParamTypes[2] = { *Ptr, *Ptr };
+ S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
+ Args, 2, CandidateSet);
+ }
+ }
+ }
+ }
+
+ // C++ [over.built]p12:
+ //
+ // For every pair of promoted arithmetic types L and R, there
+ // exist candidate operator functions of the form
+ //
+ // LR operator*(L, R);
+ // LR operator/(L, R);
+ // LR operator+(L, R);
+ // LR operator-(L, R);
+ // bool operator<(L, R);
+ // bool operator>(L, R);
+ // bool operator<=(L, R);
+ // bool operator>=(L, R);
+ // bool operator==(L, R);
+ // bool operator!=(L, R);
+ //
+ // where LR is the result of the usual arithmetic conversions
+ // between types L and R.
+ //
+ // C++ [over.built]p24:
+ //
+ // For every pair of promoted arithmetic types L and R, there exist
+ // candidate operator functions of the form
+ //
+ // LR operator?(bool, L, R);
+ //
+ // where LR is the result of the usual arithmetic conversions
+ // between types L and R.
+ // Our candidates ignore the first parameter.
+ void addGenericBinaryArithmeticOverloads(bool isComparison) {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Left = FirstPromotedArithmeticType;
+ Left < LastPromotedArithmeticType; ++Left) {
+ for (unsigned Right = FirstPromotedArithmeticType;
+ Right < LastPromotedArithmeticType; ++Right) {
+ QualType LandR[2] = { getArithmeticType(Left),
+ getArithmeticType(Right) };
+ QualType Result =
+ isComparison ? S.Context.BoolTy
+ : getUsualArithmeticConversions(Left, Right);
+ S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
+ }
+ }
+
+ // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
+ // conditional operator for vector types.
+ for (BuiltinCandidateTypeSet::iterator
+ Vec1 = CandidateTypes[0].vector_begin(),
+ Vec1End = CandidateTypes[0].vector_end();
+ Vec1 != Vec1End; ++Vec1) {
+ for (BuiltinCandidateTypeSet::iterator
+ Vec2 = CandidateTypes[1].vector_begin(),
+ Vec2End = CandidateTypes[1].vector_end();
+ Vec2 != Vec2End; ++Vec2) {
+ QualType LandR[2] = { *Vec1, *Vec2 };
+ QualType Result = S.Context.BoolTy;
+ if (!isComparison) {
+ if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
+ Result = *Vec1;
+ else
+ Result = *Vec2;
+ }
+
+ S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
+ }
+ }
+ }
+
+ // C++ [over.built]p17:
+ //
+ // For every pair of promoted integral types L and R, there
+ // exist candidate operator functions of the form
+ //
+ // LR operator%(L, R);
+ // LR operator&(L, R);
+ // LR operator^(L, R);
+ // LR operator|(L, R);
+ // L operator<<(L, R);
+ // L operator>>(L, R);
+ //
+ // where LR is the result of the usual arithmetic conversions
+ // between types L and R.
+ void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Left = FirstPromotedIntegralType;
+ Left < LastPromotedIntegralType; ++Left) {
+ for (unsigned Right = FirstPromotedIntegralType;
+ Right < LastPromotedIntegralType; ++Right) {
+ QualType LandR[2] = { getArithmeticType(Left),
+ getArithmeticType(Right) };
+ QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
+ ? LandR[0]
+ : getUsualArithmeticConversions(Left, Right);
+ S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
+ }
+ }
+ }
+
+ // C++ [over.built]p20:
+ //
+ // For every pair (T, VQ), where T is an enumeration or
+ // pointer to member type and VQ is either volatile or
+ // empty, there exist candidate operator functions of the form
+ //
+ // VQ T& operator=(VQ T&, T);
+ void addAssignmentMemberPointerOrEnumeralOverloads() {
+ /// Set of (canonical) types that we've already handled.
+ llvm::SmallPtrSet<QualType, 8> AddedTypes;
+
+ for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
+ for (BuiltinCandidateTypeSet::iterator
+ Enum = CandidateTypes[ArgIdx].enumeration_begin(),
+ EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
+ Enum != EnumEnd; ++Enum) {
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
+ continue;
+
+ AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
+ CandidateSet);
+ }
+
+ for (BuiltinCandidateTypeSet::iterator
+ MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
+ MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
+ MemPtr != MemPtrEnd; ++MemPtr) {
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
+ continue;
+
+ AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
+ CandidateSet);
+ }
+ }
+ }
+
+ // C++ [over.built]p19:
+ //
+ // For every pair (T, VQ), where T is any type and VQ is either
+ // volatile or empty, there exist candidate operator functions
+ // of the form
+ //
+ // T*VQ& operator=(T*VQ&, T*);
+ //
+ // C++ [over.built]p21:
+ //
+ // For every pair (T, VQ), where T is a cv-qualified or
+ // cv-unqualified object type and VQ is either volatile or
+ // empty, there exist candidate operator functions of the form
+ //
+ // T*VQ& operator+=(T*VQ&, ptrdiff_t);
+ // T*VQ& operator-=(T*VQ&, ptrdiff_t);
+ void addAssignmentPointerOverloads(bool isEqualOp) {
+ /// Set of (canonical) types that we've already handled.
+ llvm::SmallPtrSet<QualType, 8> AddedTypes;
+
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[0].pointer_begin(),
+ PtrEnd = CandidateTypes[0].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ // If this is operator=, keep track of the builtin candidates we added.
+ if (isEqualOp)
+ AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
+ else if (!(*Ptr)->getPointeeType()->isObjectType())
+ continue;
+
+ // non-volatile version
+ QualType ParamTypes[2] = {
+ S.Context.getLValueReferenceType(*Ptr),
+ isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
+ };
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/ isEqualOp);
+
+ if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
+ VisibleTypeConversionsQuals.hasVolatile()) {
+ // volatile version
+ ParamTypes[0] =
+ S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/isEqualOp);
+ }
+ }
+
+ if (isEqualOp) {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[1].pointer_begin(),
+ PtrEnd = CandidateTypes[1].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ // Make sure we don't add the same candidate twice.
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
+ continue;
+
+ QualType ParamTypes[2] = {
+ S.Context.getLValueReferenceType(*Ptr),
+ *Ptr,
+ };
+
+ // non-volatile version
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/true);
+
+ if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
+ VisibleTypeConversionsQuals.hasVolatile()) {
+ // volatile version
+ ParamTypes[0] =
+ S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
+ CandidateSet, /*IsAssigmentOperator=*/true);
+ }
+ }
+ }
+ }
+
+ // C++ [over.built]p18:
+ //
+ // For every triple (L, VQ, R), where L is an arithmetic type,
+ // VQ is either volatile or empty, and R is a promoted
+ // arithmetic type, there exist candidate operator functions of
+ // the form
+ //
+ // VQ L& operator=(VQ L&, R);
+ // VQ L& operator*=(VQ L&, R);
+ // VQ L& operator/=(VQ L&, R);
+ // VQ L& operator+=(VQ L&, R);
+ // VQ L& operator-=(VQ L&, R);
+ void addAssignmentArithmeticOverloads(bool isEqualOp) {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
+ for (unsigned Right = FirstPromotedArithmeticType;
+ Right < LastPromotedArithmeticType; ++Right) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = getArithmeticType(Right);
+
+ // Add this built-in operator as a candidate (VQ is empty).
+ ParamTypes[0] =
+ S.Context.getLValueReferenceType(getArithmeticType(Left));
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/isEqualOp);
+
+ // Add this built-in operator as a candidate (VQ is 'volatile').
+ if (VisibleTypeConversionsQuals.hasVolatile()) {
+ ParamTypes[0] =
+ S.Context.getVolatileType(getArithmeticType(Left));
+ ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
+ CandidateSet,
+ /*IsAssigmentOperator=*/isEqualOp);
+ }
+ }
+ }
+
+ // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
+ for (BuiltinCandidateTypeSet::iterator
+ Vec1 = CandidateTypes[0].vector_begin(),
+ Vec1End = CandidateTypes[0].vector_end();
+ Vec1 != Vec1End; ++Vec1) {
+ for (BuiltinCandidateTypeSet::iterator
+ Vec2 = CandidateTypes[1].vector_begin(),
+ Vec2End = CandidateTypes[1].vector_end();
+ Vec2 != Vec2End; ++Vec2) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = *Vec2;
+ // Add this built-in operator as a candidate (VQ is empty).
+ ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/isEqualOp);
+
+ // Add this built-in operator as a candidate (VQ is 'volatile').
+ if (VisibleTypeConversionsQuals.hasVolatile()) {
+ ParamTypes[0] = S.Context.getVolatileType(*Vec1);
+ ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
+ CandidateSet,
+ /*IsAssigmentOperator=*/isEqualOp);
+ }
+ }
+ }
+ }
+
+ // C++ [over.built]p22:
+ //
+ // For every triple (L, VQ, R), where L is an integral type, VQ
+ // is either volatile or empty, and R is a promoted integral
+ // type, there exist candidate operator functions of the form
+ //
+ // VQ L& operator%=(VQ L&, R);
+ // VQ L& operator<<=(VQ L&, R);
+ // VQ L& operator>>=(VQ L&, R);
+ // VQ L& operator&=(VQ L&, R);
+ // VQ L& operator^=(VQ L&, R);
+ // VQ L& operator|=(VQ L&, R);
+ void addAssignmentIntegralOverloads() {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
+ for (unsigned Right = FirstPromotedIntegralType;
+ Right < LastPromotedIntegralType; ++Right) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = getArithmeticType(Right);
+
+ // Add this built-in operator as a candidate (VQ is empty).
+ ParamTypes[0] =
+ S.Context.getLValueReferenceType(getArithmeticType(Left));
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
+ if (VisibleTypeConversionsQuals.hasVolatile()) {
+ // Add this built-in operator as a candidate (VQ is 'volatile').
+ ParamTypes[0] = getArithmeticType(Left);
+ ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
+ ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
+ CandidateSet);
+ }
+ }
+ }
+ }
+
+ // C++ [over.operator]p23:
+ //
+ // There also exist candidate operator functions of the form
+ //
+ // bool operator!(bool);
+ // bool operator&&(bool, bool);
+ // bool operator||(bool, bool);
+ void addExclaimOverload() {
+ QualType ParamTy = S.Context.BoolTy;
+ S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
+ /*IsAssignmentOperator=*/false,
+ /*NumContextualBoolArguments=*/1);
+ }
+ void addAmpAmpOrPipePipeOverload() {
+ QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
+ S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
+ /*IsAssignmentOperator=*/false,
+ /*NumContextualBoolArguments=*/2);
+ }
+
+ // C++ [over.built]p13:
+ //
+ // For every cv-qualified or cv-unqualified object type T there
+ // exist candidate operator functions of the form
+ //
+ // T* operator+(T*, ptrdiff_t); [ABOVE]
+ // T& operator[](T*, ptrdiff_t);
+ // T* operator-(T*, ptrdiff_t); [ABOVE]
+ // T* operator+(ptrdiff_t, T*); [ABOVE]
+ // T& operator[](ptrdiff_t, T*);
+ void addSubscriptOverloads() {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[0].pointer_begin(),
+ PtrEnd = CandidateTypes[0].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
+ QualType PointeeType = (*Ptr)->getPointeeType();
+ if (!PointeeType->isObjectType())
+ continue;
+
+ QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
+
+ // T& operator[](T*, ptrdiff_t)
+ S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
+ }
+
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[1].pointer_begin(),
+ PtrEnd = CandidateTypes[1].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
+ QualType PointeeType = (*Ptr)->getPointeeType();
+ if (!PointeeType->isObjectType())
+ continue;
+
+ QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
+
+ // T& operator[](ptrdiff_t, T*)
+ S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
+ }
+ }
+
+ // C++ [over.built]p11:
+ // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
+ // C1 is the same type as C2 or is a derived class of C2, T is an object
+ // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
+ // there exist candidate operator functions of the form
+ //
+ // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
+ //
+ // where CV12 is the union of CV1 and CV2.
+ void addArrowStarOverloads() {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[0].pointer_begin(),
+ PtrEnd = CandidateTypes[0].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ QualType C1Ty = (*Ptr);
+ QualType C1;
+ QualifierCollector Q1;
+ C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
+ if (!isa<RecordType>(C1))
+ continue;
+ // heuristic to reduce number of builtin candidates in the set.
+ // Add volatile/restrict version only if there are conversions to a
+ // volatile/restrict type.
+ if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
+ continue;
+ if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
+ continue;
+ for (BuiltinCandidateTypeSet::iterator
+ MemPtr = CandidateTypes[1].member_pointer_begin(),
+ MemPtrEnd = CandidateTypes[1].member_pointer_end();
+ MemPtr != MemPtrEnd; ++MemPtr) {
+ const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
+ QualType C2 = QualType(mptr->getClass(), 0);
+ C2 = C2.getUnqualifiedType();
+ if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
+ break;
+ QualType ParamTypes[2] = { *Ptr, *MemPtr };
+ // build CV12 T&
+ QualType T = mptr->getPointeeType();
+ if (!VisibleTypeConversionsQuals.hasVolatile() &&
+ T.isVolatileQualified())
+ continue;
+ if (!VisibleTypeConversionsQuals.hasRestrict() &&
+ T.isRestrictQualified())
+ continue;
+ T = Q1.apply(S.Context, T);
+ QualType ResultTy = S.Context.getLValueReferenceType(T);
+ S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
+ }
+ }
+ }
+
+ // Note that we don't consider the first argument, since it has been
+ // contextually converted to bool long ago. The candidates below are
+ // therefore added as binary.
+ //
+ // C++ [over.built]p25:
+ // For every type T, where T is a pointer, pointer-to-member, or scoped
+ // enumeration type, there exist candidate operator functions of the form
+ //
+ // T operator?(bool, T, T);
+ //
+ void addConditionalOperatorOverloads() {
+ /// Set of (canonical) types that we've already handled.
+ llvm::SmallPtrSet<QualType, 8> AddedTypes;
+
+ for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[ArgIdx].pointer_begin(),
+ PtrEnd = CandidateTypes[ArgIdx].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
+ continue;
+
+ QualType ParamTypes[2] = { *Ptr, *Ptr };
+ S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+ }
+
+ for (BuiltinCandidateTypeSet::iterator
+ MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
+ MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
+ MemPtr != MemPtrEnd; ++MemPtr) {
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
+ continue;
+
+ QualType ParamTypes[2] = { *MemPtr, *MemPtr };
+ S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
+ }
+
+ if (S.getLangOpts().CPlusPlus0x) {
+ for (BuiltinCandidateTypeSet::iterator
+ Enum = CandidateTypes[ArgIdx].enumeration_begin(),
+ EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
+ Enum != EnumEnd; ++Enum) {
+ if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
+ continue;
+
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
+ continue;
+
+ QualType ParamTypes[2] = { *Enum, *Enum };
+ S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
+ }
+ }
+ }
+ }
+};
+
+} // end anonymous namespace
+
+/// AddBuiltinOperatorCandidates - Add the appropriate built-in
+/// operator overloads to the candidate set (C++ [over.built]), based
+/// on the operator @p Op and the arguments given. For example, if the
+/// operator is a binary '+', this routine might add "int
+/// operator+(int, int)" to cover integer addition.
+void
+Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
+ SourceLocation OpLoc,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet) {
+ // Find all of the types that the arguments can convert to, but only
+ // if the operator we're looking at has built-in operator candidates
+ // that make use of these types. Also record whether we encounter non-record
+ // candidate types or either arithmetic or enumeral candidate types.
+ Qualifiers VisibleTypeConversionsQuals;
+ VisibleTypeConversionsQuals.addConst();
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
+ VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
+
+ bool HasNonRecordCandidateType = false;
+ bool HasArithmeticOrEnumeralCandidateType = false;
+ SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
+ CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
+ OpLoc,
+ true,
+ (Op == OO_Exclaim ||
+ Op == OO_AmpAmp ||
+ Op == OO_PipePipe),
+ VisibleTypeConversionsQuals);
+ HasNonRecordCandidateType = HasNonRecordCandidateType ||
+ CandidateTypes[ArgIdx].hasNonRecordTypes();
+ HasArithmeticOrEnumeralCandidateType =
+ HasArithmeticOrEnumeralCandidateType ||
+ CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
+ }
+
+ // Exit early when no non-record types have been added to the candidate set
+ // for any of the arguments to the operator.
+ //
+ // We can't exit early for !, ||, or &&, since there we have always have
+ // 'bool' overloads.
+ if (!HasNonRecordCandidateType &&
+ !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
+ return;
+
+ // Setup an object to manage the common state for building overloads.
+ BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
+ VisibleTypeConversionsQuals,
+ HasArithmeticOrEnumeralCandidateType,
+ CandidateTypes, CandidateSet);
+
+ // Dispatch over the operation to add in only those overloads which apply.
+ switch (Op) {
+ case OO_None:
+ case NUM_OVERLOADED_OPERATORS:
+ llvm_unreachable("Expected an overloaded operator");
+
+ case OO_New:
+ case OO_Delete:
+ case OO_Array_New:
+ case OO_Array_Delete:
+ case OO_Call:
+ llvm_unreachable(
+ "Special operators don't use AddBuiltinOperatorCandidates");
+
+ case OO_Comma:
+ case OO_Arrow:
+ // C++ [over.match.oper]p3:
+ // -- For the operator ',', the unary operator '&', or the
+ // operator '->', the built-in candidates set is empty.
+ break;
+
+ case OO_Plus: // '+' is either unary or binary
+ if (NumArgs == 1)
+ OpBuilder.addUnaryPlusPointerOverloads();
+ // Fall through.
+
+ case OO_Minus: // '-' is either unary or binary
+ if (NumArgs == 1) {
+ OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
+ } else {
+ OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
+ OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
+ }
+ break;
+
+ case OO_Star: // '*' is either unary or binary
+ if (NumArgs == 1)
+ OpBuilder.addUnaryStarPointerOverloads();
+ else
+ OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
+ break;
+
+ case OO_Slash:
+ OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
+ break;
+
+ case OO_PlusPlus:
+ case OO_MinusMinus:
+ OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
+ OpBuilder.addPlusPlusMinusMinusPointerOverloads();
+ break;
+
+ case OO_EqualEqual:
+ case OO_ExclaimEqual:
+ OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
+ // Fall through.
+
+ case OO_Less:
+ case OO_Greater:
+ case OO_LessEqual:
+ case OO_GreaterEqual:
+ OpBuilder.addRelationalPointerOrEnumeralOverloads();
+ OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
+ break;
+
+ case OO_Percent:
+ case OO_Caret:
+ case OO_Pipe:
+ case OO_LessLess:
+ case OO_GreaterGreater:
+ OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
+ break;
+
+ case OO_Amp: // '&' is either unary or binary
+ if (NumArgs == 1)
+ // C++ [over.match.oper]p3:
+ // -- For the operator ',', the unary operator '&', or the
+ // operator '->', the built-in candidates set is empty.
+ break;
+
+ OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
+ break;
+
+ case OO_Tilde:
+ OpBuilder.addUnaryTildePromotedIntegralOverloads();
+ break;
+
+ case OO_Equal:
+ OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
+ // Fall through.
+
+ case OO_PlusEqual:
+ case OO_MinusEqual:
+ OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
+ // Fall through.
+
+ case OO_StarEqual:
+ case OO_SlashEqual:
+ OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
+ break;
+
+ case OO_PercentEqual:
+ case OO_LessLessEqual:
+ case OO_GreaterGreaterEqual:
+ case OO_AmpEqual:
+ case OO_CaretEqual:
+ case OO_PipeEqual:
+ OpBuilder.addAssignmentIntegralOverloads();
+ break;
+
+ case OO_Exclaim:
+ OpBuilder.addExclaimOverload();
+ break;
+
+ case OO_AmpAmp:
+ case OO_PipePipe:
+ OpBuilder.addAmpAmpOrPipePipeOverload();
+ break;
+
+ case OO_Subscript:
+ OpBuilder.addSubscriptOverloads();
+ break;
+
+ case OO_ArrowStar:
+ OpBuilder.addArrowStarOverloads();
+ break;
+
+ case OO_Conditional:
+ OpBuilder.addConditionalOperatorOverloads();
+ OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
+ break;
+ }
+}
+
+/// \brief Add function candidates found via argument-dependent lookup
+/// to the set of overloading candidates.
+///
+/// This routine performs argument-dependent name lookup based on the
+/// given function name (which may also be an operator name) and adds
+/// all of the overload candidates found by ADL to the overload
+/// candidate set (C++ [basic.lookup.argdep]).
+void
+Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
+ bool Operator, SourceLocation Loc,
+ llvm::ArrayRef<Expr *> Args,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool PartialOverloading,
+ bool StdNamespaceIsAssociated) {
+ ADLResult Fns;
+
+ // FIXME: This approach for uniquing ADL results (and removing
+ // redundant candidates from the set) relies on pointer-equality,
+ // which means we need to key off the canonical decl. However,
+ // always going back to the canonical decl might not get us the
+ // right set of default arguments. What default arguments are
+ // we supposed to consider on ADL candidates, anyway?
+
+ // FIXME: Pass in the explicit template arguments?
+ ArgumentDependentLookup(Name, Operator, Loc, Args, Fns,
+ StdNamespaceIsAssociated);
+
+ // Erase all of the candidates we already knew about.
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
+ CandEnd = CandidateSet.end();
+ Cand != CandEnd; ++Cand)
+ if (Cand->Function) {
+ Fns.erase(Cand->Function);
+ if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
+ Fns.erase(FunTmpl);
+ }
+
+ // For each of the ADL candidates we found, add it to the overload
+ // set.
+ for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
+ DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
+ if (ExplicitTemplateArgs)
+ continue;
+
+ AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
+ PartialOverloading);
+ } else
+ AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
+ FoundDecl, ExplicitTemplateArgs,
+ Args, CandidateSet);
+ }
+}
+
+/// isBetterOverloadCandidate - Determines whether the first overload
+/// candidate is a better candidate than the second (C++ 13.3.3p1).
+bool
+isBetterOverloadCandidate(Sema &S,
+ const OverloadCandidate &Cand1,
+ const OverloadCandidate &Cand2,
+ SourceLocation Loc,
+ bool UserDefinedConversion) {
+ // Define viable functions to be better candidates than non-viable
+ // functions.
+ if (!Cand2.Viable)
+ return Cand1.Viable;
+ else if (!Cand1.Viable)
+ return false;
+
+ // C++ [over.match.best]p1:
+ //
+ // -- if F is a static member function, ICS1(F) is defined such
+ // that ICS1(F) is neither better nor worse than ICS1(G) for
+ // any function G, and, symmetrically, ICS1(G) is neither
+ // better nor worse than ICS1(F).
+ unsigned StartArg = 0;
+ if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
+ StartArg = 1;
+
+ // C++ [over.match.best]p1:
+ // A viable function F1 is defined to be a better function than another
+ // viable function F2 if for all arguments i, ICSi(F1) is not a worse
+ // conversion sequence than ICSi(F2), and then...
+ unsigned NumArgs = Cand1.NumConversions;
+ assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
+ bool HasBetterConversion = false;
+ for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
+ switch (CompareImplicitConversionSequences(S,
+ Cand1.Conversions[ArgIdx],
+ Cand2.Conversions[ArgIdx])) {
+ case ImplicitConversionSequence::Better:
+ // Cand1 has a better conversion sequence.
+ HasBetterConversion = true;
+ break;
+
+ case ImplicitConversionSequence::Worse:
+ // Cand1 can't be better than Cand2.
+ return false;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ // Do nothing.
+ break;
+ }
+ }
+
+ // -- for some argument j, ICSj(F1) is a better conversion sequence than
+ // ICSj(F2), or, if not that,
+ if (HasBetterConversion)
+ return true;
+
+ // - F1 is a non-template function and F2 is a function template
+ // specialization, or, if not that,
+ if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
+ Cand2.Function && Cand2.Function->getPrimaryTemplate())
+ return true;
+
+ // -- F1 and F2 are function template specializations, and the function
+ // template for F1 is more specialized than the template for F2
+ // according to the partial ordering rules described in 14.5.5.2, or,
+ // if not that,
+ if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
+ Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
+ if (FunctionTemplateDecl *BetterTemplate
+ = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
+ Cand2.Function->getPrimaryTemplate(),
+ Loc,
+ isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
+ : TPOC_Call,
+ Cand1.ExplicitCallArguments))
+ return BetterTemplate == Cand1.Function->getPrimaryTemplate();
+ }
+
+ // -- the context is an initialization by user-defined conversion
+ // (see 8.5, 13.3.1.5) and the standard conversion sequence
+ // from the return type of F1 to the destination type (i.e.,
+ // the type of the entity being initialized) is a better
+ // conversion sequence than the standard conversion sequence
+ // from the return type of F2 to the destination type.
+ if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
+ isa<CXXConversionDecl>(Cand1.Function) &&
+ isa<CXXConversionDecl>(Cand2.Function)) {
+ // First check whether we prefer one of the conversion functions over the
+ // other. This only distinguishes the results in non-standard, extension
+ // cases such as the conversion from a lambda closure type to a function
+ // pointer or block.
+ ImplicitConversionSequence::CompareKind FuncResult
+ = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
+ if (FuncResult != ImplicitConversionSequence::Indistinguishable)
+ return FuncResult;
+
+ switch (CompareStandardConversionSequences(S,
+ Cand1.FinalConversion,
+ Cand2.FinalConversion)) {
+ case ImplicitConversionSequence::Better:
+ // Cand1 has a better conversion sequence.
+ return true;
+
+ case ImplicitConversionSequence::Worse:
+ // Cand1 can't be better than Cand2.
+ return false;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ // Do nothing
+ break;
+ }
+ }
+
+ return false;
+}
+
+/// \brief Computes the best viable function (C++ 13.3.3)
+/// within an overload candidate set.
+///
+/// \param CandidateSet the set of candidate functions.
+///
+/// \param Loc the location of the function name (or operator symbol) for
+/// which overload resolution occurs.
+///
+/// \param Best f overload resolution was successful or found a deleted
+/// function, Best points to the candidate function found.
+///
+/// \returns The result of overload resolution.
+OverloadingResult
+OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
+ iterator &Best,
+ bool UserDefinedConversion) {
+ // Find the best viable function.
+ Best = end();
+ for (iterator Cand = begin(); Cand != end(); ++Cand) {
+ if (Cand->Viable)
+ if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
+ UserDefinedConversion))
+ Best = Cand;
+ }
+
+ // If we didn't find any viable functions, abort.
+ if (Best == end())
+ return OR_No_Viable_Function;
+
+ // Make sure that this function is better than every other viable
+ // function. If not, we have an ambiguity.
+ for (iterator Cand = begin(); Cand != end(); ++Cand) {
+ if (Cand->Viable &&
+ Cand != Best &&
+ !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
+ UserDefinedConversion)) {
+ Best = end();
+ return OR_Ambiguous;
+ }
+ }
+
+ // Best is the best viable function.
+ if (Best->Function &&
+ (Best->Function->isDeleted() ||
+ S.isFunctionConsideredUnavailable(Best->Function)))
+ return OR_Deleted;
+
+ return OR_Success;
+}
+
+namespace {
+
+enum OverloadCandidateKind {
+ oc_function,
+ oc_method,
+ oc_constructor,
+ oc_function_template,
+ oc_method_template,
+ oc_constructor_template,
+ oc_implicit_default_constructor,
+ oc_implicit_copy_constructor,
+ oc_implicit_move_constructor,
+ oc_implicit_copy_assignment,
+ oc_implicit_move_assignment,
+ oc_implicit_inherited_constructor
+};
+
+OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
+ FunctionDecl *Fn,
+ std::string &Description) {
+ bool isTemplate = false;
+
+ if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
+ isTemplate = true;
+ Description = S.getTemplateArgumentBindingsText(
+ FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
+ }
+
+ if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
+ if (!Ctor->isImplicit())
+ return isTemplate ? oc_constructor_template : oc_constructor;
+
+ if (Ctor->getInheritedConstructor())
+ return oc_implicit_inherited_constructor;
+
+ if (Ctor->isDefaultConstructor())
+ return oc_implicit_default_constructor;
+
+ if (Ctor->isMoveConstructor())
+ return oc_implicit_move_constructor;
+
+ assert(Ctor->isCopyConstructor() &&
+ "unexpected sort of implicit constructor");
+ return oc_implicit_copy_constructor;
+ }
+
+ if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
+ // This actually gets spelled 'candidate function' for now, but
+ // it doesn't hurt to split it out.
+ if (!Meth->isImplicit())
+ return isTemplate ? oc_method_template : oc_method;
+
+ if (Meth->isMoveAssignmentOperator())
+ return oc_implicit_move_assignment;
+
+ if (Meth->isCopyAssignmentOperator())
+ return oc_implicit_copy_assignment;
+
+ assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
+ return oc_method;
+ }
+
+ return isTemplate ? oc_function_template : oc_function;
+}
+
+void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
+ const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
+ if (!Ctor) return;
+
+ Ctor = Ctor->getInheritedConstructor();
+ if (!Ctor) return;
+
+ S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
+}
+
+} // end anonymous namespace
+
+// Notes the location of an overload candidate.
+void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
+ std::string FnDesc;
+ OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
+ PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
+ << (unsigned) K << FnDesc;
+ HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
+ Diag(Fn->getLocation(), PD);
+ MaybeEmitInheritedConstructorNote(*this, Fn);
+}
+
+//Notes the location of all overload candidates designated through
+// OverloadedExpr
+void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
+ assert(OverloadedExpr->getType() == Context.OverloadTy);
+
+ OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
+ OverloadExpr *OvlExpr = Ovl.Expression;
+
+ for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
+ IEnd = OvlExpr->decls_end();
+ I != IEnd; ++I) {
+ if (FunctionTemplateDecl *FunTmpl =
+ dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
+ NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
+ } else if (FunctionDecl *Fun
+ = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
+ NoteOverloadCandidate(Fun, DestType);
+ }
+ }
+}
+
+/// Diagnoses an ambiguous conversion. The partial diagnostic is the
+/// "lead" diagnostic; it will be given two arguments, the source and
+/// target types of the conversion.
+void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
+ Sema &S,
+ SourceLocation CaretLoc,
+ const PartialDiagnostic &PDiag) const {
+ S.Diag(CaretLoc, PDiag)
+ << Ambiguous.getFromType() << Ambiguous.getToType();
+ for (AmbiguousConversionSequence::const_iterator
+ I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
+ S.NoteOverloadCandidate(*I);
+ }
+}
+
+namespace {
+
+void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
+ const ImplicitConversionSequence &Conv = Cand->Conversions[I];
+ assert(Conv.isBad());
+ assert(Cand->Function && "for now, candidate must be a function");
+ FunctionDecl *Fn = Cand->Function;
+
+ // There's a conversion slot for the object argument if this is a
+ // non-constructor method. Note that 'I' corresponds the
+ // conversion-slot index.
+ bool isObjectArgument = false;
+ if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
+ if (I == 0)
+ isObjectArgument = true;
+ else
+ I--;
+ }
+
+ std::string FnDesc;
+ OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
+
+ Expr *FromExpr = Conv.Bad.FromExpr;
+ QualType FromTy = Conv.Bad.getFromType();
+ QualType ToTy = Conv.Bad.getToType();
+
+ if (FromTy == S.Context.OverloadTy) {
+ assert(FromExpr && "overload set argument came from implicit argument?");
+ Expr *E = FromExpr->IgnoreParens();
+ if (isa<UnaryOperator>(E))
+ E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
+ DeclarationName Name = cast<OverloadExpr>(E)->getName();
+
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << ToTy << Name << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ // Do some hand-waving analysis to see if the non-viability is due
+ // to a qualifier mismatch.
+ CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
+ CanQualType CToTy = S.Context.getCanonicalType(ToTy);
+ if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
+ CToTy = RT->getPointeeType();
+ else {
+ // TODO: detect and diagnose the full richness of const mismatches.
+ if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
+ if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
+ CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
+ }
+
+ if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
+ !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
+ Qualifiers FromQs = CFromTy.getQualifiers();
+ Qualifiers ToQs = CToTy.getQualifiers();
+
+ if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy
+ << FromQs.getAddressSpace() << ToQs.getAddressSpace()
+ << (unsigned) isObjectArgument << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy
+ << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
+ << (unsigned) isObjectArgument << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy
+ << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
+ << (unsigned) isObjectArgument << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
+ assert(CVR && "unexpected qualifiers mismatch");
+
+ if (isObjectArgument) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << (CVR - 1);
+ } else {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << (CVR - 1) << I+1;
+ }
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ // Special diagnostic for failure to convert an initializer list, since
+ // telling the user that it has type void is not useful.
+ if (FromExpr && isa<InitListExpr>(FromExpr)) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ // Diagnose references or pointers to incomplete types differently,
+ // since it's far from impossible that the incompleteness triggered
+ // the failure.
+ QualType TempFromTy = FromTy.getNonReferenceType();
+ if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
+ TempFromTy = PTy->getPointeeType();
+ if (TempFromTy->isIncompleteType()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ // Diagnose base -> derived pointer conversions.
+ unsigned BaseToDerivedConversion = 0;
+ if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
+ if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
+ if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
+ FromPtrTy->getPointeeType()) &&
+ !FromPtrTy->getPointeeType()->isIncompleteType() &&
+ !ToPtrTy->getPointeeType()->isIncompleteType() &&
+ S.IsDerivedFrom(ToPtrTy->getPointeeType(),
+ FromPtrTy->getPointeeType()))
+ BaseToDerivedConversion = 1;
+ }
+ } else if (const ObjCObjectPointerType *FromPtrTy
+ = FromTy->getAs<ObjCObjectPointerType>()) {
+ if (const ObjCObjectPointerType *ToPtrTy
+ = ToTy->getAs<ObjCObjectPointerType>())
+ if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
+ if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
+ if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
+ FromPtrTy->getPointeeType()) &&
+ FromIface->isSuperClassOf(ToIface))
+ BaseToDerivedConversion = 2;
+ } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
+ if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
+ !FromTy->isIncompleteType() &&
+ !ToRefTy->getPointeeType()->isIncompleteType() &&
+ S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
+ BaseToDerivedConversion = 3;
+ }
+
+ if (BaseToDerivedConversion) {
+ S.Diag(Fn->getLocation(),
+ diag::note_ovl_candidate_bad_base_to_derived_conv)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << (BaseToDerivedConversion - 1)
+ << FromTy << ToTy << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ if (isa<ObjCObjectPointerType>(CFromTy) &&
+ isa<PointerType>(CToTy)) {
+ Qualifiers FromQs = CFromTy.getQualifiers();
+ Qualifiers ToQs = CToTy.getQualifiers();
+ if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+ }
+
+ // Emit the generic diagnostic and, optionally, add the hints to it.
+ PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
+ FDiag << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
+ << (unsigned) (Cand->Fix.Kind);
+
+ // If we can fix the conversion, suggest the FixIts.
+ for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
+ HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
+ FDiag << *HI;
+ S.Diag(Fn->getLocation(), FDiag);
+
+ MaybeEmitInheritedConstructorNote(S, Fn);
+}
+
+void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
+ unsigned NumFormalArgs) {
+ // TODO: treat calls to a missing default constructor as a special case
+
+ FunctionDecl *Fn = Cand->Function;
+ const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
+
+ unsigned MinParams = Fn->getMinRequiredArguments();
+
+ // With invalid overloaded operators, it's possible that we think we
+ // have an arity mismatch when it fact it looks like we have the
+ // right number of arguments, because only overloaded operators have
+ // the weird behavior of overloading member and non-member functions.
+ // Just don't report anything.
+ if (Fn->isInvalidDecl() &&
+ Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
+ return;
+
+ // at least / at most / exactly
+ unsigned mode, modeCount;
+ if (NumFormalArgs < MinParams) {
+ assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
+ (Cand->FailureKind == ovl_fail_bad_deduction &&
+ Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
+ if (MinParams != FnTy->getNumArgs() ||
+ FnTy->isVariadic() || FnTy->isTemplateVariadic())
+ mode = 0; // "at least"
+ else
+ mode = 2; // "exactly"
+ modeCount = MinParams;
+ } else {
+ assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
+ (Cand->FailureKind == ovl_fail_bad_deduction &&
+ Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
+ if (MinParams != FnTy->getNumArgs())
+ mode = 1; // "at most"
+ else
+ mode = 2; // "exactly"
+ modeCount = FnTy->getNumArgs();
+ }
+
+ std::string Description;
+ OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
+
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
+ << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
+ << modeCount << NumFormalArgs;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+}
+
+/// Diagnose a failed template-argument deduction.
+void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
+ unsigned NumArgs) {
+ FunctionDecl *Fn = Cand->Function; // pattern
+
+ TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
+ NamedDecl *ParamD;
+ (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
+ (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
+ (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
+ switch (Cand->DeductionFailure.Result) {
+ case Sema::TDK_Success:
+ llvm_unreachable("TDK_success while diagnosing bad deduction");
+
+ case Sema::TDK_Incomplete: {
+ assert(ParamD && "no parameter found for incomplete deduction result");
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
+ << ParamD->getDeclName();
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ case Sema::TDK_Underqualified: {
+ assert(ParamD && "no parameter found for bad qualifiers deduction result");
+ TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
+
+ QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
+
+ // Param will have been canonicalized, but it should just be a
+ // qualified version of ParamD, so move the qualifiers to that.
+ QualifierCollector Qs;
+ Qs.strip(Param);
+ QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
+ assert(S.Context.hasSameType(Param, NonCanonParam));
+
+ // Arg has also been canonicalized, but there's nothing we can do
+ // about that. It also doesn't matter as much, because it won't
+ // have any template parameters in it (because deduction isn't
+ // done on dependent types).
+ QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
+
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
+ << ParamD->getDeclName() << Arg << NonCanonParam;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ case Sema::TDK_Inconsistent: {
+ assert(ParamD && "no parameter found for inconsistent deduction result");
+ int which = 0;
+ if (isa<TemplateTypeParmDecl>(ParamD))
+ which = 0;
+ else if (isa<NonTypeTemplateParmDecl>(ParamD))
+ which = 1;
+ else {
+ which = 2;
+ }
+
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
+ << which << ParamD->getDeclName()
+ << *Cand->DeductionFailure.getFirstArg()
+ << *Cand->DeductionFailure.getSecondArg();
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ case Sema::TDK_InvalidExplicitArguments:
+ assert(ParamD && "no parameter found for invalid explicit arguments");
+ if (ParamD->getDeclName())
+ S.Diag(Fn->getLocation(),
+ diag::note_ovl_candidate_explicit_arg_mismatch_named)
+ << ParamD->getDeclName();
+ else {
+ int index = 0;
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
+ index = TTP->getIndex();
+ else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
+ index = NTTP->getIndex();
+ else
+ index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
+ S.Diag(Fn->getLocation(),
+ diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
+ << (index + 1);
+ }
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ DiagnoseArityMismatch(S, Cand, NumArgs);
+ return;
+
+ case Sema::TDK_InstantiationDepth:
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+
+ case Sema::TDK_SubstitutionFailure: {
+ std::string ArgString;
+ if (TemplateArgumentList *Args
+ = Cand->DeductionFailure.getTemplateArgumentList())
+ ArgString = S.getTemplateArgumentBindingsText(
+ Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
+ *Args);
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
+ << ArgString;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ // TODO: diagnose these individually, then kill off
+ // note_ovl_candidate_bad_deduction, which is uselessly vague.
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+}
+
+/// CUDA: diagnose an invalid call across targets.
+void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
+ FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
+ FunctionDecl *Callee = Cand->Function;
+
+ Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
+ CalleeTarget = S.IdentifyCUDATarget(Callee);
+
+ std::string FnDesc;
+ OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
+
+ S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
+ << (unsigned) FnKind << CalleeTarget << CallerTarget;
+}
+
+/// Generates a 'note' diagnostic for an overload candidate. We've
+/// already generated a primary error at the call site.
+///
+/// It really does need to be a single diagnostic with its caret
+/// pointed at the candidate declaration. Yes, this creates some
+/// major challenges of technical writing. Yes, this makes pointing
+/// out problems with specific arguments quite awkward. It's still
+/// better than generating twenty screens of text for every failed
+/// overload.
+///
+/// It would be great to be able to express per-candidate problems
+/// more richly for those diagnostic clients that cared, but we'd
+/// still have to be just as careful with the default diagnostics.
+void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
+ unsigned NumArgs) {
+ FunctionDecl *Fn = Cand->Function;
+
+ // Note deleted candidates, but only if they're viable.
+ if (Cand->Viable && (Fn->isDeleted() ||
+ S.isFunctionConsideredUnavailable(Fn))) {
+ std::string FnDesc;
+ OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
+
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
+ << FnKind << FnDesc
+ << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ // We don't really have anything else to say about viable candidates.
+ if (Cand->Viable) {
+ S.NoteOverloadCandidate(Fn);
+ return;
+ }
+
+ switch (Cand->FailureKind) {
+ case ovl_fail_too_many_arguments:
+ case ovl_fail_too_few_arguments:
+ return DiagnoseArityMismatch(S, Cand, NumArgs);
+
+ case ovl_fail_bad_deduction:
+ return DiagnoseBadDeduction(S, Cand, NumArgs);
+
+ case ovl_fail_trivial_conversion:
+ case ovl_fail_bad_final_conversion:
+ case ovl_fail_final_conversion_not_exact:
+ return S.NoteOverloadCandidate(Fn);
+
+ case ovl_fail_bad_conversion: {
+ unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
+ for (unsigned N = Cand->NumConversions; I != N; ++I)
+ if (Cand->Conversions[I].isBad())
+ return DiagnoseBadConversion(S, Cand, I);
+
+ // FIXME: this currently happens when we're called from SemaInit
+ // when user-conversion overload fails. Figure out how to handle
+ // those conditions and diagnose them well.
+ return S.NoteOverloadCandidate(Fn);
+ }
+
+ case ovl_fail_bad_target:
+ return DiagnoseBadTarget(S, Cand);
+ }
+}
+
+void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
+ // Desugar the type of the surrogate down to a function type,
+ // retaining as many typedefs as possible while still showing
+ // the function type (and, therefore, its parameter types).
+ QualType FnType = Cand->Surrogate->getConversionType();
+ bool isLValueReference = false;
+ bool isRValueReference = false;
+ bool isPointer = false;
+ if (const LValueReferenceType *FnTypeRef =
+ FnType->getAs<LValueReferenceType>()) {
+ FnType = FnTypeRef->getPointeeType();
+ isLValueReference = true;
+ } else if (const RValueReferenceType *FnTypeRef =
+ FnType->getAs<RValueReferenceType>()) {
+ FnType = FnTypeRef->getPointeeType();
+ isRValueReference = true;
+ }
+ if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
+ FnType = FnTypePtr->getPointeeType();
+ isPointer = true;
+ }
+ // Desugar down to a function type.
+ FnType = QualType(FnType->getAs<FunctionType>(), 0);
+ // Reconstruct the pointer/reference as appropriate.
+ if (isPointer) FnType = S.Context.getPointerType(FnType);
+ if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
+ if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
+
+ S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
+ << FnType;
+ MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
+}
+
+void NoteBuiltinOperatorCandidate(Sema &S,
+ const char *Opc,
+ SourceLocation OpLoc,
+ OverloadCandidate *Cand) {
+ assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
+ std::string TypeStr("operator");
+ TypeStr += Opc;
+ TypeStr += "(";
+ TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
+ if (Cand->NumConversions == 1) {
+ TypeStr += ")";
+ S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
+ } else {
+ TypeStr += ", ";
+ TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
+ TypeStr += ")";
+ S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
+ }
+}
+
+void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
+ OverloadCandidate *Cand) {
+ unsigned NoOperands = Cand->NumConversions;
+ for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
+ const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
+ if (ICS.isBad()) break; // all meaningless after first invalid
+ if (!ICS.isAmbiguous()) continue;
+
+ ICS.DiagnoseAmbiguousConversion(S, OpLoc,
+ S.PDiag(diag::note_ambiguous_type_conversion));
+ }
+}
+
+SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
+ if (Cand->Function)
+ return Cand->Function->getLocation();
+ if (Cand->IsSurrogate)
+ return Cand->Surrogate->getLocation();
+ return SourceLocation();
+}
+
+static unsigned
+RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
+ switch ((Sema::TemplateDeductionResult)DFI.Result) {
+ case Sema::TDK_Success:
+ llvm_unreachable("TDK_success while diagnosing bad deduction");
+
+ case Sema::TDK_Incomplete:
+ return 1;
+
+ case Sema::TDK_Underqualified:
+ case Sema::TDK_Inconsistent:
+ return 2;
+
+ case Sema::TDK_SubstitutionFailure:
+ case Sema::TDK_NonDeducedMismatch:
+ return 3;
+
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_FailedOverloadResolution:
+ return 4;
+
+ case Sema::TDK_InvalidExplicitArguments:
+ return 5;
+
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ return 6;
+ }
+ llvm_unreachable("Unhandled deduction result");
+}
+
+struct CompareOverloadCandidatesForDisplay {
+ Sema &S;
+ CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
+
+ bool operator()(const OverloadCandidate *L,
+ const OverloadCandidate *R) {
+ // Fast-path this check.
+ if (L == R) return false;
+
+ // Order first by viability.
+ if (L->Viable) {
+ if (!R->Viable) return true;
+
+ // TODO: introduce a tri-valued comparison for overload
+ // candidates. Would be more worthwhile if we had a sort
+ // that could exploit it.
+ if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
+ if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
+ } else if (R->Viable)
+ return false;
+
+ assert(L->Viable == R->Viable);
+
+ // Criteria by which we can sort non-viable candidates:
+ if (!L->Viable) {
+ // 1. Arity mismatches come after other candidates.
+ if (L->FailureKind == ovl_fail_too_many_arguments ||
+ L->FailureKind == ovl_fail_too_few_arguments)
+ return false;
+ if (R->FailureKind == ovl_fail_too_many_arguments ||
+ R->FailureKind == ovl_fail_too_few_arguments)
+ return true;
+
+ // 2. Bad conversions come first and are ordered by the number
+ // of bad conversions and quality of good conversions.
+ if (L->FailureKind == ovl_fail_bad_conversion) {
+ if (R->FailureKind != ovl_fail_bad_conversion)
+ return true;
+
+ // The conversion that can be fixed with a smaller number of changes,
+ // comes first.
+ unsigned numLFixes = L->Fix.NumConversionsFixed;
+ unsigned numRFixes = R->Fix.NumConversionsFixed;
+ numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
+ numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
+ if (numLFixes != numRFixes) {
+ if (numLFixes < numRFixes)
+ return true;
+ else
+ return false;
+ }
+
+ // If there's any ordering between the defined conversions...
+ // FIXME: this might not be transitive.
+ assert(L->NumConversions == R->NumConversions);
+
+ int leftBetter = 0;
+ unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
+ for (unsigned E = L->NumConversions; I != E; ++I) {
+ switch (CompareImplicitConversionSequences(S,
+ L->Conversions[I],
+ R->Conversions[I])) {
+ case ImplicitConversionSequence::Better:
+ leftBetter++;
+ break;
+
+ case ImplicitConversionSequence::Worse:
+ leftBetter--;
+ break;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ break;
+ }
+ }
+ if (leftBetter > 0) return true;
+ if (leftBetter < 0) return false;
+
+ } else if (R->FailureKind == ovl_fail_bad_conversion)
+ return false;
+
+ if (L->FailureKind == ovl_fail_bad_deduction) {
+ if (R->FailureKind != ovl_fail_bad_deduction)
+ return true;
+
+ if (L->DeductionFailure.Result != R->DeductionFailure.Result)
+ return RankDeductionFailure(L->DeductionFailure)
+ < RankDeductionFailure(R->DeductionFailure);
+ } else if (R->FailureKind == ovl_fail_bad_deduction)
+ return false;
+
+ // TODO: others?
+ }
+
+ // Sort everything else by location.
+ SourceLocation LLoc = GetLocationForCandidate(L);
+ SourceLocation RLoc = GetLocationForCandidate(R);
+
+ // Put candidates without locations (e.g. builtins) at the end.
+ if (LLoc.isInvalid()) return false;
+ if (RLoc.isInvalid()) return true;
+
+ return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
+ }
+};
+
+/// CompleteNonViableCandidate - Normally, overload resolution only
+/// computes up to the first. Produces the FixIt set if possible.
+void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
+ llvm::ArrayRef<Expr *> Args) {
+ assert(!Cand->Viable);
+
+ // Don't do anything on failures other than bad conversion.
+ if (Cand->FailureKind != ovl_fail_bad_conversion) return;
+
+ // We only want the FixIts if all the arguments can be corrected.
+ bool Unfixable = false;
+ // Use a implicit copy initialization to check conversion fixes.
+ Cand->Fix.setConversionChecker(TryCopyInitialization);
+
+ // Skip forward to the first bad conversion.
+ unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
+ unsigned ConvCount = Cand->NumConversions;
+ while (true) {
+ assert(ConvIdx != ConvCount && "no bad conversion in candidate");
+ ConvIdx++;
+ if (Cand->Conversions[ConvIdx - 1].isBad()) {
+ Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
+ break;
+ }
+ }
+
+ if (ConvIdx == ConvCount)
+ return;
+
+ assert(!Cand->Conversions[ConvIdx].isInitialized() &&
+ "remaining conversion is initialized?");
+
+ // FIXME: this should probably be preserved from the overload
+ // operation somehow.
+ bool SuppressUserConversions = false;
+
+ const FunctionProtoType* Proto;
+ unsigned ArgIdx = ConvIdx;
+
+ if (Cand->IsSurrogate) {
+ QualType ConvType
+ = Cand->Surrogate->getConversionType().getNonReferenceType();
+ if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
+ ConvType = ConvPtrType->getPointeeType();
+ Proto = ConvType->getAs<FunctionProtoType>();
+ ArgIdx--;
+ } else if (Cand->Function) {
+ Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
+ if (isa<CXXMethodDecl>(Cand->Function) &&
+ !isa<CXXConstructorDecl>(Cand->Function))
+ ArgIdx--;
+ } else {
+ // Builtin binary operator with a bad first conversion.
+ assert(ConvCount <= 3);
+ for (; ConvIdx != ConvCount; ++ConvIdx)
+ Cand->Conversions[ConvIdx]
+ = TryCopyInitialization(S, Args[ConvIdx],
+ Cand->BuiltinTypes.ParamTypes[ConvIdx],
+ SuppressUserConversions,
+ /*InOverloadResolution*/ true,
+ /*AllowObjCWritebackConversion=*/
+ S.getLangOpts().ObjCAutoRefCount);
+ return;
+ }
+
+ // Fill in the rest of the conversions.
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
+ if (ArgIdx < NumArgsInProto) {
+ Cand->Conversions[ConvIdx]
+ = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
+ SuppressUserConversions,
+ /*InOverloadResolution=*/true,
+ /*AllowObjCWritebackConversion=*/
+ S.getLangOpts().ObjCAutoRefCount);
+ // Store the FixIt in the candidate if it exists.
+ if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
+ Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
+ }
+ else
+ Cand->Conversions[ConvIdx].setEllipsis();
+ }
+}
+
+} // end anonymous namespace
+
+/// PrintOverloadCandidates - When overload resolution fails, prints
+/// diagnostic messages containing the candidates in the candidate
+/// set.
+void OverloadCandidateSet::NoteCandidates(Sema &S,
+ OverloadCandidateDisplayKind OCD,
+ llvm::ArrayRef<Expr *> Args,
+ const char *Opc,
+ SourceLocation OpLoc) {
+ // Sort the candidates by viability and position. Sorting directly would
+ // be prohibitive, so we make a set of pointers and sort those.
+ SmallVector<OverloadCandidate*, 32> Cands;
+ if (OCD == OCD_AllCandidates) Cands.reserve(size());
+ for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
+ if (Cand->Viable)
+ Cands.push_back(Cand);
+ else if (OCD == OCD_AllCandidates) {
+ CompleteNonViableCandidate(S, Cand, Args);
+ if (Cand->Function || Cand->IsSurrogate)
+ Cands.push_back(Cand);
+ // Otherwise, this a non-viable builtin candidate. We do not, in general,
+ // want to list every possible builtin candidate.
+ }
+ }
+
+ std::sort(Cands.begin(), Cands.end(),
+ CompareOverloadCandidatesForDisplay(S));
+
+ bool ReportedAmbiguousConversions = false;
+
+ SmallVectorImpl<OverloadCandidate*>::iterator I, E;
+ const DiagnosticsEngine::OverloadsShown ShowOverloads =
+ S.Diags.getShowOverloads();
+ unsigned CandsShown = 0;
+ for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
+ OverloadCandidate *Cand = *I;
+
+ // Set an arbitrary limit on the number of candidate functions we'll spam
+ // the user with. FIXME: This limit should depend on details of the
+ // candidate list.
+ if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) {
+ break;
+ }
+ ++CandsShown;
+
+ if (Cand->Function)
+ NoteFunctionCandidate(S, Cand, Args.size());
+ else if (Cand->IsSurrogate)
+ NoteSurrogateCandidate(S, Cand);
+ else {
+ assert(Cand->Viable &&
+ "Non-viable built-in candidates are not added to Cands.");
+ // Generally we only see ambiguities including viable builtin
+ // operators if overload resolution got screwed up by an
+ // ambiguous user-defined conversion.
+ //
+ // FIXME: It's quite possible for different conversions to see
+ // different ambiguities, though.
+ if (!ReportedAmbiguousConversions) {
+ NoteAmbiguousUserConversions(S, OpLoc, Cand);
+ ReportedAmbiguousConversions = true;
+ }
+
+ // If this is a viable builtin, print it.
+ NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
+ }
+ }
+
+ if (I != E)
+ S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
+}
+
+// [PossiblyAFunctionType] --> [Return]
+// NonFunctionType --> NonFunctionType
+// R (A) --> R(A)
+// R (*)(A) --> R (A)
+// R (&)(A) --> R (A)
+// R (S::*)(A) --> R (A)
+QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
+ QualType Ret = PossiblyAFunctionType;
+ if (const PointerType *ToTypePtr =
+ PossiblyAFunctionType->getAs<PointerType>())
+ Ret = ToTypePtr->getPointeeType();
+ else if (const ReferenceType *ToTypeRef =
+ PossiblyAFunctionType->getAs<ReferenceType>())
+ Ret = ToTypeRef->getPointeeType();
+ else if (const MemberPointerType *MemTypePtr =
+ PossiblyAFunctionType->getAs<MemberPointerType>())
+ Ret = MemTypePtr->getPointeeType();
+ Ret =
+ Context.getCanonicalType(Ret).getUnqualifiedType();
+ return Ret;
+}
+
+// A helper class to help with address of function resolution
+// - allows us to avoid passing around all those ugly parameters
+class AddressOfFunctionResolver
+{
+ Sema& S;
+ Expr* SourceExpr;
+ const QualType& TargetType;
+ QualType TargetFunctionType; // Extracted function type from target type
+
+ bool Complain;
+ //DeclAccessPair& ResultFunctionAccessPair;
+ ASTContext& Context;
+
+ bool TargetTypeIsNonStaticMemberFunction;
+ bool FoundNonTemplateFunction;
+
+ OverloadExpr::FindResult OvlExprInfo;
+ OverloadExpr *OvlExpr;
+ TemplateArgumentListInfo OvlExplicitTemplateArgs;
+ SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
+
+public:
+ AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
+ const QualType& TargetType, bool Complain)
+ : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
+ Complain(Complain), Context(S.getASTContext()),
+ TargetTypeIsNonStaticMemberFunction(
+ !!TargetType->getAs<MemberPointerType>()),
+ FoundNonTemplateFunction(false),
+ OvlExprInfo(OverloadExpr::find(SourceExpr)),
+ OvlExpr(OvlExprInfo.Expression)
+ {
+ ExtractUnqualifiedFunctionTypeFromTargetType();
+
+ if (!TargetFunctionType->isFunctionType()) {
+ if (OvlExpr->hasExplicitTemplateArgs()) {
+ DeclAccessPair dap;
+ if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
+ OvlExpr, false, &dap) ) {
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
+ if (!Method->isStatic()) {
+ // If the target type is a non-function type and the function
+ // found is a non-static member function, pretend as if that was
+ // the target, it's the only possible type to end up with.
+ TargetTypeIsNonStaticMemberFunction = true;
+
+ // And skip adding the function if its not in the proper form.
+ // We'll diagnose this due to an empty set of functions.
+ if (!OvlExprInfo.HasFormOfMemberPointer)
+ return;
+ }
+ }
+
+ Matches.push_back(std::make_pair(dap,Fn));
+ }
+ }
+ return;
+ }
+
+ if (OvlExpr->hasExplicitTemplateArgs())
+ OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
+
+ if (FindAllFunctionsThatMatchTargetTypeExactly()) {
+ // C++ [over.over]p4:
+ // If more than one function is selected, [...]
+ if (Matches.size() > 1) {
+ if (FoundNonTemplateFunction)
+ EliminateAllTemplateMatches();
+ else
+ EliminateAllExceptMostSpecializedTemplate();
+ }
+ }
+ }
+
+private:
+ bool isTargetTypeAFunction() const {
+ return TargetFunctionType->isFunctionType();
+ }
+
+ // [ToType] [Return]
+
+ // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
+ // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
+ // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
+ void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
+ TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
+ }
+
+ // return true if any matching specializations were found
+ bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
+ const DeclAccessPair& CurAccessFunPair) {
+ if (CXXMethodDecl *Method
+ = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
+ // Skip non-static function templates when converting to pointer, and
+ // static when converting to member pointer.
+ if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
+ return false;
+ }
+ else if (TargetTypeIsNonStaticMemberFunction)
+ return false;
+
+ // C++ [over.over]p2:
+ // If the name is a function template, template argument deduction is
+ // done (14.8.2.2), and if the argument deduction succeeds, the
+ // resulting template argument list is used to generate a single
+ // function template specialization, which is added to the set of
+ // overloaded functions considered.
+ FunctionDecl *Specialization = 0;
+ TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
+ if (Sema::TemplateDeductionResult Result
+ = S.DeduceTemplateArguments(FunctionTemplate,
+ &OvlExplicitTemplateArgs,
+ TargetFunctionType, Specialization,
+ Info)) {
+ // FIXME: make a note of the failed deduction for diagnostics.
+ (void)Result;
+ return false;
+ }
+
+ // Template argument deduction ensures that we have an exact match.
+ // This function template specicalization works.
+ Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
+ assert(TargetFunctionType
+ == Context.getCanonicalType(Specialization->getType()));
+ Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
+ return true;
+ }
+
+ bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
+ const DeclAccessPair& CurAccessFunPair) {
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
+ // Skip non-static functions when converting to pointer, and static
+ // when converting to member pointer.
+ if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
+ return false;
+ }
+ else if (TargetTypeIsNonStaticMemberFunction)
+ return false;
+
+ if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
+ if (S.getLangOpts().CUDA)
+ if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
+ if (S.CheckCUDATarget(Caller, FunDecl))
+ return false;
+
+ QualType ResultTy;
+ if (Context.hasSameUnqualifiedType(TargetFunctionType,
+ FunDecl->getType()) ||
+ S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
+ ResultTy)) {
+ Matches.push_back(std::make_pair(CurAccessFunPair,
+ cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
+ FoundNonTemplateFunction = true;
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ bool FindAllFunctionsThatMatchTargetTypeExactly() {
+ bool Ret = false;
+
+ // If the overload expression doesn't have the form of a pointer to
+ // member, don't try to convert it to a pointer-to-member type.
+ if (IsInvalidFormOfPointerToMemberFunction())
+ return false;
+
+ for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
+ E = OvlExpr->decls_end();
+ I != E; ++I) {
+ // Look through any using declarations to find the underlying function.
+ NamedDecl *Fn = (*I)->getUnderlyingDecl();
+
+ // C++ [over.over]p3:
+ // Non-member functions and static member functions match
+ // targets of type "pointer-to-function" or "reference-to-function."
+ // Nonstatic member functions match targets of
+ // type "pointer-to-member-function."
+ // Note that according to DR 247, the containing class does not matter.
+ if (FunctionTemplateDecl *FunctionTemplate
+ = dyn_cast<FunctionTemplateDecl>(Fn)) {
+ if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
+ Ret = true;
+ }
+ // If we have explicit template arguments supplied, skip non-templates.
+ else if (!OvlExpr->hasExplicitTemplateArgs() &&
+ AddMatchingNonTemplateFunction(Fn, I.getPair()))
+ Ret = true;
+ }
+ assert(Ret || Matches.empty());
+ return Ret;
+ }
+
+ void EliminateAllExceptMostSpecializedTemplate() {
+ // [...] and any given function template specialization F1 is
+ // eliminated if the set contains a second function template
+ // specialization whose function template is more specialized
+ // than the function template of F1 according to the partial
+ // ordering rules of 14.5.5.2.
+
+ // The algorithm specified above is quadratic. We instead use a
+ // two-pass algorithm (similar to the one used to identify the
+ // best viable function in an overload set) that identifies the
+ // best function template (if it exists).
+
+ UnresolvedSet<4> MatchesCopy; // TODO: avoid!
+ for (unsigned I = 0, E = Matches.size(); I != E; ++I)
+ MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
+
+ UnresolvedSetIterator Result =
+ S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
+ TPOC_Other, 0, SourceExpr->getLocStart(),
+ S.PDiag(),
+ S.PDiag(diag::err_addr_ovl_ambiguous)
+ << Matches[0].second->getDeclName(),
+ S.PDiag(diag::note_ovl_candidate)
+ << (unsigned) oc_function_template,
+ Complain, TargetFunctionType);
+
+ if (Result != MatchesCopy.end()) {
+ // Make it the first and only element
+ Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
+ Matches[0].second = cast<FunctionDecl>(*Result);
+ Matches.resize(1);
+ }
+ }
+
+ void EliminateAllTemplateMatches() {
+ // [...] any function template specializations in the set are
+ // eliminated if the set also contains a non-template function, [...]
+ for (unsigned I = 0, N = Matches.size(); I != N; ) {
+ if (Matches[I].second->getPrimaryTemplate() == 0)
+ ++I;
+ else {
+ Matches[I] = Matches[--N];
+ Matches.set_size(N);
+ }
+ }
+ }
+
+public:
+ void ComplainNoMatchesFound() const {
+ assert(Matches.empty());
+ S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
+ << OvlExpr->getName() << TargetFunctionType
+ << OvlExpr->getSourceRange();
+ S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
+ }
+
+ bool IsInvalidFormOfPointerToMemberFunction() const {
+ return TargetTypeIsNonStaticMemberFunction &&
+ !OvlExprInfo.HasFormOfMemberPointer;
+ }
+
+ void ComplainIsInvalidFormOfPointerToMemberFunction() const {
+ // TODO: Should we condition this on whether any functions might
+ // have matched, or is it more appropriate to do that in callers?
+ // TODO: a fixit wouldn't hurt.
+ S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
+ << TargetType << OvlExpr->getSourceRange();
+ }
+
+ void ComplainOfInvalidConversion() const {
+ S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
+ << OvlExpr->getName() << TargetType;
+ }
+
+ void ComplainMultipleMatchesFound() const {
+ assert(Matches.size() > 1);
+ S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
+ << OvlExpr->getName()
+ << OvlExpr->getSourceRange();
+ S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
+ }
+
+ bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
+
+ int getNumMatches() const { return Matches.size(); }
+
+ FunctionDecl* getMatchingFunctionDecl() const {
+ if (Matches.size() != 1) return 0;
+ return Matches[0].second;
+ }
+
+ const DeclAccessPair* getMatchingFunctionAccessPair() const {
+ if (Matches.size() != 1) return 0;
+ return &Matches[0].first;
+ }
+};
+
+/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
+/// an overloaded function (C++ [over.over]), where @p From is an
+/// expression with overloaded function type and @p ToType is the type
+/// we're trying to resolve to. For example:
+///
+/// @code
+/// int f(double);
+/// int f(int);
+///
+/// int (*pfd)(double) = f; // selects f(double)
+/// @endcode
+///
+/// This routine returns the resulting FunctionDecl if it could be
+/// resolved, and NULL otherwise. When @p Complain is true, this
+/// routine will emit diagnostics if there is an error.
+FunctionDecl *
+Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
+ QualType TargetType,
+ bool Complain,
+ DeclAccessPair &FoundResult,
+ bool *pHadMultipleCandidates) {
+ assert(AddressOfExpr->getType() == Context.OverloadTy);
+
+ AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
+ Complain);
+ int NumMatches = Resolver.getNumMatches();
+ FunctionDecl* Fn = 0;
+ if (NumMatches == 0 && Complain) {
+ if (Resolver.IsInvalidFormOfPointerToMemberFunction())
+ Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
+ else
+ Resolver.ComplainNoMatchesFound();
+ }
+ else if (NumMatches > 1 && Complain)
+ Resolver.ComplainMultipleMatchesFound();
+ else if (NumMatches == 1) {
+ Fn = Resolver.getMatchingFunctionDecl();
+ assert(Fn);
+ FoundResult = *Resolver.getMatchingFunctionAccessPair();
+ MarkFunctionReferenced(AddressOfExpr->getLocStart(), Fn);
+ if (Complain)
+ CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
+ }
+
+ if (pHadMultipleCandidates)
+ *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
+ return Fn;
+}
+
+/// \brief Given an expression that refers to an overloaded function, try to
+/// resolve that overloaded function expression down to a single function.
+///
+/// This routine can only resolve template-ids that refer to a single function
+/// template, where that template-id refers to a single template whose template
+/// arguments are either provided by the template-id or have defaults,
+/// as described in C++0x [temp.arg.explicit]p3.
+FunctionDecl *
+Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
+ bool Complain,
+ DeclAccessPair *FoundResult) {
+ // C++ [over.over]p1:
+ // [...] [Note: any redundant set of parentheses surrounding the
+ // overloaded function name is ignored (5.1). ]
+ // C++ [over.over]p1:
+ // [...] The overloaded function name can be preceded by the &
+ // operator.
+
+ // If we didn't actually find any template-ids, we're done.
+ if (!ovl->hasExplicitTemplateArgs())
+ return 0;
+
+ TemplateArgumentListInfo ExplicitTemplateArgs;
+ ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
+
+ // Look through all of the overloaded functions, searching for one
+ // whose type matches exactly.
+ FunctionDecl *Matched = 0;
+ for (UnresolvedSetIterator I = ovl->decls_begin(),
+ E = ovl->decls_end(); I != E; ++I) {
+ // C++0x [temp.arg.explicit]p3:
+ // [...] In contexts where deduction is done and fails, or in contexts
+ // where deduction is not done, if a template argument list is
+ // specified and it, along with any default template arguments,
+ // identifies a single function template specialization, then the
+ // template-id is an lvalue for the function template specialization.
+ FunctionTemplateDecl *FunctionTemplate
+ = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
+
+ // C++ [over.over]p2:
+ // If the name is a function template, template argument deduction is
+ // done (14.8.2.2), and if the argument deduction succeeds, the
+ // resulting template argument list is used to generate a single
+ // function template specialization, which is added to the set of
+ // overloaded functions considered.
+ FunctionDecl *Specialization = 0;
+ TemplateDeductionInfo Info(Context, ovl->getNameLoc());
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
+ Specialization, Info)) {
+ // FIXME: make a note of the failed deduction for diagnostics.
+ (void)Result;
+ continue;
+ }
+
+ assert(Specialization && "no specialization and no error?");
+
+ // Multiple matches; we can't resolve to a single declaration.
+ if (Matched) {
+ if (Complain) {
+ Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
+ << ovl->getName();
+ NoteAllOverloadCandidates(ovl);
+ }
+ return 0;
+ }
+
+ Matched = Specialization;
+ if (FoundResult) *FoundResult = I.getPair();
+ }
+
+ return Matched;
+}
+
+
+
+
+// Resolve and fix an overloaded expression that can be resolved
+// because it identifies a single function template specialization.
+//
+// Last three arguments should only be supplied if Complain = true
+//
+// Return true if it was logically possible to so resolve the
+// expression, regardless of whether or not it succeeded. Always
+// returns true if 'complain' is set.
+bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
+ ExprResult &SrcExpr, bool doFunctionPointerConverion,
+ bool complain, const SourceRange& OpRangeForComplaining,
+ QualType DestTypeForComplaining,
+ unsigned DiagIDForComplaining) {
+ assert(SrcExpr.get()->getType() == Context.OverloadTy);
+
+ OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
+
+ DeclAccessPair found;
+ ExprResult SingleFunctionExpression;
+ if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
+ ovl.Expression, /*complain*/ false, &found)) {
+ if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
+ SrcExpr = ExprError();
+ return true;
+ }
+
+ // It is only correct to resolve to an instance method if we're
+ // resolving a form that's permitted to be a pointer to member.
+ // Otherwise we'll end up making a bound member expression, which
+ // is illegal in all the contexts we resolve like this.
+ if (!ovl.HasFormOfMemberPointer &&
+ isa<CXXMethodDecl>(fn) &&
+ cast<CXXMethodDecl>(fn)->isInstance()) {
+ if (!complain) return false;
+
+ Diag(ovl.Expression->getExprLoc(),
+ diag::err_bound_member_function)
+ << 0 << ovl.Expression->getSourceRange();
+
+ // TODO: I believe we only end up here if there's a mix of
+ // static and non-static candidates (otherwise the expression
+ // would have 'bound member' type, not 'overload' type).
+ // Ideally we would note which candidate was chosen and why
+ // the static candidates were rejected.
+ SrcExpr = ExprError();
+ return true;
+ }
+
+ // Fix the expresion to refer to 'fn'.
+ SingleFunctionExpression =
+ Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
+
+ // If desired, do function-to-pointer decay.
+ if (doFunctionPointerConverion) {
+ SingleFunctionExpression =
+ DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
+ if (SingleFunctionExpression.isInvalid()) {
+ SrcExpr = ExprError();
+ return true;
+ }
+ }
+ }
+
+ if (!SingleFunctionExpression.isUsable()) {
+ if (complain) {
+ Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
+ << ovl.Expression->getName()
+ << DestTypeForComplaining
+ << OpRangeForComplaining
+ << ovl.Expression->getQualifierLoc().getSourceRange();
+ NoteAllOverloadCandidates(SrcExpr.get());
+
+ SrcExpr = ExprError();
+ return true;
+ }
+
+ return false;
+ }
+
+ SrcExpr = SingleFunctionExpression;
+ return true;
+}
+
+/// \brief Add a single candidate to the overload set.
+static void AddOverloadedCallCandidate(Sema &S,
+ DeclAccessPair FoundDecl,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ llvm::ArrayRef<Expr *> Args,
+ OverloadCandidateSet &CandidateSet,
+ bool PartialOverloading,
+ bool KnownValid) {
+ NamedDecl *Callee = FoundDecl.getDecl();
+ if (isa<UsingShadowDecl>(Callee))
+ Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
+
+ if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
+ if (ExplicitTemplateArgs) {
+ assert(!KnownValid && "Explicit template arguments?");
+ return;
+ }
+ S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
+ PartialOverloading);
+ return;
+ }
+
+ if (FunctionTemplateDecl *FuncTemplate
+ = dyn_cast<FunctionTemplateDecl>(Callee)) {
+ S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
+ ExplicitTemplateArgs, Args, CandidateSet);
+ return;
+ }
+
+ assert(!KnownValid && "unhandled case in overloaded call candidate");
+}
+
+/// \brief Add the overload candidates named by callee and/or found by argument
+/// dependent lookup to the given overload set.
+void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
+ llvm::ArrayRef<Expr *> Args,
+ OverloadCandidateSet &CandidateSet,
+ bool PartialOverloading) {
+
+#ifndef NDEBUG
+ // Verify that ArgumentDependentLookup is consistent with the rules
+ // in C++0x [basic.lookup.argdep]p3:
+ //
+ // Let X be the lookup set produced by unqualified lookup (3.4.1)
+ // and let Y be the lookup set produced by argument dependent
+ // lookup (defined as follows). If X contains
+ //
+ // -- a declaration of a class member, or
+ //
+ // -- a block-scope function declaration that is not a
+ // using-declaration, or
+ //
+ // -- a declaration that is neither a function or a function
+ // template
+ //
+ // then Y is empty.
+
+ if (ULE->requiresADL()) {
+ for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
+ E = ULE->decls_end(); I != E; ++I) {
+ assert(!(*I)->getDeclContext()->isRecord());
+ assert(isa<UsingShadowDecl>(*I) ||
+ !(*I)->getDeclContext()->isFunctionOrMethod());
+ assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
+ }
+ }
+#endif
+
+ // It would be nice to avoid this copy.
+ TemplateArgumentListInfo TABuffer;
+ TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
+ if (ULE->hasExplicitTemplateArgs()) {
+ ULE->copyTemplateArgumentsInto(TABuffer);
+ ExplicitTemplateArgs = &TABuffer;
+ }
+
+ for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
+ E = ULE->decls_end(); I != E; ++I)
+ AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
+ CandidateSet, PartialOverloading,
+ /*KnownValid*/ true);
+
+ if (ULE->requiresADL())
+ AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
+ ULE->getExprLoc(),
+ Args, ExplicitTemplateArgs,
+ CandidateSet, PartialOverloading,
+ ULE->isStdAssociatedNamespace());
+}
+
+/// Attempt to recover from an ill-formed use of a non-dependent name in a
+/// template, where the non-dependent name was declared after the template
+/// was defined. This is common in code written for a compilers which do not
+/// correctly implement two-stage name lookup.
+///
+/// Returns true if a viable candidate was found and a diagnostic was issued.
+static bool
+DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
+ const CXXScopeSpec &SS, LookupResult &R,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ llvm::ArrayRef<Expr *> Args) {
+ if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
+ return false;
+
+ for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
+ if (DC->isTransparentContext())
+ continue;
+
+ SemaRef.LookupQualifiedName(R, DC);
+
+ if (!R.empty()) {
+ R.suppressDiagnostics();
+
+ if (isa<CXXRecordDecl>(DC)) {
+ // Don't diagnose names we find in classes; we get much better
+ // diagnostics for these from DiagnoseEmptyLookup.
+ R.clear();
+ return false;
+ }
+
+ OverloadCandidateSet Candidates(FnLoc);
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
+ AddOverloadedCallCandidate(SemaRef, I.getPair(),
+ ExplicitTemplateArgs, Args,
+ Candidates, false, /*KnownValid*/ false);
+
+ OverloadCandidateSet::iterator Best;
+ if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
+ // No viable functions. Don't bother the user with notes for functions
+ // which don't work and shouldn't be found anyway.
+ R.clear();
+ return false;
+ }
+
+ // Find the namespaces where ADL would have looked, and suggest
+ // declaring the function there instead.
+ Sema::AssociatedNamespaceSet AssociatedNamespaces;
+ Sema::AssociatedClassSet AssociatedClasses;
+ SemaRef.FindAssociatedClassesAndNamespaces(Args,
+ AssociatedNamespaces,
+ AssociatedClasses);
+ // Never suggest declaring a function within namespace 'std'.
+ Sema::AssociatedNamespaceSet SuggestedNamespaces;
+ if (DeclContext *Std = SemaRef.getStdNamespace()) {
+ for (Sema::AssociatedNamespaceSet::iterator
+ it = AssociatedNamespaces.begin(),
+ end = AssociatedNamespaces.end(); it != end; ++it) {
+ if (!Std->Encloses(*it))
+ SuggestedNamespaces.insert(*it);
+ }
+ } else {
+ // Lacking the 'std::' namespace, use all of the associated namespaces.
+ SuggestedNamespaces = AssociatedNamespaces;
+ }
+
+ SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
+ << R.getLookupName();
+ if (SuggestedNamespaces.empty()) {
+ SemaRef.Diag(Best->Function->getLocation(),
+ diag::note_not_found_by_two_phase_lookup)
+ << R.getLookupName() << 0;
+ } else if (SuggestedNamespaces.size() == 1) {
+ SemaRef.Diag(Best->Function->getLocation(),
+ diag::note_not_found_by_two_phase_lookup)
+ << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
+ } else {
+ // FIXME: It would be useful to list the associated namespaces here,
+ // but the diagnostics infrastructure doesn't provide a way to produce
+ // a localized representation of a list of items.
+ SemaRef.Diag(Best->Function->getLocation(),
+ diag::note_not_found_by_two_phase_lookup)
+ << R.getLookupName() << 2;
+ }
+
+ // Try to recover by calling this function.
+ return true;
+ }
+
+ R.clear();
+ }
+
+ return false;
+}
+
+/// Attempt to recover from ill-formed use of a non-dependent operator in a
+/// template, where the non-dependent operator was declared after the template
+/// was defined.
+///
+/// Returns true if a viable candidate was found and a diagnostic was issued.
+static bool
+DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
+ SourceLocation OpLoc,
+ llvm::ArrayRef<Expr *> Args) {
+ DeclarationName OpName =
+ SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
+ LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
+ return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
+ /*ExplicitTemplateArgs=*/0, Args);
+}
+
+namespace {
+// Callback to limit the allowed keywords and to only accept typo corrections
+// that are keywords or whose decls refer to functions (or template functions)
+// that accept the given number of arguments.
+class RecoveryCallCCC : public CorrectionCandidateCallback {
+ public:
+ RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs)
+ : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
+ WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
+ WantRemainingKeywords = false;
+ }
+
+ virtual bool ValidateCandidate(const TypoCorrection &candidate) {
+ if (!candidate.getCorrectionDecl())
+ return candidate.isKeyword();
+
+ for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
+ DIEnd = candidate.end(); DI != DIEnd; ++DI) {
+ FunctionDecl *FD = 0;
+ NamedDecl *ND = (*DI)->getUnderlyingDecl();
+ if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
+ FD = FTD->getTemplatedDecl();
+ if (!HasExplicitTemplateArgs && !FD) {
+ if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
+ // If the Decl is neither a function nor a template function,
+ // determine if it is a pointer or reference to a function. If so,
+ // check against the number of arguments expected for the pointee.
+ QualType ValType = cast<ValueDecl>(ND)->getType();
+ if (ValType->isAnyPointerType() || ValType->isReferenceType())
+ ValType = ValType->getPointeeType();
+ if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
+ if (FPT->getNumArgs() == NumArgs)
+ return true;
+ }
+ }
+ if (FD && FD->getNumParams() >= NumArgs &&
+ FD->getMinRequiredArguments() <= NumArgs)
+ return true;
+ }
+ return false;
+ }
+
+ private:
+ unsigned NumArgs;
+ bool HasExplicitTemplateArgs;
+};
+
+// Callback that effectively disabled typo correction
+class NoTypoCorrectionCCC : public CorrectionCandidateCallback {
+ public:
+ NoTypoCorrectionCCC() {
+ WantTypeSpecifiers = false;
+ WantExpressionKeywords = false;
+ WantCXXNamedCasts = false;
+ WantRemainingKeywords = false;
+ }
+
+ virtual bool ValidateCandidate(const TypoCorrection &candidate) {
+ return false;
+ }
+};
+}
+
+/// Attempts to recover from a call where no functions were found.
+///
+/// Returns true if new candidates were found.
+static ExprResult
+BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
+ UnresolvedLookupExpr *ULE,
+ SourceLocation LParenLoc,
+ llvm::MutableArrayRef<Expr *> Args,
+ SourceLocation RParenLoc,
+ bool EmptyLookup, bool AllowTypoCorrection) {
+
+ CXXScopeSpec SS;
+ SS.Adopt(ULE->getQualifierLoc());
+ SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
+
+ TemplateArgumentListInfo TABuffer;
+ TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
+ if (ULE->hasExplicitTemplateArgs()) {
+ ULE->copyTemplateArgumentsInto(TABuffer);
+ ExplicitTemplateArgs = &TABuffer;
+ }
+
+ LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
+ Sema::LookupOrdinaryName);
+ RecoveryCallCCC Validator(SemaRef, Args.size(), ExplicitTemplateArgs != 0);
+ NoTypoCorrectionCCC RejectAll;
+ CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
+ (CorrectionCandidateCallback*)&Validator :
+ (CorrectionCandidateCallback*)&RejectAll;
+ if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
+ ExplicitTemplateArgs, Args) &&
+ (!EmptyLookup ||
+ SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
+ ExplicitTemplateArgs, Args)))
+ return ExprError();
+
+ assert(!R.empty() && "lookup results empty despite recovery");
+
+ // Build an implicit member call if appropriate. Just drop the
+ // casts and such from the call, we don't really care.
+ ExprResult NewFn = ExprError();
+ if ((*R.begin())->isCXXClassMember())
+ NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
+ R, ExplicitTemplateArgs);
+ else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
+ NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
+ ExplicitTemplateArgs);
+ else
+ NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
+
+ if (NewFn.isInvalid())
+ return ExprError();
+
+ // This shouldn't cause an infinite loop because we're giving it
+ // an expression with viable lookup results, which should never
+ // end up here.
+ return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
+ MultiExprArg(Args.data(), Args.size()),
+ RParenLoc);
+}
+
+/// ResolveOverloadedCallFn - Given the call expression that calls Fn
+/// (which eventually refers to the declaration Func) and the call
+/// arguments Args/NumArgs, attempt to resolve the function call down
+/// to a specific function. If overload resolution succeeds, returns
+/// the function declaration produced by overload
+/// resolution. Otherwise, emits diagnostics, deletes all of the
+/// arguments and Fn, and returns NULL.
+ExprResult
+Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
+ SourceLocation LParenLoc,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RParenLoc,
+ Expr *ExecConfig,
+ bool AllowTypoCorrection) {
+#ifndef NDEBUG
+ if (ULE->requiresADL()) {
+ // To do ADL, we must have found an unqualified name.
+ assert(!ULE->getQualifier() && "qualified name with ADL");
+
+ // We don't perform ADL for implicit declarations of builtins.
+ // Verify that this was correctly set up.
+ FunctionDecl *F;
+ if (ULE->decls_begin() + 1 == ULE->decls_end() &&
+ (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
+ F->getBuiltinID() && F->isImplicit())
+ llvm_unreachable("performing ADL for builtin");
+
+ // We don't perform ADL in C.
+ assert(getLangOpts().CPlusPlus && "ADL enabled in C");
+ } else
+ assert(!ULE->isStdAssociatedNamespace() &&
+ "std is associated namespace but not doing ADL");
+#endif
+
+ UnbridgedCastsSet UnbridgedCasts;
+ if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
+ return ExprError();
+
+ OverloadCandidateSet CandidateSet(Fn->getExprLoc());
+
+ // Add the functions denoted by the callee to the set of candidate
+ // functions, including those from argument-dependent lookup.
+ AddOverloadedCallCandidates(ULE, llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet);
+
+ // If we found nothing, try to recover.
+ // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
+ // out if it fails.
+ if (CandidateSet.empty()) {
+ // In Microsoft mode, if we are inside a template class member function then
+ // create a type dependent CallExpr. The goal is to postpone name lookup
+ // to instantiation time to be able to search into type dependent base
+ // classes.
+ if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
+ (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
+ CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs,
+ Context.DependentTy, VK_RValue,
+ RParenLoc);
+ CE->setTypeDependent(true);
+ return Owned(CE);
+ }
+ return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
+ llvm::MutableArrayRef<Expr *>(Args, NumArgs),
+ RParenLoc, /*EmptyLookup=*/true,
+ AllowTypoCorrection);
+ }
+
+ UnbridgedCasts.restore();
+
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
+ case OR_Success: {
+ FunctionDecl *FDecl = Best->Function;
+ MarkFunctionReferenced(Fn->getExprLoc(), FDecl);
+ CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
+ DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
+ Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
+ return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
+ ExecConfig);
+ }
+
+ case OR_No_Viable_Function: {
+ // Try to recover by looking for viable functions which the user might
+ // have meant to call.
+ ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
+ llvm::MutableArrayRef<Expr *>(Args, NumArgs),
+ RParenLoc,
+ /*EmptyLookup=*/false,
+ AllowTypoCorrection);
+ if (!Recovery.isInvalid())
+ return Recovery;
+
+ Diag(Fn->getLocStart(),
+ diag::err_ovl_no_viable_function_in_call)
+ << ULE->getName() << Fn->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+ break;
+ }
+
+ case OR_Ambiguous:
+ Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
+ << ULE->getName() << Fn->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+ break;
+
+ case OR_Deleted:
+ {
+ Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
+ << Best->Function->isDeleted()
+ << ULE->getName()
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Fn->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+
+ // We emitted an error for the unvailable/deleted function call but keep
+ // the call in the AST.
+ FunctionDecl *FDecl = Best->Function;
+ Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
+ return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
+ RParenLoc, ExecConfig);
+ }
+ }
+
+ // Overload resolution failed.
+ return ExprError();
+}
+
+static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
+ return Functions.size() > 1 ||
+ (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
+}
+
+/// \brief Create a unary operation that may resolve to an overloaded
+/// operator.
+///
+/// \param OpLoc The location of the operator itself (e.g., '*').
+///
+/// \param OpcIn The UnaryOperator::Opcode that describes this
+/// operator.
+///
+/// \param Functions The set of non-member functions that will be
+/// considered by overload resolution. The caller needs to build this
+/// set based on the context using, e.g.,
+/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
+/// set should not contain any member functions; those will be added
+/// by CreateOverloadedUnaryOp().
+///
+/// \param input The input argument.
+ExprResult
+Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
+ const UnresolvedSetImpl &Fns,
+ Expr *Input) {
+ UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
+
+ OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
+ assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+ // TODO: provide better source location info.
+ DeclarationNameInfo OpNameInfo(OpName, OpLoc);
+
+ if (checkPlaceholderForOverload(*this, Input))
+ return ExprError();
+
+ Expr *Args[2] = { Input, 0 };
+ unsigned NumArgs = 1;
+
+ // For post-increment and post-decrement, add the implicit '0' as
+ // the second argument, so that we know this is a post-increment or
+ // post-decrement.
+ if (Opc == UO_PostInc || Opc == UO_PostDec) {
+ llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
+ Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
+ SourceLocation());
+ NumArgs = 2;
+ }
+
+ if (Input->isTypeDependent()) {
+ if (Fns.empty())
+ return Owned(new (Context) UnaryOperator(Input,
+ Opc,
+ Context.DependentTy,
+ VK_RValue, OK_Ordinary,
+ OpLoc));
+
+ CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
+ UnresolvedLookupExpr *Fn
+ = UnresolvedLookupExpr::Create(Context, NamingClass,
+ NestedNameSpecifierLoc(), OpNameInfo,
+ /*ADL*/ true, IsOverloaded(Fns),
+ Fns.begin(), Fns.end());
+ return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
+ &Args[0], NumArgs,
+ Context.DependentTy,
+ VK_RValue,
+ OpLoc));
+ }
+
+ // Build an empty overload set.
+ OverloadCandidateSet CandidateSet(OpLoc);
+
+ // Add the candidates from the given function set.
+ AddFunctionCandidates(Fns, llvm::makeArrayRef(Args, NumArgs), CandidateSet,
+ false);
+
+ // Add operator candidates that are member functions.
+ AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
+
+ // Add candidates from ADL.
+ AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
+ OpLoc, llvm::makeArrayRef(Args, NumArgs),
+ /*ExplicitTemplateArgs*/ 0,
+ CandidateSet);
+
+ // Add builtin operator candidates.
+ AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ MarkFunctionReferenced(OpLoc, FnDecl);
+
+ // Convert the arguments.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
+ CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
+
+ ExprResult InputRes =
+ PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
+ Best->FoundDecl, Method);
+ if (InputRes.isInvalid())
+ return ExprError();
+ Input = InputRes.take();
+ } else {
+ // Convert the arguments.
+ ExprResult InputInit
+ = PerformCopyInitialization(InitializedEntity::InitializeParameter(
+ Context,
+ FnDecl->getParamDecl(0)),
+ SourceLocation(),
+ Input);
+ if (InputInit.isInvalid())
+ return ExprError();
+ Input = InputInit.take();
+ }
+
+ DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
+
+ // Determine the result type.
+ QualType ResultTy = FnDecl->getResultType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+
+ // Build the actual expression node.
+ ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
+ HadMultipleCandidates, OpLoc);
+ if (FnExpr.isInvalid())
+ return ExprError();
+
+ Args[0] = Input;
+ CallExpr *TheCall =
+ new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
+ Args, NumArgs, ResultTy, VK, OpLoc);
+
+ if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
+ FnDecl))
+ return ExprError();
+
+ return MaybeBindToTemporary(TheCall);
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ ExprResult InputRes =
+ PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], AA_Passing);
+ if (InputRes.isInvalid())
+ return ExprError();
+ Input = InputRes.take();
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function:
+ // This is an erroneous use of an operator which can be overloaded by
+ // a non-member function. Check for non-member operators which were
+ // defined too late to be candidates.
+ if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc,
+ llvm::makeArrayRef(Args, NumArgs)))
+ // FIXME: Recover by calling the found function.
+ return ExprError();
+
+ // No viable function; fall through to handling this as a
+ // built-in operator, which will produce an error message for us.
+ break;
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
+ << UnaryOperator::getOpcodeStr(Opc)
+ << Input->getType()
+ << Input->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
+ llvm::makeArrayRef(Args, NumArgs),
+ UnaryOperator::getOpcodeStr(Opc), OpLoc);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << UnaryOperator::getOpcodeStr(Opc)
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Input->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs),
+ UnaryOperator::getOpcodeStr(Opc), OpLoc);
+ return ExprError();
+ }
+
+ // Either we found no viable overloaded operator or we matched a
+ // built-in operator. In either case, fall through to trying to
+ // build a built-in operation.
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
+}
+
+/// \brief Create a binary operation that may resolve to an overloaded
+/// operator.
+///
+/// \param OpLoc The location of the operator itself (e.g., '+').
+///
+/// \param OpcIn The BinaryOperator::Opcode that describes this
+/// operator.
+///
+/// \param Functions The set of non-member functions that will be
+/// considered by overload resolution. The caller needs to build this
+/// set based on the context using, e.g.,
+/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
+/// set should not contain any member functions; those will be added
+/// by CreateOverloadedBinOp().
+///
+/// \param LHS Left-hand argument.
+/// \param RHS Right-hand argument.
+ExprResult
+Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
+ unsigned OpcIn,
+ const UnresolvedSetImpl &Fns,
+ Expr *LHS, Expr *RHS) {
+ Expr *Args[2] = { LHS, RHS };
+ LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
+
+ BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
+ OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+
+ // If either side is type-dependent, create an appropriate dependent
+ // expression.
+ if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
+ if (Fns.empty()) {
+ // If there are no functions to store, just build a dependent
+ // BinaryOperator or CompoundAssignment.
+ if (Opc <= BO_Assign || Opc > BO_OrAssign)
+ return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
+ Context.DependentTy,
+ VK_RValue, OK_Ordinary,
+ OpLoc));
+
+ return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
+ Context.DependentTy,
+ VK_LValue,
+ OK_Ordinary,
+ Context.DependentTy,
+ Context.DependentTy,
+ OpLoc));
+ }
+
+ // FIXME: save results of ADL from here?
+ CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
+ // TODO: provide better source location info in DNLoc component.
+ DeclarationNameInfo OpNameInfo(OpName, OpLoc);
+ UnresolvedLookupExpr *Fn
+ = UnresolvedLookupExpr::Create(Context, NamingClass,
+ NestedNameSpecifierLoc(), OpNameInfo,
+ /*ADL*/ true, IsOverloaded(Fns),
+ Fns.begin(), Fns.end());
+ return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
+ Args, 2,
+ Context.DependentTy,
+ VK_RValue,
+ OpLoc));
+ }
+
+ // Always do placeholder-like conversions on the RHS.
+ if (checkPlaceholderForOverload(*this, Args[1]))
+ return ExprError();
+
+ // Do placeholder-like conversion on the LHS; note that we should
+ // not get here with a PseudoObject LHS.
+ assert(Args[0]->getObjectKind() != OK_ObjCProperty);
+ if (checkPlaceholderForOverload(*this, Args[0]))
+ return ExprError();
+
+ // If this is the assignment operator, we only perform overload resolution
+ // if the left-hand side is a class or enumeration type. This is actually
+ // a hack. The standard requires that we do overload resolution between the
+ // various built-in candidates, but as DR507 points out, this can lead to
+ // problems. So we do it this way, which pretty much follows what GCC does.
+ // Note that we go the traditional code path for compound assignment forms.
+ if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
+ return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
+
+ // If this is the .* operator, which is not overloadable, just
+ // create a built-in binary operator.
+ if (Opc == BO_PtrMemD)
+ return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
+
+ // Build an empty overload set.
+ OverloadCandidateSet CandidateSet(OpLoc);
+
+ // Add the candidates from the given function set.
+ AddFunctionCandidates(Fns, Args, CandidateSet, false);
+
+ // Add operator candidates that are member functions.
+ AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
+
+ // Add candidates from ADL.
+ AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
+ OpLoc, Args,
+ /*ExplicitTemplateArgs*/ 0,
+ CandidateSet);
+
+ // Add builtin operator candidates.
+ AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ MarkFunctionReferenced(OpLoc, FnDecl);
+
+ // Convert the arguments.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
+ // Best->Access is only meaningful for class members.
+ CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
+
+ ExprResult Arg1 =
+ PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(Context,
+ FnDecl->getParamDecl(0)),
+ SourceLocation(), Owned(Args[1]));
+ if (Arg1.isInvalid())
+ return ExprError();
+
+ ExprResult Arg0 =
+ PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
+ Best->FoundDecl, Method);
+ if (Arg0.isInvalid())
+ return ExprError();
+ Args[0] = Arg0.takeAs<Expr>();
+ Args[1] = RHS = Arg1.takeAs<Expr>();
+ } else {
+ // Convert the arguments.
+ ExprResult Arg0 = PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(Context,
+ FnDecl->getParamDecl(0)),
+ SourceLocation(), Owned(Args[0]));
+ if (Arg0.isInvalid())
+ return ExprError();
+
+ ExprResult Arg1 =
+ PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(Context,
+ FnDecl->getParamDecl(1)),
+ SourceLocation(), Owned(Args[1]));
+ if (Arg1.isInvalid())
+ return ExprError();
+ Args[0] = LHS = Arg0.takeAs<Expr>();
+ Args[1] = RHS = Arg1.takeAs<Expr>();
+ }
+
+ DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
+
+ // Determine the result type.
+ QualType ResultTy = FnDecl->getResultType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+
+ // Build the actual expression node.
+ ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
+ HadMultipleCandidates, OpLoc);
+ if (FnExpr.isInvalid())
+ return ExprError();
+
+ CXXOperatorCallExpr *TheCall =
+ new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
+ Args, 2, ResultTy, VK, OpLoc);
+
+ if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
+ FnDecl))
+ return ExprError();
+
+ return MaybeBindToTemporary(TheCall);
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ ExprResult ArgsRes0 =
+ PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], AA_Passing);
+ if (ArgsRes0.isInvalid())
+ return ExprError();
+ Args[0] = ArgsRes0.take();
+
+ ExprResult ArgsRes1 =
+ PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
+ Best->Conversions[1], AA_Passing);
+ if (ArgsRes1.isInvalid())
+ return ExprError();
+ Args[1] = ArgsRes1.take();
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function: {
+ // C++ [over.match.oper]p9:
+ // If the operator is the operator , [...] and there are no
+ // viable functions, then the operator is assumed to be the
+ // built-in operator and interpreted according to clause 5.
+ if (Opc == BO_Comma)
+ break;
+
+ // For class as left operand for assignment or compound assigment
+ // operator do not fall through to handling in built-in, but report that
+ // no overloaded assignment operator found
+ ExprResult Result = ExprError();
+ if (Args[0]->getType()->isRecordType() &&
+ Opc >= BO_Assign && Opc <= BO_OrAssign) {
+ Diag(OpLoc, diag::err_ovl_no_viable_oper)
+ << BinaryOperator::getOpcodeStr(Opc)
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ } else {
+ // This is an erroneous use of an operator which can be overloaded by
+ // a non-member function. Check for non-member operators which were
+ // defined too late to be candidates.
+ if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
+ // FIXME: Recover by calling the found function.
+ return ExprError();
+
+ // No viable function; try to create a built-in operation, which will
+ // produce an error. Then, show the non-viable candidates.
+ Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
+ }
+ assert(Result.isInvalid() &&
+ "C++ binary operator overloading is missing candidates!");
+ if (Result.isInvalid())
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
+ BinaryOperator::getOpcodeStr(Opc), OpLoc);
+ return move(Result);
+ }
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary)
+ << BinaryOperator::getOpcodeStr(Opc)
+ << Args[0]->getType() << Args[1]->getType()
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
+ BinaryOperator::getOpcodeStr(Opc), OpLoc);
+ return ExprError();
+
+ case OR_Deleted:
+ if (isImplicitlyDeleted(Best->Function)) {
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
+ Diag(OpLoc, diag::err_ovl_deleted_special_oper)
+ << getSpecialMember(Method)
+ << BinaryOperator::getOpcodeStr(Opc)
+ << getDeletedOrUnavailableSuffix(Best->Function);
+
+ if (getSpecialMember(Method) != CXXInvalid) {
+ // The user probably meant to call this special member. Just
+ // explain why it's deleted.
+ NoteDeletedFunction(Method);
+ return ExprError();
+ }
+ } else {
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << BinaryOperator::getOpcodeStr(Opc)
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ }
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
+ BinaryOperator::getOpcodeStr(Opc), OpLoc);
+ return ExprError();
+ }
+
+ // We matched a built-in operator; build it.
+ return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
+}
+
+ExprResult
+Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
+ SourceLocation RLoc,
+ Expr *Base, Expr *Idx) {
+ Expr *Args[2] = { Base, Idx };
+ DeclarationName OpName =
+ Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
+
+ // If either side is type-dependent, create an appropriate dependent
+ // expression.
+ if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
+
+ CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
+ // CHECKME: no 'operator' keyword?
+ DeclarationNameInfo OpNameInfo(OpName, LLoc);
+ OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
+ UnresolvedLookupExpr *Fn
+ = UnresolvedLookupExpr::Create(Context, NamingClass,
+ NestedNameSpecifierLoc(), OpNameInfo,
+ /*ADL*/ true, /*Overloaded*/ false,
+ UnresolvedSetIterator(),
+ UnresolvedSetIterator());
+ // Can't add any actual overloads yet
+
+ return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
+ Args, 2,
+ Context.DependentTy,
+ VK_RValue,
+ RLoc));
+ }
+
+ // Handle placeholders on both operands.
+ if (checkPlaceholderForOverload(*this, Args[0]))
+ return ExprError();
+ if (checkPlaceholderForOverload(*this, Args[1]))
+ return ExprError();
+
+ // Build an empty overload set.
+ OverloadCandidateSet CandidateSet(LLoc);
+
+ // Subscript can only be overloaded as a member function.
+
+ // Add operator candidates that are member functions.
+ AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
+
+ // Add builtin operator candidates.
+ AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ MarkFunctionReferenced(LLoc, FnDecl);
+
+ CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
+ DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
+
+ // Convert the arguments.
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
+ ExprResult Arg0 =
+ PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
+ Best->FoundDecl, Method);
+ if (Arg0.isInvalid())
+ return ExprError();
+ Args[0] = Arg0.take();
+
+ // Convert the arguments.
+ ExprResult InputInit
+ = PerformCopyInitialization(InitializedEntity::InitializeParameter(
+ Context,
+ FnDecl->getParamDecl(0)),
+ SourceLocation(),
+ Owned(Args[1]));
+ if (InputInit.isInvalid())
+ return ExprError();
+
+ Args[1] = InputInit.takeAs<Expr>();
+
+ // Determine the result type
+ QualType ResultTy = FnDecl->getResultType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+
+ // Build the actual expression node.
+ DeclarationNameInfo OpLocInfo(OpName, LLoc);
+ OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
+ ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
+ HadMultipleCandidates,
+ OpLocInfo.getLoc(),
+ OpLocInfo.getInfo());
+ if (FnExpr.isInvalid())
+ return ExprError();
+
+ CXXOperatorCallExpr *TheCall =
+ new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
+ FnExpr.take(), Args, 2,
+ ResultTy, VK, RLoc);
+
+ if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
+ FnDecl))
+ return ExprError();
+
+ return MaybeBindToTemporary(TheCall);
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ ExprResult ArgsRes0 =
+ PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], AA_Passing);
+ if (ArgsRes0.isInvalid())
+ return ExprError();
+ Args[0] = ArgsRes0.take();
+
+ ExprResult ArgsRes1 =
+ PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
+ Best->Conversions[1], AA_Passing);
+ if (ArgsRes1.isInvalid())
+ return ExprError();
+ Args[1] = ArgsRes1.take();
+
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function: {
+ if (CandidateSet.empty())
+ Diag(LLoc, diag::err_ovl_no_oper)
+ << Args[0]->getType() << /*subscript*/ 0
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ else
+ Diag(LLoc, diag::err_ovl_no_viable_subscript)
+ << Args[0]->getType()
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
+ "[]", LLoc);
+ return ExprError();
+ }
+
+ case OR_Ambiguous:
+ Diag(LLoc, diag::err_ovl_ambiguous_oper_binary)
+ << "[]"
+ << Args[0]->getType() << Args[1]->getType()
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
+ "[]", LLoc);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(LLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted() << "[]"
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
+ "[]", LLoc);
+ return ExprError();
+ }
+
+ // We matched a built-in operator; build it.
+ return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
+}
+
+/// BuildCallToMemberFunction - Build a call to a member
+/// function. MemExpr is the expression that refers to the member
+/// function (and includes the object parameter), Args/NumArgs are the
+/// arguments to the function call (not including the object
+/// parameter). The caller needs to validate that the member
+/// expression refers to a non-static member function or an overloaded
+/// member function.
+ExprResult
+Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
+ SourceLocation LParenLoc, Expr **Args,
+ unsigned NumArgs, SourceLocation RParenLoc) {
+ assert(MemExprE->getType() == Context.BoundMemberTy ||
+ MemExprE->getType() == Context.OverloadTy);
+
+ // Dig out the member expression. This holds both the object
+ // argument and the member function we're referring to.
+ Expr *NakedMemExpr = MemExprE->IgnoreParens();
+
+ // Determine whether this is a call to a pointer-to-member function.
+ if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
+ assert(op->getType() == Context.BoundMemberTy);
+ assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
+
+ QualType fnType =
+ op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
+
+ const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
+ QualType resultType = proto->getCallResultType(Context);
+ ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
+
+ // Check that the object type isn't more qualified than the
+ // member function we're calling.
+ Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
+
+ QualType objectType = op->getLHS()->getType();
+ if (op->getOpcode() == BO_PtrMemI)
+ objectType = objectType->castAs<PointerType>()->getPointeeType();
+ Qualifiers objectQuals = objectType.getQualifiers();
+
+ Qualifiers difference = objectQuals - funcQuals;
+ difference.removeObjCGCAttr();
+ difference.removeAddressSpace();
+ if (difference) {
+ std::string qualsString = difference.getAsString();
+ Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
+ << fnType.getUnqualifiedType()
+ << qualsString
+ << (qualsString.find(' ') == std::string::npos ? 1 : 2);
+ }
+
+ CXXMemberCallExpr *call
+ = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
+ resultType, valueKind, RParenLoc);
+
+ if (CheckCallReturnType(proto->getResultType(),
+ op->getRHS()->getLocStart(),
+ call, 0))
+ return ExprError();
+
+ if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
+ return ExprError();
+
+ return MaybeBindToTemporary(call);
+ }
+
+ UnbridgedCastsSet UnbridgedCasts;
+ if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
+ return ExprError();
+
+ MemberExpr *MemExpr;
+ CXXMethodDecl *Method = 0;
+ DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
+ NestedNameSpecifier *Qualifier = 0;
+ if (isa<MemberExpr>(NakedMemExpr)) {
+ MemExpr = cast<MemberExpr>(NakedMemExpr);
+ Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
+ FoundDecl = MemExpr->getFoundDecl();
+ Qualifier = MemExpr->getQualifier();
+ UnbridgedCasts.restore();
+ } else {
+ UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
+ Qualifier = UnresExpr->getQualifier();
+
+ QualType ObjectType = UnresExpr->getBaseType();
+ Expr::Classification ObjectClassification
+ = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
+ : UnresExpr->getBase()->Classify(Context);
+
+ // Add overload candidates
+ OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
+
+ // FIXME: avoid copy.
+ TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
+ if (UnresExpr->hasExplicitTemplateArgs()) {
+ UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
+ TemplateArgs = &TemplateArgsBuffer;
+ }
+
+ for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
+ E = UnresExpr->decls_end(); I != E; ++I) {
+
+ NamedDecl *Func = *I;
+ CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
+ if (isa<UsingShadowDecl>(Func))
+ Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
+
+
+ // Microsoft supports direct constructor calls.
+ if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
+ AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
+ llvm::makeArrayRef(Args, NumArgs), CandidateSet);
+ } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
+ // If explicit template arguments were provided, we can't call a
+ // non-template member function.
+ if (TemplateArgs)
+ continue;
+
+ AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
+ ObjectClassification,
+ llvm::makeArrayRef(Args, NumArgs), CandidateSet,
+ /*SuppressUserConversions=*/false);
+ } else {
+ AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
+ I.getPair(), ActingDC, TemplateArgs,
+ ObjectType, ObjectClassification,
+ llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet,
+ /*SuppressUsedConversions=*/false);
+ }
+ }
+
+ DeclarationName DeclName = UnresExpr->getMemberName();
+
+ UnbridgedCasts.restore();
+
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
+ Best)) {
+ case OR_Success:
+ Method = cast<CXXMethodDecl>(Best->Function);
+ MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method);
+ FoundDecl = Best->FoundDecl;
+ CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
+ DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
+ break;
+
+ case OR_No_Viable_Function:
+ Diag(UnresExpr->getMemberLoc(),
+ diag::err_ovl_no_viable_member_function_in_call)
+ << DeclName << MemExprE->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+ // FIXME: Leaking incoming expressions!
+ return ExprError();
+
+ case OR_Ambiguous:
+ Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
+ << DeclName << MemExprE->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+ // FIXME: Leaking incoming expressions!
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
+ << Best->Function->isDeleted()
+ << DeclName
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << MemExprE->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+ // FIXME: Leaking incoming expressions!
+ return ExprError();
+ }
+
+ MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
+
+ // If overload resolution picked a static member, build a
+ // non-member call based on that function.
+ if (Method->isStatic()) {
+ return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
+ Args, NumArgs, RParenLoc);
+ }
+
+ MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
+ }
+
+ QualType ResultType = Method->getResultType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultType);
+ ResultType = ResultType.getNonLValueExprType(Context);
+
+ assert(Method && "Member call to something that isn't a method?");
+ CXXMemberCallExpr *TheCall =
+ new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
+ ResultType, VK, RParenLoc);
+
+ // Check for a valid return type.
+ if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
+ TheCall, Method))
+ return ExprError();
+
+ // Convert the object argument (for a non-static member function call).
+ // We only need to do this if there was actually an overload; otherwise
+ // it was done at lookup.
+ if (!Method->isStatic()) {
+ ExprResult ObjectArg =
+ PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
+ FoundDecl, Method);
+ if (ObjectArg.isInvalid())
+ return ExprError();
+ MemExpr->setBase(ObjectArg.take());
+ }
+
+ // Convert the rest of the arguments
+ const FunctionProtoType *Proto =
+ Method->getType()->getAs<FunctionProtoType>();
+ if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
+ RParenLoc))
+ return ExprError();
+
+ DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
+
+ if (CheckFunctionCall(Method, TheCall))
+ return ExprError();
+
+ if ((isa<CXXConstructorDecl>(CurContext) ||
+ isa<CXXDestructorDecl>(CurContext)) &&
+ TheCall->getMethodDecl()->isPure()) {
+ const CXXMethodDecl *MD = TheCall->getMethodDecl();
+
+ if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
+ Diag(MemExpr->getLocStart(),
+ diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
+ << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
+ << MD->getParent()->getDeclName();
+
+ Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
+ }
+ }
+ return MaybeBindToTemporary(TheCall);
+}
+
+/// BuildCallToObjectOfClassType - Build a call to an object of class
+/// type (C++ [over.call.object]), which can end up invoking an
+/// overloaded function call operator (@c operator()) or performing a
+/// user-defined conversion on the object argument.
+ExprResult
+Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
+ SourceLocation LParenLoc,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RParenLoc) {
+ if (checkPlaceholderForOverload(*this, Obj))
+ return ExprError();
+ ExprResult Object = Owned(Obj);
+
+ UnbridgedCastsSet UnbridgedCasts;
+ if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
+ return ExprError();
+
+ assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
+ const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
+
+ // C++ [over.call.object]p1:
+ // If the primary-expression E in the function call syntax
+ // evaluates to a class object of type "cv T", then the set of
+ // candidate functions includes at least the function call
+ // operators of T. The function call operators of T are obtained by
+ // ordinary lookup of the name operator() in the context of
+ // (E).operator().
+ OverloadCandidateSet CandidateSet(LParenLoc);
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
+
+ if (RequireCompleteType(LParenLoc, Object.get()->getType(),
+ PDiag(diag::err_incomplete_object_call)
+ << Object.get()->getSourceRange()))
+ return true;
+
+ LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
+ LookupQualifiedName(R, Record->getDecl());
+ R.suppressDiagnostics();
+
+ for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
+ Oper != OperEnd; ++Oper) {
+ AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
+ Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
+ /*SuppressUserConversions=*/ false);
+ }
+
+ // C++ [over.call.object]p2:
+ // In addition, for each (non-explicit in C++0x) conversion function
+ // declared in T of the form
+ //
+ // operator conversion-type-id () cv-qualifier;
+ //
+ // where cv-qualifier is the same cv-qualification as, or a
+ // greater cv-qualification than, cv, and where conversion-type-id
+ // denotes the type "pointer to function of (P1,...,Pn) returning
+ // R", or the type "reference to pointer to function of
+ // (P1,...,Pn) returning R", or the type "reference to function
+ // of (P1,...,Pn) returning R", a surrogate call function [...]
+ // is also considered as a candidate function. Similarly,
+ // surrogate call functions are added to the set of candidate
+ // functions for each conversion function declared in an
+ // accessible base class provided the function is not hidden
+ // within T by another intervening declaration.
+ const UnresolvedSetImpl *Conversions
+ = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ NamedDecl *D = *I;
+ CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ // Skip over templated conversion functions; they aren't
+ // surrogates.
+ if (isa<FunctionTemplateDecl>(D))
+ continue;
+
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
+ if (!Conv->isExplicit()) {
+ // Strip the reference type (if any) and then the pointer type (if
+ // any) to get down to what might be a function type.
+ QualType ConvType = Conv->getConversionType().getNonReferenceType();
+ if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
+ ConvType = ConvPtrType->getPointeeType();
+
+ if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
+ {
+ AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
+ Object.get(), llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet);
+ }
+ }
+ }
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
+ Best)) {
+ case OR_Success:
+ // Overload resolution succeeded; we'll build the appropriate call
+ // below.
+ break;
+
+ case OR_No_Viable_Function:
+ if (CandidateSet.empty())
+ Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
+ << Object.get()->getType() << /*call*/ 1
+ << Object.get()->getSourceRange();
+ else
+ Diag(Object.get()->getLocStart(),
+ diag::err_ovl_no_viable_object_call)
+ << Object.get()->getType() << Object.get()->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+ break;
+
+ case OR_Ambiguous:
+ Diag(Object.get()->getLocStart(),
+ diag::err_ovl_ambiguous_object_call)
+ << Object.get()->getType() << Object.get()->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+ break;
+
+ case OR_Deleted:
+ Diag(Object.get()->getLocStart(),
+ diag::err_ovl_deleted_object_call)
+ << Best->Function->isDeleted()
+ << Object.get()->getType()
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Object.get()->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+ break;
+ }
+
+ if (Best == CandidateSet.end())
+ return true;
+
+ UnbridgedCasts.restore();
+
+ if (Best->Function == 0) {
+ // Since there is no function declaration, this is one of the
+ // surrogate candidates. Dig out the conversion function.
+ CXXConversionDecl *Conv
+ = cast<CXXConversionDecl>(
+ Best->Conversions[0].UserDefined.ConversionFunction);
+
+ CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
+ DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
+
+ // We selected one of the surrogate functions that converts the
+ // object parameter to a function pointer. Perform the conversion
+ // on the object argument, then let ActOnCallExpr finish the job.
+
+ // Create an implicit member expr to refer to the conversion operator.
+ // and then call it.
+ ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
+ Conv, HadMultipleCandidates);
+ if (Call.isInvalid())
+ return ExprError();
+ // Record usage of conversion in an implicit cast.
+ Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
+ CK_UserDefinedConversion,
+ Call.get(), 0, VK_RValue));
+
+ return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
+ RParenLoc);
+ }
+
+ MarkFunctionReferenced(LParenLoc, Best->Function);
+ CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
+ DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
+
+ // We found an overloaded operator(). Build a CXXOperatorCallExpr
+ // that calls this method, using Object for the implicit object
+ // parameter and passing along the remaining arguments.
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
+ const FunctionProtoType *Proto =
+ Method->getType()->getAs<FunctionProtoType>();
+
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ unsigned NumArgsToCheck = NumArgs;
+
+ // Build the full argument list for the method call (the
+ // implicit object parameter is placed at the beginning of the
+ // list).
+ Expr **MethodArgs;
+ if (NumArgs < NumArgsInProto) {
+ NumArgsToCheck = NumArgsInProto;
+ MethodArgs = new Expr*[NumArgsInProto + 1];
+ } else {
+ MethodArgs = new Expr*[NumArgs + 1];
+ }
+ MethodArgs[0] = Object.get();
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
+ MethodArgs[ArgIdx + 1] = Args[ArgIdx];
+
+ DeclarationNameInfo OpLocInfo(
+ Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
+ OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
+ ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
+ HadMultipleCandidates,
+ OpLocInfo.getLoc(),
+ OpLocInfo.getInfo());
+ if (NewFn.isInvalid())
+ return true;
+
+ // Once we've built TheCall, all of the expressions are properly
+ // owned.
+ QualType ResultTy = Method->getResultType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+
+ CXXOperatorCallExpr *TheCall =
+ new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
+ MethodArgs, NumArgs + 1,
+ ResultTy, VK, RParenLoc);
+ delete [] MethodArgs;
+
+ if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
+ Method))
+ return true;
+
+ // We may have default arguments. If so, we need to allocate more
+ // slots in the call for them.
+ if (NumArgs < NumArgsInProto)
+ TheCall->setNumArgs(Context, NumArgsInProto + 1);
+ else if (NumArgs > NumArgsInProto)
+ NumArgsToCheck = NumArgsInProto;
+
+ bool IsError = false;
+
+ // Initialize the implicit object parameter.
+ ExprResult ObjRes =
+ PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
+ Best->FoundDecl, Method);
+ if (ObjRes.isInvalid())
+ IsError = true;
+ else
+ Object = move(ObjRes);
+ TheCall->setArg(0, Object.take());
+
+ // Check the argument types.
+ for (unsigned i = 0; i != NumArgsToCheck; i++) {
+ Expr *Arg;
+ if (i < NumArgs) {
+ Arg = Args[i];
+
+ // Pass the argument.
+
+ ExprResult InputInit
+ = PerformCopyInitialization(InitializedEntity::InitializeParameter(
+ Context,
+ Method->getParamDecl(i)),
+ SourceLocation(), Arg);
+
+ IsError |= InputInit.isInvalid();
+ Arg = InputInit.takeAs<Expr>();
+ } else {
+ ExprResult DefArg
+ = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
+ if (DefArg.isInvalid()) {
+ IsError = true;
+ break;
+ }
+
+ Arg = DefArg.takeAs<Expr>();
+ }
+
+ TheCall->setArg(i + 1, Arg);
+ }
+
+ // If this is a variadic call, handle args passed through "...".
+ if (Proto->isVariadic()) {
+ // Promote the arguments (C99 6.5.2.2p7).
+ for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
+ ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
+ IsError |= Arg.isInvalid();
+ TheCall->setArg(i + 1, Arg.take());
+ }
+ }
+
+ if (IsError) return true;
+
+ DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
+
+ if (CheckFunctionCall(Method, TheCall))
+ return true;
+
+ return MaybeBindToTemporary(TheCall);
+}
+
+/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
+/// (if one exists), where @c Base is an expression of class type and
+/// @c Member is the name of the member we're trying to find.
+ExprResult
+Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
+ assert(Base->getType()->isRecordType() &&
+ "left-hand side must have class type");
+
+ if (checkPlaceholderForOverload(*this, Base))
+ return ExprError();
+
+ SourceLocation Loc = Base->getExprLoc();
+
+ // C++ [over.ref]p1:
+ //
+ // [...] An expression x->m is interpreted as (x.operator->())->m
+ // for a class object x of type T if T::operator->() exists and if
+ // the operator is selected as the best match function by the
+ // overload resolution mechanism (13.3).
+ DeclarationName OpName =
+ Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
+ OverloadCandidateSet CandidateSet(Loc);
+ const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
+
+ if (RequireCompleteType(Loc, Base->getType(),
+ PDiag(diag::err_typecheck_incomplete_tag)
+ << Base->getSourceRange()))
+ return ExprError();
+
+ LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
+ LookupQualifiedName(R, BaseRecord->getDecl());
+ R.suppressDiagnostics();
+
+ for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
+ Oper != OperEnd; ++Oper) {
+ AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
+ 0, 0, CandidateSet, /*SuppressUserConversions=*/false);
+ }
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
+ case OR_Success:
+ // Overload resolution succeeded; we'll build the call below.
+ break;
+
+ case OR_No_Viable_Function:
+ if (CandidateSet.empty())
+ Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
+ << Base->getType() << Base->getSourceRange();
+ else
+ Diag(OpLoc, diag::err_ovl_no_viable_oper)
+ << "operator->" << Base->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
+ return ExprError();
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
+ << "->" << Base->getType() << Base->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << "->"
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Base->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
+ return ExprError();
+ }
+
+ MarkFunctionReferenced(OpLoc, Best->Function);
+ CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
+ DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
+
+ // Convert the object parameter.
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
+ ExprResult BaseResult =
+ PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
+ Best->FoundDecl, Method);
+ if (BaseResult.isInvalid())
+ return ExprError();
+ Base = BaseResult.take();
+
+ // Build the operator call.
+ ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
+ HadMultipleCandidates, OpLoc);
+ if (FnExpr.isInvalid())
+ return ExprError();
+
+ QualType ResultTy = Method->getResultType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+ CXXOperatorCallExpr *TheCall =
+ new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
+ &Base, 1, ResultTy, VK, OpLoc);
+
+ if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
+ Method))
+ return ExprError();
+
+ return MaybeBindToTemporary(TheCall);
+}
+
+/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
+/// a literal operator described by the provided lookup results.
+ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
+ DeclarationNameInfo &SuffixInfo,
+ ArrayRef<Expr*> Args,
+ SourceLocation LitEndLoc,
+ TemplateArgumentListInfo *TemplateArgs) {
+ SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
+
+ OverloadCandidateSet CandidateSet(UDSuffixLoc);
+ AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
+ TemplateArgs);
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution. This will usually be trivial, but might need
+ // to perform substitutions for a literal operator template.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
+ case OR_Success:
+ case OR_Deleted:
+ break;
+
+ case OR_No_Viable_Function:
+ Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
+ << R.getLookupName();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
+ return ExprError();
+
+ case OR_Ambiguous:
+ Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
+ return ExprError();
+ }
+
+ FunctionDecl *FD = Best->Function;
+ MarkFunctionReferenced(UDSuffixLoc, FD);
+ DiagnoseUseOfDecl(Best->FoundDecl, UDSuffixLoc);
+
+ ExprResult Fn = CreateFunctionRefExpr(*this, FD, HadMultipleCandidates,
+ SuffixInfo.getLoc(),
+ SuffixInfo.getInfo());
+ if (Fn.isInvalid())
+ return true;
+
+ // Check the argument types. This should almost always be a no-op, except
+ // that array-to-pointer decay is applied to string literals.
+ Expr *ConvArgs[2];
+ for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
+ ExprResult InputInit = PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
+ SourceLocation(), Args[ArgIdx]);
+ if (InputInit.isInvalid())
+ return true;
+ ConvArgs[ArgIdx] = InputInit.take();
+ }
+
+ QualType ResultTy = FD->getResultType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+
+ UserDefinedLiteral *UDL =
+ new (Context) UserDefinedLiteral(Context, Fn.take(), ConvArgs, Args.size(),
+ ResultTy, VK, LitEndLoc, UDSuffixLoc);
+
+ if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
+ return ExprError();
+
+ if (CheckFunctionCall(FD, UDL))
+ return ExprError();
+
+ return MaybeBindToTemporary(UDL);
+}
+
+/// FixOverloadedFunctionReference - E is an expression that refers to
+/// a C++ overloaded function (possibly with some parentheses and
+/// perhaps a '&' around it). We have resolved the overloaded function
+/// to the function declaration Fn, so patch up the expression E to
+/// refer (possibly indirectly) to Fn. Returns the new expr.
+Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
+ FunctionDecl *Fn) {
+ if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
+ Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
+ Found, Fn);
+ if (SubExpr == PE->getSubExpr())
+ return PE;
+
+ return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
+ }
+
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
+ Found, Fn);
+ assert(Context.hasSameType(ICE->getSubExpr()->getType(),
+ SubExpr->getType()) &&
+ "Implicit cast type cannot be determined from overload");
+ assert(ICE->path_empty() && "fixing up hierarchy conversion?");
+ if (SubExpr == ICE->getSubExpr())
+ return ICE;
+
+ return ImplicitCastExpr::Create(Context, ICE->getType(),
+ ICE->getCastKind(),
+ SubExpr, 0,
+ ICE->getValueKind());
+ }
+
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
+ assert(UnOp->getOpcode() == UO_AddrOf &&
+ "Can only take the address of an overloaded function");
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
+ if (Method->isStatic()) {
+ // Do nothing: static member functions aren't any different
+ // from non-member functions.
+ } else {
+ // Fix the sub expression, which really has to be an
+ // UnresolvedLookupExpr holding an overloaded member function
+ // or template.
+ Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
+ Found, Fn);
+ if (SubExpr == UnOp->getSubExpr())
+ return UnOp;
+
+ assert(isa<DeclRefExpr>(SubExpr)
+ && "fixed to something other than a decl ref");
+ assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
+ && "fixed to a member ref with no nested name qualifier");
+
+ // We have taken the address of a pointer to member
+ // function. Perform the computation here so that we get the
+ // appropriate pointer to member type.
+ QualType ClassType
+ = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
+ QualType MemPtrType
+ = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
+
+ return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
+ VK_RValue, OK_Ordinary,
+ UnOp->getOperatorLoc());
+ }
+ }
+ Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
+ Found, Fn);
+ if (SubExpr == UnOp->getSubExpr())
+ return UnOp;
+
+ return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
+ Context.getPointerType(SubExpr->getType()),
+ VK_RValue, OK_Ordinary,
+ UnOp->getOperatorLoc());
+ }
+
+ if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
+ // FIXME: avoid copy.
+ TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
+ if (ULE->hasExplicitTemplateArgs()) {
+ ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
+ TemplateArgs = &TemplateArgsBuffer;
+ }
+
+ DeclRefExpr *DRE = DeclRefExpr::Create(Context,
+ ULE->getQualifierLoc(),
+ ULE->getTemplateKeywordLoc(),
+ Fn,
+ /*enclosing*/ false, // FIXME?
+ ULE->getNameLoc(),
+ Fn->getType(),
+ VK_LValue,
+ Found.getDecl(),
+ TemplateArgs);
+ DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
+ return DRE;
+ }
+
+ if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
+ // FIXME: avoid copy.
+ TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
+ if (MemExpr->hasExplicitTemplateArgs()) {
+ MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
+ TemplateArgs = &TemplateArgsBuffer;
+ }
+
+ Expr *Base;
+
+ // If we're filling in a static method where we used to have an
+ // implicit member access, rewrite to a simple decl ref.
+ if (MemExpr->isImplicitAccess()) {
+ if (cast<CXXMethodDecl>(Fn)->isStatic()) {
+ DeclRefExpr *DRE = DeclRefExpr::Create(Context,
+ MemExpr->getQualifierLoc(),
+ MemExpr->getTemplateKeywordLoc(),
+ Fn,
+ /*enclosing*/ false,
+ MemExpr->getMemberLoc(),
+ Fn->getType(),
+ VK_LValue,
+ Found.getDecl(),
+ TemplateArgs);
+ DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
+ return DRE;
+ } else {
+ SourceLocation Loc = MemExpr->getMemberLoc();
+ if (MemExpr->getQualifier())
+ Loc = MemExpr->getQualifierLoc().getBeginLoc();
+ CheckCXXThisCapture(Loc);
+ Base = new (Context) CXXThisExpr(Loc,
+ MemExpr->getBaseType(),
+ /*isImplicit=*/true);
+ }
+ } else
+ Base = MemExpr->getBase();
+
+ ExprValueKind valueKind;
+ QualType type;
+ if (cast<CXXMethodDecl>(Fn)->isStatic()) {
+ valueKind = VK_LValue;
+ type = Fn->getType();
+ } else {
+ valueKind = VK_RValue;
+ type = Context.BoundMemberTy;
+ }
+
+ MemberExpr *ME = MemberExpr::Create(Context, Base,
+ MemExpr->isArrow(),
+ MemExpr->getQualifierLoc(),
+ MemExpr->getTemplateKeywordLoc(),
+ Fn,
+ Found,
+ MemExpr->getMemberNameInfo(),
+ TemplateArgs,
+ type, valueKind, OK_Ordinary);
+ ME->setHadMultipleCandidates(true);
+ return ME;
+ }
+
+ llvm_unreachable("Invalid reference to overloaded function");
+}
+
+ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
+ DeclAccessPair Found,
+ FunctionDecl *Fn) {
+ return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
+}
+
+} // end namespace clang
OpenPOWER on IntegriCloud